1
|
Igomu EE, Mamman PH, Adamu J, Muhammad M, Woziri AO, Sugun MY, Benshak JA, Anyika KC, Sam-Gyang R, Ehizibolo DO. Immunoinformatics design of a novel multiepitope vaccine candidate against non-typhoidal salmonellosis caused by Salmonella Kentucky using outer membrane proteins A, C, and F. PLoS One 2025; 20:e0306200. [PMID: 39792829 PMCID: PMC11723559 DOI: 10.1371/journal.pone.0306200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans. In this study, we used a bioinformatics approach to develop a peptide-based vaccine targeting epitopes from the outer membrane proteins A, C, and F of S. Kentucky. Additionally, we employed flagellin protein (fliC) from Salmonella Typhimurium (S. Typhimurium) as an adjuvant to enhance the vaccine's effectiveness. Through this approach, we identified 14 CD8+ and 7 CD4+ T-cell epitopes, which are predicted to be restricted by various MHC class I and MHC class II alleles. The predicted epitopes are expected to achieve a population coverage of 94.91% when used in vaccine formulations. Furthermore, we identified seven highly immunogenic linear B-cell epitopes and three conformational B-cell epitopes. These T-cell and B-cell epitopes were then linked using appropriate linkers to create a multi-epitope vaccine (MEV). To boost the immunogenicity of the peptide construct, fliC from S. Typhimurium was included at the N-terminal. The resulting MEV construct demonstrated high structural quality and favorable physicochemical properties. Molecular docking studies with Toll-like receptors 1, 2, 4, and 5, followed by molecular dynamic simulations, suggested that the vaccine-receptor complexes are energetically feasible, stable, and robust. Immune simulation results showed that the MEV elicited significant responses, including IgG, IgM, CD8+ T-cells, CD4+ T-cells, and various cytokines (IFN-γ, TGF-β, IL-2, IL-10, and IL-12), along with a noticeable reduction in antigen levels. Despite these promising in-silico findings, further validation through preclinical and clinical trials is required to confirm the vaccine's efficacy and safety.
Collapse
Affiliation(s)
- Elayoni E. Igomu
- Bacterial Vaccine Production Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Paul H. Mamman
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Jibril Adamu
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Maryam Muhammad
- Bacterial Research Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Abubarkar O. Woziri
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Manasa Y. Sugun
- Bacterial Vaccine Production Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - John A. Benshak
- Biotechnology Center, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Kingsley C. Anyika
- Bacterial Research Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Rhoda Sam-Gyang
- Bacterial Vaccine Production Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - David O. Ehizibolo
- Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
2
|
Duan Z, Song J, Zhang M, Zhang Z, Li N, Fu Y, Sun Z, Lu T, Li S, Cao M, Wang Q, Sun C, Wang X. Effects of Yersinia pseudotuberculosis outer membrane vesicles on Pseudomonas aeruginosa antigens immune response. PLoS One 2024; 19:e0310652. [PMID: 39705292 DOI: 10.1371/journal.pone.0310652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Outer membrane vesicles (OMVs) are immunogenic self-adjuvanting vesicles produced by Gram-negative bacteria such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis. While the effects of OMVs on different antigens immune stimulation are not clear. In this study, we constructed recombinant Yersinia pseudotuberculosis ΔlpxL strain,with pBlue-PcrV and pBlue-OprF/I, and then purified ΔlpxL rOMVPcrV (rOMVyp2P)and ΔlpxL rOMVOprF/I (rOMVyp2F) and analyzed its effect on immune response and protection against Pseudomonas aeruginosa PAO1 infection. The results showed that OMV assists in eliciting similar humoral immune responses to PcrV and OprF/I antigens. ΔlpxL rOMVPcrV and ΔlpxL rOMVOprF/I elicited Th1/Th2 balanced immune response, and higher IgM and IgA antibodies.However, there are differences in immune protection for the pulmonary. The survival rate of mice in ΔlpxL rOMVPcrV group was 20%, which was significantly better than that in ΔlpxL rOMVOprF/I group. ΔlpxL OMVPcrV is better cooperation for Pseudomonas immune protection in lung.
Collapse
Affiliation(s)
- Zhongxu Duan
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingqi Song
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingru Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqin Fu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Tiancheng Lu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Siyuan Li
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingyue Cao
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qingyu Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Chunhui Sun
- Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiuran Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| |
Collapse
|
3
|
Rodriguez-Marino N, Royer CJ, Rivera-Rodriguez DE, Seto E, Gracien I, Jones RM, Scharer CD, Gracz AD, Cervantes-Barragan L. Dietary fiber promotes antigen presentation on intestinal epithelial cells and development of small intestinal CD4 +CD8αα + intraepithelial T cells. Mucosal Immunol 2024; 17:1301-1313. [PMID: 39244090 PMCID: PMC11742265 DOI: 10.1016/j.mucimm.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.
Collapse
Affiliation(s)
- Naomi Rodriguez-Marino
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Charlotte J Royer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Current affiliation. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Dormarie E Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, Atlanta, GA, United States
| | - Emma Seto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Isabelle Gracien
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, , Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory Vaccine Center, , Emory University School of Medicine, Atlanta, GA, United States
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
4
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Xu J, Chen Y, Yu J, Liu S, Meng Y, Li C, Huang Q, Xiao Y. Clinical Characteristics, Serotypes and Antimicrobial Resistance of Invasive Salmonella Infections in HIV-Infected Patients in Hangzhou, China, 2012-2023. Infect Drug Resist 2024; 17:3839-3849. [PMID: 39247755 PMCID: PMC11380868 DOI: 10.2147/idr.s465979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Developing countries, invasive Salmonella infections can cause considerable morbidity and mortality. There is a relative lack of data on coinfection with Salmonella in HIV-infected patients in Hangzhou, China. Patients and Methods In this study, we manually collected case data of patients aged >18 years with HIV combined with invasive Salmonella infections admitted to Xixi Hospital in Hangzhou from January 2012 to August 2023 by logging into the Hospital Information System, and identified 26 strains of invasive Salmonella using a fully automated microbiological identification system and mass spectrometer. Serotypes were determined using Salmonella diagnostic sera based on the White-Kauffmann-Le Minor scheme. Drug sensitivity tests were performed using the automated instrumental method of the MIC method. Results A total of 26 HIV-infected patients with invasive Salmonella coinfections were identified over 11 years; Twenty-five of the 26 patients (96.2%) were males, with a mean age of 33.5 years (26.75, 46.75). The most common type of infection was bloodstream infection (92.3%). One patient also had concomitant meningitis and osteoarthritis, followed by pneumonia (7.7%). The presence of multiple bacterial infections or even multiple opportunistic pathogens was clearly established in 7 (26.9%) patients. Three (11.6%) patients were automatically discharged from the hospital with deterioration of their condition, and one (3.8%) patient died. Salmonella enteritidis was the most common serotype in 6 patients (23.2%), and Salmonella Dublin was the most common serotype in 6 patients (23.2%). Drug sensitivity results revealed multidrug resistance in a total of 8 (30.8%) patients. Conclusion The clinical presentation of invasive Salmonella infection in HIV patients is nonspecific and easily masked by other mixed infections. A CD4+ count <100 cells/µL and comorbid intestinal lesions may be important susceptibility factors. Salmonella has a high rate of resistance to common antibiotics, and the risk of multidrug resistance should not be ignored.
