1
|
Davyson E, Shen X, Huider F, Adams MJ, Borges K, McCartney DL, Barker LF, van Dongen J, Boomsma DI, Weihs A, Grabe HJ, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong ASF, Yousefi P, Wong CCY, Arseneault L, Fisher HL, Mill J, Cox SR, Redmond P, Russ TC, van den Oord EJCG, Aberg KA, Penninx BWJH, Marioni RE, Wray NR, McIntosh AM. Insights from a methylome-wide association study of antidepressant exposure. Nat Commun 2025; 16:1908. [PMID: 39994233 PMCID: PMC11850842 DOI: 10.1038/s41467-024-55356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 02/26/2025] Open
Abstract
This study tests the association of whole-blood DNA methylation and antidepressant exposure in 16,531 individuals from Generation Scotland (GS), using self-report and prescription-derived measures. We identify 8 associations and a high concordance of results between self-report and prescription-derived measures. Sex-stratified analyses observe nominally significant increased effect estimates in females for four CpGs. There is observed enrichment for genes expressed in the Amygdala and annotated to synaptic vesicle membrane ontology. Two CpGs (cg15071067; DGUOK-AS1 and cg26277237; KANK1) show correlation between DNA methylation with the time in treatment. There is a significant overlap in the top 1% of CpGs with another independent methylome-wide association study of antidepressant exposure. Finally, a methylation profile score trained on this sample shows a significant association with antidepressant exposure in a meta-analysis of eight independent external datasets. In this large investigation of antidepressant exposure and DNA methylation, we demonstrate robust associations which warrant further investigation to inform on the design of more effective and tolerated treatments for depression.
Collapse
Affiliation(s)
- E Davyson
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - X Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Huider
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Borges
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - D L McCartney
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - L F Barker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - J van Dongen
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - D I Boomsma
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - A Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - H J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - L Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
| | - A Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
| | - H Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - T Zhu
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - F S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - S Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - F Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - U Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A Tapuc
- Max Planck School of Cognition, Leipzig, Germany
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - D Czamara
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - E B Binder
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - T Brückl
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - A S F Kwong
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - P Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - C C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - L Arseneault
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - H L Fisher
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - J Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - S R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - P Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - T C Russ
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Neuroprogressive and Dementia Network, NHS Research Scotland, Scotland, UK
| | - E J C G van den Oord
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - K A Aberg
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - B W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R E Marioni
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - N R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - A M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Zhuang S, Shi F, Cannella N, Ubaldi M, Ciccocioppo R, Li H, Qin D. Pharmacological Mechanism and Drug Research Prospects of Ginsenoside Rb1 as an Antidepressant. Antioxidants (Basel) 2025; 14:238. [PMID: 40002422 PMCID: PMC11851604 DOI: 10.3390/antiox14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the antidepressant effects of ginsenoside Rb1, a natural compound in traditional Chinese medicine, and its potential for treating major depressive disorder (MDD). The aetiology of depression was reviewed up to 2024, focusing on the pathways and mechanisms through which ginsenoside Rb1 may exert its effects. Notably, ginsenoside Rb1 regulates oxidative stress and inflammatory processes while enhancing neural plasticity by downregulating miR-134 expression and alleviating depressive symptoms. Unlike traditional antidepressants that act on a single target, ginsenoside Rb1 interacts with multiple pathways, reflecting its potential for broader therapeutic application. To compensate for the current deficiency in animal experiments, clinical data, and research on the side effects of ginsenoside Rb1 in the treatment of depression, we reviewed some clinical data on the use of this component in the treatment of other diseases to explore its relevance to depression. Ginsenoside Rb1 is expected to serve as a novel antidepressant or as a complementary component in combination with other antidepressant compounds. However, further clinical trials and molecular studies are necessary to confirm its efficacy and potential side effects.
Collapse
Affiliation(s)
- Shuhui Zhuang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Massimo Ubaldi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Di Qin
- Department of Geriatrics and General Practice, The Third Bethune Hospital of Jilin University, Changchun 130021, China;
| |
Collapse
|
3
|
Dagher M, Cahill CM, Andrews AM. Safety in treatment: Classical pharmacotherapeutics and new avenues for addressing maternal depression and anxiety during pregnancy. Pharmacol Rev 2025; 77:100046. [PMID: 40056793 DOI: 10.1016/j.pharmr.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
We aimed to review clinical research on the safety profiles of antidepressant drugs and associations with maternal depression and neonatal outcomes. We focused on neuroendocrine changes during pregnancy and their effects on antidepressant pharmacokinetics. Pregnancy-induced alterations in drug disposition and metabolism impacting mothers and their fetuses are discussed. We considered evidence for the risks of antidepressant use during pregnancy. Teratogenicity associated with ongoing treatment, new prescriptions during pregnancy, or pausing medication while pregnant was examined. The Food and Drug Administration advises caution regarding prenatal exposure to most drugs, including antidepressants, largely owing to a dearth of safety studies caused by the common exclusion of pregnant individuals in clinical trials. We contrasted findings on antidepressant use with the lack of treatment where detrimental effects to mothers and children are well researched. Overall, drug classes such as selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors appear to have limited adverse effects on fetal health and child development. In the face of an increasing prevalence of major mood and anxiety disorders, we assert that individuals should be counseled before and during pregnancy about the risks and benefits of antidepressant treatment given that withholding treatment has possible negative outcomes. Moreover, newer therapeutics, such as ketamine and κ-opioid receptor antagonists, warrant further investigation for use during pregnancy. SIGNIFICANCE STATEMENT: The safety of antidepressant use during pregnancy remains controversial owing to an incomplete understanding of how drug exposure affects fetal development, brain maturation, and behavior in offspring. This leaves pregnant people especially vulnerable, as pregnancy can be a highly stressful experience for many individuals, with stress being the biggest known risk factor for developing a mood or anxiety disorder. This review focuses on perinatal pharmacotherapy for treating mood and anxiety disorders, highlighting the current knowledge and gaps in our understanding of consequences of treatment.
Collapse
Affiliation(s)
- Merel Dagher
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California.
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Anne M Andrews
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Gongwer MW, Qi A, Enos AS, Rueda SA, Klune CB, Shari M, Kashay AQ, Williams OH, Hacking A, Riley JP, Wilke GA, Yang Y, Lu H, Leuchter AF, DeNardo LA, Wilke SA. A cell type-specific mechanism driving the rapid antidepressant effects of transcranial magnetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635537. [PMID: 39975365 PMCID: PMC11838264 DOI: 10.1101/2025.01.29.635537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for brain disorders, but its therapeutic mechanism is unknown. We developed a novel mouse model of rTMS with superior clinical face validity and investigated the neural mechanism by which accelerated intermittent theta burst stimulation (aiTBS) - the first rapid-acting rTMS antidepressant protocol - reversed chronic stress-induced behavioral deficits. Using fiber photometry, we showed that aiTBS drives distinct patterns of neural activity in intratelencephalic (IT) and pyramidal tract (PT) projecting neurons in dorsomedial prefrontal cortex (dmPFC). However, only IT neurons exhibited persistently increased activity during both aiTBS and subsequent depression-related behaviors. Similarly, aiTBS reversed stress-related loss of dendritic spines on IT, but not PT neurons, further demonstrating cell type-specific effects of stimulation. Finally, chemogenetic inhibition of dmPFC IT neurons during rTMS blocked the antidepressant-like behavioral effects of aiTBS. Thus, we demonstrate a prefrontal mechanism linking rapid aiTBS-driven therapeutic effects to cell type-specific circuit plasticity.
Collapse
Affiliation(s)
- Michael W. Gongwer
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alex Qi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander S. Enos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sophia A. Rueda
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Cassandra B. Klune
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Meelan Shari
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Adrienne Q. Kashay
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen H. Williams
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Aliza Hacking
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jack P. Riley
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | | | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew F. Leuchter
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Laura A. DeNardo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Scott A. Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Lejri I, Grimm A, Trempat P, Boujedaini N, Eckert A. Gelsemium low doses protect against serum deprivation-induced stress on mitochondria in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118714. [PMID: 39181289 DOI: 10.1016/j.jep.2024.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.
