1
|
Furukawa S, Kushima I, Kato H, Kimura H, Nawa Y, Aleksic B, Banno M, Yamamoto M, Uematsu M, Nagasaki Y, Ogi T, Ozaki N, Ikeda M. Whole-genome sequencing analysis of Japanese autism spectrum disorder trios. Psychiatry Clin Neurosci 2025; 79:87-97. [PMID: 39610113 PMCID: PMC11874045 DOI: 10.1111/pcn.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
AIM Autism spectrum disorder (ASD) is a genetically and phenotypically heterogeneous neurodevelopmental disorder with a strong genetic basis. Conducting the first comprehensive whole-genome sequencing (WGS) analysis of Japanese ASD trios, this study aimed to elucidate the clinical significance of pathogenic variants and enhance the understanding of ASD pathogenesis. METHODS WGS was performed on 57 Japanese patients with ASD and their parents, investigating variants ranging from single-nucleotide variants to structural variants (SVs), short tandem repeats (STRs), mitochondrial variants, and polygenic risk score (PRS). RESULTS Potentially pathogenic variants that could explain observed phenotypes were identified in 18 patients (31.6%) overall and in 10 of 23 patients (43.5%) with comorbid intellectual developmental disorder (IDD). De novo variants in PTEN, CHD7, and HNRNPH2 were identified in patients referred for genetic counseling who exhibited previously reported phenotypes, including one patient with ASD who had profound IDD and macrocephaly with PTEN L320S. Analysis of the AlphaFold3 protein structure indicated potential inhibition of intramolecular interactions within PTEN. SV analysis identified deletions in ARHGAP11B and TMLHE. A pathogenic de novo mitochondrial variant was identified in a patient with ASD who had a history of encephalitis and cognitive decline. GO enrichment analysis of genes with nonsense variants and missense variants (Missense badness, PolyPhen-2, and Constraint >1) showed associations with regulation of growth and ATP-dependent chromatin remodeler activity. No reportable results were obtained in the analysis of STR and PRS. CONCLUSION Characterizing the comprehensive genetic architecture and phenotypes of ASD is a fundamental step towards unraveling its complex biology.
Collapse
Affiliation(s)
- Sawako Furukawa
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Medical Genomics CenterNagoya University HospitalNagoyaJapan
| | - Hidekazu Kato
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Department of Psychiatry for Parents and ChildrenNagoya University HospitalNagoyaJapan
| | - Hiroki Kimura
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshihiro Nawa
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Department of Psychiatry for Parents and ChildrenNagoya University HospitalNagoyaJapan
| | - Branko Aleksic
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | | | - Maeri Yamamoto
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Mariko Uematsu
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukako Nagasaki
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM)Nagoya UniversityNagoyaJapan
| | - Norio Ozaki
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Pathophysiology of Mental DisordersNagoya University Graduate School of Medicine
| | - Masashi Ikeda
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
2
|
Van L, Heung T, Reyes NGD, Boot E, Chow EWC, Corral M, Bassett AS. Real-World Treatment of Schizophrenia in Adults With a 22q11.2 Microdeletion: Traitement dans le monde réel de la schizophrénie chez des adultes atteints du syndrome de microdélétion 22q11.2. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:160-170. [PMID: 39641288 PMCID: PMC11624517 DOI: 10.1177/07067437241293983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE One in every 4 individuals born with a 22q11.2 microdeletion will develop schizophrenia. Thirty years of clinical genetic testing capability have enabled detection of this major molecular susceptibility for psychotic illness. However, there is limited literature on the treatment of schizophrenia in individuals with a 22q11.2 microdeletion, particularly regarding the issue of treatment resistance. METHODS From a large, well-characterized adult cohort with a typical 22q11.2 microdeletion followed for up to 25 years at a specialty clinic, we studied all 107 adults (49 females, 45.8%) meeting the criteria for schizophrenia or schizoaffective disorder. We performed a comprehensive review of lifetime (1,801 patient-years) psychiatric records to determine treatments used and the prevalence of treatment-resistant schizophrenia (TRS). We used Clinical Global Impression-Improvement (CGI-I) scores to compare within-individual