Collapse
Affiliation(s)
- Jingying Xu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Chen
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhua Yu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Shourong Liu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Meng
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chaodan Li
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qian Huang
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunlei Xiao
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Hewawaduge C, Kwon J, Park JY, Lee JH. A low-endotoxic Salmonella enterica Gallinarum serovar delivers infectious bronchitis virus immunogens via a dual-promoter vector system that drives protective immune responses through MHC class-I and -II activation in chickens. Poult Sci 2024; 103:103844. [PMID: 38795516 PMCID: PMC11153243 DOI: 10.1016/j.psj.2024.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
An effective vaccine strategy is indispensable against infectious bronchitis virus (IBV) and fowl typhoid (FT), both of which threaten the poultry industry. This study demonstrates a vector system, pJHL270, designed to express antigens in prokaryotic and eukaryotic cells. The vector system stimulates immune responses via synchronized antigen presentation to MHC class-I and -II molecules to produce balanced Th1/Th2 responses. The vaccine antigens were crafted by selecting the consensus sequence of the N-terminal domain of the spike protein (S1-NTD) and a conserved immunogenic region of the nucleocapsid protein (N321-406 aa) from IBV strains circulating in South Korea. The vaccine antigen was cloned and transformed into a live-attenuated Salmonella Gallinarum (SG) strain, JOL2854 (∆lon, ∆cpxR, ∆rfaL, ∆pagL, ∆asd). Western blot analysis confirmed concurrent antigen expression in Salmonella and eukaryotic cells. Oral immunization with the SG-based IBV vaccine construct JOL2918 induced IBV antigen and Salmonella-specific humoral and cell-mediated immune responses in chickens. PBMCs collected from immunized chickens revealed that MHC class-I and -II expression had increased 3.3-fold and 2.5-fold, respectively, confirming MHC activation via bilateral antigen expression and presentation. Immunization induced neutralizing antibodies (NAbs) and reduced the viral load by 2-fold and 2.5-fold in the trachea and lungs, respectively. The immunized chickens exhibited multifaceted humoral, mucosal, and cell-mediated responses via parallel MHC class-I and -II activation as proof of a balanced Th1/Th2 immune response. The level of NAbs, viral load, and gross and histological analyses provide clear evidence that the construct provides protection against IBV and FT.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
7
|
Milby-Blackledge A, Farnell Y, Zhao D, Berghman L, Laino C, Muller M, Byrd JA, Farnell M. Serum cytokine profile of neonatal broiler chickens infected with Salmonella Typhimurium. Front Physiol 2024; 15:1359722. [PMID: 38465263 PMCID: PMC10920336 DOI: 10.3389/fphys.2024.1359722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The avian immune system responds to Salmonella infection by expressing cytokines and chemokines. We hypothesized that the immune status of Salmonella Typhimurium (ST) challenged neonatal broilers would differ from the uninfected treatment. The objective of this experiment was to evaluate 12 cytokines. Day of hatch male chicks were randomly allocated into a control or ST challenged group. At day three of age, sterile diluent or 5.0 × 108 CFU of ST was given orally to each chick. Blood was obtained 24 h post challenge and serum separated for later analysis (n = 30 chicks/treatment). Significant (p ≤ 0.05) increases in pro-inflammatory cytokines-interleukin-6 (IL-6), IL-16, and IL-21; anti-inflammatory cytokines- IL-10; chemokines-regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1β (MIP-1β), and MIP-3α; colony stimulating factors-macrophage colony-stimulating factor (M-CSF); and growth factors-vascular endothelial growth factor (VEGF) were observed in the serum of the challenged chicks when compared to the control. No significant differences were observed in IL-2, interferon gamma (IFNγ), and IFNα. These data indicate the detection of mucosal immune responses in broiler chickens following ST infection. The heightened levels of pro-inflammatory cytokines, chemokines, and colony stimulating factors align with known inflammatory mechanisms, like the influx of immune cells. However, the elevation of IL-10 was unexpected, due to its immunoregulatory properties. Notably, the rise in VEGF levels is compelling, as it suggests the possibility of tissue repair and angiogenesis in ST infected birds.
Collapse
Affiliation(s)
| | - Yuhua Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Dan Zhao
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Luc Berghman
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Craig Laino
- Millipore Sigma, Saint Louis, MO, United States
| | | | - J. Allen Byrd
- United States Department of Agriculture, Southern Plains Agricultural Research Service, College Station, TX, United States
| | - Morgan Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| |
Collapse
|
8
|
Wang KC, Jensen PR. Metabolic Analysis of Intracellular Pathogenic Bacteria Using NMR. Methods Mol Biol 2024; 2813:95-105. [PMID: 38888772 DOI: 10.1007/978-1-0716-3890-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pathogen proliferation and virulence depend on available nutrients, and these vary when the pathogen moves from outside of the host cell (extracellular) to the inside of the host cell (intracellular). Nuclear Magnetic Resonance (NMR) is a versatile analytical method, which lends itself for metabolic studies. In this chapter, we describe how 1H NMR can be combined with a cellular infection model to study the metabolic crosstalk between a bacterial pathogen and its host both in the extracellular and intracellular compartments. Central carbon metabolism is highlighted by using glucose labeled with the stable isotope 13C.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pernille Rose Jensen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
10
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
11
|
Battisti A, Samal SK, Puppi D. Biosensing Systems Based on Graphene Oxide Fluorescence Quenching Effect. MICROMACHINES 2023; 14:1522. [PMID: 37630058 PMCID: PMC10456591 DOI: 10.3390/mi14081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Graphene oxide (GO) is a versatile material obtained by the strong oxidation of graphite. Among its peculiar properties, there is the outstanding ability to significantly alter the fluorescence of many common fluorophores and dyes. This property has been exploited in the design of novel switch-ON and switch-OFF fluorescence biosensing platforms for the detection of a plethora of biomolecules, especially pathological biomarkers and environmental contaminants. Currently, novel advanced strategies are being developed for therapeutic, diagnostic and theranostic approaches to widespread pathologies caused by viral or bacterial agents, as well as to cancer. This work illustrates an overview of the most recent applications of GO-based sensing systems relying on its fluorescence quenching effect.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-RMRC, Bhubaneswar 751023, Odisha, India;
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, I-56124 Pisa, Italy;
| |
Collapse
|
12
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
13
|
Zhou G, Tian Y, Tian J, Ma Q, Huang S, Li Q, Wang S, Shi H. Oral Immunization with Attenuated Salmonella Choleraesuis Expressing the P42 and P97 Antigens Protects Mice against Mycoplasma hyopneumoniae Challenge. Microbiol Spectr 2022; 10:e0236122. [PMID: 36377878 PMCID: PMC9769600 DOI: 10.1128/spectrum.02361-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiashuo Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shan Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
14
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
15
|
Wiradiputra MRD, Khuntayaporn P, Thirapanmethee K, Chomnawang MT. Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium. Infect Drug Resist 2022; 15:5813-5829. [PMID: 36213766 PMCID: PMC9541301 DOI: 10.2147/idr.s378157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The toxin and antitoxin modules in bacteria consist of a toxin molecule that has activity to inhibit various cellular processes and its cognate antitoxin that neutralizes the toxin. This system is considered taking part in the formation of persister cells, which are a subpopulation of recalcitrant cells able to survive antimicrobial treatment without any resistance mechanisms. Importantly, persisters have been associated with long-term infections and treatment failures in healthcare settings. It is a public health concern since persisters can be involved in the evolution and dissemination of antimicrobial resistance amidst the aggravating spread of multidrug-resistant bacteria and insufficient novel antimicrobial therapy to tackle this issue. Salmonella enterica serovar Typhimurium is one of the most prevalent Salmonella serotypes in the world and is a leading cause of food-borne salmonellosis. S. Typhimurium has been known to cause persistent infection and a wealth of investigations on Salmonella persisters indicates that toxin and antitoxin modules play a role in mediating the phenotypic switch of persisters, rendering its survival ability in the presence of antimicrobial agents. In this review, we discuss findings regarding mechanisms that underly persistence in S. Typhimurium, especially the involvement of toxin and antitoxin modules.
Collapse
Affiliation(s)
- Made Rai Dwitya Wiradiputra
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyatip Khuntayaporn
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Correspondence: Mullika Traidej Chomnawang, Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand, Tel +66 2 644 8692, Email
| |
Collapse
|
16
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Manohar MM, Campbell BE, Walduck AK, Moore RJ. Enhancement of live vaccines by co-delivery of immune modulating proteins. Vaccine 2022; 40:5769-5780. [PMID: 36064671 DOI: 10.1016/j.vaccine.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.