Collapse
Affiliation(s)
- Imane Lejri
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | | | | | - Anne Eckert
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| |
Collapse
|
6
|
Warner AK, Iskander L, Allen K, Quatela I, Borrelli H, Sachs BD. The effects of brain serotonin deficiency on the behavioral and neurogenesis-promoting effects of voluntary exercise in tryptophan hydroxylase 2 (R439H) knock-in mice. Neuropharmacology 2024; 258:110082. [PMID: 39009217 DOI: 10.1016/j.neuropharm.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Exercise is known to reduce depression and anxiety symptoms. Although the cellular and molecular mechanisms underlying this effect remain unknown, exercise-induced increases in neurotransmitter release and hippocampal neurogenesis have been hypothesized to play key roles. One neurotransmitter that has been implicated in both antidepressant-like effects and the regulation of hippocampal neurogenesis is serotonin (5-HT). Complete loss of function of the brain 5-HT synthesis enzyme (tryptophan hydroxylase 2, Tph2) has been reported to prevent exercise-induced increases in neurogenesis and to block a subset of antidepressant-like responses to selective serotonin reuptake inhibitors (SSRIs), but whether partial loss of Tph2 function blocks the behavioral and neurogenic effects of exercise has not been established. This study used four tests that are predictive of antidepressant efficacy to determine the impact of 5-HT deficiency on responses to exercise in male and female mice. Our results demonstrate that low 5-HT impairs the behavioral effects of exercise in females in the forced swim and novelty-suppressed feeding tests. However, genetic reductions in 5-HT synthesis did not significantly impact exercise-induced alterations in cellular proliferation or immature neuron production in the hippocampus in either sex. These findings highlight the importance of brain 5-HT in mediating behavioral responses to exercise and suggest that individual differences in brain 5-HT synthesis could influence sensitivity to the mental health benefits of exercise. Furthermore, the observed disconnect between neurogenic and behavioral responses to exercise suggests that increased neurogenesis is unlikely to be the primary driver of the behavioral effects of exercise observed here.
Collapse
Affiliation(s)
- Allison K Warner
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Lauren Iskander
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Kristen Allen
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Isabella Quatela
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Hannah Borrelli
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, Villanova University, USA.
| |
Collapse
|
7
|
Kerpel A, Davenport E, Proskovec AL, Xi Y, Berry JD, Yetkin Z, Maldjian J, Yu FF. Antidepressant-related microstructural changes in the external capsule. Brain Imaging Behav 2024; 18:1044-1051. [PMID: 38814546 DOI: 10.1007/s11682-024-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
Several magnetic resonance imaging (MRI) studies have reported that antidepressant medications are strongly linked to brain microstructural alterations. Notably, external capsule alterations have been reported to be a biological marker for therapeutic response. However, prior studies did not investigate whether a change in the neurite density or directional coherence of white matter (WM) fibers underlies the observed microstructural alterations. This MRI-based case-control study examined the relationship between patients' current use of antidepressant medications and advanced measurements of external capsule WM microstructure derived from multishell diffusion imaging using neurite orientation dispersion and density imaging (NODDI). The study compared a group of thirty-five participants who were taking antidepressant medications comprising selective serotonin reuptake inhibitors (SSRIs) (n = 25) and serotonin and norepinephrine reuptake inhibitors (SNRIs) with a control group of thirty-five individuals matched in terms of age, sex, race, and atherosclerotic cardiovascular risk factors. All participants were selected from the Dallas Heart Study phase 2, a multi-ethnic, population-based cohort study. A series of multiple linear regression analyses were conducted to predict microstructural characteristics of the bilateral external capsule using age, sex, and antidepressant medications as predictor variables. There was significantly reduced neurite density in the bilateral external capsules of patients taking SSRIs. Increased orientation dispersion in the external capsule was predominantly seen in patients taking SNRIs. Our findings suggest an association between specific external capsule microstructural changes and antidepressant medications, including reduced neurite density for SSRIs and increased orientation dispersion for SNRIs.
Collapse
Affiliation(s)
- Ariel Kerpel
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Elizabeth Davenport
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amy L Proskovec
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jarett D Berry
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zerrin Yetkin
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joseph Maldjian
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fang F Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
8
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Xue L, Bocharova M, Young AH, Aarsland D. Cognitive improvement in late-life depression treated with vortioxetine and duloxetine in an eight-week randomized controlled trial: The role of age at first onset and change in depressive symptoms. J Affect Disord 2024; 361:74-81. [PMID: 38838790 DOI: 10.1016/j.jad.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Age at first onset of depression as a clinical factor affecting cognitive improvement in late life depression was investigated. METHODS This is a secondary analysis of an eight-week randomized controlled trial involving 452 elderly patients treated by vortioxetine, duloxetine or placebo (1:1:1). Patients were subcategorized into early-onset (LLD-EO) and late-onset (LLD-LO) groups divided by onset age of 50. Cognitive performance was assessed by composite score of Digit Symbol Substitution Test (DSST) and the Rey Auditory Verbal Learning Test (RAVLT) tasks, while depressive symptoms were assessed by Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS Vortioxetine and duloxetine exhibited advantages versus placebo in improving cognitive performance in the LLD-LO group, yet not in the LLD-EO group after eight weeks. Patients in the LLD-EO group showed overall advantage to placebo in depressive symptoms before endpoint (week 8) of treatment, while patients in the LLO-LO group showed no advantage until endpoint. Path analysis suggested a direct effect of vortioxetine (B = 0.656, p = .036) and duloxetine (B = 0.726, p = .028) on improving cognition in the LLD-LO group, yet in all-patients treated set both medications improved cognition indirectly through changes of depressive symptoms. LIMITATION Reliability of clinical history could raise caution as it was collected by subjective recall of patients. CONCLUSION Age at first onset might affect cognitive improvement as well as change in depressive symptoms and its mediation towards cognitive improvement in late life depression treated with vortioxetine and duloxetine.
Collapse
Affiliation(s)
- Lingfeng Xue
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Mariia Bocharova
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Dag Aarsland
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
10
|
Davyson E, Shen X, Huider F, Adams M, Borges K, McCartney D, Barker L, Van Dongen J, Boomsma D, Weihs A, Grabe H, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong A, Yousefi P, Wong C, Arseneault L, Fisher HL, Mill J, Cox S, Redmond P, Russ TC, van den Oord E, Aberg KA, Penninx B, Marioni RE, Wray NR, McIntosh AM. Antidepressant Exposure and DNA Methylation: Insights from a Methylome-Wide Association Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306640. [PMID: 38746357 PMCID: PMC11092700 DOI: 10.1101/2024.05.01.24306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Importance Understanding antidepressant mechanisms could help design more effective and tolerated treatments. Objective Identify DNA methylation (DNAm) changes associated with antidepressant exposure. Design Case-control methylome-wide association studies (MWAS) of antidepressant exposure were performed from blood samples collected between 2006-2011 in Generation Scotland (GS). The summary statistics were tested for enrichment in specific tissues, gene ontologies and an independent MWAS in the Netherlands Study of Depression and Anxiety (NESDA). A methylation profile score (MPS) was derived and tested for its association with antidepressant exposure in eight independent cohorts, alongside prospective data from GS. Setting Cohorts; GS, NESDA, FTC, SHIP-Trend, FOR2107, LBC1936, MARS-UniDep, ALSPAC, E-Risk, and NTR. Participants Participants with DNAm data and self-report/prescription derived antidepressant exposure. Main Outcomes and Measures Whole-blood DNAm levels were assayed by the EPIC/450K Illumina array (9 studies, N exposed = 661, N unexposed = 9,575) alongside MBD-Seq in NESDA (N exposed = 398, N unexposed = 414). Antidepressant exposure was measured by self- report and/or antidepressant prescriptions. Results The self-report MWAS (N = 16,536, N exposed = 1,508, mean age = 48, 59% female) and the prescription-derived MWAS (N = 7,951, N exposed = 861, mean age = 47, 59% female), found hypermethylation at seven and four DNAm sites (p < 9.42x10 -8 ), respectively. The top locus was cg26277237 ( KANK1, p self-report = 9.3x10 -13 , p prescription = 6.1x10 -3 ). The self-report MWAS found a differentially methylated region, mapping to DGUOK-AS1 ( p adj = 5.0x10 -3 ) alongside significant enrichment for genes expressed in the amygdala, the "synaptic vesicle membrane" gene ontology and the top 1% of CpGs from the NESDA MWAS (OR = 1.39, p < 0.042). The MPS was associated with antidepressant exposure in meta-analysed data from external cohorts (N studies = 9, N = 10,236, N exposed = 661, f3 = 0.196, p < 1x10 -4 ). Conclusions and Relevance Antidepressant exposure is associated with changes in DNAm across different cohorts. Further investigation into these changes could inform on new targets for antidepressant treatments. 3 Key Points Question: Is antidepressant exposure associated with differential whole blood DNA methylation?Findings: In this methylome-wide association study of 16,536 adults across Scotland, antidepressant exposure was significantly associated with hypermethylation at CpGs mapping to KANK1 and DGUOK-AS1. A methylation profile score trained on this sample was significantly associated with antidepressant exposure (pooled f3 [95%CI]=0.196 [0.105, 0.288], p < 1x10 -4 ) in a meta-analysis of external datasets. Meaning: Antidepressant exposure is associated with hypermethylation at KANK1 and DGUOK-AS1 , which have roles in mitochondrial metabolism and neurite outgrowth. If replicated in future studies, targeting these genes could inform the design of more effective and better tolerated treatments for depression.