responses to clozapine and nonclozapine antipsychotics. For a subgroup with contemporary data (n = 88, 82.2%), we examined antipsychotics and dosage at the last follow-up. RESULTS Lifetime treatments involved on average 4 different antipsychotic medications per individual. Sixty-three (58.9%) individuals met the study criteria for TRS, a significantly greater proportion than for a community-based comparison (42.9%; χ2 = 10.38, df = 1, p < 0.01). The non-TRS group was enriched for individuals with genetic diagnosis before schizophrenia diagnosis. Within-person treatment response in TRS was significantly better for clozapine than for nonclozapine antipsychotics (p < 0.0001). At the last follow-up, clozapine was the most common antipsychotic prescribed, followed by olanzapine, risperidone, and paliperidone. Total antipsychotic chlorpromazine equivalent dosages were in typical clinical ranges (median: 450 mg; interquartile range: 300, 750 mg). CONCLUSION The results for this large sample indicate that patients with 22q11.2 microdeletion have an increased propensity to treatment resistance. The findings provide evidence about how genetic diagnosis can inform clinical psychiatric management and could help reduce treatment delays. Further research is needed to shed light on the pathophysiology of antipsychotic response and on strategies to optimize outcomes. PLAIN LANGUAGE SUMMARY TITLE Real-world treatment of schizophrenia in adults with a 22q11.2 microdeletion.
Collapse
Affiliation(s)
- Lily Van
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Heung
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nikolai Gil D. Reyes
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Erik Boot
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, the Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs, Maastricht University, Maastricht, the Netherlands
| | - Eva W. C. Chow
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Corral
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Anne S. Bassett
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Toronto Congenital Cardiac Centre for Adults, and Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Nakatochi M, Kushima I, Aleksic B, Kimura H, Kato H, Inada T, Torii Y, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Iritani S, Iwata N, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Ohi K, Shioiri T, Kitaichi K, Itokawa M, Arai M, Miyashita M, Toriumi K, Takahashi T, Suzuki M, Kato TA, Kanba S, Horikawa H, Kasai K, Ikegame T, Jinde S, Kato T, Kakiuchi C, Yamagata B, Nio S, Kunii Y, Yabe H, Okamura Y, Tadaka S, Fumihiko U, Obara T, Yamamoto Y, Arioka Y, Mori D, Ikeda M, Ozaki N. Copy number variations in RNF216 and postsynaptic membrane-associated genes are associated with bipolar disorder: a case-control study in the Japanese population. Psychiatry Clin Neurosci 2025; 79:12-20. [PMID: 39403837 DOI: 10.1111/pcn.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 01/03/2025]
Abstract
AIM Bipolar disorder (BD) is a common psychiatric disorder characterized by alterations between manic/hypomanic and depressive states. Rare pathogenic copy number variations (CNVs) that overlap with exons of synaptic genes have been associated with BD. However, no study has comprehensively explored CNVs in synaptic genes associated with BD. Here, we evaluated the relationship between BD and rare CNVs that overlap with synaptic genes, not limited to exons, in the Japanese population. METHODS Using array comparative genome hybridization, we detected CNVs in 1839 patients with BD and 2760 controls. We used the Synaptic Gene Ontology database to identify rare CNVs that overlap with synaptic genes. Using gene-based analysis, we compared their frequencies between the BD and control groups. We also searched for synaptic gene sets related to BD. The significance level was set to a false discovery rate of 10%. RESULTS The RNF216 gene was significantly associated with BD (odds ratio, 4.51 [95% confidence interval, 1.66-14.89], false discovery rate < 10%). The BD-associated CNV that corresponded with RNF216 also partially overlapped with the minimal critical region of the 7p22.1 microduplication syndrome. The integral component of the postsynaptic membrane (Gene Ontology:0099055) was significantly associated with BD. The CNV overlapping with the intron region of GRM5 in this gene set showed a nominal significant association between cases and controls (P < 0.05). CONCLUSION We provide evidence that CNVs in RNF216 and postsynaptic membrane-related genes confer a risk of BD, contributing to a better understanding of the pathogenesis of BD.