Collapse
Affiliation(s)
- Megha M Manohar
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
18
|
Zhou Y, Xu D, Yu H, Han J, Liu W, Qu D. Encapsulation of Salmonella phage SL01 in alginate/carrageenan microcapsules as a delivery system and its application in vitro. Front Microbiol 2022; 13:906103. [PMID: 35992667 PMCID: PMC9386268 DOI: 10.3389/fmicb.2022.906103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Phages can be used successfully to treat pathogenic bacteria including zoonotic pathogens that colonize the intestines of animals and humans. However, low pH and digestive enzyme activity under harsh gastric conditions affect phage viability, thereby reducing their effectiveness. In this study, alginate (ALG)/κ-carrageenan (CG) microcapsules were developed to encapsulate and release phage under simulated gastrointestinal conditions. The effects of ALG and CG concentrations on the encapsulation and loading efficiency of microcapsules, as well as the release behavior and antibacterial effects of microcapsules in simulating human intestinal pH and temperature, were investigated. Based on various indicators, when the concentration of ALG and CG were 2.0 and 0.3%, respectively, the obtained microcapsules have high encapsulation efficiency, strong protection, and high release efficiency in simulated intestinal fluid. This effect is attributed to the formation of a more tightly packed biopolymer network within the composite microcapsules based on the measurements of their microstructure properties. Bead-encapsulation is a promising, reliable, and cost-effective method for the functional delivery of phage targeting intestinal bacteria.
Collapse
Affiliation(s)
- Yuqiao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational Technical College, Jiaxing, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Daofeng Qu,
| |
Collapse
|
19
|
Acevedo-Villanueva K, Akerele G, Al-Hakeem W, Adams D, Gourapura R, Selvaraj R. Immunization of Broiler Chickens With a Killed Chitosan Nanoparticle Salmonella Vaccine Decreases Salmonella Enterica Serovar Enteritidis Load. Front Physiol 2022; 13:920777. [PMID: 35923229 PMCID: PMC9340066 DOI: 10.3389/fphys.2022.920777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is a critical need for an oral-killed Salmonella vaccine for broilers. Chitosan nanoparticle (CNP) vaccines can be used to deliver Salmonella antigens orally. We investigated the efficacy of a killed Salmonella CNP vaccine on broilers. CNP vaccine was synthesized using Salmonella enterica serovar Enteritidis (S. Enteritidis) outer membrane and flagella proteins. CNP was stable at acidic conditions by releasing 14% of proteins at pH 5.5. At 17 h post-incubation, the cumulative protein release for CNP was 75% at pH 7.4. Two hundred microliters of PBS with chicken red blood cells incubated with 20 μg/ml CNP released 0% hemoglobin. Three hundred chicks were allocated into 1) Control, 2) Challenge, 3) Vaccine + Challenge. At d1 of age, chicks were spray-vaccinated with PBS or 40 mg CNP. At d7 of age, chicks were orally-vaccinated with PBS or 20 μg CNP/bird. At d14 of age, birds were orally-challenged with PBS or 1 × 107 CFU/bird of S. Enteritidis. The CNP-vaccinated birds had higher antigen-specific IgY/IgA and lymphocyte-proliferation against flagellin (p < 0.05). At 14 days post-infection, CNP-vaccinated birds reversed the loss in gut permeability by 13% (p < 0.05). At 21 days post-infection, the CNP-vaccinated birds decreased S. Enteritidis in the ceca and spleen by 2 Log10 CFU/g, and in the small intestine by 0.6 Log10 CFU/g (p < 0.05). We conclude that the CNP vaccine is a viable alternative to conventional Salmonella poultry vaccines.
Collapse
Affiliation(s)
- Keila Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Gabriel Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Walid Al-Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Daniel Adams
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Renukaradhy Gourapura
- Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Ramesh Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Ramesh Selvaraj,
| |
Collapse
|
20
|
Park S, Kirthika P, Jawalagatti V, Senevirathne A, Lee JH. Salmonella delivered Lawsonia intracellularis novel epitope-fusion vaccines enhance immunogenicity and confers protection against Lawsonia intracellularis in mice. Vet Microbiol 2021; 263:109264. [PMID: 34710766 DOI: 10.1016/j.vetmic.2021.109264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Attenuated Salmonella-mediated vaccine constructs were designed by employing selected discontinuous immunodominant epitopes of LatA, FliC, and PAL antigens of Lawsonia intracellularis to create vaccines against porcine proliferative enteropathy (PPE). Whole protein sequences were subjected to in silico prediction of dominant epitopes, the stability of fusions, and hydropathicity and to ensure that the fused epitopes were feasible for expression in a Salmonella system. Two fusion constructs, one comprising LatA epitopes and the other FliC-PAL-FliC epitopes, were built into a prokaryotic constitutive expression system and transformed into the auxotrophic Salmonella host strain JOL1800. Epitope selection eliminated the majority of less immunodominant regions of target proteins and resulted in an efficient secretion platform that induced significant protective responses. Overall, our results demonstrated that the Salmonella-mediated LI- multi-epitope vaccines elicited significant humoral and cellular immune responses. Additionally, the challenge study suggested that the vaccinated mice were protected against experimental Lawsonia intracellularis infection. Based on the outcomes of the study, Salmonella-mediated LI- multi-epitope vaccines have the potential to prevent PPE.
Collapse
Affiliation(s)
- Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Vijayakumar Jawalagatti
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
21
|
CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathog 2021; 17:e1010004. [PMID: 34695149 PMCID: PMC8568161 DOI: 10.1371/journal.ppat.1010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections. Helper T cells are essential for controlling infections by bacterial pathogens, such as Salmonella enterica var Typhimurium (S. Typhimurium). While it is well-established that this role is related to their provision of IFN-γ, when and where helper T cells elicit their protective function in vivo remains unresolved. We identified a protective helper T cell population in the circulation of mice early after inoculation with growth-attenuated S. Typhimurium strains; this population waned overtime. We observed that circulating helper T cell immunity can adoptively protect naïve recipient mice against lethal S. Typhimurium infection when harvested from a short time-window. In comparing helper T cell responses between spleen and liver in Salmonella-infected mice, we have observed a previously uncharacterized trafficking of helper T cells to the liver followed by the residence of S. Typhimurium-specific T cell memory in the organ. Taken together these findings identify that protective immunity to Salmonella infections is transient in the circulation and the liver as a preferential site of helper T memory cells.
Collapse
|
22
|
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14:793-802. [PMID: 33753873 DOI: 10.1038/s41385-021-00389-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Gut-associated lymphoid tissues (GALT) are the key antigen sampling and adaptive immune inductive sites within the intestinal wall. Human GALT includes the multi-follicular Peyer's patches of the ileum, the vermiform appendix, and the numerous isolated lymphoid follicles (ILF) which are distributed along the length of the intestine. Our current understanding of GALT diversity and function derives primarily from studies in mice, and the relevance of many of these findings to human GALT remains unclear. Here we review our current understanding of human GALT diversity, structure, and composition as well as their potential for regulating intestinal immune responses during homeostasis and inflammatory bowel disease (IBD). Finally, we outline some key remaining questions regarding human GALT, the answers to which will advance our understanding of intestinal immune responses and provide potential opportunities to improve the treatment of intestinal diseases.
Collapse
|
23
|
Efficacy of a nanoparticle vaccine administered in-ovo against Salmonella in broilers. PLoS One 2021; 16:e0247938. [PMID: 33822791 PMCID: PMC8023474 DOI: 10.1371/journal.pone.0247938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella is a zoonotic pathogen that persists in poultry. Salmonella vaccines that can be delivered in-ovo can be cost-effective and can decrease Salmonella load in poultry. This study evaluates the efficacy of a Salmonella chitosan-nanoparticle (CNP) vaccine, administered in-ovo, in broilers. CNP vaccine was synthesized with Salmonella Enteritidis (SE) outer-membrane-proteins (OMPs) and flagellin proteins. At embryonic-d18, one-hundred-thirty-six eggs were injected with 200μl PBS or 1000μg CNP into the amniotic cavity. At d1-of-age, 132 chicks were allocated in 6 pens/treatment with 11 chicks/pen. At d7, birds were orally challenged with 1×109 CFU/bird SE. At d1, 8h-post-challenge, d14, and d21, serum anti-SE-OMPs IgY were analyzed. At d14 and d21, cloacal swabs and bile anti-SE-OMPs IgA, CD4+/CD8+-T-cell ratios, and ceca SE loads were analyzed. At d21, cecal tonsil IL-1β, IL-10, and iNOS mRNA were analyzed. Body-weight-gain (BWG) and feed-conversion-ratio (FCR) were recorded weekly. Data were analyzed by Student's t-test at P<0.05. There were no significant differences in BWG or FCR between vaccinated birds compared to control. At d1, CNP-vaccinated birds had 5.62% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 8h-post-challenge, CNP-vaccinated birds had 6.39% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 2wk-post-challenge, CNP-vaccinated birds had 7.34% lower levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 1wk-post-challenge, CNP-vaccinated birds had 15.30% greater levels (P<0.05) of bile anti-SE-OMPs IgA, compared to control. At d14 and d21, CNP-vaccinated birds had 0.62 and 0.85 Log10 CFU/g, decreased SE ceca load (P<0.05), respectively, compared to control. There were no significant differences in CD4+/CD8+-T-cell ratios between vaccinated birds compared to control. There were no significant differences in IL-1β, IL-10, iNOS mRNA between vaccinated birds compared to control. Findings demonstrate that the in-ovo administration of CNP vaccine can induce an antigen-specific immune response against SE and can decrease SE cecal load in broilers.
