1
|
Rijken R, Pameijer EM, Gerritsen B, Hiddingh S, Stehouwer M, de Boer JH, Imhof SM, van Leeuwen R, Kuiper JJ. Blood integrin- and cytokine-producing T cells are associated with stage and genetic risk score in age-related macular degeneration. Exp Eye Res 2025; 250:110154. [PMID: 39547643 DOI: 10.1016/j.exer.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Age-related macular degeneration (AMD) remains a leading cause of vision loss in the geriatric population. There are age-related changes in peripheral blood leukocyte composition, but their significance for AMD remains unclear. We aimed to determine changes in immune cell populations in the blood of AMD patients. A standardized 31-parameter flow cytometry analysis was conducted on peripheral blood mononuclear cells from 59 patients with early and advanced AMD and 39 controls without AMD, all older than 65 years. Fundus photography and optical coherence tomography were used to classify disease stages and a custom genotype array was used to compute an AMD genetic risk score based on 52 AMD disease risk variants (GRS-52). A generalized linear regression model corrected for age, sex, and smoking status revealed that AMD patients showed decreased frequencies of CD4+ T helper cell population expressing Integrin Alpha E (CD103) (Padj = 0.019). We further noted that early AMD was characterized by increased interleukin-4 (IL-4)-producing CD4+ T helper cells (Padj = 0.013; <0.001), as well as IL-4-producing cytotoxic CD8+ T cells (Padj = 0.016; <0.001). Reclassification of samples based on the GRS-52 revealed that IL-17-producing T cells decreased incrementally across GRS-52 categories. In AMD, alterations in peripheral blood leukocyte populations are associated with genetic risk score and disease stage and include specifically IL-4 and IL-17A cytokine-producing and CD103 integrin-expressing T cell populations.
Collapse
Affiliation(s)
- Rianne Rijken
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Els M Pameijer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Bram Gerritsen
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Marilette Stehouwer
- Department of Ophthalmology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Saskia M Imhof
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands
| | - Jonas Jw Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University Utrecht, the Netherlands.
| |
Collapse
|
2
|
Vera-Peralta H, Ruffié C, Najburg V, Brione M, Combredet C, Frantz P, Tournier JN, Tangy F, Mura M. Induction of tissue resident memory T cells by measles vaccine vector. Hum Vaccin Immunother 2024; 20:2436241. [PMID: 39693193 DOI: 10.1080/21645515.2024.2436241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Measles live attenuated vaccine (MV) induces strong humoral and cellular systemic memory responses allowing the successful control of measles since decades. MV has also been adapted into a promising vaccine platform with several vaccine candidates in clinical development. To understand and document the tissue-scaled memory response induced by MV, we explored the specific induction and persistence of resident memory T cells (Trm) in the lungs and the liver, two critical targeted tissues for vaccine development against several diseases. Trm are a subset of non-circulating highly specialized T cells. They are found at multiple barrier and mucosal sites, conveniently positioned to rapidly react against pathogens. The induction of Trm in different tissues is therefore critical for vaccine development. We demonstrated in mice the rapid generation of MV-specific and vectorized antigen-specific Trm in the liver and the lungs after a single dose, whatever the route of immunization. The intranasal route induced more Trm in the lungs than other routes, confirming the potential of intranasal vaccine administration of replicative viral vectors to generate a strong pulmonary immune response. MV-specific Trm cells were functionally active, with CD8+ Trm secreting granzyme B upon in vitro restimulation and CD4+ Trm cells secreting IFN-γ and TNF-α. We confirmed in human lymphocytes this tissue tropism by showing an overexpression of homing receptors directing them to epithelial and inflamed tissues. Vaccination strategies able to induce Trm cells at key sites represent a promising field to improve current vaccines, prioritize vaccine platforms and design future vaccines with enhanced protective efficacy.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Claude Ruffié
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Valérie Najburg
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Matthias Brione
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Chantal Combredet
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Phanramphoei Frantz
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Division recherche et innovation, Académie du Service de santé des armées, Paris, France
| | - Frédéric Tangy
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Marie Mura
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
3
|
Raaphorst H, Lougheed S, Saou L, van Kleef ND, Rensink I, Ten Brinke A, Freen-van Heeren JJ, Turksma AW. Exploring the dynamics of T-cell responses: a combined approach using EdU incorporation and proliferation dye dilution assay. Immunol Cell Biol 2024. [PMID: 39740009 DOI: 10.1111/imcb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Understanding antigen-specific T-cell responses is crucial for advancing immunotherapies and vaccine development. This study proposes a novel approach combining two complementary assays: the 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay (tracking proliferation over 0-48 h) and the VPD450 dye dilution assay (tracking proliferation over 4-6 days). Integrating these techniques provides additional insights into T-cell proliferation kinetics. Both assays were independently optimized using anti-CD3 and anti-CD28 polyclonal T cell stimulation. 1 μM VPD450 is suitable for assessing T-cell proliferation. The EdU concentration should match the stimulation strength, requiring higher concentrations to efficiently track DNA replication detection during increased cellular division. Day 5 was the optimal read-out day for the EdU incorporation assay. We then combined the VPD450 dye dilution and EdU incorporation assays. As a proof of principle, we stimulated PBMCs from healthy donors with tetanus toxoid to assess antigen-specific T-cell responses. Additionally, we demonstrated the assay's application in drug research by evaluating proliferation in a mixed lymphocyte reaction with abatacept, an agonistic anti-CTLA-4 antibody. This combined approach offers qualitative insights into T-cell proliferation kinetics, beneficial for assessing novel vaccine efficiency or for designing new treatments targeting T cell proliferation, such as in autoimmune settings.