Collapse
Affiliation(s)
- Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Okehazama Hospital Brain Research Institute, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Japan Community Health care Organization Osaka Hospital, Fukushima, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Masanari Itokawa
- Vice Director General, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Japan Depression Center, Tokyo, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Horikawa Hospital, Kurume, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirooki Yabe
- Department of Mind & Brain Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasunobu Okamura
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ueno Fumihiko
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Taku Obara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yasuyuki Yamamoto
- Public Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Kushima I, Nakatochi M, Ozaki N. Copy Number Variations and Human Well-Being: Integrating Psychiatric, Physical, and Socioeconomic Perspectives. Biol Psychiatry 2024:S0006-3223(24)01788-8. [PMID: 39643102 DOI: 10.1016/j.biopsych.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Copy number variations (CNVs) have emerged as crucial genetic factors that influence a wide spectrum of human health outcomes, with particularly strong associations to psychiatric disorders. In this review, we present a synthesis of diverse impacts of psychiatric disorder-associated CNVs on neurodevelopment, brain function, and physical health across the lifespan. Large-scale studies have revealed that CNV carriers exhibit an increased risk for psychiatric disorders, cognitive deficits, sleep disturbances, neurological disorders, and other physical conditions, including cardiovascular diseases, diabetes, and renal disease, highlighting the wide-ranging impact of CNVs beyond the brain. Neuroimaging studies have revealed substantial CNV effects on brain structure, from cortical and subcortical alterations to white matter microstructure, with effect sizes often exceeding those observed in idiopathic psychiatric disorders. Cellular and animal models have begun to elucidate dynamic CNV effects on neurodevelopment, neuronal function, and cellular energy metabolism, while revealing complex CNV-environment interactions and cell type-specific responses, particularly in studies of 22q11.2 deletion syndrome. This review also explores the complex interplay between psychiatric and physical health conditions in CNV carriers and how these interactions contribute to adverse socioeconomic outcomes, including reduced educational attainment and income levels, creating a feedback loop that further impacts health outcomes. Finally, in this review, we also highlight research limitations and propose key priorities for clinical implementation, including the need for longitudinal studies, standardized guidelines for CNV result reporting and genetic counseling, and integrated care networks to provide a foundation for advancing the field of precision psychiatry.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Furukawa S, Arafuka S, Kato H, Ogi T, Ozaki N, Ikeda M, Kushima I. Treatment-resistant schizophrenia with 22q11.2 deletion and additional genetic defects. Neuropsychopharmacol Rep 2024. [PMID: 39189429 DOI: 10.1002/npr2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
We report a case of a 61-year-old female with 22q11.2 deletion syndrome (22q11.2DS) and a novel heterozygous nonsense variant in MAP1A, identified through whole-genome sequencing (WGS). The patient presented with intellectual developmental disorder, treatment-resistant schizophrenia (SCZ), and multiple congenital anomalies. Despite aggressive pharmacotherapy, she experienced persistent auditory hallucinations and negative symptoms. WGS revealed a 3 Mb deletion at 22q11.2 and a nonsense variant in MAP1A (c.4652T>G, p.Leu1551*). MAP1A, encoding microtubule-associated protein 1A, is crucial for axon and dendrite development and has been implicated in autism spectrum disorder and SCZ. The MAP1A variant may contribute to the severe psychiatric phenotype, as it is thought to influence synaptic plasticity, a process also affected by 22q11.2 deletion. This case highlights the importance of WGS in identifying additional pathogenic variants that may explain phenotypic variability in 22q11.2DS. Thus, WGS can lead to a better understanding of the genetic architecture of 22q11.2DS. However, further studies are needed to elucidate the role of secondary genetic contributors in the diverse clinical presentations of 22q11.2DS.