Collapse
|
24
|
Fetal Macrophages Exposed to Salmonella Antigens Elicit Protective Immunity Against Overwhelming Salmonella Challenge in A Murine Model. Biomedicines 2021; 9:biomedicines9030245. [PMID: 33804435 PMCID: PMC8001423 DOI: 10.3390/biomedicines9030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the evidence for fetal immunization following maternal infection, it remained a mystery how the fetal immune system was primed by vertically-transmitted pathogens or microbial antigens, especially before its full maturation. We previously demonstrated the capacity of fetal macrophages for endocytosing oncoprotein and allergens to bridge towards adaptive immunity in postnatal life. To investigate the immunological consequences of fetal contact with microbial antigens and the role of fetal macrophages in the defense against infection before T-cell development, we exposed gestational day 14 murine fetuses and their macrophages to flagellin and heat-killed Salmonella Typhimurium. Recipients with in utero exposure to Salmonella antigens or adoptive transfer of microbial antigen-loaded fetal macrophages were examined for immune responses to Salmonella antigens and resistance to virulent Salmonella challenge. Fetal exposure to microbial antigens or adoptive transfer of microbial antigen-loaded fetal macrophages could confer antigen-specific adaptive immunity. However, protective immunity against lethal Salmonella challenge was only granted to those receiving heat-killed Salmonella antigens, presenting as heightened recall responses of serum anti-lipopolysaccharide immunoglobulins and interferon-gamma. In immunized recipients surviving Salmonella challenge, their serum transfer to succeeding recipients provided immediate protection from lethal Salmonella challenge in preference to lymphocyte transfer, indicating a more active role of humoral immunity in the prevention of Salmonella invasiveness. Our study sheds insight on the role of fetal macrophages in immunogenicity to transplacental pathogens regardless of fetal lymphocyte maturity, paving the way for fetal macrophage therapies to enhance vaccine responsiveness or increase resistance to pathogenic microorganisms in perinatal life.
Collapse
|
25
|
Cross DL, Verheul MK, Leipold MD, Obermoser G, Jin C, Jones E, Starr JS, Mohorianu I, Blohmke CJ, Maecker HT, Napolitani G, Hill J, Pollard AJ. Vi-Vaccinations Induce Heterogeneous Plasma Cell Responses That Associate With Protection From Typhoid Fever. Front Immunol 2020; 11:574057. [PMID: 33424833 PMCID: PMC7793947 DOI: 10.3389/fimmu.2020.574057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023] Open
Abstract
Vi-polysaccharide conjugate vaccines are efficacious against cases of typhoid fever; however, an absolute correlate of protection is not established. In this study, we investigated the leukocyte response to a Vi-tetanus toxoid conjugate vaccine (Vi-TT) in comparison with a plain polysaccharide vaccine (Vi-PS) in healthy adults subsequently challenged with Salmonella Typhi. Immunological responses and their association with challenge outcome was assessed by mass cytometry and Vi-ELISpot assay. Immunization induced significant expansion of plasma cells in both vaccines with modest T follicular helper cell responses detectable after Vi-TT only. The Vi-specific IgG and IgM B cell response was considerably greater in magnitude in Vi-TT recipients. Intriguingly, a significant increase in a subset of IgA+ plasma cells expressing mucosal migratory markers α4β7 and CCR10 was observed in both vaccine groups, suggesting a gut-tropic, mucosal response is induced by Vi-vaccination. The total plasma cell response was significantly associated with protection against typhoid fever in Vi-TT vaccinees but not Vi-PS. IgA+ plasma cells were not significantly associated with protection for either vaccine, although a trend is seen for Vi-PS. Conversely, the IgA- fraction of the plasma cell response was only associated with protection in Vi-TT. In summary, these data indicate that a phenotypically heterogeneous response including both gut-homing and systemic antibody secreting cells may be critical for protection induced by Vi-TT vaccination.
Collapse
Affiliation(s)
- Deborah L Cross
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marije K Verheul
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Michael D Leipold
- The Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, United States
| | - Gerlinde Obermoser
- The Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, United States
| | - Celina Jin
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joshua S Starr
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Irina Mohorianu
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Christoph J Blohmke
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Holden T Maecker
- The Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, United States
| | - Giorgio Napolitani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hill
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
26
|
Kalinina AA, Nesterenko LN, Bruter AV, Balunets DV, Chudakov DM, Izraelson M, Britanova OV, Khromykh LM, Kazansky DB. Adoptive Immunotherapy Based on Chain-Centric TCRs in Treatment of Infectious Diseases. iScience 2020; 23:101854. [PMID: 33313494 PMCID: PMC7721641 DOI: 10.1016/j.isci.2020.101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Complications after vaccination, lack of vaccines against certain infections, and the emergence of antibiotic-resistant microorganisms point to the need for alternative ways of protection and treatment of infectious diseases. Here, we proposed a therapeutic approach to control salmonellosis based on adoptive cell therapy. We showed that the T cell receptor (TCR) repertoire of salmonella-specific memory cells contains 20% of TCR variants with the dominant-active α-chain. Transduction of intact T lymphocytes with the dominant salmonella-specific TCRα led to their enhanced in vitro proliferation in response to salmonella. Adoptive transfer of transduced T cells resulted in a significant decrease in bacterial loads in mice infected with salmonella before or after the adoptive transfer. We demonstrated that adoptive immunotherapy based on T cells, transduced with dominant-specific TCRα could be successfully applied for treatment and prevention of infectious diseases and represent a useful addition to vaccination and existing therapeutic strategies. A regular TCR repertoire of memory T cells contains alpha-chain-centric TCRs Dominant-active TCRα, paired with random TCRβ, recognizes specific microbial antigens Adoptive immunotherapy could be applied for treatment of infections
Collapse
Affiliation(s)
- Anastasiia A Kalinina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Ludmila N Nesterenko
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexandra V Bruter
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Denis V Balunets
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ludmila M Khromykh
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Dmitry B Kazansky
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
27
|
Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease. Proc Natl Acad Sci U S A 2020; 117:20717-20728. [PMID: 32788367 PMCID: PMC7456131 DOI: 10.1073/pnas.2007472117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.