Collapse
Affiliation(s)
- Hilde Raaphorst
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Sinéad Lougheed
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Latifa Saou
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | | | - Irma Rensink
- R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | | | | |
Collapse
|
4
|
Bryant N, Muehling LM, Wavell K, Teague WG, Woodfolk JA. Rhinovirus as a Driver of Airway T-Cell Dynamics in Children with Severe Asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623877. [PMID: 39605344 PMCID: PMC11601360 DOI: 10.1101/2024.11.15.623877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Severe asthma in children is notoriously difficult to treat, and its immunopathogenesis is complex. In particular, the contribution of T cells and relationships to anti-viral immunity, remain enigmatic. Here, we coupled deep phenotyping with machine learning methods to resolve the dynamics of T cells in the diseased lower airways, and examined rhinovirus (RV) as a driver. Our strategy revealed a T-cell landscape dominated by type 1 and type 17 CD8+ signatures. Interrogation of phenotypic relationships coupled with trajectory mapping identified T-cell migratory and differentiation pathways spanning the blood and airways that culminated in tissue residency, and included transitions between type 1 and type 17 tissue-resident types. These T-cell dynamics were reflected in cytokine polyfunctionality in situ . Use of machine learning to cross-compare T-cell populations that were enriched in the airways of RV-positive children with those induced in the blood after RV challenge in an experimental infection model, precisely pinpointed RV-responsive signatures that mapped to T-cell differentiation pathways. Despite their rarity, these signatures were detected in the airways of uninfected children. Together, our results underscore the aberrant nature of type 1 immunity in the airways of children with severe asthma, and implicate an important viral trigger as a driver.
Collapse
|
5
|
Hoytema van Konijnenburg DP, Nigrovic PA, Zanoni I. Regional specialization within the mammalian respiratory immune system. Trends Immunol 2024; 45:871-891. [PMID: 39438172 PMCID: PMC11560516 DOI: 10.1016/j.it.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The respiratory tract is exposed to infection from inhaled pathogens, including viruses, bacteria, and fungi. So far, a comprehensive assessment that integrates common and distinct aspects of the immune response along different areas of the respiratory tract has been lacking. Here, we discuss key recent findings regarding anatomical, functional, and microbial factors driving regional immune adaptation in the mammalian respiratory system, how they differ between mice and humans, and the similarities and differences with the gastrointestinal tract. We demonstrate that, under evolutionary pressure, mammals evolved spatially organized immune defenses that vary between the upper and lower respiratory tract. Overall, we propose that the functional specialization of the immune response along the respiratory tract has fundamental implications for the management of infectious or inflammatory diseases.
Collapse
Affiliation(s)
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Kalinoski H, Daoud A, Rusinkevich V, Jurčová I, Talor MV, Welsh RA, Hughes D, Zemanová K, Stříž I, Hooper JE, Kautzner J, Peichl P, Melenovský V, Won T, Čiháková D. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci U S A 2024; 121:e2323052121. [PMID: 39378095 PMCID: PMC11494310 DOI: 10.1073/pnas.2323052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Collapse
Affiliation(s)
- Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Vitali Rusinkevich
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Ivana Jurčová
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Robin A. Welsh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - David Hughes
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21205
| | - Kateřina Zemanová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Jody E. Hooper
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
7
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
8
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
9
|
Li J, Hsu KS, Howe SE, Hoang T, Xia Z, Berzofsky JA, Sui Y. Sex-biased immunogenicity of a mucosal subunit vaccine against SARS-CoV-2 in mice. Front Immunol 2024; 15:1386243. [PMID: 38835757 PMCID: PMC11148259 DOI: 10.3389/fimmu.2024.1386243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Current vaccines against COVID-19 administered via parenteral route have limited ability to induce mucosal immunity. There is a need for an effective mucosal vaccine to combat SARS-CoV-2 virus replication in the respiratory mucosa. Moreover, sex differences are known to affect systemic antibody responses against vaccines. However, their role in mucosal cellular responses against a vaccine remains unclear and is underappreciated. Methods We evaluated the mucosal immunogenicity of a booster vaccine regimen that is recombinant protein-based and administered intranasally in mice to explore sex differences in mucosal humoral and cellular responses. Results Our results showed that vaccinated mice elicited strong systemic antibody (Ab), nasal, and bronchiole alveolar lavage (BAL) IgA responses, and local T cell immune responses in the lung in a sex-biased manner irrespective of mouse genetic background. Monocytes, alveolar macrophages, and CD103+ resident dendritic cells (DCs) in the lungs are correlated with robust mucosal Ab and T cell responses induced by the mucosal vaccine. Discussion Our findings provide novel insights into optimizing next-generation booster vaccines against SARS-CoV-2 by inducing spike-specific lung T cell responses, as well as optimizing mucosal immunity for other respiratory infections, and a rationale for considering sex differences in future vaccine research and vaccination practice.