Collapse
Affiliation(s)
- Sawako Furukawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shusei Arafuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry for Parents and Children, Nagoya University Hospital, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
6
|
Sun Y, Zhang Y, Lu Z, Liao Y, Feng Q, Yu M, Chen Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Guo L, Zhang D, Bi W, Huang H, Yue W. Contribution of copy number variants on antipsychotic treatment response in Han Chinese patients with schizophrenia. EBioMedicine 2024; 105:105195. [PMID: 38870545 PMCID: PMC11225184 DOI: 10.1016/j.ebiom.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Response to antipsychotic drugs (APD) varies greatly among individuals and is affected by genetic factors. This study aims to demonstrate genome-wide associations between copy number variants (CNVs) and response to APD in patients with schizophrenia. METHODS A total of 3030 patients of Han Chinese ethnicity randomly received APD (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone, haloperidol and perphenazine) treatment for six weeks. This study is a secondary data analysis. Percentage change on the Positive and Negative Syndrome Scale (PANSS) reduction was used to assess APD efficacy, and more than 50% change was considered as APD response. Associations between CNV burden, gene set, CNV loci and CNV break-point and APD efficacy were analysed. FINDINGS Higher CNV losses burden decreased the odds of 6-week APD response (OR = 0.66 [0.44, 0.98]). CNV losses in synaptic pathway involved in neurotransmitters were associated with 2-week PANSS reduction rate. CNV involved in sialylation (1p31.1 losses) and cellular metabolism (19q13.32 gains) associated with 6-week PANSS reduction rate at genome-wide significant level. Additional 36 CNVs associated with PANSS factors improvement. The OR of protective CNVs for 6-week APD response was 3.10 (95% CI: 1.33-7.19) and risk CNVs was 8.47 (95% CI: 1.92-37.43). CNV interacted with genetic risk score on APD efficacy (Beta = -1.53, SE = 0.66, P = 0.021). The area under curve to differ 6-week APD response attained 80.45% (95% CI: 78.07%-82.82%). INTERPRETATION Copy number variants contributed to poor APD efficacy and synaptic pathway involved in neurotransmitter was highlighted. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Qidi Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingrui Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guorui Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Junyuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liangkun Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Hayashi Y, Okumura H, Arioka Y, Kushima I, Mori D, Lo T, Otgonbayar G, Kato H, Nawa Y, Kimura H, Aleksic B, Ozaki N. Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders. Transl Psychiatry 2024; 14:236. [PMID: 38830862 PMCID: PMC11148150 DOI: 10.1038/s41398-024-02962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.
Collapse
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Okumura
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan.
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Colijn MA, Crockford DN. 18q Deletion Syndrome-Associated Schizophrenia: A Case Report. Neuropsychobiology 2024; 83:179-182. [PMID: 38684151 DOI: 10.1159/000538693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION 18q deletion syndrome is a rare genetic disorder characterized by various neurodevelopmental anomalies and medical issues. Although the occurrence of psychosis has been reported in a small number of cases, details regarding the nature of such symptoms and their response to treatment have not been described. CASE PRESENTATION We describe a 31-year-old male with a history of speech delays, autistic features, a tethered spinal cord, bilateral vertical talus, subaortic stenosis and aortic regurgitation, recurrent otitis media, mild hearing loss, and hypospadias, who experienced a first episode of psychosis in his late 20s. His psychotic symptoms included auditory hallucinations, various delusions, and disorganization of thought. Although his presentation is atypical in certain ways (e.g., exhibiting highly fluctuant symptoms), he nonetheless meets criteria for schizophrenia. Given his overall clinical picture, chromosomal microarray analysis was completed, which revealed a 19.78 Mb deletion at 18q21.32 from nucleotide 58,226,713 to 78,015,180 (GRCh37). Despite exhibiting a somewhat idiosyncratic response to numerous antipsychotic medications, he eventually achieved partial remission of symptoms with improved insight on relatively low dose oral aripiprazole therapy. CONCLUSION This is the first in-depth description of 18q deletion syndrome-associated schizophrenia. While our patient's atypical presentation and idiosyncratic response to treatment may be mediated by his comorbid diagnosis of autism, his unusual psychiatric phenotype may alternatively be directly related to his underlying genetic disorder. The description of additional cases in the future will hopefully help clarify matters further.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David N Crockford