Collapse
|
28
|
Wilkerson S, Broadway PR, Carroll JA, Burdick Sanchez NC, Tigue DA, Rehm JG, Lawhon S, Callaway TR, Bratcher CL. Translocation of Orally Inoculated Salmonella Following Mild Immunosuppression in Holstein Calves and the Presence of the Salmonella in Ground Beef Samples. Foodborne Pathog Dis 2020; 17:533-540. [PMID: 32366128 DOI: 10.1089/fpd.2019.2761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to determine if immunosuppression through daily dexamethasone (DEX) infusion altered Salmonella translocation from the gastrointestinal tract. Weaned Holstein steers (n = 20; body weight [BW] = 102 ± 2.7 kg) received DEX (n = 10; 0.5 mg/kg BW) or saline (control [CON]; n = 10;) for 4 days (from day -1 to 2) before oral inoculation of naldixic acid-resistant Salmonella enterica Typhimurium (SAL; 3.4 × 106 colony-forming units [CFU]/animal) on day 0. Fecal swabs were obtained daily, and blood was collected daily for hematology. At harvest (day 5), ileum, cecal fluid, lymph nodes (ileocecal, mandibular, popliteal, and subscapular), and synovial (stifle, coxofemoral, and shoulder) samples were collected for isolation of the inoculated strain of SAL. White blood cell (WBC) and neutrophil concentrations were elevated (p < 0.01) in DEX calves following each administration event. Following inoculation, 100% of DEX calves shed the experimental strain of SAL for all 5 days, 90% of CON calves shed from day 1 to 3, and 100% of CON calves shed from day 4 to 5. Greater (p < 0.01) concentrations of SAL were quantified from the cecum of DEX calves (3.86 ± 0.37 log CFU/g) compared with CON calves (1.37 ± 0.37 log CFU/g). There was no difference in SAL concentrations between DEX and CON calves in ileal tissue (p = 0.07) or ileocecal (p = 0.57), mandibular (p = 0.12), popliteal (p = 0.99), or subscapular (p = 0.83) lymph nodes. Of the stifle samples collected, 3.3% were positive for SAL, highlighting a contamination opportunity during hindquarter breakdown. While more research is needed to elucidate the interactions of immunosuppression and pathogen migration patterns, these data confirm that orally inoculated SAL can translocate from the gastrointestinal tract and be harbored in atypical locations representing a food safety risk.
Collapse
Affiliation(s)
| | | | | | | | - D Alex Tigue
- Animal Science, Auburn University, Auburn, Alabama, USA
| | - John G Rehm
- Animal Science, Auburn University, Auburn, Alabama, USA
| | - Sara Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Todd R Callaway
- Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Christy L Bratcher
- College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
29
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
30
|
Castanheira S, López-Escarpa D, Pucciarelli MG, Cestero JJ, Baquero F, García-Del Portillo F. An alternative penicillin-binding protein involved in Salmonella relapses following ceftriaxone therapy. EBioMedicine 2020; 55:102771. [PMID: 32344200 PMCID: PMC7186495 DOI: 10.1016/j.ebiom.2020.102771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background Salmonella causes intracellular infections in humans. Besides quinolones, third generation cephalosporins are first line drugs used for salmonellosis therapy. An unresolved anomaly of this practice involves high relapse rates associated to quinolone- or cephalosporin-susceptible Salmonella isolates in patients that are discharged clinically following initial recovery. Reduced drug accessibility to intracellular locations has been hypothesized to impair pathogen eradication although supporting evidence is lacking in vivo. Here, we uncover a novel penicillin-binding protein as the first Salmonella factor likely contributing to relapse following beta-lactam, mainly ceftriaxone, therapy. Methods We used Salmonella enterica serovar Typhimurium mutants lacking the alternative penicillin-binding proteins PBP2SAL or PBP3SAL. Affinity of PBP2SAL and PBP3SAL for beta-lactam antibiotics was tested. Relapse after ceftriaxone therapy was analysed in the murine typhoid model. Findings S. Typhimurium does not express PBP2SAL or PBP3SAL in the Mueller-Hinton medium used for susceptibility testing. The pathogen produces these PBPs in response to acidic pH and nutrient limitation, conditions found in phagosomes of mammalian cells. PBP3SAL has low affinity for beta-lactams, even at acidic pH. In vitro susceptibility to ceftriaxone at low pH is strongly reduced. S. Typhimurium lacking PBP3SAL was unable to cause relapse in mice following ceftriaxone therapy. Interpretation The reduced capacity of ceftriaxone to clear S. Typhimurium in vivo is favoured by a switch in beta-lactam targets. This switch, involving production of the less-susceptible PBP3SAL, remains invisible for standard procedures used in clinical therapy. We conclude that eradication of salmonellosis will be possible only upon targeting of PBP3SAL with novel drugs.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory de Intracellular Bacterial Pathogens. National Centre for Biotechnology (CNB)-CSIC, Darwin 3, E-28049 Madrid, Spain
| | - David López-Escarpa
- Laboratory de Intracellular Bacterial Pathogens. National Centre for Biotechnology (CNB)-CSIC, Darwin 3, E-28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratory de Intracellular Bacterial Pathogens. National Centre for Biotechnology (CNB)-CSIC, Darwin 3, E-28049 Madrid, Spain; Department of Molecular Biology, University Autónoma of Madrid, Centre of Molecular Biology 'Severo Ochoa' (CBMSO)-CSIC, E-28049 Madrid, Spain
| | - Juan J Cestero
- Laboratory de Intracellular Bacterial Pathogens. National Centre for Biotechnology (CNB)-CSIC, Darwin 3, E-28049 Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory de Intracellular Bacterial Pathogens. National Centre for Biotechnology (CNB)-CSIC, Darwin 3, E-28049 Madrid, Spain.
| |
Collapse
|
31
|
Blok BA, Arts RJW, van Crevel R, Aaby P, Joosten LAB, Benn CS, Netea MG. Differential effects of BCG vaccine on immune responses induced by vi polysaccharide typhoid fever vaccination: an explorative randomized trial. Eur J Clin Microbiol Infect Dis 2020; 39:1177-1184. [PMID: 32065303 PMCID: PMC7225183 DOI: 10.1007/s10096-020-03813-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
The Vi polysaccharide typhoid fever vaccine (TFV) provides incomplete protection against typhoid fever. BCG, the vaccine against tuberculosis, can potentiate immune responses to other vaccines through induction of trained innate immunity and heterologous adaptive immunity. We performed an explorative, randomized, noncontrolled open trial to investigate whether BCG vaccination increases humoral and cellular response to TFV and whether BCG and TFV modulate nonspecific immune responses. Thirty volunteers were randomized to receive either TFV alone or BCG followed by TFV after 2 weeks. Ex vivo leukocyte responses and anti-Vi IgG antibody titers were measured 2 weeks and 3 months after TFV. BCG administration prior to TFV vaccination did not increase specific humoral or cellular immune responses to Salmonella typhi. TFV vaccination decreased pro-inflammatory responses to non-related stimuli. This effect was counteracted by prior BCG administration, which also led to decreased IL-10 and increased IL-22 responses to non-related stimuli. In an in vitro model of trained immunity TFV led to immunotolerance, which was partially reversed by BCG-induced trained immunity. BCG does not modulate adaptive immune responses to TFV but partially prevents inhibition of innate immune responses induced by TFV. Nonspecific effects of vaccines to unrelated microbial stimuli must be considered in the evaluation of their biological effects (ClinicalTrials.gov NCT02175420).
Collapse
Affiliation(s)
- Bastiaan A Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526, GA, Nijmegen, The Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, DK-2300, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, DK-5000, Odense, Denmark
| | - Rob J W Arts
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526, GA, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526, GA, Nijmegen, The Netherlands
| | - Peter Aaby
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, DK-2300, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, DK-5000, Odense, Denmark
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526, GA, Nijmegen, The Netherlands
| | - Christine S Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, DK-2300, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, DK-5000, Odense, Denmark
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526, GA, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Park SM, Omatsu T, Zhao Y, Yoshida N, Shah P, Zagani R, Reinecker HC. T cell fate following Salmonella infection is determined by a STING-IRF1 signaling axis in mice. Commun Biol 2019; 2:464. [PMID: 31840109 PMCID: PMC6906324 DOI: 10.1038/s42003-019-0701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The innate immune response following infection with entero-invasive bacterial species is triggered upon release of cyclic di-guanylate monophosphate (c-di-GMP) into the host cell cytosol. Bacterial c-di-GMP activates the intracellular Sensor Stimulator of Interferon Genes (STING), encoded by Tmem173 in mice. Here we identify Interferon Regulatory Factor (IRF) 1 as a critical effector of STING-mediated microbial DNA sensing that is responsible for TH17 cell generation in the mucosal immune system. We find that STING activation induces IRF1-dependent transcriptional programs in dendritic cells (DCs) that define T cell fate determination, including induction of Gasdermin D, IL-1 family member cytokines, and enzymes for eicosanoid synthesis. Our results show that IRF1-dependent transcriptional programs in DCs are a prerequisite for antigen-specific TH17 subspecification in response to microbial c-di-GMP and Salmonella typhimurium infection. Our identification of a STING-IRF1 signaling axis for adaptive host defense control will aid further understanding of infectious disease mechanisms.