Collapse
MESH Headings
- Animals
- Female
- Mice
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Male
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Lung/immunology
- Lung/virology
- T-Lymphocytes/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Mice, Inbred C57BL
- Administration, Intranasal
- Sex Factors
- Immunoglobulin A/immunology
- Dendritic Cells/immunology
- Immunization, Secondary
- Immunity, Humoral
Collapse
Affiliation(s)
- Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kevin S Hsu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Lee S, Yeung KK, Watts TH. Tissue-resident memory T cells in protective immunity to influenza virus. Curr Opin Virol 2024; 65:101397. [PMID: 38458064 DOI: 10.1016/j.coviro.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.
Collapse
Affiliation(s)
- Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karen Km Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
13
|
Mills JL, Lepletier A, Ozberk V, Dooley J, Kaden J, Calcutt A, Huo Y, Hicks A, Zaid A, Good MF, Pandey M. Disruption of IL-17-mediated immunosurveillance in the respiratory mucosa results in invasive Streptococcus pyogenes infection. Front Immunol 2024; 15:1351777. [PMID: 38576622 PMCID: PMC10991685 DOI: 10.3389/fimmu.2024.1351777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.
Collapse
Affiliation(s)
- Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jacqualine Kaden
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Allan Hicks
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
López-Cobo S, Fuentealba JR, Gueguen P, Bonté PE, Tsalkitzi K, Chacón I, Glauzy S, Bohineust A, Biquand A, Silva L, Gouveia Z, Goudot C, Perez F, Saitakis M, Amigorena S. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14:120-141. [PMID: 37934001 DOI: 10.1158/2159-8290.cd-22-1350] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Jaime R Fuentealba
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Paul Gueguen
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Kyriaki Tsalkitzi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Irena Chacón
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Salomé Glauzy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | | | - Lisseth Silva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| |
Collapse
|
16
|
Wells SB, Rainbow DB, Mark M, Szabo PA, Ergen C, Maceiras AR, Caron DP, Rahmani E, Benuck E, Amiri VVP, Chen D, Wagner A, Howlett SK, Jarvis LB, Ellis KL, Kubota M, Matsumoto R, Mahbubani K, Saeb-Parsy K, Dominguez-Conde C, Richardson L, Xu C, Li S, Mamanova L, Bolt L, Wilk A, Teichmann SA, Farber DL, Sims PA, Jones JL, Yosef N. Multimodal profiling reveals tissue-directed signatures of human immune cells altered with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573877. [PMID: 38260588 PMCID: PMC10802388 DOI: 10.1101/2024.01.03.573877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.
Collapse
|
17
|
Freen-van Heeren JJ. Posttranscriptional Events Orchestrate Immune Homeostasis of CD8 + T Cells. Methods Mol Biol 2024; 2782:65-80. [PMID: 38622392 DOI: 10.1007/978-1-0716-3754-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Maintaining immune homeostasis is instrumental for host health. Immune cells, such as T cells, are instrumental for the eradication of pathogenic bacteria, fungi and viruses. Furthermore, T cells also play a major role in the fight against cancer. Through the formation of immunological memory, a pool of antigen-experienced T cells remains in the body to rapidly protect the host upon reinfection or retransformation. In order to perform their protective function, T cells produce cytolytic molecules, such as granzymes and perforin, and cytokines such as interferon γ and tumor necrosis factor α. Recently, it has become evident that posttranscriptional regulatory events dictate the kinetics and magnitude of cytokine production by murine and human CD8+ T cells. Here, the recent literature regarding the role posttranscriptional regulation plays in maintaining immune homeostasis of antigen-experienced CD8+ T cells is reviewed.
Collapse
|
18
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
19
|
Bondonese A, Craig A, Fan L, Valenzi E, Bain W, Lafyatis R, Sembrat J, Chen K, Snyder ME. Impact of enzymatic digestion on single cell suspension yield from peripheral human lung tissue. Cytometry A 2023; 103:777-785. [PMID: 37449375 PMCID: PMC10592386 DOI: 10.1002/cyto.a.24777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
An increasing number of translational investigations of lung biology rely on analyzing single cell suspensions obtained from human lungs. To obtain these single cell suspensions, human lungs from biopsies or research-consented organ donors must be subjected to mechanical and enzymatic digestion prior to analysis with either flow cytometry or single cell RNA sequencing. A variety of enzymes have been used to perform tissue digestion, each with potential limitations. To better understand the limitations of each enzymatic digestion protocol and to establish a framework for comparing studies across protocols, we performed five commonly published protocols in parallel from identical samples obtained from 6 human lungs. Following mechanical (gentleMACS™) and enzymatic digestion, we quantified cell count and viability using a Nexcelom Cellometer and determined cell phenotype using multiparameter spectral flow cytometry (Cytek™ Aurora). We found that all protocols were superior in cellular yield and viability when compared to mechanical digestion alone. Protocols high in dispase cleaved immune markers CD4, CD8, CD69, and CD103 and contributed to an increased monocyte to macrophage yield. Similarly, dispase led to a differential epithelial cell yield, with increased TSPN8+ and ITGA6+ epithelial cells and reduced CD66e+ cells. When compared to collagenase D, collagenase P protocols yielded increased AT1 and AT2 cells and decreased endothelial cells. These results provide a framework for selecting an enzymatic digestion protocol best suited to the scientific question and allow for comparison of studies using different protocols.