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Li X, Qi S, Li W, Liu X, Xue Z, Yu T, Xun G. Cohen syndrome combined with psychiatric symptoms: a case report. BMC Psychiatry 2024; 24:180. [PMID: 38439002 PMCID: PMC10913230 DOI: 10.1186/s12888-024-05626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Cohen syndrome (CS) is a rare autosomal recessive inherited condition characterized by pathological changes affecting multiple systems. The extensive clinical variability associated with CS poses a significant diagnostic challenge. Additionally, there is limited documentation on the co-occurrence of CS with psychiatric symptoms. CASE REPORT We report a case of a 30-year-old patient exhibiting characteristic physical features and psychiatric symptoms. Whole exome sequencing identified two heterozygous variants, a nonsense variation c.4336 C > T and a missense mutation c.4729G > A. Integrating clinical manifestations with genetic test results, we established the diagnosis of CS combined with psychiatric symptoms. CONCLUSIONS This case introduces a novel missense variant as a candidate in the expanding array of VPS13B pathogenic variants. Its clinical significance remains unknown, and further investigation may broaden the spectrum of pathogenic variants associated with the VPS13B gene. Early diagnosis of CS is crucial for the prognosis of young children and holds significant importance for their families.
Collapse
Affiliation(s)
- Xinming Li
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China
| | - Sufang Qi
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China
| | - Wenjie Li
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China
| | - Xin Liu
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China
| | - Zhicheng Xue
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China
| | - Tiangui Yu
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China.
| | - Guanglei Xun
- Shandong Mental Health Center, Shandong University, Mail Code: 250014, 49# Wenhua Eastern Road, Jinan, Shandong Province, P.R. China.
| |
Collapse
|
10
|
Lo T, Kushima I, Kimura H, Aleksic B, Okada T, Kato H, Inada T, Nawa Y, Torii Y, Yamamoto M, Kimura R, Funabiki Y, Kosaka H, Numata S, Kasai K, Sasaki T, Yokoyama S, Munesue T, Hashimoto R, Yasuda Y, Fujimoto M, Usami M, Itokawa M, Arai M, Ohi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Yamasue H, Iwata N, Ikeda M, Ozaki N. Association between copy number variations in parkin (PRKN) and schizophrenia and autism spectrum disorder: A case-control study. Neuropsychopharmacol Rep 2024; 44:42-50. [PMID: 37915257 PMCID: PMC10932780 DOI: 10.1002/npr2.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 11/03/2023] Open
Abstract
AIM The present study aimed to examine the association between copy number variations (CNVs) in parkin (PRKN) and schizophrenia (SCZ) and autism spectrum disorder (ASD) in a large case-control sample. METHOD Array comparative genomic hybridization was performed on 3111 cases with SCZ, 1236 cases with ASD, and 2713 controls. We systematically prioritized likely pathogenic CNVs (LP-CNVs) in PRKN and examined their association with SCZ and ASD. RESULTS In total, 3014 SCZ cases (96.9%), 1205 ASD cases (97.5%), and 2671 controls (98.5%) passed quality control. We found that monoallelic carriers of LP-CNVs in PRKN were common (70/6890, 1.02%) and were not at higher risk of SCZ (p = 0.29) or ASD (p = 0.72). We observed that the distribution pattern of LP-CNVs in the Japanese population was consistent with those in other populations. We also identified a patient diagnosed with SCZ and early-onset Parkinson's disease carrying biallelic pathogenic CNVs in PRKN. The absence of Parkinson's symptoms in 10 other monoallelic carriers of the same pathogenic CNV further reflects the lack of effect of monoallelic pathogenic variants in PRKN in the absence of a second hit. CONCLUSION The present findings suggest that monoallelic CNVs in PRKN do not confer a significant risk for SCZ or ASD. However, further studies to investigate the association between biallelic CNVs in PRKN and SCZ and ASD are warranted.