Collapse
Affiliation(s)
- Sung-Moo Park
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tatsushi Omatsu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Naohiro Yoshida
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Pankaj Shah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Rachid Zagani
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
33
|
Enhancement of host infectivity, immunity, and protective efficacy by addition of sodium bicarbonate antacid to oral vaccine formulation of live attenuated Salmonella secreting Brucella antigens. Microb Pathog 2019; 138:103857. [PMID: 31705999 DOI: 10.1016/j.micpath.2019.103857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
Abstract
In the present study, the importance of sodium bicarbonate antacid as an agent for an orally delivered attenuated Salmonella strain secreting Brucella antigens Cu-Zn superoxide dismutase (SodC) and outer membrane protein 19 (Omp19) as a live vaccine candidate against Brucella infection was investigated. First, Brucella antigens SodC and Omp19 were cloned into a prokaryotic constitutive expression vector, pJHL65. Then secretion of proteins was verified after transformation into an attenuated Salmonella typhimurium (ST) strain, JOL1800 (Δlon, ΔcpxR, Δasd, ΔrfaL), using western blot analysis. Mice were orally inoculated with phosphate-buffered saline (PBS) or with a co-mixture Salmonella secreting each antigens at a 1:1 ratio, each containing 1 × 108 CFU/mouse with and without sodium bicarbonate treatment. For antacid treatment, 1.3% w/v sodium bicarbonate was orally administered 30 min before and immediately after immunization with the Salmonella formulation. Humoral and cell-mediated immune responses were evaluated to investigate the efficacy of sodium bicarbonate in an oral formulation. The results indicated that addition of sodium bicarbonate to the vaccine significantly increased (P < 0.05) levels of anti-Brucella-specific systemic IgG responses, lymphocyte proliferation, and CD4+ T cell responses, indicating induction of a mixed Th1-Th2 response. Immunohistochemical assays and bacterial enumeration in intestinal samples also indicated that administration of sodium bicarbonate enhanced colonization of Salmonella. These results indicate that ingestion of the Salmonella formulation with sodium bicarbonate can enhance colonization of Salmonella and induce a significant protective immune response against Brucella compared with a formulation without sodium bicarbonate. Thus, incorporation of sodium bicarbonate as an antacid buffer is highly recommended for this oral live vaccine.
Collapse
|
34
|
Unexpected Role of CD8 T Cells in Accelerated Clearance of Salmonella enterica Serovar Typhimurium from H-2 Congenic mice. Infect Immun 2019; 87:IAI.00588-19. [PMID: 31427450 DOI: 10.1128/iai.00588-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Salmonella infection can cause gastroenteritis in healthy individuals or a serious, systemic infection in immunocompromised patients and has a global impact. CD4 Th1 cells represent the main lymphocyte population that participates in bacterial clearance during both primary and secondary infections in mice of the H-2b haplotype. Previous studies have used congenic mice to examine the function of major histocompatibility complex (MHC) molecules in elimination of this pathogen from the host. In this study, we further characterized the ability of H-2b, H-2k, and H-2u molecules to influence adaptive immunity to Salmonella in MHC congenic mice. By depleting different cell populations during infection, we unexpectedly found that CD8 T cells, in addition to CD4 T cells, play a major role in accelerated clearance of bacteria from H-2k congenic hosts. Our data suggest that CD8 T cells accelerate clearance in some MHC congenic mouse strains and could therefore represent an unexpected contributor to the protective efficacy of Salmonella vaccines outside the typical studies in C57BL/6 mice.
Collapse
|
35
|
A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Anbazhagan PV, Thavitiki PR, Varra M, Annamalai L, Putturu R, Lakkineni VR, Pesingi PK. Evaluation of efflux pump activity of multidrug-resistant Salmonella Typhimurium isolated from poultry wet markets in India. Infect Drug Resist 2019; 12:1081-1088. [PMID: 31190903 PMCID: PMC6511633 DOI: 10.2147/idr.s185081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/15/2019] [Indexed: 01/25/2023] Open
Abstract
Introduction: Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) is one of the major cause of foodborne zoonoses in humans. Poultry acts as a reservoir for S. Typhimurium without showing clinical signs and has become a source of infection to humans. Besides, it also became a source of multidrug-resistant (MDR) strains of S. Typhimurium. Methods: In the present study, we have isolated 9 S. Typhimurium from 503 samples from environmental sources of poultry wet markets in the Kadapa District of Andhra Pradesh, India. The role of efflux pump activity in antibiotic resistance was evaluated by ethidium bromide cartwheel test and efflux pump inhibition assay. Results: Eight out of nine isolates were resistant to two or more classes of antibiotics. The efflux pump activity of these isolates by ethidium bromide cartwheel method revealed that 66.6% isolates had shown evidence of pronounced efflux activity. The zone of inhibition (ZOI) of resistant antibiotics for each isolate was estimated in the presence or absence of 25 µg/mL of PAβN. Overall, cephalosporins (cefazolin, cefamandole, and cefaclor), kanamycin, polymyxin-B, piperacillin, and imipenem showed significant increase (≥2 mm) of ZOI, indicating the role of efflux pumps for efflux of these drugs. A maximum of 4 antibiotics among EtBr efflux pump positive isolates and 2 antibiotics among EtBr efflux pump negative isolates showed increased ZOI in the presence of PAβN. Conclusion: The results indicate that efflux pumps of MDR S. Typhimurium may contribute to resistance for at least one antibiotic, even in EtBr cartwheel test negative isolates.
Collapse
Affiliation(s)
- Prasanna Vadhana Anbazhagan
- Department of Veterinary Microbiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Prasada Rao Thavitiki
- Department of Veterinary Biochemistry, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Manasa Varra
- Department of Veterinary Biochemistry, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Latchumikanthan Annamalai
- Department of Veterinary Parasitology, Veterinary University Training and Research Centre (VUTRC), TANUVAS, Villupuram, Tamil Nadu, India
| | - Ramya Putturu
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Venkateswara Rao Lakkineni
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Pavan Kumar Pesingi
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| |
Collapse
|
37
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
38
|
Dry Gangrene in Children with Typhoid Intestinal Perforation: A Report of Two Cases. Case Rep Surg 2018; 2018:7097014. [PMID: 30402323 PMCID: PMC6196789 DOI: 10.1155/2018/7097014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/23/2018] [Indexed: 11/17/2022] Open
Abstract
Intestinal perforation is a life-threatening complication of typhoid fever commonly seen in developing countries, but extraintestinal complications are infrequently reported. We report herein two cases of gangrene seen in children managed for typhoid intestinal perforation, highlighting the challenges faced in their management.
Collapse
|
39
|
Optimal protection against Salmonella infection requires noncirculating memory. Proc Natl Acad Sci U S A 2018; 115:10416-10421. [PMID: 30254173 DOI: 10.1073/pnas.1808339115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While CD4 Th1 cells are required for resistance to intramacrophage infections, adoptive transfer of Th1 cells is insufficient to protect against Salmonella infection. Using an epitope-tagged vaccine strain of Salmonella, we found that effective protection correlated with expanded Salmonella-specific memory CD4 T cells in circulation and nonlymphoid tissues. However, naive mice that previously shared a blood supply with vaccinated partners lacked T cell memory with characteristics of tissue residence and did not acquire robust protective immunity. Using a YFP-IFN-γ reporter system, we identified Th1 cells in the liver of immunized mice that displayed markers of tissue residence, including P2X7, ARTC2, LFA-1, and CD101. Adoptive transfer of liver memory cells after ARTC2 blockade increased protection against highly virulent bacteria. Taken together, these data demonstrate that noncirculating memory Th1 cells are a vital component of immunity to Salmonella infection and should be the focus of vaccine strategies.
Collapse
|
40
|
Clonal analysis of Salmonella-specific effector T cells reveals serovar-specific and cross-reactive T cell responses. Nat Immunol 2018; 19:742-754. [PMID: 29925993 DOI: 10.1038/s41590-018-0133-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.