Collapse
|
11
|
Laroy M, Vande Casteele T, Van Cauwenberge M, Koole M, Dupont P, Sunaert S, Van den Stock J, Sienaert P, Van Laere K, Vandenbulcke M, Emsell L, Bouckaert F. Synaptic density changes following electroconvulsive therapy: A longitudinal pilot study with PET-MR 11C-UCB-J imaging in late-life depression. Brain Stimul 2024; 17:588-590. [PMID: 38701916 DOI: 10.1016/j.brs.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Thomas Vande Casteele
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
| | - Margot Van Cauwenberge
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Michel Koole
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Nuclear Medicine, B-3000, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium; Department of Radiology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Pascal Sienaert
- KU Leuven, Department of Neurosciences, Academic Centre for ECT and Neuromodulation, B-3000, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Centre KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
12
|
Warner-Schmidt J, Stogniew M, Mandell B, Rowland RS, Schmidt EF, Kelmendi B. Methylone is a rapid-acting neuroplastogen with less off-target activity than MDMA. Front Neurosci 2024; 18:1353131. [PMID: 38389788 PMCID: PMC10882719 DOI: 10.3389/fnins.2024.1353131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is a highly prevalent psychiatric disorder that can become chronic and debilitating when left untreated. Available pharmacotherapies are limited, take weeks to show modest benefit and remain ineffective for up to 40% of patients. Methylone is currently in clinical development for the treatment of PTSD. Preclinical studies show rapid, robust and long-lasting antidepressant-like and anxiolytic effects. The mechanism of action underlying these effects is not yet fully understood. This study investigated the downstream gene expression changes and signaling pathways affected by methylone in key brain areas linked to PTSD and MDD. It also sought to determine whether neuroplasticity-related genes were involved. We compared effects of methylone with MDMA to explore similarities and differences in their brain effects because MDMA-assisted psychotherapy has recently shown benefit in clinical trials for PTSD and methylone is a structural analog of MDMA. Methods Monoamine binding, uptake and release studies were performed and a high-throughput-screen evaluated agonist/antagonist activities at 168 GPCRs in vitro. We used RNA sequencing (RNA-seq) to probe drug-induced gene expression changes in the amygdala and frontal cortex, two brain areas responsible for emotional learning that are affected by PTSD and MDD. Rats were treated with methylone or MDMA (both 10 mg/kg, IP), and their responses were compared with controls. We performed functional enrichment analysis to identify which pathways were regulated by methylone and/or MDMA. We confirmed changes in gene expression using immunohistochemistry. Results Methylone, a monoamine uptake inhibitor and releaser, demonstrated no off-target effects at 168 GPCRs, unlike MDMA, which showed activity at 5HT2A and 5HT2C receptors. RNA-seq results revealed significant regulation of myelin-related genes in the amygdala, confirmed by immunohistochemistry. In the frontal cortex, methylone significantly upregulated genes implicated in neuroplasticity. Conclusion Results suggest that (1) methylone is a rapid-acting neuroplastogen that affects key brain substrates for PTSD and MDD and that (2) methylone appears to exhibit higher specificity and fewer off-target effects than MDMA. Together, these results are consistent with the reported clinical experiences of methylone and MDMA and bolster the potential use of methylone in the treatment of PTSD and, potentially, other neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- US Department of Veterans Affairs, National Center for PTSD Clinical Neurosciences Division, West Haven, CT, United States
| |
Collapse
|
13
|
Matar D, Serhan A, El Bilani S, Faraj RA, Hadi BA, Fakhoury M. Psychopharmacological Approaches for Neural Plasticity and Neurogenesis in Major Depressive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:27-48. [PMID: 39261422 DOI: 10.1007/978-981-97-4402-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Major depressive disorder (MDD) is a mental health disorder associated with cognitive impairment, dysregulated appetite, fatigue, insomnia or hypersomnia, and severe mood changes that significantly impact the ability of the affected individual to perform day-to-day tasks, leading to suicide in the worst-case scenario. As MDD is becoming more prevalent, affecting roughly 300 million individuals worldwide, its treatment has become a major point of interest. Antidepressants acting as selective serotonin reuptake inhibitors (SSRIs) are currently used as the first line of treatment for MDD. Other antidepressants currently used for the treatment of MDD include the serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). However, although effective in alleviating symptoms of MDD, most antidepressants require weeks or even months of regular administration prior to eliciting a rational clinical effect. Owing to the strong evidence showing a relationship between neural plasticity, neurogenesis, and MDD, researchers have also looked at the possibility of using treatment modalities that target these processes in an attempt to improve clinical outcome. The overarching aim of this chapter is to highlight the role of neural plasticity and neurogenesis in the pathophysiology of MDD and discuss the most recently studied treatment strategies that target these processes by presenting supporting evidence from both animal and human studies.
Collapse
Affiliation(s)
- Dina Matar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Aya Serhan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sabah El Bilani
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Rashel Abi Faraj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Bayan Ali Hadi
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
14
|
Guilloux JP, Nguyen TML, Gardier AM. [Ketamine: a neuropsychotropic drug with an innovative mechanism of action]. Biol Aujourdhui 2023; 217:133-144. [PMID: 38018940 DOI: 10.1051/jbio/2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 11/30/2023]
Abstract
Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect. Neurochemical and behavioral changes are maintained 24 h after administration of ketamine, well beyond its plasma elimination half-life. The glutamatergic pyramidal cells of the medial prefrontal cortex are primarily implicated in the therapeutic effects of ketamine. Advances in knowledge of the consequences of R-NMDA blockade allowed to specify the underlying mechanisms involving the activation of AMPA glutamate receptors, which triggers a cascade of intracellular events dependent on the mechanistic target of rapamycin, brain-derived neurotrophic factor, and synaptic protein synthesis facilitating synaptic plasticity (number of dendritic spines, synaptogenesis). This review focuses on abnormalities of neurotransmitter systems involved in major depressive disorders, their potential impact on neural circuitry and beneficial effects of ketamine. Recent preclinical data pave the way for future studies to better clarify the mechanism of action of fast-acting antidepressant drugs for the development of novel, more effective therapies.
Collapse
Affiliation(s)
- Jean-Philippe Guilloux
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Thi Mai Loan Nguyen
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| | - Alain M Gardier
- Laboratoire de Neuropharmacologie, Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, Équipe MOODS, F-91400 Orsay, France
| |
Collapse
|
15
|
Vega-Rivera NM, González-Trujano ME, Luna-Angula A, Sánchez-Chapul L, Estrada-Camarena E. Antidepressant-like effects of the Punica granatum and citalopram combination are associated with structural changes in dendritic spines of granule cells in the dentate gyrus of rats. Front Pharmacol 2023; 14:1211663. [PMID: 37900157 PMCID: PMC10613096 DOI: 10.3389/fphar.2023.1211663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.
Collapse
Affiliation(s)
- Nelly-Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alexandra Luna-Angula
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| |
Collapse
|
16
|
Choi SO, Choi JG, Yun JY. A Study of Brain Function Characteristics of Service Members at High Risk for Accidents in the Military. Brain Sci 2023; 13:1157. [PMID: 37626513 PMCID: PMC10452066 DOI: 10.3390/brainsci13081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Military accidents are often associated with stress and depressive psychological conditions among soldiers, and they often fail to adapt to military life. Therefore, this study analyzes whether there are differences in EEG and pulse wave indices between general soldiers and three groups of soldiers who have not adapted to military life and are at risk of accidents. Data collection was carried out using a questionnaire and a device that can measure EEG and pulse waves, and data analysis was performed using SPSS. The results showed that the concentration level and brain activity indices were higher in the general soldiers and the soldiers in the first stage of accident risk. The body stress index was higher for each stage of accident risk, and the physical vitality index was higher for general soldiers. Therefore, it can be seen that soldiers who have not adapted to military life and are at risk of accidents have somewhat lower concentration and brain activity than general soldiers, and have symptoms of stress and lethargy. The results of this study will contribute to reducing human accidents through EEG and pulse wave measurements not only in the military but also in occupations with a high risk of accidents such as construction.
