1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Singh SB, Bhattarai Y, Kafle R, Panta M, Tiwari A, Ayubcha C, Werner TJ, Alavi A, Revheim ME. A Brief History and the Use of PET in the Diagnosis and Management of Schizophrenia: An Educational Review. PET Clin 2025; 20:11-24. [PMID: 39477720 DOI: 10.1016/j.cpet.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This article explores the role of PET in the diagnosis and treatment of schizophrenia. PET imaging can reveal neurobiologic aspects such as cerebral blood flow, glucose metabolism, receptor function, and neuroinflammation in schizophrenia. It has supported the dopaminergic hypothesis and helped distinguish symptom types and severity. Diagnostic biomarkers from PET could differentiate schizophrenia from other disorders, while predictive biomarkers might allow earlier targeted treatments. Despite significant promises, the application of PET imaging in schizophrenia is still in its nascent stage, requiring well-designed multicenter studies with large sample sizes to fully realize its clinical potential.
Collapse
Affiliation(s)
- Shashi B Singh
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yash Bhattarai
- Case Western Reserve University/The MetroHealth System, Cleveland, OH 44118, USA
| | - Riju Kafle
- Case Western Reserve University/The MetroHealth System, Cleveland, OH 44118, USA; Rhythm Neuropsychiatry Hospital and Research Center Pvt. Ltd, Lalitpur 44600, Nepal
| | - Marvi Panta
- Era International Hospital Pvt. Ltd, Sorakhutte, Kathmandu 20206, Nepal
| | - Atit Tiwari
- BP Koirala Institute of Health Sciences, Dharan 56700, Nepal
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Division for Technology and Innovation, The Intervention Center, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Tang C, Vanderlinden G, Schroyen G, Deprez S, Van Laere K, Koole M. A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification. J Cereb Blood Flow Metab 2024:271678X241290912. [PMID: 39397394 PMCID: PMC11563559 DOI: 10.1177/0271678x241290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
A Support Vector Machine (SVM) based approach was developed to identify a pseudo-reference region for brain PET scans with the aim of reducing interscan and intersubject variability. By training a binary linear SVM classifier with PET datasets from two different groups, potential pseudo-reference regions were identified by considering their regional average or total contribution to the classification score. This approach was evaluated in three cohorts with different brain PET tracers: (1) 11C-PiB PET scans of Alzheimer's disease (AD) patients and age-matched controls (OC); (2) baseline and blocking scans of an 11C-UCB-J PET occupancy study; and (3) 18F-DPA-714 PET scans for healthy controls (HC) and chemo-treated women with breast cancer (BC). In the first cohort, cerebellum, brainstem, and subcortical white matter were confirmed as pseudo-reference regions. The same regions were identified for the second cohort using either the VT maps or the SUV images. In the third cohort, cerebellum and brainstem were identified as pseudo-reference regions, alongside subcortical white matter and temporal cortex. In addition, the SVM-based approach demonstrated robust performance even with a reduced number of subjects, therefore confirming its applicability in identifying pseudo-reference regions without a priori assumptions and with only limited data across different PET tracers.
Collapse
Affiliation(s)
- Chunmeng Tang
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gwen Schroyen
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sabine Deprez
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Hosseini E. Ubiquitous extremely low frequency electromagnetic fields induces anxiety-like behavior: mechanistic perspectives. Electromagn Biol Med 2024; 43:220-235. [PMID: 39074042 DOI: 10.1080/15368378.2024.2380305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Anxiety is an adaptive condition characterized by heightened uneasiness, which in the long term can cause complications such as reducing the quality of life and problems related to the mental and physical health. Concerns have been raised regarding the potential dangers of extremely low frequency electromagnetic fields (ELF-EMF) ranging from 3 to 3000 Hz, which are omnipresent in our daily lives and there have been studies about the anxiogenic effects of these fields. Studies conducted in this specific area has revealed that ELF-EMF can have an impact on various brain regions, such as the hippocampus. In conclusion, studies have shown that ELF-EMF can interfere with hippocampus-prefrontal cortex pathway, inducing anxiety behavior. Also, ELF-EMF may initiate anxiety behavior by generating oxidative stress in hypothalamus and hippocampus. Moreover, ELF-EMF may induce anxiety behavior by reducing hippocampus neuroplasticity and increasing the NMDA2A receptor expression in the hippocampus. Furthermore, supplementation with antioxidants could serve as an effective protective measure against the adverse effects of FLF-FMF in relation to anxiety behavior.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Nisha Aji K, Cisbani G, Weidenauer A, Koppel A, Hafizi S, Da Silva T, Kiang M, Rusjan PM, Bazinet RP, Mizrahi R. Neurofilament light-chain (NfL) and 18 kDa translocator protein in early psychosis and its putative high-risk. Brain Behav Immun Health 2024; 37:100742. [PMID: 38495956 PMCID: PMC10940889 DOI: 10.1016/j.bbih.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Evidence of elevated peripheral Neurofilament light-chain (NfL) as a biomarker of neuronal injury can be utilized to reveal nonspecific axonal damage, which could reflect altered neuroimmune function. To date, only a few studies have investigated NfL as a fluid biomarker in schizophrenia primarily, though none in its putative prodrome (Clinical High-Risk, CHR) or in untreated first-episode psychosis (FEP). Further, it is unknown whether peripheral NfL is associated with 18 kDa translocator protein (TSPO), a validated neuroimmune marker. In this secondary study, we investigated for the first time (1) serum NfL in early stages of psychosis including CHR and FEP as compared to healthy controls, and (2) examined its association with brain TSPO, using [18F]FEPPA positron emission tomography (PET). Further, in the exploratory analyses, we aimed to assess associations between serum NfL and symptom severity in patient group and cognitive impairment in the combined cohort. A large cohort of 84 participants including 27 FEP (24 antipsychotic-naive), 41 CHR (34 antipsychotic-naive) and 16 healthy controls underwent structural brain MRI and [18F]FEPPA PET scan and their blood samples were obtained and assessed for serum NfL concentrations. We found no significant differences in serum NfL levels across clinical groups, controlling for age. We also found no significant association between NfL levels and brain TSPO in the entire cohort. We observed a negative association between serum NfL and negative symptom severity in CHR. Our findings suggest that neither active neuroaxonal deterioration as measured with NfL nor associated neuroimmune activation (TSPO) is clearly identifiable in an early mostly untreated psychosis sample including its putative high-risk.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Alex Koppel
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Hartmann SM, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Front Cell Neurosci 2024; 18:1345349. [PMID: 38510107 PMCID: PMC10950997 DOI: 10.3389/fncel.2024.1345349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple lines of evidence implicate increased neuroinflammation mediated by glial cells to play a key role in neurodevelopmental disorders such as schizophrenia. Microglia, which are the primary innate immune cells of the brain, are crucial for the refinement of the synaptic circuitry during early brain development by synaptic pruning and the regulation of synaptic plasticity during adulthood. Schizophrenia risk factors as genetics or environmental influences may further be linked to increased activation of microglia, an increase of pro-inflammatory cytokine levels and activation of the inflammasome resulting in an overall elevated neuroinflammatory state in patients. Synaptic loss, one of the central pathological hallmarks of schizophrenia, is believed to be due to excess removal of synapses by activated microglia, primarily affecting glutamatergic neurons. Therefore, it is crucial to investigate microglia-neuron interactions, which has been done by multiple studies focusing on post-mortem brain tissues, brain imaging, animal models and patient iPSC-derived 2D culture systems. In this review, we summarize the major findings in patients and in vivo and in vitro models in the context of neuron-microglia interactions in schizophrenia and secondly discuss the potential of anti-inflammatory treatments for the alleviation of positive, negative, and cognitive symptoms.