Collapse
Grants
- JP15K19720 Japan Society for the Promotion of Science
- JP17H05090 Japan Society for the Promotion of Science
- JP18H04040 Japan Society for the Promotion of Science
- JP18K19511 Japan Society for the Promotion of Science
- JP19K17087 Japan Society for the Promotion of Science
- JP20H03608 Japan Society for the Promotion of Science
- JP20K07942 Japan Society for the Promotion of Science
- JP20K20602 Japan Society for the Promotion of Science
- JP21H00194 Japan Society for the Promotion of Science
- JP21H04815 Japan Society for the Promotion of Science
- JP21H05326 Japan Society for the Promotion of Science
- JP21K07543 Japan Society for the Promotion of Science
- JP22H00986 Japan Society for the Promotion of Science
- JP16dm0107134 Ministry of Education, Culture, Sports, Science and Technology
- JP19ak0101113 Ministry of Education, Culture, Sports, Science and Technology
- JP19dm0207075 Ministry of Education, Culture, Sports, Science and Technology
- JP19ek0109411 Ministry of Education, Culture, Sports, Science and Technology
- JP19km0405216 Ministry of Education, Culture, Sports, Science and Technology
- JP20ek0109488 Ministry of Education, Culture, Sports, Science and Technology
- JP21dk0307103 Ministry of Education, Culture, Sports, Science and Technology
- JP21tm0424220 Ministry of Education, Culture, Sports, Science and Technology
- JP21wm0425007 Ministry of Education, Culture, Sports, Science and Technology
- JP21wm0425008 Ministry of Education, Culture, Sports, Science and Technology
- JP21wm0425012 Ministry of Education, Culture, Sports, Science and Technology
- JP21wm0425019 Ministry of Education, Culture, Sports, Science and Technology
- JP21wm0525024 Ministry of Education, Culture, Sports, Science and Technology
- JP22tm0424222 Ministry of Education, Culture, Sports, Science and Technology
- Otsuka Toshimi Scholarship Foundation
- SENSHIN Medical Research Foundation
- Uehara Memorial Foundation
- Japan Society for the Promotion of Science
- Ministry of Education, Culture, Sports, Science and Technology
- Otsuka Toshimi Scholarship Foundation
- SENSHIN Medical Research Foundation
- Uehara Memorial Foundation
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Medical Genomics CenterNagoya University HospitalNagoyaJapan
| | - Hiroki Kimura
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Branko Aleksic
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental HealthNational Center of Neurology and PsychiatryNagoyaJapan
| | - Hidekazu Kato
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Toshiya Inada
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshihiro Nawa
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Youta Torii
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Maeri Yamamoto
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryo Kimura
- Department of Anatomy and Developmental BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yasuko Funabiki
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical ScienceTokushima UniversityTokushimaJapan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of MedicineUniversity of TokyoTokyoJapan
- International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced StudyTokyoJapan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of EducationUniversity of TokyoTokyoJapan
| | - Shigeru Yokoyama
- Research Center for Child Mental DevelopmentKanazawa UniversityIshikawaJapan
| | - Toshio Munesue
- Research Center for Child Mental DevelopmentKanazawa UniversityIshikawaJapan
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Yuka Yasuda
- Department of Pathology of Mental DiseasesNational Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Michiko Fujimoto
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Masahide Usami
- Department of Child and Adolescent PsychiatryKohnodai Hospital, National Center for Global Health and MedicineChibaJapan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral SciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
- Department of PsychiatryTokyo Metropolitan Matsuzawa HospitalTokyoJapan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral SciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazutaka Ohi
- Department of PsychiatryGifu University Graduate School of MedicineGifuJapan
- Department of General Internal MedicineKanazawa Medical UniversityIshikawaJapan
| | - Toshiyuki Someya
- Department of PsychiatryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Yuichiro Watanabe
- Department of PsychiatryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Jun Egawa
- Department of PsychiatryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Tsutomu Takahashi
- Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Research Center for Idling Brain ScienceUniversity of ToyamaToyamaJapan
| | - Michio Suzuki
- Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Research Center for Idling Brain ScienceUniversity of ToyamaToyamaJapan