Collapse
Affiliation(s)
| | | | - Jong-Yong Yun
- Department of Protection and Safety Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
17
|
Ge J, Tan R, Gao Q, Li R, Xu P, Song H, Wang S, Wan Y, Zhou L. A Multifunctional Nanocarrier System for Highly Efficient and Targeted Delivery of Ketamine to NMDAR Sites for Improved Treatment of Depression. Adv Healthc Mater 2023; 12:e2300154. [PMID: 37031162 DOI: 10.1002/adhm.202300154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 04/10/2023]
Abstract
Ketamine (KA), commonly used as an anesthetic, is now widely studied as an antidepressant for the treatment of depression. However, due to its side effects, such as addiction and cognitive impairment, the dosage and frequency of (S)-ketamine approved by the FDA for the treatment of refractory depression is very low, which limits its efficacy. Here, a new multifunctional nanocarrier system (AC-RM@HA-MS) with specific targeting capabilities is developed to improve the efficacy of KA treatment. KA-loaded NPs (AC-RM@HA-MS-KA) are constructed with a multilayer core-shell structure. KA-loaded mesoporous silica NPs are prepared, conjugated with hyaluronic acid (HA) as pore gatekeepers, and sheathed with an RBC-membrane (RM) for camouflage. Finally, the surface is tagged with bifunctional peptides (Ang-2-Con-G, AC) to achieve specific targeting. One peptide (Ang-2) is acted as a guide to facilitate the crossing of the blood-brain barrier (BBB), while the other (Con-G) is functioned as a ligand for the targeted delivery of KA to the N-methyl-D-aspartate receptor sites. Animal experiments reveal that AC-RM@HA-MS-KA NPs effectively cross the BBB and directionally accumulate in the curing areas, thereby alleviating the depressive symptoms and improving the cognitive functions of depressed mice. After treatment, the depressed mice almost completely return to normal without obvious symptoms of addiction.
Collapse
Affiliation(s)
- Jing Ge
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Li
- School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Pengxin Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hang Song
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimarães FS, Campos AC. The Chronic Pharmacological Antagonism of the CB 1 Receptor is not Involved in the Behavioral Effects of Antidepressants Administered in Mice Submitted to Chronic Unpredictable Stress. Behav Brain Res 2023; 450:114502. [PMID: 37211222 DOI: 10.1016/j.bbr.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Several pieces of evidence suggest that the monoaminergic theory of depression cannot fully explain all behavioral and neuroplastic changes observed after antidepressant chronic treatment. Other molecular targets, such as the endocannabinoid system, have been associated with the chronic effects of these drugs. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the antidepressants (AD) Escitalopram (ESC) or venlafaxine (VFX) in chronically stressed mice depend on CB1 receptor activation. Male mice submitted to the chronic unpredictable stress (CUS) paradigm for 21 days were treated with Esc (10mg/kg) or VFX (20mg/kg) once a day in the presence or not of AM251 (0,3mg/kg), a CB1 receptor antagonist/inverse agonist. At the end of the CUS paradigm, we conducted behavior tests to evaluate depressive- and anxiety-like behaviors. Our results demonstrated that chronic blockade of the CB1 receptor does not attenuate the antidepressant- or the anxiolytic-like effects of ESC nor VFX. ESC increased the expression of CB1 in the hippocampus, but AM251 did not change the pro-proliferative effects of ESC in the dentate gyrus or the increased expression of synaptophysin induced by this AD in the hippocampus. Our results suggest that CB1 receptors are not involved in behavioral and hippocampal neuroplastic effects observed after repeated antidepressant treatment in mice submitted to CUS.
Collapse
Affiliation(s)
- Melissa A Ribeiro
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Rafael P Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Franciele F Scarante
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Eduardo J Fusse
- Mental Health Graduate Program- Ribeirão Preto Medical School, University of São Paulo, 2650 Tenente Catão Roxo Ave, Ribeirão Preto, São Paulo, Brazil
| | - Rúbia M W de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Francisco S Guimarães
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil
| | - Alline C Campos
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Ave, Maringá, Paraná- Brazil.
| |
Collapse
|
19
|
Hao Z, Meng C, Li L, Feng S, Zhu Y, Yang J, Han L, Sun L, Lv W, Figeys D, Liu H. Positive mood-related gut microbiota in a long-term closed environment: a multiomics study based on the "Lunar Palace 365" experiment. MICROBIOME 2023; 11:88. [PMID: 37095530 PMCID: PMC10124008 DOI: 10.1186/s40168-023-01506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Psychological health risk is one of the most severe and complex risks in manned deep-space exploration and long-term closed environments. Recently, with the in-depth research of the microbiota-gut-brain axis, gut microbiota has been considered a new approach to maintain and improve psychological health. However, the correlation between gut microbiota and psychological changes inside long-term closed environments is still poorly understood. Herein, we used the "Lunar Palace 365" mission, a 1-year-long isolation study in the Lunar Palace 1 (a closed manned Bioregenerative Life Support System facility with excellent performance), to investigate the correlation between gut microbiota and psychological changes, in order to find some new potential psychobiotics to maintain and improve the psychological health of crew members. RESULTS We report some altered gut microbiota that were associated with psychological changes in the long-term closed environment. Four potential psychobiotics (Bacteroides uniformis, Roseburia inulinivorans, Eubacterium rectale, and Faecalibacterium prausnitzii) were identified. On the basis of metagenomic, metaproteomic, and metabolomic analyses, the four potential psychobiotics improved mood mainly through three pathways related to nervous system functions: first, by fermenting dietary fibers, they may produce short-chain fatty acids, such as butyric and propionic acids; second, they may regulate amino acid metabolism pathways of aspartic acid, glutamic acid, tryptophan, etc. (e.g., converting glutamic acid to gamma-aminobutyric acid; converting tryptophan to serotonin, kynurenic acid, or tryptamine); and third, they may regulate other pathways, such as taurine and cortisol metabolism. Furthermore, the results of animal experiments confirmed the positive regulatory effect and mechanism of these potential psychobiotics on mood. CONCLUSIONS These observations reveal that gut microbiota contributed to a robust effect on the maintenance and improvement of mental health in a long-term closed environment. Our findings represent a key step towards a better understanding the role of the gut microbiome in mammalian mental health during space flight and provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew mental health during future long-term human space expeditions on the moon or Mars. This study also provides an essential reference for future applications of psychobiotics to neuropsychiatric treatments. Video Abstract.
Collapse
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- Key Laboratory of Molecular Medicine and Biotherapy, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chen Meng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Institute of Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Siyuan Feng
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yinzhen Zhu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jianlou Yang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Liangzhe Han
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Leilei Sun
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Weifeng Lv
- State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
20
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
21
|
Asim M, Wang H, Waris A. Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression. Neuropeptides 2023; 98:102322. [PMID: 36702033 DOI: 10.1016/j.npep.2023.102322] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Depression is the second leading cause of disability in the world population, for which currently available pharmacological therapies either have poor efficacy or have some adverse effects. Accumulating evidence from clinical and preclinical studies demonstrates that the amygdala is critically implicated in depressive disorders, though the underlying pathogenesis mechanism needs further investigation. In this literature review, we overviewed depression and the key role of Gamma-aminobutyric acid (GABA) and Glutamate neurotransmission in depression. Notably, we discussed a new cholecystokinin-dependent plastic changes mechanism under stress and a possible antidepressant response of cholecystokinin B receptor (CCKBR) antagonist. Moreover, we discussed the fundamental role of the amygdala in depression, to discuss and understand the pathophysiology of depression and the inclusive role of the amygdala in this devastating disorder.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong.
| | - Huajie Wang
- City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong
| | - Abdul Waris
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China
| |
Collapse
|
22
|
Liu Y, Gao Y, Li M, Qin W, Xie Y, Zhao G, Wang Y, Yang C, Zhang B, Jing Y, Li J. Childhood sexual abuse related to brain activity abnormalities in right inferior temporal gyrus among major depressive disorder. Neurosci Lett 2023; 806:137196. [PMID: 36963746 DOI: 10.1016/j.neulet.2023.137196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Regional brain activity abnormalities have been reported in major depressive disorder (MDD) with childhood trauma (CT). However, these findings were variable and equivocal. The present study aims to explore further the correlation between CT and the amplitude of low-frequency fluctuations (ALFF) alteration in MDD. In this study, we recruited 60 healthy controls (HCs) and 66 MDD patients to complete resting-state fMRI scans. All MDD patients were evaluated clinical symptoms and childhood trauma experience using the Hamilton Depression Rating Scale-17 (HDRS-17), the Hamilton Anxiety Scale (HAMA), and the Childhood Trauma Questionnaire (CTQ). Compared to HCs, MDD patients demonstrated significantly altered ALFF in the right middle occipital gyrus (MOG), bilateral inferior temporal gyrus (ITG), bilateral cerebellum posterior lobe, bilateral anterior cingulate gyrus (ACC), and bilateral superior frontal gyrus (SFG). More importantly, we found negative correlation between childhood sexual abuse (CSA) scores and ALFF value appeared mainly in the right ITG among MDD patients. After adjusting for covariates (age, gender, mean framewise displacement (FD), HRDS-17, and HAMA scores), this correlation remained significant. Meanwhile, ALFF in the right ITG could distinguish MDD patients with or without CSA (area under the curve (AUC) = 0.713). Our findings revealed that the regional brain activity abnormalities in the right ITG might be a potential biomarker for MDD patients with CSA.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoshu Zhao
- The School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuting Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Chenghao Yang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
23
|
The times they are a-changin': a proposal on how brain flexibility goes beyond the obvious to include the concepts of "upward" and "downward" to neuroplasticity. Mol Psychiatry 2023; 28:977-992. [PMID: 36575306 PMCID: PMC10005965 DOI: 10.1038/s41380-022-01931-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms. This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact that the brain's ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging, stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity into two sub-concepts, "upward neuroplasticity" for changes related to synaptic construction and "downward neuroplasticity" for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological systems as seen in the brain.