Collapse
|
41
|
Liu S, Xia Q, Wu X, Sun F, Hu Q, Wu J, Wang M, Rao Q, Guan W. Stimulator of Interferon Genes in Classical Dendritic Cells Controls Mucosal Th17 Responses to Cyclic Dinucleotides for Host Defenses Against Microbial Infections in Gut. Front Immunol 2018; 9:1085. [PMID: 29868030 PMCID: PMC5964311 DOI: 10.3389/fimmu.2018.01085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Cyclic dinucleotides are bacterial signal transducers that bind to host intracellular protein, stimulator of interferon genes (STING) encoded by Tmem173. In this study, we demonstrate that STING triggers adaptive immune responses that control Th17 differentiation. Cyclic dinucleotides recognition enables classical dendritic cells (cDCs) that predominantly express CD103 to induce Th17 lymphocytes in an IL-6/IL-1β-dependent manner in gut. STING expression in human lamina propria is associated with the severity of mucosal inflammation and clinical disease activity in patients with Crohn’s disease. Mice deficient in Tmem173 fail to mount Th17 responses to cyclic dinucleotides or prevent immune evasion of enteroinvasive pathogens. In summary, STING in mucosal cDCs controls Th17 subspecification that is essential for host defenses against microbial infection in gut-associated immune system.
Collapse
Affiliation(s)
- Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiuyuan Xia
- School of Medicine, Nanjing University, Nanjing, China.,Department of Pathology, Jinling Hospital, Nanjing, China
| | - Xiuwen Wu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Jie Wu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiu Rao
- School of Medicine, Nanjing University, Nanjing, China.,Department of Pathology, Jinling Hospital, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Yin Y, Zhou D. Organoid and Enteroid Modeling of Salmonella Infection. Front Cell Infect Microbiol 2018; 8:102. [PMID: 29670862 PMCID: PMC5894114 DOI: 10.3389/fcimb.2018.00102] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonella are Gram-negative rod-shaped facultative anaerobic bacteria that are comprised of over 2,000 serovars. They cause gastroenteritis (salmonellosis) with headache, abdominal pain and diarrhea clinical symptoms. Salmonellosis brings a heavy burden for the public health in both developing and developed countries. Antibiotics are usually effective in treating the infected patients with severe gastroenteritis, although antibiotic resistance is on the rise. Understanding the molecular mechanisms of Salmonella infection is vital to combat the disease. In vitro immortalized 2-D cell lines, ex vivo tissues/organs and several animal models have been successfully utilized to study Salmonella infections. Although these infection models have contributed to uncovering the molecular virulence mechanisms, some intrinsic shortcomings have limited their wider applications. Notably, cell lines only contain a single cell type, which cannot reproduce some of the hallmarks of natural infections. While ex vivo tissues/organs alleviate some of these concerns, they are more difficult to maintain, in particular for long term experiments. In addition, non-human animal models are known to reflect only part of the human disease process. Enteroids and induced intestinal organoids are emerging as effective infection models due to their closeness in mimicking the infected tissues/organs. Induced intestinal organoids are derived from iPSCs and contain mesenchymal cells whereas enteroids are derive from intestinal stem cells and are comprised of epithelial cells only. Both enteroids and induced intestinal organoids mimic the villus and crypt domains comparable to the architectures of the in vivo intestine. We review here that enteroids and induced intestinal organoids are emerging as desired infection models to study bacterial-host interactions of Salmonella.
Collapse
Affiliation(s)
- Yuebang Yin
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Daoguo Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
43
|
Anyanwu LJ, Mohammad A, Abdullahi L, Farinyaro A, Obaro S. Determinants of postoperative morbidity and mortality in children managed for typhoid intestinal perforation in Kano Nigeria. J Pediatr Surg 2018; 53:847-852. [PMID: 29277466 DOI: 10.1016/j.jpedsurg.2017.11.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intestinal perforation is a serious but poorly understood complication of typhoid fever. This study aims to determine the patient factors associated with postoperative morbidity and mortality. METHODS We retrospectively reviewed the records of all children presenting to our unit with typhoid intestinal perforation (TIP) between March 2009 and December 2013. The patients were grouped based on postoperative outcome status and were compared with respect to patient related variables, using chi square test. Multivariate analysis was performed using a binary logistic regression model. Significance was assigned to a p-value <0.05. RESULTS The records of 129 children were analyzed. There were 78 (60.5%) boys and 51 (39.5%) girls. The male/female ratio was 1.53:1. Their ages ranged from 3years to 13years (mean 8.14years; SD 2.61years). A single intestinal perforation was seen in 73.4% (94/128) of them, while 26.6% (34/128) had two or more. Mortality rate was 10.9%. Multivariate analysis showed that multiple intestinal perforations significantly predicted postoperative mortality (p=0.005) and development of postoperative fecal fistula (p=0.013), while serum albumin <32g/L was a predictor of postoperative surgical site infection (p=0.002). CONCLUSION Multiple intestinal perforations, a postoperative fecal fistula and hypoalbuminemia adversely affected outcome in our patients. LEVEL OF EVIDENCE III (Retrospective study). Type of study-Prognosis study.
Collapse
Affiliation(s)
- Lofty-John Anyanwu
- Paediatric Surgery Unit, Department Of Surgery, Aminu Kano Teaching Hospital and Bayero University Kano, Nigeria.
| | - Aminu Mohammad
- Paediatric Surgery Unit, Department Of Surgery, Aminu Kano Teaching Hospital and Bayero University Kano, Nigeria
| | - Lawal Abdullahi
- Paediatric Surgery Unit, Department Of Surgery, Aminu Kano Teaching Hospital and Bayero University Kano, Nigeria
| | - Aliyu Farinyaro
- Paediatric Surgery Unit, Department Of Surgery, Aminu Kano Teaching Hospital and Bayero University Kano, Nigeria
| | - Stephen Obaro
- Division Of Pediatrics Infectious Disease University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
44
|
Poulsen MN, Pollak J, Sills DL, Casey JA, Rasmussen SG, Nachman KE, Cosgrove SE, Stewart D, Schwartz BS. Residential proximity to high-density poultry operations associated with campylobacteriosis and infectious diarrhea. Int J Hyg Environ Health 2017; 221:323-333. [PMID: 29268955 DOI: 10.1016/j.ijheh.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Poultry carry zoonotic bacteria that can cause gastroenteritis in humans. Environmental transmission of pathogens from poultry operations may increase gastrointestinal infection risk in surrounding communities. To evaluate associations between residential proximity to high-density poultry operations and individual-level diarrheal illnesses, we conducted a nested case-control study among 514,488 patients in Pennsylvania (2006-2015). Using electronic health records, we identified cases of five gastrointestinal outcomes: three pathogen-specific infections, including Escherichia coli (n = 1425), Campylobacter (n = 567), and Salmonella (n = 781); infectious diarrhea (n = 781); and non-specific diarrhea (2012-2015; n = 28,201). We estimated an inverse-distance squared activity metric for poultry operations based on farm and patient addresses. Patients in the second and fourth (versus first) quartiles of the poultry operation activity metric had increased odds of Campylobacter (AOR [CI], Q2: 1.36 [1.01, 1.82]; Q3: 1.38 [0.98, 1.96]; Q4: 1.75 [1.31, 2.33]). Patients in the second, third, and fourth quartiles had increased odds of infectious diarrhea (Q2: 1.76 [1.29, 2.39]; Q3: 1.76 [1.09, 2.85]; Q4: 1.60 [1.12, 2.30]). Stratification revealed stronger relations of fourth quartile and both Campylobacter and infectious diarrhea in townships, the most rural community type in the study geography. Increasing extreme rainfall in the week prior to diagnosis strengthened fourth quartile Campylobacter associations. The poultry operation activity metric was largely unassociated with E. coli, Salmonella, and non-specific diarrhea. Findings suggest high-density poultry operations may be associated with campylobacteriosis and infectious diarrhea in nearby communities, highlighting additional public health concerns of industrial agriculture.
Collapse
Affiliation(s)
- Melissa N Poulsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA.
| | - Jonathan Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Deborah L Sills
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, USA
| | - Joan A Casey
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA
| | - Sara G Rasmussen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sara E Cosgrove
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dalton Stewart
- Department of Civil and Environmental Engineering, Bucknell University, Lewisburg, PA, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
45
|
Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol 2017; 37:3-19. [PMID: 29193992 DOI: 10.1080/08830185.2017.1397656] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immune system provides the first line of defense against pathogenic organisms. It has a varied and large collection of molecules known as pattern recognition receptors (PRRs) which can tackle the pathogens promptly and effectively. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are members of the PRR family that recognize pathogen associated molecular patterns (PAMPs) and play pivotal roles to mediate defense against infections from bacteria, fungi, virus and various other pathogens. In this review, we discuss the critical roles of TLRs and NLRs in the regulation of host immune-effector functions such as cytokine production, phagosome-lysosome fusion, inflammasome activation, autophagy, antigen presentation, and B and T cell immune responses that are known to be essential for mounting a protective immune response against the pathogens. This review may be helpful to design TLRs/NLRs based immunotherapeutics to control various infections and pathophysiological disorders.