Collapse
Affiliation(s)
- Sophia-Marie Hartmann
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Heider
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Hansjürgen Volkmer
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
8
|
Egorova M, Egorov V, Zabrodskaya Y. Maternal Influenza and Offspring Neurodevelopment. Curr Issues Mol Biol 2024; 46:355-366. [PMID: 38248325 PMCID: PMC10814929 DOI: 10.3390/cimb46010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review examines the complex interactions between maternal influenza infection, the immune system, and the neurodevelopment of the offspring. It highlights the importance of high-quality studies to clarify the association between maternal exposure to the virus and neuropsychiatric disorders in the offspring. Additionally, it emphasizes that the development of accurate animal models is vital for studying the impact of infectious diseases during pregnancy and identifying potential therapeutic targets. By drawing attention to the complex nature of these interactions, this review underscores the need for ongoing research to improve the understanding and outcomes for pregnant women and their offspring.
Collapse
Affiliation(s)
- Marya Egorova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
| | - Vladimir Egorov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; (M.E.); (V.E.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia
| |
Collapse
|
9
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
10
|
Nguyen KD, Amerio A, Aguglia A, Magnani L, Parise A, Conio B, Serafini G, Amore M, Costanza A. Microglia and Other Cellular Mediators of Immunological Dysfunction in Schizophrenia: A Narrative Synthesis of Clinical Findings. Cells 2023; 12:2099. [PMID: 37626909 PMCID: PMC10453550 DOI: 10.3390/cells12162099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Schizophrenia is a complex psychiatric condition that may involve immune system dysregulation. Since most putative disease mechanisms in schizophrenia have been derived from genetic association studies and fluid-based molecular analyses, this review aims to summarize the emerging evidence on clinical correlates to immune system dysfunction in this psychiatric disorder. We conclude this review by attempting to develop a unifying hypothesis regarding the relative contributions of microglia and various immune cell populations to the development of schizophrenia. This may provide important translational insights that can become useful for addressing the multifaceted clinical presentation of schizophrenia.
Collapse
Affiliation(s)
- Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305, USA;
- Tranquis Therapeutics, Palo Alto, CA 94065, USA
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Magnani
- Department of Psychiatry, San Maurizio Hospital of Bolzano, 39100 Bolzano, Italy;
| | - Alberto Parise
- Geriatric-Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Benedetta Conio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Adult Psychiatry Service, University Hospitals of Geneva (HUG), 1207 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6900 Lugano, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
12
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Li J, Wang Y, Yuan X, Kang Y, Song X. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Front Psychiatry 2023; 14:1126632. [PMID: 36873215 PMCID: PMC9978517 DOI: 10.3389/fpsyt.2023.1126632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Characterized by psychotic symptoms, negative symptoms and cognitive deficits, schizophrenia had a catastrophic effect on patients and their families. Multifaceted reliable evidence indicated that schizophrenia is a neurodevelopmental disorder. Microglia, the immune cells in central nervous system, related to many neurodevelopmental diseases. Microglia could affect neuronal survival, neuronal death and synaptic plasticity during neurodevelopment. Anomalous microglia during neurodevelopment may be associated with schizophrenia. Therefore, a hypothesis proposes that the abnormal function of microglia leads to the occurrence of schizophrenia. Nowadays, accumulating experiments between microglia and schizophrenia could afford unparalleled probability to assess this hypothesis. Herein, this review summarizes the latest supporting evidence in order to shed light on the mystery of microglia in schizophrenia.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- College of First Clinical, Chongqing Medical University, Chongqing, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
16
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
17
|
Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. Int J Mol Sci 2022; 23:ijms23105482. [PMID: 35628292 PMCID: PMC9143100 DOI: 10.3390/ijms23105482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a grave neuropsychiatric disease which frequently onsets between the end of adolescence and the beginning of adulthood. It is characterized by a variety of neuropsychiatric abnormalities which are categorized into positive, negative and cognitive symptoms. Most therapeutical strategies address the positive symptoms by antagonizing D2-dopamine-receptors (DR). However, negative and cognitive symptoms persist and highly impair the life quality of patients due to their disabling effects. Interestingly, hippocampal deviations are a hallmark of schizophrenia and can be observed in early as well as advanced phases of the disease progression. These alterations are commonly accompanied by a rise in neuronal activity. Therefore, hippocampal formation plays an important role in the manifestation of schizophrenia. Furthermore, studies with animal models revealed a link between environmental risk factors and morphological as well as electrophysiological abnormalities in the hippocampus. Here, we review recent findings on structural and functional hippocampal abnormalities in schizophrenic patients and in schizophrenia animal models, and we give an overview on current experimental approaches that especially target the hippocampus. A better understanding of hippocampal aberrations in schizophrenia might clarify their impact on the manifestation and on the outcome of this severe disease.