Collapse
Affiliation(s)
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh
| | - Li Fan
- Department of Medicine, University of Pittsburgh
| | | | - William Bain
- Department of Medicine, University of Pittsburgh
| | | | - John Sembrat
- Department of Medicine, University of Pittsburgh
| | - Kong Chen
- Department of Medicine, University of Pittsburgh
| | - Mark E. Snyder
- Department of Medicine, University of Pittsburgh
- Department of Immunology, University of Pittsburgh
- Starzl Transplantation Institute
| |
Collapse
|
20
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
21
|
Colombo SAP, Brown SL, Hepworth MR, Hankinson J, Granato F, Kitchen SJ, Hussell T, Simpson A, Cook PC, MacDonald AS. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad009. [PMID: 37545765 PMCID: PMC10403752 DOI: 10.1093/discim/kyad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Felice Granato
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Semra J Kitchen
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Jia J, Li H, Huang Z, Yu J, Zheng Y, Cao B. Comprehensive immune landscape of lung-resident memory CD8 + T cells after influenza infection and reinfection in a mouse model. Front Microbiol 2023; 14:1184884. [PMID: 37415817 PMCID: PMC10320391 DOI: 10.3389/fmicb.2023.1184884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Background Resident phenotypic memory CD8+ T cells are crucial for immune defense against pathogens. However, little is known about the potential transitions and regulation mechanisms of their function after influenza virus infection and reinfection. In this study, we utilized integrated transcriptome data and in vivo experiments to investigate the key characteristics behind it. Methods Two single-cell RNA sequencing (scRNA-seq) datasets of lung CD8+ T cells and one RNA-seq dataset of lung tissue after infection or reinfection were included. After Seurat procedures classifying CD8+ T subsets, the scCODE algorithm was used to identify the differentially expressed genes for GSVA, GO, and KEGG pathway enrichment. Monocle 3 and CellChat were used to infer pseudotime cell trajectory and cell interactions. The ssGSEA method was used to estimate the relative proportions of immune cells. The findings were confirmed with a mouse model via flow cytometry and RT-PCR analysis. Results Our study refined the landscape of CD8+ T-cell subsets in the lung, showing that CD8+ Trm cells accumulated in the lung within 14 days after influenza infection. The classical CD8+ Trm cells co-expressed a high level of CD49a and even maintained 90 days after primary infection. The ratio of CD8+ Trm cells decreased 1 day after influenza reinfection, which may be parallel with their potential transition into effector types, as observed in trajectory inference analysis. KEGG analysis suggested that PD-L1 expression and PD-1 checkpoint pathway were upregulated in CD8+ Trm cells on day 14 after infection. GO and GSVA analyses revealed that PI3K-Akt-mTOR and type I interferon signaling pathways were enriched in CD8+ Tem and Trm cells after reinfection. Additionally, CCL signaling pathways were involved in cell interaction between CD8+ Trm cells and other cells, with Ccl4-Ccr5 and Ccl5-Ccr5 ligand/receptor pairs being important between CD8+ Trm and other memory subsets after infection and reinfection. Conclusion Our data suggest that resident memory CD8+ T cells with CD49a co-expression account for a large proportion after influenza infection, and they can be rapidly reactivated against reinfection. Function differences exist in CD8+ Trm and Tem cells after influenza infection and reinfection. Ccl5-Ccr5 ligand/receptor pair is important in cell interactions between CD8+ Trm and other subsets.