Collapse
|
24
|
Sherif MA, Khalil MZ, Shukla R, Brown JC, Carpenter LL. Synapses, predictions, and prediction errors: A neocortical computational study of MDD using the temporal memory algorithm of HTM. Front Psychiatry 2023; 14:976921. [PMID: 36911109 PMCID: PMC9995817 DOI: 10.3389/fpsyt.2023.976921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. Methods We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. Results Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. Discussion These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.
Collapse
Affiliation(s)
- Mohamed A. Sherif
- Lifespan Physician Group, Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Carney Institute for Brain Science, Norman Prince Neurosciences Institute, Providence, RI, United States
| | - Mostafa Z. Khalil
- Department of Psychiatry and Behavioral Health, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Rammohan Shukla
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joshua C. Brown
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| |
Collapse
|
25
|
Deyama S, Kaneda K. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Neuropharmacology 2023; 224:109335. [PMID: 36403852 DOI: 10.1016/j.neuropharm.2022.109335] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The neurotrophic hypothesis of depression proposes that reduced levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) contribute to neuronal atrophy or loss in the prefrontal cortex (PFC) and hippocampus and impaired hippocampal adult neurogenesis, which are associated with depressive symptoms. Chronic, but acute, treatment with typical monoaminergic antidepressants can at least partially reverse these deficits, in part via induction of BDNF and/or VEGF expression, consistent with their delayed onset of action. Ketamine, an N-methyl-d-aspartate receptor antagonist, exerts rapid and sustained antidepressant effects. Rodent studies have revealed that ketamine rapidly increases BDNF and VEGF release and/or expression in the PFC and hippocampus, which in turn increases the number and function of spine synapses in the PFC and hippocampal neurogenesis. Ketamine also induces the persistent release of insulin-like growth factor 1 (IGF-1) in the PFC of male mice. These neurotrophic effects of ketamine are associated with its rapid and sustained antidepressant effects. In this review, we first provide an overview of the neurotrophic hypothesis of depression and then discuss the role of BDNF, VEGF, IGF-1, and other growth factors (IGF-2 and transforming growth factor-β1) in the antidepressant effects of ketamine and its enantiomers. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
26
|
Adongo DW, Mante PK, Kukuia KKE, Benneh CK, Biney RP, Boakye-Gyasi E, Amekyeh H, Harley BK, Tandoh A, Okyere PD, Woode E. Fast-onset effects of Pseudospondias microcarpa (A. Rich) Engl. (Anacardiaceae) hydroethanolic leaf extract on behavioral alterations induced by chronic mild stress in mice. PLoS One 2023; 18:e0278231. [PMID: 36730151 PMCID: PMC9894402 DOI: 10.1371/journal.pone.0278231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/10/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Pseudospondias microcarpa (Anacardiaceae) is a plant widely used traditionally for treating various central nervous system disorders. A previous study in our laboratory confirmed that the hydroethanolic leaf extract (PME) of the plant produces an antidepressant-like effect in rodent models of behavioral despair. However, its effect on depressive-like behavior induced by chronic mild stress (CMS) and its time course of action are still unknown. In this context, the long-term effects of PME on cognitive function and depressive- and anxiety-like behavior caused by CMS were assessed. METHODS Male ICR mice were exposed to CMS for nine weeks and anhedonia was evaluated by monitoring sucrose intake (SIT) weekly. PME (30, 100, or 300 mg kg-1) or fluoxetine (FLX) (3, 10, or 30 mg kg-1) was administered to the mice during the last six weeks of CMS. Behavioral tests-coat state, splash test, forced swimming test (FST), tail suspension test (TST), elevated plus maze (EPM), open field test (OFT), novelty suppressed feeding (NSF), EPM transfer latency, and Morris water maze (MWM)-were performed after the nine-week CMS period. RESULTS When the mice were exposed to CMS, their SIT and grooming behavior reduced (splash test), their coat status was poor, they became more immobile (FST and TST), more anxious (OFT, EPM, and NSF), and their cognitive function was compromised (EPM transfer latency and MWM tests). Chronic PME treatment, however, was able to counteract these effects. Additionally, following two (2) weeks of treatment, PME significantly boosted SIT in stressed mice (30 mg kg-1, P<0.05; 100 mg kg-1, P<0.05; and 300 mg kg-1, P<0.001), as compared to four (4) weeks of treatment with FLX. CONCLUSION The present findings demonstrate that PME produces a rapid and sustained antidepressant-like action and reverses behavioral changes induced by chronic exposure to mild stressors.
Collapse
Affiliation(s)
- Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
- * E-mail:
| | - Priscilla Kolibea Mante
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Robert Peter Biney
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Benjamin Kingsley Harley
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Augustine Tandoh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Prince Dagadu Okyere
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
27
|
Martins-Macedo J, Mateus-Pinheiro A, Alves C, Veloso F, Gomes ED, Ribeiro I, Correia JS, Silveira-Rosa T, Alves ND, Rodrigues AJ, Bessa JM, Sousa N, Oliveira JF, Patrício P, Pinto L. StressMatic: A Novel Automated System to Induce Depressive- and Anxiety-like Phenotype in Rats. Cells 2023; 12:cells12030381. [PMID: 36766724 PMCID: PMC9913774 DOI: 10.3390/cells12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Major depressive disorder (MDD) is a multidimensional psychiatric disorder that is estimated to affect around 350 million people worldwide. Generating valid and effective animal models of depression is critical and has been challenging for neuroscience researchers. For preclinical studies, models based on stress exposure, such as unpredictable chronic mild stress (uCMS), are amongst the most reliable and used, despite presenting concerns related to the standardization of protocols and time consumption for operators. To overcome these issues, we developed an automated system to expose rodents to a standard uCMS protocol. Here, we compared manual (uCMS) and automated (auCMS) stress-exposure protocols. The data shows that the impact of the uCMS exposure by both methods was similar in terms of behavioral (cognition, mood, and anxiety) and physiological (cell proliferation and endocrine variations) measurements. Given the advantages of time and standardization, this automated method represents a step forward in this field of preclinical research.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Cátia Alves
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
- Department of Marketing and International Business, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Fernando Veloso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- 2Ai—School of Technology, IPCA, 4750-810 Barcelos, Portugal
- LASI—Associate Laboratory of Intelligent Systems, 4800-058 Guimarães, Portugal
- Department of Mechanical Engineering, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Inês Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Joana S. Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno D. Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - João M. Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - João F. Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- 2Ai—School of Technology, IPCA, 4750-810 Barcelos, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-604-929
| |
Collapse
|
28
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
29
|
Reddy DS. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies. Exp Neurol 2023; 359:114237. [PMID: 36206806 DOI: 10.1016/j.expneurol.2022.114237] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Novel and effective antiseizure medications are needed to treat refractory and rare forms of epilepsy. Cannabinoids, which are obtained from the cannabis plant, have a long history of medical use, including for neurologic conditions. In 2018, the US Food and Drug Administration approved the first phytocannabinoid, cannabidiol (CBD, Epidiolex), which is now indicated for severe seizures associated with three rare forms of developmental and epileptic encephalopathy: Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. Compelling evidence supports the efficacy of CBD in experimental models and patients with epilepsy. In randomized clinical trials, highly-purified CBD has demonstrated efficacy with an acceptable safety profile in children and adults with difficult-to-treat seizures. Although the underlying antiseizure mechanisms of CBD in humans have not yet been elucidated, the identification of novel antiseizure targets of CBD preclinically indicates multimodal mechanisms that include non-cannabinoid pathways. In addition to antiseizure effects, CBD possesses strong anti-inflammatory and neuroprotective activities, which might contribute to protective effects in epilepsy and other conditions. This article provides a succinct overview of therapeutic approaches and clinical foundations of CBD, emphasizing the clinical utility of CBD for the treatment of seizures associated with refractory and rare epilepsies. CBD has shown to be a safe and effective antiseizure medicine, demonstrating a broad spectrum of efficacy across multiple seizure types, including those associated with severe epilepsies with childhood onset. Despite such promise, there are many perils with CBD that hampers its widespread use, including limited understanding of pharmacodynamics, limited exposure-response relationship, limited information for seizure freedom with continued use, complex pharmacokinetics with drug interactions, risk of adverse effects, and lack of expert therapeutic guidelines. These scientific issues need to be resolved by further investigations, which would decide the unique role of CBD in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University, Bryan, TX, USA; Engineering Medicine, Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX, USA; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
30
|
Petelin DS, Bairamova SP, Akhapkin RV, Kudryashov NV, Sorokina OY, Semin SA, Volel BA. [A role of neurosteroids in the pathogenesis of psychiatric disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:31-36. [PMID: 37084362 DOI: 10.17116/jnevro202312304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Despite the proven importance of neurosteroids in many physiological processes, their role in the pathogenesis of the most of psychiatric disorders remains relatively understudied. This article reviews the current clinical evidence on the effects of neurosteroids on the formation and treatment of anxiety disorder, depression, bipolar disorder, and schizophrenia. In particular, the article points out the ambivalent nature of the effects of neurosteroids on GABAA- and other receptors. We are especially interested in the anxiolytic and anxiogenic effects of some neurosteroids, the antidepressant effect of allopregnanolone in treating postpartum and other forms of depression, and the nature of short- and long-term mechanisms of antidepressant effects of neurosteroids of different types. The currently unproven hypothesis about the effect of changes in the level of neurosteroids on the course of bipolar disorder is also discussed, with an analysis of the scientific evidence on the development of schizophrenic symptomatology in relation to changing neurosteroid levels in the context of positive and cognitive symptoms.