Collapse
|
18
|
Blaylock RL, Faria M. New concepts in the development of schizophrenia, autism spectrum disorders, and degenerative brain diseases based on chronic inflammation: A working hypothesis from continued advances in neuroscience research. Surg Neurol Int 2021; 12:556. [PMID: 34877042 PMCID: PMC8645502 DOI: 10.25259/sni_1007_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
This paper was written prompted by a poignant film about adolescent girl with schizophrenia who babysits for a younger girl in an isolated cabin. Schizophrenia is an illness that both authors are fascinated with and that they continue to study and investigate. There is now compelling evidence that schizophrenia is a very complex syndrome that involves numerous neural pathways in the brain, far more than just dopaminergic and serotonergic systems. One of the more popular theories in recent literature is that it represents a hypo glutaminergic deficiency of certain pathways, including thalamic ones. After much review of research and study in this area, we have concluded that most such theories contain a number of shortcomings. Most are based on clinical responses to certain drugs, particularly antipsychotic drugs affecting the dopaminergic neurotransmitters; thus, assuming dopamine release was the central cause of the psychotic symptoms of schizophrenia. The theory was limited in that dopamine excess could only explain the positive symptoms of the disorder. Antipsychotic medications have minimal effectiveness for the negative and cognitive symptoms associated with schizophrenia. It has been estimated that 20–30% of patients show either a partial or no response to antipsychotic medications. In addition, the dopamine hypothesis does not explain the neuroanatomic findings in schizophrenia.
Collapse
Affiliation(s)
| | - Miguel Faria
- Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States
| |
Collapse
|
19
|
De Picker LJ, Haarman BCM. Applicability, potential and limitations of TSPO PET imaging as a clinical immunopsychiatry biomarker. Eur J Nucl Med Mol Imaging 2021; 49:164-173. [PMID: 33735406 DOI: 10.1007/s00259-021-05308-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE TSPO PET imaging may hold promise as a single-step diagnostic work-up for clinical immunopsychiatry. This review paper on the clinical applicability of TSPO PET for primary psychiatric disorders discusses if and why TSPO PET imaging might become the first clinical immunopsychiatry biomarker and the investment prerequisites and scientific advancements needed to accommodate this transition from bench to bedside. METHODS We conducted a systematic search of the literature to identify clinical studies of TSPO PET imaging in patients with primary psychiatric disorders. We included both original case-control studies as well as longitudinal cohort studies of patients with a primary psychiatric diagnosis. RESULTS Thirty-one original studies met our inclusion criteria. In the field of immunopsychiatry, TSPO PET has until now mostly been studied in schizophrenia and related psychotic disorders, and to a lesser extent in mood disorders and neurodevelopmental disorders. Quantitative TSPO PET appears most promising as a predictive biomarker for the transdiagnostic identification of subgroups or disease stages that could benefit from immunological treatments, or as a prognostic biomarker forecasting patients' illness course. Current scanning protocols are still too unreliable, impractical and invasive for clinical use in symptomatic psychiatric patients. CONCLUSION TSPO PET imaging in its present form does not yet offer a sufficiently attractive cost-benefit ratio to become a clinical immunopsychiatry biomarker. Its translation to psychiatric clinical practice will depend on the prioritising of longitudinal research and the establishment of a uniform protocol rendering clinically meaningful TSPO uptake quantification at the shortest possible scan duration without arterial cannulation.
Collapse
Affiliation(s)
- Livia J De Picker
- University Psychiatric Hospital Campus Duffel, Stationsstraat 22C, 2570, Duffel, Belgium.
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Wilrijkstraat 1, 2650, Edegem, Belgium.
| | - Benno C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RA, Groningen, The Netherlands
- Rob Giel Research Center (RGOc), University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RA, Groningen, The Netherlands
| |
Collapse
|
20
|
Rigney G, Ayubcha C, Werner TJ, Alavi A, Revheim ME. The utility of PET imaging in the diagnosis and management of psychosis: a brief review. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Advances in the pathophysiological characterization of psychosis has led to a newfound role of biomarkers in diagnostic and prognostic contexts. Further, advances in the accuracy and sensitivity of nuclear medicine imaging techniques, and specifically positron emission tomography (PET), have improved the ability to diagnose and manage individuals experiencing first-episode psychosis or those at greater risk for developing psychosis.
Methods
Literature searches were performed in PubMed, Google Scholar, and Web of Science to identify papers related to the use of PET imaging in the diagnosis or management of psychosis. Search terms used included “positron emission tomography”, “PET imaging”, “psychosis”, “disorders of psychosis”, “schizophrenia”, “biomarkers”, “diagnostic biomarkers”, “prognostic biomarker”, “monitoring biomarker”, “outcome biomarker”, and “predictive biomarker.”
Results
Studies included fell into three categories: those examining microglia, those studying dopamine synthesis capacity, and those examining acetylcholine receptor activity. Microglial imaging has been shown to be ineffective in all patients with psychosis, but some believe it shows promise in a subset of patients with psychosis, although no defining characteristics of said subset have been postulated. Studies of dopamine synthesis capacity suggest that presynaptic dopamine is reliably elevated in patients with psychosis, but levels of dopamine active transporter are not. Further, positron emission tomography (PET) with [18F]fluoro-l-dihydroxyphenylalanine ([18F]FDOPA)-PET has been recently used successfully as a predictive biomarker of dopaminergic treatment response, although more work is needed to validate such findings. Finally, existing studies have also documented lower levels of binding to the α7 nicotinic cholinergic receptor (α7-nAChR) via [18F]-ASEM PET in patients with psychosis, however there is a dearth of prospective, randomized studies evaluating the efficacy of [18F]-ASEM as a diagnostic or monitoring biomarker of any kind.
Conclusion
Molecular imaging has become a useful tool in the diagnosis and management of psychosis. Further work must be done to improve the comparative prognostic value and diagnostic accuracy of different radiotracers.
Collapse
|
21
|
Marques TR, Veronese M, Owen DR, Rabiner EA, Searle GE, Howes OD. Specific and non-specific binding of a tracer for the translocator-specific protein in schizophrenia: an [11C]-PBR28 blocking study. Eur J Nucl Med Mol Imaging 2021; 48:3530-3539. [PMID: 33825022 PMCID: PMC8440284 DOI: 10.1007/s00259-021-05327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/21/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The mitochondrial 18-kDa translocator protein (TSPO) is expressed by activated microglia and positron emission tomography enables the measurement of TSPO levels in the brain. Findings in schizophrenia have shown to vary depending on the outcome measure used and this discrepancy in TSPO results could be explained by lower non-displaceable binding (VND) in schizophrenia, which could obscure increases in specific binding. In this study, we have used the TSPO ligand XBD173 to block the TSPO radioligand [11C]-PBR28 and used an occupancy plot to quantify VND in patients with schizophrenia. METHODS A total of 7 patients with a diagnosis of schizophrenia were recruited for this study. Each patient received two separate PET scans with [11C]PBR28, one at baseline and one after the administration of the TSPO ligand XBD173. All patients were high-affinity binders (HABs) for the TSPO gene. We used an occupancy plot to quantify the non-displaceable component (VND) using 2TCM kinetic estimates with and without vascular correction. Finally we computed the VND at a single subject level using the SIME method. RESULTS All patients showed a global and generalized reduction in [11C]PBR28 uptake after the administration of XBD173. Constraining the VND to be equal for all patients, the population VND was estimated to be 1.99 mL/cm3 (95% CI 1.90 to 2.08). When we used vascular correction, the fractional TSPO occupancy remained similar. CONCLUSIONS In schizophrenia patients, a substantial component of the [11C]PBR28 signal represents specific binding to TSPO. Furthermore, the VND in patients with schizophrenia is similar to that previously reported in healthy controls. These results suggest that changes in non-specific binding between schizophrenia patients and healthy controls do not account for discrepant PET findings in this disorder.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK.
- Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - David R Owen
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Eugenii A Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
- Invicro, London, UK
| | | | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| |
Collapse
|
22
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
24
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
25
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
26
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
27
|
Haan N, Westacott LJ, Carter J, Owen MJ, Gray WP, Hall J, Wilkinson LS. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry 2021; 11:313. [PMID: 34031371 PMCID: PMC8144403 DOI: 10.1038/s41398-021-01415-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic risk factors can significantly increase chances of developing psychiatric disorders, but the underlying biological processes through which this risk is effected remain largely unknown. Here we show that haploinsufficiency of Cyfip1, a candidate risk gene present in the pathogenic 15q11.2(BP1-BP2) deletion may impact on psychopathology via abnormalities in cell survival and migration of newborn neurons during postnatal hippocampal neurogenesis. We demonstrate that haploinsufficiency of Cyfip1 leads to increased numbers of adult-born hippocampal neurons due to reduced apoptosis, without altering proliferation. We show this is due to a cell autonomous failure of microglia to induce apoptosis through the secretion of the appropriate factors, a previously undescribed mechanism. Furthermore, we show an abnormal migration of adult-born neurons due to altered Arp2/3 mediated actin dynamics. Together, our findings throw new light on how the genetic risk candidate Cyfip1 may influence the hippocampus, a brain region with strong evidence for involvement in psychopathology.
Collapse
Affiliation(s)
- Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| | - Laura J Westacott
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Jenny Carter
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Brain Repair and Intercranial Neurotherapeutics Unit, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- Hodge Centre for Neuropsychiatric Immunology, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
- School of Psychology, Cardiff University, Tower Building, Cardiff, UK
| |
Collapse
|
28
|
A high-fat diet, but not haloperidol or olanzapine administration, increases activated microglial expression in the rat brain. Neurosci Lett 2021; 757:135976. [PMID: 34023409 DOI: 10.1016/j.neulet.2021.135976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
This study examined the effects of chronic treatment of the antipsychotic drugs, haloperidol and olanzapine, on microglial activation in the brain. In addition, we explored the interaction of these antipsychotic drugs with normal and high-fat diet. In order to measure activated microglial expression, we used [3H] PK11195 in vitro autoradiography. Male Sprague Dawley rats were given a diet of either regular chow diet or a high-fat diet, and assigned either water, haloperidol drinking solution (1.5 mg/kg), or olanzapine drinking solution (10 mg/kg) for four weeks. Following treatment, rats were euthanized and brains extracted for [3H] PK11195 autoradiography. Rats on 4 weeks of a high-fat diet showed increased [3H] PK11195 binding compared to rats on a normal diet in the temporal association cortex (19 %), ectorhinal cortex (17 %), entorhinal cortex (18 %), and perirhinal cortex (18 %), irrespective of drug treatment. These are regions associated with memory, sensory, and visual processing. Rats treated with either haloperidol or olanzapine showed no differences in [3H] PK11195 binding compared to the control group. However, there were differences between the 2 different antipsychotic medications themselves. Haloperidol increased [3H] PK11195 binding in the amygdala (23 %), ectorhinal cortex (24 %), and perihinal cortex (29 %), compared to olanzapine. These results corroborate a known role of a high-fat diet and central inflammatory changes but suggest no role of these antipsychotic drugs in promoting neuroinflammation across 4 weeks compared to normal control rats.
Collapse
|
29
|
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 2021; 26:849-863. [PMID: 31168068 PMCID: PMC7910216 DOI: 10.1038/s41380-019-0434-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022]
Abstract
The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1β, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1β mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, NYC, 10032, NY, USA
| | | | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Plavén-Sigray P, Matheson GJ, Coughlin JM, Hafizi S, Laurikainen H, Ottoy J, De Picker L, Rusjan P, Hietala J, Howes OD, Mizrahi R, Morrens M, Pomper MG, Cervenka S. Meta-analysis of the Glial Marker TSPO in Psychosis Revisited: Reconciling Inconclusive Findings of Patient-Control Differences. Biol Psychiatry 2021; 89:e5-e8. [PMID: 32682565 PMCID: PMC7899168 DOI: 10.1016/j.biopsych.2020.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Granville J. Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Jennifer M. Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sina Hafizi
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Heikki Laurikainen
- Department of Psychiatry, University of Turku and Neuropsychiatric Imaging Group, Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Julie Ottoy
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium
| | - Pablo Rusjan
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku and Neuropsychiatric Imaging Group, Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Oliver D. Howes
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Hammersmith Hospital; and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Romina Mizrahi
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium
| | - Martin G. Pomper
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
31
|
Neuroinflammation as measured by positron emission tomography in patients with recent onset and established schizophrenia: implications for immune pathogenesis. Mol Psychiatry 2021; 26:5398-5406. [PMID: 32606376 PMCID: PMC8589678 DOI: 10.1038/s41380-020-0829-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022]
Abstract
Positron emission tomography (PET) imaging of the 18 kDa translocator protein (TSPO), which is upregulated in activated microglia, is a method for investigating whether immune activation is evident in the brain of adults with schizophrenia. This study aimed to measure TSPO availability in the largest patient group to date, and to compare it between patients with recent onset (ROS) and established (ES) schizophrenia. In total, 20 ROS patients (14 male), 21 ES (13 male), and 21 healthy controls completed the study. Patients were predominantly antipsychotic-medicated. Participants underwent a PET scan using the TSPO-specific radioligand [11C](R)-PK11195. The primary outcome was binding potential (BPND) in the anterior cingulate cortex (ACC). Secondary outcomes were BPND in six other regions. Correlations were investigated between TSPO availability and symptom severity. Data showed that mean BPND was higher in older (ES and controls) compared with younger (ROS and controls) individuals, but did not significantly differ between ROS or ES and their respective age-matched controls (ACC; ANOVA main effect of diagnosis: F1,58 = 0.407, p = 0.526). Compared with controls, BPND was lower in antipsychotic-free (n = 6), but not in medicated, ROS patients. BPND in the ES group was negatively correlated with positive symptoms, and positively correlated with negative symptom score. Our data suggest ageing is associated with higher TSPO but a diagnosis of schizophrenia is not. Rather, subnormal TSPO levels in drug-free recent-onset patients may imply impaired microglial development and/or function, which is counteracted by antipsychotic treatment. The development of novel radioligands for specific immune-mechanisms is needed for further clarification.