Collapse
Affiliation(s)
- Ju Jia
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Zhisheng Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiapei Yu
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Heim TA, Lin Z, Steele MM, Mudianto T, Lund AW. CXCR6 promotes dermal CD8 + T cell survival and transition to long-term tissue residence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528487. [PMID: 36824892 PMCID: PMC9949075 DOI: 10.1101/2023.02.14.528487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue resident memory T cells (TRM) provide important protection against infection, and yet the interstitial signals necessary for their formation and persistence remain incompletely understood. Here we show that antigen-dependent induction of the chemokine receptor, CXCR6, is a conserved requirement for TRM formation in peripheral tissue after viral infection. CXCR6 was dispensable for the early accumulation of antigen-specific CD8+ T cells in skin and did not restrain their exit. Single cell sequencing indicated that CXCR6-/- CD8+ T cells were also competent to acquire a transcriptional program of residence but exhibited deficiency in multiple pathways that converged on survival and metabolic signals necessary for memory. As such, CXCR6-/- CD8+ T cells exhibited increased rates of apoptosis relative to controls in the dermis, leading to inefficient TRM formation. CXCR6 expression may therefore represent a common mechanism across peripheral non-lymphoid tissues and inflammatory states that increases the probability of long-term residence.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY, USA
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Singh AK, Majumder S, Wang X, Song R, Sun W. Lung Resident Memory T Cells Activated by Oral Vaccination Afford Comprehensive Protection against Pneumonic Yersinia pestis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:259-270. [PMID: 36480265 PMCID: PMC9851976 DOI: 10.4049/jimmunol.2200487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023]
Abstract
A growing body of evidence has shown that resident memory T (TRM) cells formed in tissue after mucosal infection or vaccination are crucial for counteracting reinfection by pathogens. However, whether lung TRM cells activated by oral immunization with Yptb1(pYA5199) play a protective role against pneumonic plague remains unclear. In this study, we demonstrated that lung CD4+ and CD8+ TRM cells significantly accumulated in the lungs of orally Yptb1(pYA5199)-vaccinated mice and dramatically expanded with elevated IL-17A, IFN-γ, and/or TNF-α production after pulmonary Yersinia pestis infection and afforded significant protection. Short-term or long-term treatment of immunized mice with FTY720 did not affect lung TRM cell formation and expansion or protection against pneumonic plague. Moreover, the intratracheal transfer of both lung CD4+ and CD8+ TRM cells conferred comprehensive protection against pneumonic plague in naive recipient mice. Lung TRM cell-mediated protection was dramatically abolished by the neutralization of both IFN-γ and IL-17A. Our findings reveal that lung TRM cells can be activated via oral Yptb1(pYA5199) vaccination, and that IL-17A and IFN-γ production play an essential role in adaptive immunity against pulmonary Y. pestis infection. This study highlights an important new target for developing an effective pneumonic plague vaccine.
Collapse
Affiliation(s)
- Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Renjie Song
- Immunology Core at Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
26
|
Meng X, Wang Y, Wang T, Jiao B, Shao H, Jia Q, Duan H. Particulate Matter and Its Components Induce Alteration on the T-Cell Response: A Population Biomarker Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:375-384. [PMID: 36537917 DOI: 10.1021/acs.est.2c04347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Collapse
Affiliation(s)
- Xiangjing Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Qiang Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
27
|
Notarbartolo S, Abrignani S. Human T lymphocytes at tumor sites. Semin Immunopathol 2022; 44:883-901. [PMID: 36385379 PMCID: PMC9668216 DOI: 10.1007/s00281-022-00970-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
CD4+ and CD8+ T lymphocytes mediate most of the adaptive immune response against tumors. Naïve T lymphocytes specific for tumor antigens are primed in lymph nodes by dendritic cells. Upon activation, antigen-specific T cells proliferate and differentiate into effector cells that migrate out of peripheral blood into tumor sites in an attempt to eliminate cancer cells. After accomplishing their function, most effector T cells die in the tissue, while a small fraction of antigen-specific T cells persist as long-lived memory cells, circulating between peripheral blood and lymphoid tissues, to generate enhanced immune responses when re-encountering the same antigen. A subset of memory T cells, called resident memory T (TRM) cells, stably resides in non-lymphoid peripheral tissues and may provide rapid immunity independently of T cells recruited from blood. Being adapted to the tissue microenvironment, TRM cells are potentially endowed with the best features to protect against the reemergence of cancer cells. However, when tumors give clinical manifestation, it means that tumor cells have evaded immune surveillance, including that of TRM cells. Here, we review the current knowledge as to how TRM cells are generated during an immune response and then maintained in non-lymphoid tissues. We then focus on what is known about the role of CD4+ and CD8+ TRM cells in antitumor immunity and their possible contribution to the efficacy of immunotherapy. Finally, we highlight some open questions in the field and discuss how new technologies may help in addressing them.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
28
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
29
|
Unger PPA, Oja AE, Khemai-Mehraban T, Ouwendijk WJD, Hombrink P, Verjans GMGM. T-cells in human trigeminal ganglia express canonical tissue-resident memory T-cell markers. J Neuroinflammation 2022; 19:249. [PMID: 36203181 PMCID: PMC9535861 DOI: 10.1186/s12974-022-02611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. METHODS Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. RESULTS Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. CONCLUSIONS The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.
Collapse
Affiliation(s)
- Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamana Khemai-Mehraban
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Alloreactive Tissue-resident Memory T Cells in Solid Organ Transplantation: Do They Light the Fire? Transplantation 2022; 106:1890-1891. [PMID: 36173654 DOI: 10.1097/tp.0000000000004216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Wienke J, Veldkamp SR, Struijf EM, Yousef Yengej FA, van der Wal MM, van Royen-Kerkhof A, van Wijk F. T cell interaction with activated endothelial cells primes for tissue-residency. Front Immunol 2022; 13:827786. [PMID: 36172363 PMCID: PMC9510578 DOI: 10.3389/fimmu.2022.827786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.