| | - Hidenori Yamasue
- Department of PsychiatryHamamatsu University School of MedicineHamamatsuJapan
| | - Nakao Iwata
- Department of PsychiatryFujita Health University School of MedicineToyoakeJapan
| | - Masashi Ikeda
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Department of PsychiatryFujita Health University School of MedicineToyoakeJapan
| | - Norio Ozaki
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core ResearchNagoya UniversityNagoyaJapan
| |
Collapse
|
11
|
Antón-Galindo E, Adel MR, García-González J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in two zebrafish models. Transl Psychiatry 2024; 14:99. [PMID: 38374212 PMCID: PMC10876957 DOI: 10.1038/s41398-024-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain
| | - Maja R Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
- Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- ICREA, Barcelona, Catalunya, Spain
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| |
Collapse
|
12
|
Singh M, Pradhan D, Kkani P, Prasad Rao G, Dhagudu NK, Kumar L, Ramasubramanian C, Kumar SG, Sonttineni S, Mohan KN. Genome-scale copy number variant analysis in schizophrenia patients and controls from South India. Front Mol Neurosci 2023; 16:1268827. [PMID: 38178910 PMCID: PMC10764592 DOI: 10.3389/fnmol.2023.1268827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Copy number variants (CNVs) are among the main genetic factors identified in schizophrenia (SZ) through genome-scale studies conducted mostly in Caucasian populations. However, to date, there have been no genome-scale CNV reports on patients from India. To address this shortcoming, we generated, for the first time, genome-scale CNV data for 168 SZ patients and 168 controls from South India. In total, 63 different CNVs were identified in 56 patients and 46 controls with a significantly higher proportion of medium-sized deletions (100 kb-1 Mb) after multiple testing (FDR = 2.7E-4) in patients. Of these, 13 CNVs were previously reported; however, when searched against GWAS, transcriptome, exome, and DNA methylation studies, another 17 CNVs with candidate genes were identified. Of the total 30 CNVs, 28 were present in 38 patients and 12 in 27 controls, indicating a significantly higher representation in the former (p = 1.87E-5). Only 4q35.1-q35.2 duplications were significant (p = 0.020) and observed in 11 controls and 2 patients. Among the others that are not significant, a few examples of patient-specific and previously reported CNVs include deletions of 11q14.1 (DLG2), 22q11.21, and 14q21.1 (LRFN5). 16p13.3 deletion (RBFOX1), 3p14.2 duplication (CADPS), and 7p11.2 duplication (CCT6A) were some of the novel CNVs containing candidate genes. However, these observations need to be replicated in a larger sample size. In conclusion, this report constitutes an important foundation for future CNV studies in a relatively unexplored population. In addition, the data indicate that there are advantages in using an integrated approach for better identification of candidate CNVs for SZ and other mental health disorders.
Collapse
Affiliation(s)
- Minali Singh
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
| | - Dibyabhabha Pradhan
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Poornima Kkani
- Department of Zoology, Thiagarajar College, Madurai, India
| | | | | | - Lov Kumar
- Department of Computer Engineering, National Institute of Technology, Kurukshetra, India
| | | | | | | | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
| |
Collapse
|
13
|
Song X, Li X, Liu X, Zhang Z, Ding X, Chai Y, Li Z, Wang H, Li J, Liang H, Sun X, Yang G, Qi Z, Chen F, Shi Q, Wang E, Ru B, Lei C, Chen H, Liu W, Huang Y. Copy number variation of the ZNF679 gene in cattle and its association analysis with growth traits. Anim Biotechnol 2023; 34:4680-4686. [PMID: 37093180 DOI: 10.1080/10495398.2023.2185628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Copy number variation (CNV) is an important member of genetic structural variation that exists widely in animal genomes and is between 50 bp and several Mb in length and widely used in research's of animal genetics and breeding. ZNF679 is an important transcription factor, which has been found association with diseases in the human genome many times. This gene has also been found to be associated with cattle growth traits in previous re-sequencing studies. We tested the CNVs of the ZNF679 gene in 809 individuals from 7 Chinese cattle breeds and tested the association between the CNVs and growth traits in 552 individuals from 5 breeds. The results demonstrated the correlation the correlation between the CNVs of the ZNF679 gene and some Chinese cattle (QC cattle and XN cattle) growth traits. To sum up, this study indicated that ZNF679-CNVs can be used as a candidate gene for molecular genetic marker-assisted selection breeding for cattle growth traits to contribute to the development of genetic improvement of Chinese cattle.