Collapse
|
32
|
Iliopoulou SM, Tsartsalis S, Kaiser S, Millet P, Tournier BB. Dopamine and Neuroinflammation in Schizophrenia - Interpreting the Findings from Translocator Protein (18kDa) PET Imaging. Neuropsychiatr Dis Treat 2021; 17:3345-3357. [PMID: 34819729 PMCID: PMC8608287 DOI: 10.2147/ndt.s334027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a complex disease whose pathophysiology is not yet fully understood. In addition to the long prevailing dopaminergic hypothesis, the evidence suggests that neuroinflammation plays a role in the pathophysiology of the disease. Recent studies using positron emission tomography (PET) that target a 18kDa translocator protein (TSPO) in activated microglial cells in an attempt to measure neuroinflammation in patients have shown a decrease or a lack of an increase in TSPO binding. Many biological and methodological considerations have been formulated to explain these findings. Although dopamine has been described as an immunomodulatory molecule, its potential role in neuroinflammation has not been explored in the aforementioned studies. In this review, we discuss the interactions between dopamine and neuroinflammation in psychotic states. Dopamine may inhibit neuroinflammation in activated microglia. Proinflammatory molecules released from microglia may decrease dopaminergic transmission. This could potentially explain why the levels of neuroinflammation in the brain of patients with schizophrenia seem to be unchanged or decreased compared to those in healthy subjects. However, most data are indirect and are derived from animal studies or from studies performed outside the field of schizophrenia. Further studies are needed to combine TSPO and dopamine imaging to study the association between microglial activation and dopamine system function.
Collapse
Affiliation(s)
- Sotiria Maria Iliopoulou
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland
| | | | - Stefan Kaiser
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| | - Philippe Millet
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| | - Benjamin B Tournier
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospitals (HUG), Geneva, 1225, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, 1204, Switzerland
| |
Collapse
|
33
|
Personality traits in psychosis and psychosis risk linked to TSPO expression: a neuroimmune marker. PERSONALITY NEUROSCIENCE 2020; 3:e14. [PMID: 33354652 PMCID: PMC7737185 DOI: 10.1017/pen.2020.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
Personality has been correlated with differences in cytokine expression, an indicator of peripheral inflammation; however, the associations between personality and central markers of inflammation have never been investigated in vivo in humans. Microglia are the resident macrophages of the central nervous system, and the first responders to tissue damage and brain insult. Microglial activation is associated with elevated expression of translocator protein 18kDa (TSPO), which can be imaged with positron emission tomography (PET) to quantify immune activation in the human brain. This study aimed to investigate the association between personality and TSPO expression across the psychosis spectrum. A total of 61 high-resolution [18F]FEPPA PET scans were conducted in 28 individuals at clinical high risk (CHR) for psychosis, 19 First-Episode Psychosis (FEP), and 14 healthy volunteers (HVs), and analyzed using a two-tissue compartment model and plasma input function to obtain a total volume of distribution (VT) as an index of brain TSPO expression (controlling for the rs6971 TSPO polymorphism). Personality was assessed using the Revised NEO Personality Inventory (NEO-PI-R). We found TSPO expression to be specifically associated with neuroticism. A positive association between TSPO expression and neuroticism was found in HVs, in contrast to a nonsignificant, negative association in CHR and significant negative association in FEP. The TSPO-associated neuroticism trait indicates an unexplored connection between neuroimmune activation and personality that varies across the psychosis spectrum.
Collapse
|
34
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
35
|
In Vivo TSPO Signal and Neuroinflammation in Alzheimer's Disease. Cells 2020; 9:cells9091941. [PMID: 32839410 PMCID: PMC7565089 DOI: 10.3390/cells9091941] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in in vivo imaging has attempted to demonstrate the presence of neuroinflammatory reactions by measuring the 18 kDa translocator protein (TSPO) expression in many diseases of the central nervous system. We focus on two pathological conditions for which neuropathological studies have shown the presence of neuroinflammation, which translates in opposite in vivo expression of TSPO. Alzheimer's disease has been the most widely assessed with more than forty preclinical and clinical studies, showing overall that TSPO is upregulated in this condition, despite differences in the topography of this increase, its time-course and the associated cell types. In the case of schizophrenia, a reduction of TSPO has instead been observed, though the evidence remains scarce and contradictory. This review focuses on the key characteristics of TSPO as a biomarker of neuroinflammation in vivo, namely, on the cellular origin of the variations in its expression, on its possible biological/pathological role and on its variations across disease phases.