Collapse
Affiliation(s)
- Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia R. Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva M. Struijf
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fjodor A. Yousef Yengej
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Femke van Wijk,
| |
Collapse
|
32
|
Polakova A, Hudemann C, Wiemers F, Kadys A, Gremke N, Lang M, Zwiorek L, Pfützner W, Hertl M, Möbs C, Zimmer CL. Isolation of Lymphocytes from Human Skin and Murine Tissues: A Rapid and Epitope-Preserving Approach. JID INNOVATIONS 2022; 3:100155. [PMID: 36866120 PMCID: PMC9974185 DOI: 10.1016/j.xjidi.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue-resident immune cells have been shown to play an important role in skin health and disease. However, owing to limited access to human skin samples and time-consuming, technically demanding protocols, the characterization of tissue-derived cells remains challenging. For this reason, blood-derived leukocytes are frequently used as a surrogate specimen, although they do not necessarily reflect local immune responses in the skin. Therefore, we aimed to establish a rapid protocol to isolate a sufficient number of viable immune cells from 4-mm skin biopsies that can be directly used for a deeper characterization such as comprehensive phenotyping and functional studies of T cells. In this optimized protocol, only two enzymes, type IV collagenase and DNase I, were used to achieve both the highest possible cellular yield and marker preservation of leukocytes stained for multicolor flow cytometry. We further report that the optimized protocol may be used in the same manner for murine skin and mucosa. In summary, this study allows a rapid acquisition of lymphocytes from human or mouse skin suitable for comprehensive analysis of lymphocyte subpopulations, for disease surveillance, and for identification of potential therapeutic targets or other downstream applications.
Collapse
Affiliation(s)
- Alexandra Polakova
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Felix Wiemers
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Arturas Kadys
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Niklas Gremke
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Manuel Lang
- Center for Human Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Lutz Zwiorek
- Department of Gynecology and Obstetrics, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christine L. Zimmer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany,Correspondence: Christine L. Zimmer, Department of Dermatology and Allergology, Philipps-Universität Marburg, Baldingerstraße, Marburg 35043, Germany.
| |
Collapse
|
33
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
34
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
35
|
Wiggins BG, Pallett LJ, Li X, Davies SP, Amin OE, Gill US, Kucykowicz S, Patel AM, Aliazis K, Liu YS, Reynolds GM, Davidson BR, Gander A, Luong TV, Hirschfield GM, Kennedy PTF, Huang Y, Maini MK, Stamataki Z. The human liver microenvironment shapes the homing and function of CD4 + T-cell populations. Gut 2022; 71:1399-1411. [PMID: 34548339 PMCID: PMC9185819 DOI: 10.1136/gutjnl-2020-323771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69-, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1-PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance.
Collapse
Affiliation(s)
- Benjamin G Wiggins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Laura J Pallett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Xiaoyan Li
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Infectious Diseases and Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Scott P Davies
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Oliver E Amin
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Stephanie Kucykowicz
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Arzoo M Patel
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Yuxin S Liu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Gary M Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | | | - Amir Gander
- Tissue Access for Patient Benefit, University College London, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Gideon M Hirschfield
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
- Centre for Liver Research, National Institute for Health Research Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | | | - Yuehua Huang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mala K Maini
- Division of Infection and Immunity, Rayne Institute, University College London, London, UK
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
37
|
Zhang H, Zhu Z, Modrak S, Little A. Tissue-Resident Memory CD4 + T Cells Play a Dominant Role in the Initiation of Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2837-2846. [PMID: 35589124 DOI: 10.4049/jimmunol.2100852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/03/2022] [Indexed: 01/22/2023]
Abstract
Tumor immunology has been studied extensively. Tumor immunology-based cancer immunotherapy has become one of the most promising approaches for cancer treatment. However, one of the fundamental aspects of tumor immunology-the initiation of antitumor immunity-is not fully understood. Compared to that of CD8+ T cells, the effect of CD4+ T cells on antitumor immunity has not been fully appreciated. Using a gene knockout mouse model, the mice of which are deficient in the TCRα repertoire, specifically lacking invariant NKT and mucosal-associated invariant T cells, we found that the deficiency in TCRα repertoire diversity did not affect the antitumor immunity, at least to B16BL6 melanoma and EO771 breast cancer. However, after acquiring thymocytes or splenocytes from wild-type mice, these knockout mice exhibited greatly enhanced and long-lasting antitumor immunity. This enhanced antitumor immunity depended on CD4+ T cells, especially CD4+ tissue-resident memory T (TRM) cells, but not invariant NKT or CD8+ T cells. We also present evidence that CD4+ TRM cells initiate antitumor immunity through IFN-γ, and the process is dependent on NK cells. The CD4+ TRM/NK axis appears to control tumor formation and development by eliminating tumor cells and modulating the tumor microenvironment. Taken together, our results demonstrated that CD4+ TRM cells play a dominant role in the initiation of antitumor immunity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Zhaohui Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Samantha Modrak
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Alex Little
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| |
Collapse
|
38
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
39
|
Anadon CM, Yu X, Hänggi K, Biswas S, Chaurio RA, Martin A, Payne KK, Mandal G, Innamarato P, Harro CM, Mine JA, Sprenger KB, Cortina C, Powers JJ, Costich TL, Perez BA, Gatenbee CD, Prabhakaran S, Marchion D, Heemskerk MHM, Curiel TJ, Anderson AR, Wenham RM, Rodriguez PC, Conejo-Garcia JR. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 2022; 40:545-557.e13. [PMID: 35427494 PMCID: PMC9096229 DOI: 10.1016/j.ccell.2022.03.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023]
Abstract
Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3+CD8+CD103+CD69+ TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1low) tissue-resident T cells (TRMstem cells), but not recirculating TCF1+ T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on ∼13% of CD8+ tumor-infiltrating T cells (∼3% of CD8+ clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden.