Collapse
Affiliation(s)
- D S Petelin
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - S P Bairamova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - R V Akhapkin
- Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
| | - N V Kudryashov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Zakusov Institute of Pharmacology, Moscow, Russia
| | - O Yu Sorokina
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - S A Semin
- «Spasenie» Clinic, LLC, Moscow, Russia
| | - B A Volel
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
31
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
32
|
Kanes SJ, Dennie L, Perera P. Targeting the Arginine Vasopressin V 1b Receptor System and Stress Response in Depression and Other Neuropsychiatric Disorders. Neuropsychiatr Dis Treat 2023; 19:811-828. [PMID: 37077711 PMCID: PMC10106826 DOI: 10.2147/ndt.s402831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
A healthy stress response is critical for good mental and overall health and promotes neuronal growth and adaptation, but the intricately balanced biological mechanisms that facilitate a stress response can also result in predisposition to disease when that equilibrium is disrupted. The hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system plays a critical role in the body's response and adaptation to stress, and vasopressinergic regulation of the HPA axis is critical to maintaining system responsiveness during chronic stress. However, exposure to repeated or excessive physical or emotional stress or trauma can shift the body's stress response equilibrium to a "new normal" underpinned by enduring changes in HPA axis function. Exposure to early life stress due to adverse childhood experiences can also lead to lasting neurobiological changes, including in HPA axis function. HPA axis impairment in patients with depression is considered among the most reliable findings in biological psychiatry, and chronic stress has been shown to play a major role in the pathogenesis and onset of depression and other neuropsychiatric disorders. Modulating HPA axis activity, for example via targeted antagonism of the vasopressin V1b receptor, is a promising approach for patients with depression and other neuropsychiatric disorders associated with HPA axis impairment. Despite favorable preclinical indications in animal models, demonstration of clinical efficacy for the treatment of depressive disorders by targeting HPA axis dysfunction has been challenging, possibly due to the heterogeneity and syndromal nature of depressive disorders. Measures of HPA axis function, such as elevated cortisol levels, may be useful biomarkers for identifying patients who may benefit from treatments that modulate HPA axis activity. Utilizing clinical biomarkers to identify subsets of patients with impaired HPA axis function who may benefit is a promising next step in fine-tuning HPA axis activity via targeted antagonism of the V1b receptor.
Collapse
Affiliation(s)
- Stephen J Kanes
- EmbarkNeuro, Oakland, CA, USA
- Correspondence: Stephen J Kanes, EmbarkNeuro, Inc, 1111 Broadway, Suite 1300, Oakland, CA, 94607, USA, Tel +1 610 757 7821, Email
| | | | | |
Collapse
|
33
|
Levinta A, Meshkat S, McIntyre RS, Ho C, Lui LMW, Lee Y, Mansur RB, Teopiz KM, Rodrigues NB, Di Vincenzo JD, Ceban F, Rosenblat JD. The association between stage of treatment-resistant depression and clinical utility of ketamine/esketamine: A systematic review. J Affect Disord 2022; 318:139-149. [PMID: 36049604 DOI: 10.1016/j.jad.2022.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ketamine has demonstrated rapid and significant antidepressant effects in patients with treatment resistant depression (TRD). Herein, we conducted a systematic review to determine ketamine's efficacy as a function of the stage of treatment resistance (e.g., number of failed treatments) among individuals with TRD. METHODS A systematic search of PubMed and Scopus from inception to August 2021 was conducted. Where applicable, the studies were categorized into low and high stages of resistance, where low category included studies where the mean number of failed antidepressants was <3 or had a higher proportion of subjects with ≤2 antidepressant trials. Reported indicators of treatment resistance and efficacy were extracted from randomized-controlled trials (RCTs) assessing ketamine or esketamine for TRD. RESULTS In total, 18 RCTs were included in the current review. There was variability across reported indicators of disease severity, definition of treatment resistance, as well as treatment protocols, preventing clear direct and indirect comparison of relative efficacy of ketamine at different stages of treatment resistance. Ketamine was effective in reducing depressive symptoms in RCTs at both lower and higher stages of treatment resistance; however, the effect size and duration of effects was greater in RCTs of lower stage of treatment resistance. CONCLUSIONS Our findings suggested that ketamine has antidepressant efficacy across all identified stages of treatment resistance, however with increasing failed treatment trials, treatment might be less efficacious. At this time, the comparative efficacy as a function of resistance stage remains to be well-established. Evaluation of participant level data is required to more clearly determine the association between level of treatment resistance and likelihood of response.
Collapse
Affiliation(s)
- Anastasia Levinta
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence (CRTCE), Braxia Health, ON, Canada
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence (CRTCE), Braxia Health, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Cameron Ho
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Nelson B Rodrigues
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence (CRTCE), Braxia Health, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Canadian Rapid Treatment Centre of Excellence (CRTCE), Braxia Health, ON, Canada.
| |
Collapse
|
34
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
35
|
Nassar A, Azab AN. Effects of Dexamethasone and Pentoxifylline on Mania-like and Depression-like Behaviors in Rats. Pharmaceuticals (Basel) 2022; 15:ph15091063. [PMID: 36145284 PMCID: PMC9503945 DOI: 10.3390/ph15091063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies support the notion that inflammation plays a role in the pathophysiology and treatment approaches of psychiatric illnesses, particularly mood disorders. Congruently, classic anti-inflammatory drugs were found efficacious in randomized clinical trials of patients with mood disorders. Moreover, accumulating data indicate that psychotropic drugs exhibit some anti-inflammatory effects. This study was undertaken to examine the efficacy of dexamethasone (a potent corticosteroid) and pentoxifylline (a methylxanthine drug with proven anti-tumor necrosis factor-α inhibitory activity) in behavioral models in rats, which were treated intraperitoneally with either dexamethasone or pentoxifylline for two weeks and then subjected to a battery of behavioral tests. Treatment with pentoxifylline, but not dexamethasone, was associated with antidepressant-like and anti-manic-like effects. The beneficial behavioral effects of pentoxifylline were accompanied by a prominent reduction in pro-inflammatory mediator levels in the brain. For the first time, the current work proves the efficacy of pentoxifylline against both mania-like and depressive-like behaviors. These results suggest that pentoxifylline may be a promising therapeutic intervention for patients with mood disorders. Taking into account the excellent tolerability profile of pentoxifylline in humans, it is warranted to conduct randomized clinical trials to investigate its therapeutic efficacy in patients with psychiatric disorders.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
36
|
Bernardo A, Lee P, Marcotte M, Mian MY, Rezvanian S, Sharmin D, Kovačević A, Savić MM, Cook JM, Sibille E, Prevot TD. Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress. Neuropsychopharmacology 2022; 47:1608-1619. [PMID: 35701547 PMCID: PMC9283409 DOI: 10.1038/s41386-022-01360-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/27/2022]
Abstract
Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.