Collapse
|
36
|
Omori W, Hattori K, Kajitani N, Okada-Tsuchioka M, Boku S, Kunugi H, Okamoto Y, Takebayashi M. Increased matrix metalloproteinases in cerebrospinal fluids of patients with major depressive disorder and schizophrenia. Int J Neuropsychopharmacol 2020; 23:pyaa049. [PMID: 32671384 PMCID: PMC7745248 DOI: 10.1093/ijnp/pyaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation of the brain has a pivotal role in the pathophysiology of major depressive disorder (MDD) and schizophrenia (SCZ). Matrix metalloproteinases (MMPs) are extracellular proteases involved in pro-inflammatory processes and interact with IL-6, which is increased in the cerebrospinal fluid (CSF) of patients with MDD and SCZ. However, MMPs in the CSF in patients with MDD and SCZ remains unclear. Therefore, we compared MMPs in the CSF of patients with MDD and SCZ to those of healthy controls (HC). METHODS Japanese patients were diagnosed with DSM-IV-TR and clinical symptoms were assessed with the Hamilton Rating Scale for Depression for MDD and the Positive and Negative Syndrome Scale for SCZ. CSF was obtained from MDD (n=90), SCZ (n=86) and from age- and sex-matched HC (n=106). The levels of MMPs in CSF were measured with multiplex bead-based immunoassay. RESULTS The levels of MMP-2 in CSF were higher in both MDD and SCZ than HC and were positively correlated with clinical symptomatic scores in MDD, but not in SCZ. Regardless of diagnosis, the levels of MMP-2, -7 and -10 were positively correlated with each other, and the levels of MMP-7 and -10 were higher in MDD, but not in SCZ, compared to HC. CONCLUSION Increased CSF levels of MMP-2 in MDD and SCZ may be associated with brain inflammation. State-dependent alteration of MMP-2 and activation of cascades involving MMP-2, -7, and -10 appeared to have a role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
37
|
Walterfang M, Di Biase MA, Cropley VL, Scott AM, O'Keefe G, Velakoulis D, Pathmaraj K, Ackermann U, Pantelis C. Imaging of neuroinflammation in adult Niemann-Pick type C disease: A cross-sectional study. Neurology 2020; 94:e1716-e1725. [PMID: 32209649 DOI: 10.1212/wnl.0000000000009287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/05/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that neuroinflammation is a key process in adult Niemann-Pick type C (NPC) disease, we undertook PET scanning utilizing a ligand binding activated microglia on 9 patients and 9 age- and sex-matched controls. METHOD We scanned all participants with the PET radioligand 11C-(R)-PK-11195 and undertook structural MRI to measure gray matter volume and white matter fractional anisotropy (FA). RESULTS We found increased binding of 11C-(R)-PK-11195 in total white matter compared to controls (p < 0.01), but not in gray matter regions, and this did not correlate with illness severity or duration. Gray matter was reduced in the thalamus (p < 0.0001) in patients, who also showed widespread reductions in FA across the brain compared to controls (p < 0.001). A significant correlation between 11C-(R)-PK11195 binding and FA was shown (p = 0.002), driven by the NPC patient group. CONCLUSIONS Our findings suggest that neuroinflammation-particularly in white matter-may underpin some structural and degenerative changes in patients with NPC.
Collapse
Affiliation(s)
- Mark Walterfang
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Maria A Di Biase
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Vanessa L Cropley
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Andrew M Scott
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Graeme O'Keefe
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Dennis Velakoulis
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Kunthi Pathmaraj
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Uwe Ackermann
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia
| | - Christos Pantelis
- From the Neuropsychiatry Unit (M.W., D.V.), Royal Melbourne Hospital; Melbourne Neuropsychiatry Centre (M.W., M.A.D., V.L.C., D.V., C.P.), The University of Melbourne & North Western Mental Health; The Florey Institute of Neuroscience and Mental Health (M.W., C.P.), Department of Psychiatry (M.W., M.A.D., V.L.C., D.V., C.P.), and Centre for Neural Engineering, Department of Electrical and Electronic Engineering (C.P.), The University of Melbourne; Department of Molecular Imaging and Therapy (A.M.S., G.O., K.P., U.A.), Austin Health and The University of Melbourne, Heidelberg; Olivia Newton John Cancer Centre and La Trobe University (A.M.S., G.O., U.A.), Melbourne; and Cooperative Centre for Mental Health Research (C.P.), Carlton, Australia.
| |
Collapse
|
38
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
39
|
De Picker L, Morrens M. Perspective: Solving the Heterogeneity Conundrum of TSPO PET Imaging in Psychosis. Front Psychiatry 2020; 11:362. [PMID: 32425835 PMCID: PMC7206714 DOI: 10.3389/fpsyt.2020.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography using ligands targeting translocator protein 18 kDa (TSPO PET) is an innovative method to visualize and quantify glial inflammatory responses in the central nervous system in vivo. Compared to some other neuropsychiatric disorders, findings of TSPO PET in schizophrenia and related psychotic disorders have been considerably more heterogeneous. Two conflicting meta-analyses have been published on the topic within the last year: one asserting evidence for decreased TSPO uptake, while the other observed increased TSPO uptake in a selection of studies. In this paper, we review and discuss five hypotheses which may explain the observed variability of TSPO PET findings in psychotic illness, namely that (1) an inflammatory phenotype is only present in a subgroup of psychosis patients; (2) heterogeneity is caused by interference of antipsychotic medication; (3) interference of other clinical confounders in the study populations (such as age, sex, BMI, smoking, and substance use); or (4) methodological variability between studies (such as choice of tracer and kinetic model, genotyping, study power, and diurnal effects); and (5) the glial responses underlying changes in TSPO expression are themselves heterogeneous and dynamic. Finally, we propose four key recommendations for future research proposals to mitigate these different causes of heterogeneity.