Collapse
Affiliation(s)
- Komal Dolasia
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Manoj K Bisht
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Gourango Pradhan
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Atul Udgata
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| |
Collapse
|
46
|
Lee SJ, Benoun J, Sheridan BS, Fogassy Z, Pham O, Pham QM, Puddington L, McSorley SJ. Dual Immunization with SseB/Flagellin Provides Enhanced Protection against Salmonella Infection Mediated by Circulating Memory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1353-1361. [PMID: 28710253 PMCID: PMC5548602 DOI: 10.4049/jimmunol.1601357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
The development of a subunit Salmonella vaccine has been hindered by the absence of detailed information about antigenic targets of protective Salmonella-specific T and B cells. Recent studies have identified SseB as a modestly protective Ag in susceptible C57BL/6 mice, but the mechanism of protective immunity remains undefined. In this article, we report that simply combining Salmonella SseB with flagellin substantially enhances protective immunity, allowing immunized C57BL/6 mice to survive for up to 30 d following challenge with virulent bacteria. Surprisingly, the enhancing effect of flagellin did not require flagellin Ag targeting during secondary responses or recognition of flagellin by TLR5. Although coimmunization with flagellin did not affect SseB-specific Ab responses, it modestly boosted CD4 responses. In addition, protective immunity was effectively transferred in circulation to parabionts of immunized mice, demonstrating that tissue-resident memory is not required for vaccine-induced protection. Finally, protective immunity required host expression of IFN-γR but was independent of induced NO synthase expression. Taken together, these data indicate that Salmonella flagellin has unique adjuvant properties that improve SseB-mediated protective immunity provided by circulating memory.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Joseph Benoun
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Brian S Sheridan
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Zachary Fogassy
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Oanh Pham
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Quynh-Mai Pham
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephen J McSorley
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616;
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| |
Collapse
|
47
|
Kamble NM, Hyoung KJ, Lee JH. Intracellular delivery of HA1 subunit antigen through attenuated Salmonella Gallinarum act as a bivalent vaccine against fowl typhoid and low pathogenic H5N3 virus. Vet Res 2017; 48:40. [PMID: 28784184 PMCID: PMC5545839 DOI: 10.1186/s13567-017-0446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/01/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction of novel inactivated oil-emulsion vaccines against different strains of prevailing and emerging low pathogenic avian influenza (LPAI) viruses is not an economically viable option for poultry. Engineering attenuated Salmonella Gallinarum (S. Gallinarum) vaccine delivering H5 LPAI antigens can be employed as a bivalent vaccine against fowl typhoid and LPAI viruses, while still offering economic viability and sero-surveillance capacity. In this study, we developed a JOL1814 bivalent vaccine candidate against LPAI virus infection and fowl typhoid by engineering the attenuated S. Gallinarum to deliver the globular head (HA1) domain of hemagglutinin protein from H5 LPAI virus through pMMP65 constitutive expression plasmid. The important feature of the developed JOL1814 was the delivery of the HA1 antigen to cytosol of peritoneal macrophages. Immunization of chickens with JOL1814 produced significant level of humoral, mucosal, cellular and IL-2, IL-4, IL-17 and IFN-γ cytokine immune response against H5 HA1 and S. Gallinarum antigens in the immunized chickens. Post-challenge, only the JOL1814 immunized chicken showed significantly faster clearance of H5N3 virus in oropharyngeal and cloacal swabs, and 90% survival rate against lethal challenge with a wild type S. Gallinarum. Furthermore, the JOL1814 immunized were differentiated from the H5N3 LPAI virus infected chickens by matrix (M2) gene-specific real-time PCR. In conclusion, the data from the present showed that the JOL1814 can be an effective bivalent vaccine candidate against H5N3 LPAI and fowl typhoid infection in poultry while still offering sero-surveillance property against H5 avian influenza virus.
Collapse
MESH Headings
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/immunology
- Chickens/immunology
- Chickens/microbiology
- Chickens/virology
- Genetic Engineering/methods
- Genetic Engineering/veterinary
- Influenza A Virus, H5N8 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Poultry Diseases/immunology
- Poultry Diseases/microbiology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Salmonella/immunology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/prevention & control
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/therapeutic use
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- Nitin Machindra Kamble
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Jeonju, 570-752 Republic of Korea
| | - Kim Je Hyoung
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Jeonju, 570-752 Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Jeonju, 570-752 Republic of Korea
| |
Collapse
|
48
|
Mucosal IgA and IFN-γ + CD8 T cell immunity are important in the efficacy of live Salmonella enteria serovar Choleraesuis vaccines. Sci Rep 2017; 7:46408. [PMID: 28406162 PMCID: PMC5390296 DOI: 10.1038/srep46408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/17/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonellosis, a disease caused by non-typhoidal Salmonella strains which can be transmitted from swine to humans, is one of the leading public health problems around the world. Paratyphoid of swine is controlled by vaccinating swine with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) live vaccine strain C500 in China. Although the vaccine has good prophylactic efficacy, the mechanism of immunogenicity is unclear. Using a C500-derived paratyphoid thermo-stable live vaccine (PTSL vaccine), we demonstrated that the PTSL vaccine induces strong primary and memory immune responses in piglets. Mucosal IgA and IFN-γ+/CD8+ T cells induced by the PTSL vaccine play key roles in the protection of the host from Salmonella infection. Our findings have important implications on the development of new and improved vaccines against salmonellosis and using live-attenuated Salmonella as vaccine carriers.
Collapse
|
49
|
Pesingi PK, Kumawat M, Behera P, Dixit SK, Agarwal RK, Goswami TK, Mahawar M. Protein-L-Isoaspartyl Methyltransferase (PIMT) Is Required for Survival of Salmonella Typhimurium at 42°C and Contributes to the Virulence in Poultry. Front Microbiol 2017; 8:361. [PMID: 28326072 PMCID: PMC5339242 DOI: 10.3389/fmicb.2017.00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Poultry birds are asymptomatic reservoir of Salmonella Typhimurium (S. Typhimurium) but act as source of human infection for this bacterium. Inside the poultry, S. Typhimurium experiences several stresses, 42°C body temperature of birds is one of them. Proteins are highly susceptible to temperature mediated damage. Conversion of protein bound aspartate (Asp) residues to iso-aspartate (iso-Asp) is one of such modifications that occur at elevated temperature. Iso-Asp formation has been linked to protein inactivation and compromised cellular survival. Protein-L-isoaspartyl methyltransferase (PIMT) can repair iso-Asp back to Asp, thus enhances the cellular survival at elevated temperature. Here, we show that the pimt gene deletion strain of S. Typhimurium (Δpimt mutant strain) is hypersensitive to 42°C in vitro. The hypersusceptibility of Δpimt strain is partially reversed by plasmid based complementation (trans-complementation) of Δpimt strain. Following oral inoculation, Δpimt strain showed defective colonization in poultry caecum, and compromised dissemination to spleen and liver. Interestingly, we have observed three and half folds induction of the PIMT protein following exposure of S. Typhimurium to 42°C. Our data suggest a novel role of pimt gene in the survival of S. Typhimurium at elevated temperature and virulence.
Collapse
Affiliation(s)
- Pavan K Pesingi
- Division of Veterinary Public Health, Indian Veterinary Research Institute Izatnagar, India
| | - Manoj Kumawat
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Pranatee Behera
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Sunil K Dixit
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Rajesh K Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute Izatnagar, India
| | - Tapas K Goswami
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Manish Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| |
Collapse
|
50
|
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol 2017; 8:81. [PMID: 28220120 PMCID: PMC5292617 DOI: 10.3389/fimmu.2017.00081] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
Collapse
|