Collapse
Affiliation(s)
- Ashley Bernardo
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Philip Lee
- grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Michael Marcotte
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Md Yeunus Mian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Sepideh Rezvanian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Dishary Sharmin
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Aleksandra Kovačević
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Miroslav M. Savić
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - James M. Cook
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Thomas D. Prevot
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Petrak B, Maulisova A, Nabbout R, Jansen AC, Jansen FE, Lagae L, Urbanska M, Ferretti E, Tempes A, Blazejczyk M, Jaworski J, Kwiatkowski DJ, Jozwiak S, Kotulska K, Sadowski K, Borkowska J, Curatolo P, Mills JD, Aronica E. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022; 10:biomedicines10081838. [PMID: 36009385 PMCID: PMC9405248 DOI: 10.3390/biomedicines10081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients’ serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Anand M. Iyer
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
- Child Neurology Unit, Neuroscience Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Christoph Hertzberg
- Diagnose-und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany;
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia;
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Borivoj Petrak
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Alice Maulisova
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Member of ERN EpiCARE, Université de Paris, 149 Rue de Sèvres, 75015 Paris, France;
| | - Anna C. Jansen
- Department of Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium;
| | - Floor E. Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA Utrecht, The Netherlands;
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, 3000 Leuven, Belgium;
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
- Department of Child Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Correspondence: (J.D.M.); (E.A.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Correspondence: (J.D.M.); (E.A.)
| | | |
Collapse
|
38
|
Jones KL, Zhou M, Jhaveri DJ. Dissecting the role of adult hippocampal neurogenesis towards resilience versus susceptibility to stress-related mood disorders. NPJ SCIENCE OF LEARNING 2022; 7:16. [PMID: 35842419 PMCID: PMC9288448 DOI: 10.1038/s41539-022-00133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/01/2022] [Indexed: 05/13/2023]
Abstract
Adult hippocampal neurogenesis in the developmental process of generating and integrating new neurons in the hippocampus during adulthood and is a unique form of structural plasticity with enormous potential to modulate neural circuit function and behaviour. Dysregulation of this process is strongly linked to stress-related neuropsychiatric conditions such as anxiety and depression, and efforts have focused on unravelling the contribution of adult-born neurons in regulating stress response and recovery. Chronic stress has been shown to impair this process, whereas treatment with clinical antidepressants was found to enhance the production of new neurons in the hippocampus. However, the precise role of adult hippocampal neurogenesis in mediating the behavioural response to chronic stress is not clear and whether these adult-born neurons buffer or increase susceptibility to stress-induced mood-related maladaptation remains one of the controversial issues. In this review, we appraise evidence probing the causal role of adult hippocampal neurogenesis in the regulation of emotional behaviour in rodents. We find that the relationship between adult-born hippocampal neurons and stress-related mood disorders is not linear, and that simple subtraction or addition of these neurons alone is not sufficient to lead to anxiety/depression or have antidepressant-like effects. We propose that future studies examining how stress affects unique properties of adult-born neurons, such as the excitability and the pattern of connectivity during their critical period of maturation will provide a deeper understanding of the mechanisms by which these neurons contribute to functional outcomes in stress-related mood disorders.
Collapse
Affiliation(s)
- Katherine L Jones
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mei Zhou
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
39
|
Abstract
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
Collapse
Affiliation(s)
- Puja K Parekh
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Shane B Johnson
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| | - Conor Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
40
|
Kukuia KKE, Torbi J, Amoateng P, Adutwum-Ofosu KK, Koomson AE, Appiah F, Tagoe TA, Mensah JA, Ameyaw EO, Adi-Dako O, Amponsah SK. Gestational iron supplementation reverses depressive-like behavior in post-partum Sprague Dawley rats: Evidence from behavioral and neurohistological studies. IBRO Neurosci Rep 2022; 12:280-296. [PMID: 35746978 PMCID: PMC9210498 DOI: 10.1016/j.ibneur.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Postpartum depression is a mood disorder that affects about 9–20% of women after child birth. Reports suggest that gestational iron deficiency can cause a deficit in behavioral, cognitive and affective functions and can precipitate depressive symptoms in mothers during the postpartum period. The present study examined the effect of iron supplementation on depressive behavior during postpartum period in a rat model. Method Female Sprague-Dawley rats were crossed. Pregnant rats received iron, fluoxetine, desferrioxamine or vehicle throughout the period of gestation. During the postpartum period, mothers from all groups were taken through the open field test (OFT), forced swim test (FST), novelty-induced hypophagia (NIH) and sacrificed for histological examination of the brains. Results Results showed that rats treated with iron-chelating agent, desferrioxamine, and vehicle during gestation exhibited increased immobility scores in the FST, increased latency to feed and reduced feeding in the NIH with corresponding decreased number of neurons and dendritic branches in the cortex of the brain. These depression-related effects were attenuated by perinatal iron supplementation which showed decreased immobility scores in the FST comparable to rats treated with fluoxetine, a clinically effective antidepressant. Iron treatment also decreased latency to feeding while increasing feeding behavior in the NIH. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex compared to vehicle- and desferrioxamine-treated groups. Conclusion The results suggest that, iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats, attenuates neuronal loss associated with depression and increases dendritic spine density. Iron supplementation during gestation exerts an antidepressant-like effect in postpartum Sprague-Dawley rats. Iron supplementation during gestation attenuates neuronal loss associated with depression. Iron-treated dams had a higher number of neurons with dendritic connections in the frontal cortex.
Collapse
|
41
|
The Impact of Chronic Unpredictable Mild Stress-Induced Depression on Spatial, Recognition and Reference Memory Tasks in Mice: Behavioral and Histological Study. Behav Sci (Basel) 2022; 12:bs12060166. [PMID: 35735376 PMCID: PMC9219659 DOI: 10.3390/bs12060166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Depression-induced cognitive impairment has recently been given more attention in research. However, the relationship between depression and different types of memory is still not clear. Chronic unpredictable mild stress (CUMS) is a commonly used animal model of depression in which animals are exposed to chronic unpredictable environmental and psychological stressors, which mimics daily human life stressors. This study investigated the impact of different durations of CUMS on various types of memory (short- and long-term spatial memory and recognition memory) and investigated CUMS’ impact on the ultrastructural level by histological assessment of the hippocampus and prefrontal cortex. Twenty male C57BL/J6 mice (6 weeks old, 21.8 ± 2 g) were randomly divided into two groups (n = 10): control and CUMS (8 weeks). A series of behavioral tasks were conducted twice at weeks 5–6 (early CUMS) and weeks 7–8 (late CUMS). A tail-suspension test (TST), forced swimming test (FST), elevated zero maze (EZM), elevated plus maze (EPM), open field test (OFT), and sucrose-preference test (SPT) were used to assess anxiety and depressive symptoms. The cognitive function was assessed by the novel object recognition test (NORT; for recognition memory), Y-maze (for short-term spatial memory), and Morris water maze (MWM: for long-term spatial memory) with a probe test (for reference memory). Our data showed that 8 weeks of CUMS increased the anxiety level, reported by a significant increase in anxiety index in both EPM and EZM and a significant decrease in central preference in OFT, and depression was reported by a significant increase in immobility in the TST and FST and sucrose preference in the SPT. Investigating the impact of CUMS on various types of memory, we found that reference memory is the first memory to be affected in early CUMS. In late CUMS, all types of memory were impaired, and this was consistent with the abnormal histological features of the memory-related areas in the brain (hippocampus and prefrontal cortex).
Collapse
|
42
|
Vatandoust SM, Meftahi GH. The Effect of Sericin on the Cognitive Impairment, Depression, and Anxiety Caused by Learned Helplessness in Male Mice. J Mol Neurosci 2022; 72:963-974. [PMID: 35165850 DOI: 10.1007/s12031-022-01982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Learned helplessness (LH) induces cognitive and emotional abnormalities via alteration of synaptic and apoptotic markers in the hippocampus. Given the sericin's neuroprotective effects on different experimental models, this study aimed to address whether sericin is able to reduce LH-induced behavioral and molecular changes in the mouse model. Sixty male mice (3 months old) were randomly divided into control, normal saline (NS), and/or different doses of sericin (Ser [100, 200, and 300 mg/kg]) for 21 days. Accordingly, the animals in NS and sericin-treated groups were subjected to 1 day learned helplessness protocol. Behavioral deficits were evaluated and alterations in both synaptic and apoptotic factors were evaluated in the hippocampus. Induction of LH was associated with behavioral changes (depression and cognitive impairment). On the other hand, the administration of sericin effectively normalized these deficits. At molecular levels, sericin increased the levels of synaptophysin, synapsin-1, and PSD-95, and decreased apoptosis in the hippocampus. Although the exact mechanisms underlying the neuroprotective effects of sericin are not fully understood, our results showed that this effect mediated via modulation of the synaptic and apoptotic proteins in the hippocampus of LH-subjected mice.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Shvartsur R, Agam G, Uzzan S, Azab AN. Low-Dose Aspirin Augments the Anti-Inflammatory Effects of Low-Dose Lithium in Lipopolysaccharide-Treated Rats. Pharmaceutics 2022; 14:pharmaceutics14050901. [PMID: 35631487 PMCID: PMC9143757 DOI: 10.3390/pharmaceutics14050901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mounting evidence suggests that immune-system dysfunction and inflammation play a role in the pathophysiology and treatment of mood-disorders in general and of bipolar disorder in particular. The current study examined the effects of chronic low-dose aspirin and low-dose lithium (Li) treatment on plasma and brain interleukin-6 and tumor necrosis factor-α production in lipopolysaccharide (LPS)-treated rats. Rats were fed regular or Li-containing food (0.1%) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. On days 21 and 42 rats were injected with 1 mg/kg LPS or saline. Two h later body temperature was measured and rats were sacrificed. Blood samples, the frontal-cortex, hippocampus, and the hypothalamus were extracted. To assess the therapeutic potential of the combined treatment, rats were administered the same Li + aspirin protocol without LPS. We found that the chronic combined treatment attenuated LPS-induced hypothermia and significantly reduced plasma and brain cytokine level elevation, implicating the potential neuroinflammatory diminution purportedly present among the mentally ill. The combined treatment also significantly decreased immobility time and increased struggling time in the forced swim test, suggestive of an antidepressant-like effect. This preclinical evidence provides a potential approach for treating inflammation-related mental illness.