Collapse
Affiliation(s)
- Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Alexandra Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Carly M Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Kimberly B Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Bradford A Perez
- Department of Radiation Therapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Chandler D Gatenbee
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sandhya Prabhakaran
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Douglas Marchion
- Department of Tissue Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tyler J Curiel
- Department of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alexander R Anderson
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Robert M Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
40
|
Files MA, Naqvi KF, Saito TB, Clover TM, Rudra JS, Endsley JJ. Self-adjuvanting nanovaccines boost lung-resident CD4 + T cell immune responses in BCG-primed mice. NPJ Vaccines 2022; 7:48. [PMID: 35474079 PMCID: PMC9043212 DOI: 10.1038/s41541-022-00466-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Heterologous vaccine regimens could extend waning protection in the global population immunized with Mycobacterium bovis Bacille Calmette-Guerin (BCG). We demonstrate that pulmonary delivery of peptide nanofibers (PNFs) bearing an Ag85B CD4+ T cell epitope increased the frequency of antigen-specific T cells in BCG-primed mice, including heterogenous populations with tissue resident memory (Trm) and effector memory (Tem) phenotype, and functional cytokine recall. Adoptive transfer of dendritic cells pulsed with Ag85B-bearing PNFs further expanded the frequency and functional repertoire of memory CD4+ T cells. Transcriptomic analysis suggested that the adjuvanticity of peptide nanofibers is, in part, due to the release of damage-associated molecular patterns. A single boost with monovalent Ag85B PNF in BCG-primed mice did not reduce lung bacterial burden compared to BCG alone following aerosol Mtb challenge. These findings support the need for novel BCG booster strategies that activate pools of Trm cells with potentially diverse localization, trafficking, and immune function.
Collapse
Grants
- R01 AI130278 NIAID NIH HHS
- R21 AI115302 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Predoctoral Fellowship, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas 77555
- Predoctoral Fellowship, James W. McLaughlin Endowment, University of Texas Medical Branch, Galveston, Texas, 77555
- Washington University McKelvey School of Engineering, Department of Biomedical Engineering Commitment Funds (12-360-94361J)
Collapse
Affiliation(s)
- Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Tara M Clover
- Comprehensive Industrial Hygiene Laboratory (CIHL), Navy Environmental and Preventive Medicine Unit TWO (NEPMU-2), Department of the Navy, Norfolk, VA, 23551, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
41
|
Abstract
Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
42
|
Arnous R, Arshad S, Sandgren K, Cunningham AL, Carnt N, White A. Tissue resident memory T cells inhabit the deep human conjunctiva. Sci Rep 2022; 12:6077. [PMID: 35414674 PMCID: PMC9005529 DOI: 10.1038/s41598-022-09886-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Mucosal linings of the body, including the conjunctiva, are enriched in tissue-resident memory T cells (TRMs) whose defining feature is their continual tissue protection that does not rely on migration to lymphoid organs to elicit immune responses. Hitherto, conjunctival TRMs have only been identified in the superficial epithelium. This work aims to develop a more complete understanding of the conjunctival immunological capacity by investigating the presence of TRMs within the deeper, more stable layers of the healthy human conjunctiva. Using immunofluorescence microscopy and antibodies against CD3, CD4, CD69 and HLA-DR on bulbar conjunctival biopsies obtained from 7 healthy adults (age range = 32-77 years; females = 4), we identified CD69+TRM subsets in all layers of the human conjunctiva: the superficial epithelium, the basal epithelium, the adenoid, and the fibrous layers. Interestingly, the adenoid layer showed significantly higher densities of both CD4 and CD8 TRMs when compared to the fibrous layer and conjunctival epithelia. Additionally, CD4 TRMs predominated significantly over CD8 TRMs in the adenoid layer. The abundance of deep conjunctival CD69+TRMs within the healthy human may suggest the presence of defence mechanisms capable of inducing long-term immunogenic memory. Understanding this spatial distribution of conjunctival CD69+TRMs is essential to improving mucosal vaccine design.