Collapse
Affiliation(s)
- Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,SINAPS, University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,SINAPS, University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| |
Collapse
|
40
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
41
|
Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IE, Howes OD. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med 2019; 49:2186-2196. [PMID: 30355368 PMCID: PMC6366560 DOI: 10.1017/s0033291718003057] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Converging lines of evidence implicate an important role for the immune system in schizophrenia. Microglia are the resident immune cells of the central nervous system and have many functions including neuroinflammation, axonal guidance and neurotrophic support. We aimed to provide a quantitative review of in vivo PET imaging studies of microglia activation in patients with schizophrenia compared with healthy controls. METHODS Demographic, clinical and imaging measures were extracted from each study and meta-analysis was conducted using a random-effects model (Hedge's g). The difference in 18-kDa translocator protein (TSPO) binding between patients with schizophrenia and healthy controls, as quantified by either binding potential (BP) or volume of distribution (VT), was used as the main outcome. Sub-analysis and sensitivity analysis were carried out to investigate the effects of genotype, ligand and illness stage. RESULTS In total, 12 studies comprising 190 patients with schizophrenia and 200 healthy controls met inclusion criteria. There was a significant elevation in tracer binding in schizophrenia patients relative to controls when BP was used as an outcome measure, (Hedge's g = 0.31; p = 0.03) but no significant differences when VT was used (Hedge's g = -0.22; p = 0.29). CONCLUSIONS In conclusion, there is evidence for moderate elevations in TSPO tracer binding in grey matter relative to other brain tissue in schizophrenia when using BP as an outcome measure, but no difference when VT is the outcome measure. We discuss the relevance of these findings as well as the methodological issues that may underlie the contrasting difference between these outcomes.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Paola Dazzan
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Iris E.C. Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, UK
- Psychiatric Imaging Group, London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| |
Collapse
|
42
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2019; 172:107704. [PMID: 31299229 DOI: 10.1016/j.neuropharm.2019.107704] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Antipsychotic drugs are central to the treatment of schizophrenia and other psychotic disorders but are ineffective for some patients and associated with side-effects and nonadherence in others. We review the in vitro, pre-clinical, clinical and molecular imaging evidence on the mode of action of antipsychotics and their side-effects. This identifies the key role of striatal dopamine D2 receptor blockade for clinical response, but also for endocrine and motor side-effects, indicating a therapeutic window for D2 blockade. We consider how partial D2/3 receptor agonists fit within this framework, and the role of off-target effects of antipsychotics, particularly at serotonergic, histaminergic, cholinergic, and adrenergic receptors for efficacy and side-effects such as weight gain, sedation and dysphoria. We review the neurobiology of schizophrenia relevant to the mode of action of antipsychotics, and for the identification of new treatment targets. This shows elevated striatal dopamine synthesis and release capacity in dorsal regions of the striatum underlies the positive symptoms of psychosis and suggests reduced dopamine release in cortical regions contributes to cognitive and negative symptoms. Current drugs act downstream of the major dopamine abnormalities in schizophrenia, and potentially worsen cortical dopamine function. We consider new approaches including targeting dopamine synthesis and storage, autoreceptors, and trace amine receptors, and the cannabinoid, muscarinic, GABAergic and glutamatergic regulation of dopamine neurons, as well as post-synaptic modulation through phosphodiesterase inhibitors. Finally, we consider treatments for cognitive and negative symptoms such dopamine agonists, nicotinic agents and AMPA modulators before discussing immunological approaches which may be disease modifying. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Stephen J Kaar
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Sridhar Natesan
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Robert McCutcheon
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| |
Collapse
|
44
|
Plavén-Sigray P, Cervenka S. Meta-analytic studies of the glial cell marker TSPO in psychosis - a question of apples and pears? Psychol Med 2019; 49:1624-1628. [PMID: 30739609 PMCID: PMC6601355 DOI: 10.1017/s003329171800421x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- P. Plavén-Sigray
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - S. Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
45
|
Di Biase MA, Cropley VL, Cocchi L, Fornito A, Calamante F, Ganella EP, Pantelis C, Zalesky A. Linking Cortical and Connectional Pathology in Schizophrenia. Schizophr Bull 2019; 45:911-923. [PMID: 30215783 PMCID: PMC6581130 DOI: 10.1093/schbul/sby121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Schizophrenia is associated with cortical thickness (CT) deficits and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relationship between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map CT and fractional anisotropy in regionally adjacent infracortical white matter at various cortical depths. We found a robust and reproducible relationship between thickness and anisotropy deficits, which were inversely correlated across cortical regions (r = -.5, P < .0001): the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 y: r = -.3, P = .005) and middle life (30 y: r = -.4, P = .004, 40 y: r = -.3, P = .04), but not beyond 50 years (P > .05). Frontal pathology contributed most to this pattern, with cortical thinning in patients compared to controls at all ages (P < .05); in contrast to initially elevated frontal white matter anisotropy in patients at 30 years, followed by rapid white matter decline with age (rate of annual decline; patients: 0.0012, controls 0.0006, P < .001). Our findings point to pathological dependencies between gray and white matter in a large sample of schizophrenia patients. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.
Collapse
Affiliation(s)
- Maria Angelique Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, The University of Melbourne, Parkville, Australia,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Brigham & Women’s Hospital, Harvard Medical School, 1249 Boylston Street, 3rd Floor, Boston, MA 02215, US; tel: 617-525-6105, fax: 617-525-6170, e-mail:
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexander Fornito
- Brain and Mental Health Research Hub, Monash University, Clayton, Australia
| | - Fernando Calamante
- Sydney Imaging and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Eleni P Ganella
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia,North Western Mental Health, Melbourne Health, Parkville, Australia,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Australia
| |
Collapse
|
46
|
Da Silva T, Hafizi S, Rusjan PM, Houle S, Wilson AA, Prce I, Sailasuta N, Mizrahi R. GABA levels and TSPO expression in people at clinical high risk for psychosis and healthy volunteers: a PET-MRS study. J Psychiatry Neurosci 2019; 44:111-119. [PMID: 30255837 PMCID: PMC6397035 DOI: 10.1503/jpn.170201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND γ-Aminobutyric acidergic (GABAergic) dysfunction and immune activation have been implicated in the pathophysiology of schizophrenia. Preclinical evidence suggests that inflammation-related abnormalities may contribute to GABAergic alterations in the brain, but this has never been investigated in vivo in humans. In this multimodal imaging study, we quantified cerebral GABA plus macromolecule (GABA+) levels in antipsychotic-naive people at clinical high risk for psychosis and in healthy volunteers. We investigated for the first time the association between GABA+ levels and expression of translocator protein 18 kDa (TSPO; a marker of microglial activation) using positron emission tomography (PET). METHODS Thirty-five people at clinical high risk for psychosis and 18 healthy volunteers underwent 3 T proton magnetic resonance spectroscopy to obtain GABA+ levels in the medial prefrontal cortex (mPFC). A subset (29 people at clinical high risk for psychosis and 15 healthy volunteers) also underwent a high-resolution [18F]FEPPA PET scan to quantify TSPO expression. Each participant was genotyped for the TSPO rs6971 polymorphism. RESULTS We found that GABA+ levels were significantly associated with TSPO expression in the mPFC (F1,40 = 10.45, p = 0.002). We found no significant differences in GABA+ levels in the mPFC (F1,51 = 0.00, p > 0.99) between people at clinical high risk for psychosis and healthy volunteers. We found no significant correlations between GABA+ levels or residuals of the association with TSPO expression and the severity of prodromal symptoms or cognition. LIMITATIONS Given the cross-sectional nature of this study, we could determine no cause-and-effect relationships for GABA alterations and TSPO expression. CONCLUSION Our findings suggest that TSPO expression is negatively associated with GABA+ levels in the prefrontal cortex, independent of disease status.