Collapse
Affiliation(s)
- Rachel Shvartsur
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
| | - Abed N. Azab
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (G.A.); (S.U.)
- Correspondence: ; Tel.: +972-86-479880; Fax: +972-86-477-683
| |
Collapse
|
44
|
Vanicek T, Reed MB, Unterholzner J, Klöbl M, Godbersen GM, Handschuh PA, Spurny-Dworak B, Ritter V, Gryglewski G, Kraus C, Winkler D, Lanzenberger R, Seiger R. Escitalopram administration, relearning, and neuroplastic effects: A diffusion tensor imaging study in healthy individuals. J Affect Disord 2022; 301:426-432. [PMID: 35016914 DOI: 10.1016/j.jad.2021.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuroplastic processes are influenced by serotonergic agents, which reportedly alter white matter microstructure in humans in conjunction with learning. The goal of this double-blind, placebo-controlled imaging study was to investigate the neuroplastic properties of escitalopram and cognitive training on white matter plasticity during (re)learning as a model for antidepressant treatment and environmental factors. METHODS Seventy-one healthy individuals (age=25.6 ± 5.0, 43 females) underwent three diffusion magnetic resonance imaging scans: at baseline, after 3 weeks of associative learning (emotional/non-emotional content), and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, participants received a daily dose of 10 mg escitalopram or placebo orally. Fractional anisotropy (FA), and mean (MD), axial (AD), and radial diffusivity (RD) were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS In a three-way repeated-measures marginal model with sandwich estimator standard errors, we found no significant effects of escitalopram and content on AD, FA, MD, and RD during both learning and relearning periods (pFDR>0.05). When testing for escitalopram or content effects separately, we also demonstrated no significant findings (pFDR>0.05) for any of the diffusion tensor imaging metrics. LIMITATIONS The intensity of the study interventions might have been too brief to induce detectable white matter changes. DISCUSSION Previous studies examining the effects of SSRIs on white matter tracts in humans have yielded inconclusive outcomes. Our results indicate that relearning under escitalopram does not affect the white matter microstructures in healthy individuals when administered for 3 weeks.
Collapse
Affiliation(s)
- T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - V Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
45
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Front Behav Neurosci 2022; 16:834821. [PMID: 35330844 PMCID: PMC8940280 DOI: 10.3389/fnbeh.2022.834821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.
Collapse
Affiliation(s)
- Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues,
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Catarina A. Gomes,
| |
Collapse
|
46
|
Czarzasta K, Bogacki-Rychlik W, Segiet-Swiecicka A, Kruszewska J, Malik J, Skital V, Kasarello K, Wrzesien R, Bialy M, Sajdel-Sulkowska EM. Gender differences in short- vs. long-term impact of maternal depression following pre-gestational chronic mild stress. Exp Neurol 2022; 353:114059. [DOI: 10.1016/j.expneurol.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
|
47
|
Kan RLD, Mak ADP, Chan SKW, Zhang BBB, Fong KNK, Kranz GS. Protocol for a prospective open-label clinical trial to investigate the utility of concurrent TBS/fNIRS for antidepressant treatment optimisation. BMJ Open 2022; 12:e053896. [PMID: 35144953 PMCID: PMC8845219 DOI: 10.1136/bmjopen-2021-053896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) with theta burst stimulation (i.e. TBS) of the dorsolateral prefrontal cortex (DLPFC) is an innovative treatment for major depressive disorder (MDD). However, fewer than 50% of patients show sufficient response to this treatment; markers for response prediction are urgently needed. Research shows considerable individual variability in the brain responses to rTMS. However, whether differences in individual DLPFC modulation by rTMS can be used as a predictive marker for treatment response remains to be investigated. Here, we present a research programme that will exploit the combination of functional near-infrared spectroscopy (fNIRS) with brain stimulation. Concurrent TBS/fNIRS will allow us to systematically investigate TBS-induced modulation of blood oxygenation as a proxy for induced brain activity changes. The findings from this study will (1) elucidate the immediate effects of excitatory and inhibitory TBS on prefrontal activity in TBS treatment-naïve patients with MDD and (2) validate the potential utility of TBS-induced brain modulation at baseline for the prediction of antidepressant response to 4 weeks of daily TBS treatment. METHODS AND ANALYSIS Open-label, parallel-group experiment consisting of two parts. In part 1, 70 patients and 37 healthy controls will be subjected to concurrent TBS/fNIRS. Intermittent TBS (iTBS) and continuous TBS (cTBS) will be applied on the left and right DLPFC, respectively. fNIRS data will be acquired before, during and several minutes after stimulation. In part 2, patients who participated in part 1 will receive a 4 week iTBS treatment of the left DLPFC, performed daily for 5 days per week. Psychometric evaluation will be performed periodically and at 1 month treatment follow-up. Statistical analysis will include a conventional, as well as a machine learning approach. ETHICS AND DISSEMINATION Ethics approval was obtained from the Institutional Review Board. Findings will be disseminated through scientific journals, conferences and university courses. TRIAL REGISTRATION NUMBER NCT04526002.
Collapse
Affiliation(s)
- Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arthur D P Mak
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sherry K W Chan
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
48
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
49
|
Laine M, Shansky R. Rodent models of stress and dendritic plasticity – Implications for psychopathology. Neurobiol Stress 2022; 17:100438. [PMID: 35257016 PMCID: PMC8897597 DOI: 10.1016/j.ynstr.2022.100438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Stress, as commonplace as it is, is a major environmental risk factor for psychopathology. While this association intuitively, anecdotally, and empirically makes sense, we are still very early in the process of understanding what the neurobiological manifestations of this risk truly are. Seminal work from the past few decades has established structural plasticity in the brain as a potential key mechanism. In this review we discuss evidence linking particularly chronic stress exposure in rodent models to plasticity at the dendrites, like remodeling of dendritic branches and spines, in a range of brain regions. A number of candidate mechanisms that seek to explain how stress influences neuroanatomy at this level have been proposed, utilizing in vivo, ex vivo and in vitro methods. However, a large gap still remains in our knowledge of how such dynamic structural changes ultimately relate to downstream effects such as altered affective and cognitive states relevant for psychopathology. We propose that future work expand our understanding of plasticity of specific stress-related brain circuits and cell-types. We also note that the vast majority of the work has been conducted solely on male rodents. The next big strides in our understanding of the neurobiology of psychopathology will require the inclusion of female subjects, as several studies have suggested both sex divergent and convergent features. By understanding plasticity, we can harness it. The growth of this body of knowledge will inform our efforts to improve the therapeutic options for stress-related psychopathology.
Collapse
|
50
|
Leite-Almeida H, Castelhano-Carlos MJ, Sousa N. New Horizons for Phenotyping Behavior in Rodents: The Example of Depressive-Like Behavior. Front Behav Neurosci 2022; 15:811987. [PMID: 35069144 PMCID: PMC8766962 DOI: 10.3389/fnbeh.2021.811987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
The evolution of the field of behavioral neuroscience is significantly dependent on innovative disruption triggered by our ability to model and phenotype animal models of neuropsychiatric disorders. The ability to adequately elicit and measure behavioral parameters are the fundaments on which the behavioral neuroscience community establishes the pathophysiological mechanisms of neuropsychiatric disorders as well as contributes to the development of treatment strategies for those conditions. Herein, we review how mood disorders, in particular depression, are currently modeled in rodents, focusing on the limitations of these models and particularly on the analyses of the data obtained with different behavioral tests. Finally, we propose the use of new paradigms to study behavior using multidimensional strategies that better encompasses the complexity of psychiatric conditions, namely depression; these paradigms provide holistic phenotyping that is applicable to other conditions, thus promoting the emergence of novel findings that will leverage this field.
Collapse
Affiliation(s)
- Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
| | - Magda J. Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center—Braga, Braga, Portugal
- *Correspondence: Nuno Sousa,
| |
Collapse
|