Collapse
Affiliation(s)
- Racha Arnous
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sana Arshad
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kerrie Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicole Carnt
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.,School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, 2033, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew White
- Centre for Vision Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia. .,Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
43
|
Oja AE, van Lier RAW, Hombrink P. Two sides of the same coin: Protective versus pathogenic CD4 + resident memory T cells. Sci Immunol 2022; 7:eabf9393. [PMID: 35394815 DOI: 10.1126/sciimmunol.abf9393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ability of the adaptive immune system to form memory is key to providing protection against secondary infections. Resident memory T cells (TRM) are specialized T cell populations that reside within tissue sites where they await reencounter with their cognate antigen. TRM are distinct from circulating memory cells, including central and effector memory T cells, both functionally and transcriptionally. Since the discovery of TRM, most research has focused on CD8+ TRM, despite that CD4+ TRM are also abundant in most tissues. In the past few years, more evidence has emerged that CD4+ TRM can contribute both protective and pathogenic roles in disease. A complexity inherent to the CD4+ TRM field is the ability of CD4+ T cells to polarize into a multitude of distinct subsets and recognize not only viruses and intracellular bacteria but also extracellular bacteria, fungi, and parasites. In this review, we outline the key features of CD4+ TRM in health and disease, including their contributions to protection against SARS-CoV-2 and potential contributions to immunopathology associated with COVID-19.
Collapse
Affiliation(s)
- Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Snyder ME, Moghbeli K, Bondonese A, Craig A, Popescu I, Fan L, Tabib T, Lafyatis R, Chen K, Trejo Bittar HE, Lendermon E, Pilewski J, Johnson B, Kilaru S, Zhang Y, Sanchez PG, Alder JK, Sims PA, McDyer JF. Modulation of tissue resident memory T cells by glucocorticoids after acute cellular rejection in lung transplantation. J Exp Med 2022; 219:e20212059. [PMID: 35285873 PMCID: PMC8924935 DOI: 10.1084/jem.20212059] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 01/01/2023] Open
Abstract
Acute cellular rejection is common after lung transplantation and is associated with an increased risk of early chronic rejection. We present combined single-cell RNA and TCR sequencing on recipient-derived T cells obtained from the bronchoalveolar lavage of three lung transplant recipients with rejection and compare them with T cells obtained from the same patients after treatment of rejection with high-dose systemic glucocorticoids. At the time of rejection, we found an oligoclonal expansion of cytotoxic CD8+ T cells that all persisted as tissue resident memory T cells after successful treatment. Persisting CD8+ allograft-resident T cells have reduced gene expression for cytotoxic mediators after therapy with glucocorticoids but accumulate around airways. This clonal expansion is discordant with circulating T cell clonal expansion at the time of rejection, suggesting in situ expansion. We thus highlight the accumulation of cytotoxic, recipient-derived tissue resident memory T cells within the lung allograft that persist despite the administration of high-dose systemic glucocorticoids. The long-term clinical consequences of this persistence have yet to be characterized.
Collapse
Affiliation(s)
- Mark E. Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Kaveh Moghbeli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anna Bondonese
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Iulia Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Li Fan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tracy Tabib
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Joseph Pilewski
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bruce Johnson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Silpa Kilaru
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - John F. McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
45
|
Parga-Vidal L, van Aalderen MC, Stark R, van Gisbergen KPJM. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 2022; 18:209-223. [PMID: 35079143 DOI: 10.1038/s41581-021-00525-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
47
|
Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, Kostevc T, Gäbel C, Schneider M, Streitz M, Demichev V, Gemünd I, Barone M, Tober-Lau P, Helbig ET, Hillus D, Petrov L, Stein J, Dey HP, Paclik D, Iwert C, Mülleder M, Aulakh SK, Djudjaj S, Bülow RD, Mei HE, Schulz AR, Thiel A, Hippenstiel S, Saliba AE, Eils R, Lehmann I, Mall MA, Stricker S, Röhmel J, Corman VM, Beule D, Wyler E, Landthaler M, Obermayer B, von Stillfried S, Boor P, Demir M, Wesselmann H, Suttorp N, Uhrig A, Müller-Redetzky H, Nattermann J, Kuebler WM, Meisel C, Ralser M, Schultze JL, Aschenbrenner AC, Thibeault C, Kurth F, Sander LE, Blüthgen N, Sawitzki B. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 2022; 185:493-512.e25. [PMID: 35032429 PMCID: PMC8712270 DOI: 10.1016/j.cell.2021.12.040] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena J Lippert
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tomislav Kostevc
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Gäbel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Matthias Barone
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lev Petrov
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hannah-Philine Dey
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility, High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Sonja Djudjaj
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Roman D Bülow
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Henrik E Mei
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Irina Lehmann
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Markus Landthaler
- IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Department of Nephrology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Electron Microscopy Facility, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Wesselmann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Gießen, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin, Charité Vivantes, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
49
|
Omokanye A, Ong LC, Lebrero-Fernandez C, Bernasconi V, Schön K, Strömberg A, Bemark M, Saelens X, Czarnewski P, Lycke N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol 2022; 15:717-729. [PMID: 35260804 PMCID: PMC8903128 DOI: 10.1038/s41385-022-00497-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.
Collapse
Affiliation(s)
- Ajibola Omokanye
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Li Ching Ong
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Bemark
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulo Czarnewski
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Lange J, Rivera-Ballesteros O, Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol 2022; 15:389-397. [PMID: 34743182 PMCID: PMC8571012 DOI: 10.1038/s41385-021-00467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.
Collapse
Affiliation(s)
- Joshua Lange
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|