Collapse
Affiliation(s)
- Tania Da Silva
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Sina Hafizi
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Pablo M Rusjan
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Sylvain Houle
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Alan A Wilson
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Ivana Prce
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Napapon Sailasuta
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| | - Romina Mizrahi
- From the Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Silva, Hafizi, Rusjan, Houle, Wilson, Prce, Sailasuta, Mizrahi); the Institute of Medical Science, University of Toronto, Toronto, Ont., Canada (Silva, Rusjan, Mizrahi); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Rusjan, Houle, Wilson, Mizrahi); and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Rusjan, Houle, Sailasuta, Mizrahi)
| |
Collapse
|
47
|
Mantere O, Trontti K, García-González J, Balcells I, Saarnio S, Mäntylä T, Lindgren M, Kieseppä T, Raij T, Honkanen JK, Vaarala O, Hovatta I, Suvisaari J. Immunomodulatory effects of antipsychotic treatment on gene expression in first-episode psychosis. J Psychiatr Res 2019; 109:18-26. [PMID: 30463035 DOI: 10.1016/j.jpsychires.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Previous studies suggest immunological alterations in patients with first-episode psychosis (FEP). Some studies show that antipsychotic compounds may cause immunomodulatory effects. To evaluate the immunological changes and the possible immunomodulatory effects in FEP, we recruited patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, from the catchment area of the Helsinki University Hospital and the City of Helsinki, Finland. Fasting peripheral blood samples were collected between 8 and 10 a.m. in 10 ml PAXgene tubes. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 147 candidate genes reflecting activation of the immune system. Cases had higher gene expression levels of BDKRB1 and SPP1/osteopontin compared with controls. Of the individual medications used as monotherapy, risperidone was associated with a statistically significant upregulation of 11 immune system genes, including cytokines and cytokine receptors (SPP1, IL1R1, IL1R2), pattern recognition molecules (TLR1, TLR2 and TLR6, dectin-1/CLEC7A), molecules involved in apoptosis (FAS), and some other molecules with functions in immune activation (BDKRB1, IGF1R, CR1). In conclusion, risperidone possessed strong immunomodulatory properties affecting mainly innate immune response in FEP patients, whereas the observed effects of quetiapine and olanzapine were only marginal. Our results further emphasize the importance of understanding the immunomodulatory mechanisms of antipsychotic treatment, especially in terms of specific compounds, doses and duration of medication in patients with severe mental illness. Future studies should evaluate the response pre- and post-treatment, and the possible role of this inflammatory activation for the progression of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Outi Mantere
- Department of Psychiatry, McGill University, Montréal, QC, Canada; Bipolar Disorders Clinic, Douglas Mental Health University Institute, 6875, LaSalle Boulevard Montreal, Quebec, H4H 1R3, Montréal, QC, Canada.
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Judit García-González
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Ingrid Balcells
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Tuukka Raij
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Jarno K Honkanen
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Outi Vaarala
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
48
|
Plavén-Sigray P, Matheson GJ, Cselényi Z, Jucaite A, Farde L, Cervenka S. Test-retest reliability and convergent validity of (R)-[ 11C]PK11195 outcome measures without arterial input function. EJNMMI Res 2018; 8:102. [PMID: 30498919 PMCID: PMC6265355 DOI: 10.1186/s13550-018-0455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose The PET radioligand (R)-[11C]PK11195 is used to quantify the 18-kDa translocator protein (TSPO), a marker for glial activation. Since there is no brain region devoid of TSPO, an arterial input function (AIF) is ideally required for quantification of binding. However, obtaining an AIF is experimentally demanding, is sometimes uncomfortable for participants, and can introduce additional measurement error during quantification. The objective of this study was to perform an evaluation of the test-retest reliability and convergent validity of techniques used for quantifying (R)-[11C]PK11195 binding without an AIF in clinical studies. Methods Data from six healthy individuals who participated in two PET examinations, 6 weeks apart, were analyzed. Regional non-displaceable binding potential (BPND) values were calculated using the simplified reference tissue model, with either cerebellum as reference region or a reference input derived using supervised cluster analysis (SVCA). Standardized uptake values (SUVs) were estimated for the time interval of 40–60 min. Results Test-retest reliability for BPND estimates were poor (80% of ICCs < 0.5). BPND estimates derived without an AIF were not correlated with BPND, total or specific distribution volume from the 2TCM using an AIF (all R2 < 12%). SUVs showed moderate reliability but no correlation to any other outcome measure. Conclusions Caution is warranted when interpreting patient-control comparisons employing (R)-[11C]PK11195 outcome measures obtained without an AIF. Electronic supplementary material The online version of this article (10.1186/s13550-018-0455-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| |
Collapse
|
49
|
Hafizi S, Guma E, Koppel A, Da Silva T, Kiang M, Houle S, Wilson AA, Rusjan PM, Chakravarty MM, Mizrahi R. TSPO expression and brain structure in the psychosis spectrum. Brain Behav Immun 2018; 74:79-85. [PMID: 29906515 PMCID: PMC6289857 DOI: 10.1016/j.bbi.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023] Open
Abstract
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18 kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic-naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [18F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [18F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [18F]FEPPA VT (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [18F]FEPPA VT and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elisa Guma
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alex Koppel
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V. The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 2018; 32:1264-1272. [PMID: 30126329 DOI: 10.1177/0269881118788830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered microglial markers and morphology have been demonstrated in patients with schizophrenia in post-mortem and in vivo studies. However, it is unclear if changes are due to antipsychotic treatment. AIMS Here we aimed to determine whether antipsychotic medication affects microglia in vivo. METHODS To investigate this we administered two clinically relevant doses (0.05 mg n=12 and 2.5 mg n=7 slow-release pellets, placebo n=20) of haloperidol, over 2 weeks, to male Sprague Dawley rats to determine the effect on microglial cell density and morphology (area occupied by processes and microglial cell area). We developed an analysis pipeline for the automated assessment of microglial cells and used lipopolysaccharide (LPS) treatment ( n=13) as a positive control for analysis. We also investigated the effects of haloperidol ( n=9) or placebo ( n=10) on the expression of the translocator protein 18 kDa (TSPO) using autoradiography with [3H]PBR28, a TSPO ligand used in human positron emission tomography (PET) studies. RESULTS Here we demonstrated that haloperidol at either dose does not alter microglial measures compared with placebo control animals ( p > 0.05). Similarly there was no difference in [3H]PBR28 binding between placebo and haloperidol tissue ( p > 0.05). In contrast, LPS was associated with greater cell density ( p = 0.04) and larger cell size ( p = 0.01). CONCLUSION These findings suggest that haloperidol does not affect microglial cell density, morphology or TSPO expression, indicating that clinical study alterations are likely not the consequence of antipsychotic treatment. The automated cell evaluation pipeline was able to detect changes in microglial morphology induced by LPS and is made freely available for future use.
Collapse
Affiliation(s)
- Peter S Bloomfield
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Bonsall
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Sciences, London, UK
| | - Dirk Dormann
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Howes
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,4 The Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vincenzo De Paola
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|