Collapse
Affiliation(s)
- Xingya Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xinmiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanan Chai
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Hongli Wang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Jungang Li
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Huifeng Liang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Xiaoyan Sun
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Guojie Yang
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Zengfang Qi
- Jiaxian Animal Husbandry Bureau, Jiaxian Henan, People's Republic of China
| | - Fuying Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
Zhou R, Jiao J, Wang Y, Meng L, Li Y, Xu Y, Hu P, Xu Z. Systematic analysis of copy number variants of uncertain significance partially overlapping with the haploinsufficient or triplosensitive genes in clinical testing. Ann Med 2023; 55:2276824. [PMID: 37917952 PMCID: PMC10623895 DOI: 10.1080/07853890.2023.2276824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Copy number variants of uncertain significance (VUS) has brought much distress for patients and great counselling challenges for clinicians. Of these, a special type of VUS (HT-VUS), harbouring one or both breakpoints within the established haploinsufficient or triplosensitive genes, were considered to be more likely to cause clinical effects compared with other types of VUS.Methods: We retrospectively evaluated the properties and clinical significance of those HT-VUS samples in clinical testing for chromosome microarray analysis (CMA).Results: A total of 7150 samples were selected for HT-VUS screening, and 75 (1.05%) subjects with 75 HT-VUS were found. The majority of these HT-VUS were heterozygous duplications and chromosome X had the most HT-VUS. The prevalence of HT-VUS was 0.90% (28/3116) for prenatal low-risk samples, 1.18% (26/2196) for prenatal high-risk samples, 1.37% (10/728) for postnatal samples and 0.99% (11/1110) for early pregnancy loss samples. However, the incidence of HT-VUS was not statistically different between different groups.Conclusions: HT-VUS (deletions or duplications) involving introns and HT-VUS (duplications) including terminal coding exons (either the first or last exons) might be clinically neutral. Our study will be helpful for both interpretation and genetic counselling in the future.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiao Jiao
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiming Li
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
15
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
16
|
Antón-Galindo E, Adel M, García-Gonzalez J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in a zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529711. [PMID: 36865197 PMCID: PMC9980121 DOI: 10.1101/2023.02.23.529711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the effect of rbfox1 deficiency on behaviour, we used rbfox1sa15940, a rbfox1 loss-of-function line. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 loss-of-function line with a different genetic background, rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that rbfox1 deficiency leads to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study thus highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Maja Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-Gonzalez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Icahn School of Medicine, Mount Sinai, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - William HJ Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| |
Collapse
|
17
|
Joly-Amado A, Kulkarni N, Nash KR. Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases. Brain Sci 2023; 13:1479. [PMID: 37891846 PMCID: PMC10605156 DOI: 10.3390/brainsci13101479] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (N.K.); (K.R.N.)
| | | | | |
Collapse
|
18
|
Darwish M, Ito M, Iijima Y, Takase A, Ayukawa N, Suzuki S, Tanaka M, Komori K, Kaida D, Iijima T. Neuronal SAM68 differentially regulates alternative last exon splicing and ensures proper synapse development and function. J Biol Chem 2023; 299:105168. [PMID: 37595869 PMCID: PMC10562862 DOI: 10.1016/j.jbc.2023.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Alternative splicing in the 3'UTR of mammalian genes plays a crucial role in diverse biological processes, including cell differentiation and development. SAM68 is a key splicing regulator that controls the diversity of 3'UTR isoforms through alternative last exon (ALE) selection. However, the tissue/cell type-specific mechanisms underlying the splicing control at the 3' end and its functional significance remain unclear. Here, we show that SAM68 regulates ALE splicing in a dose-dependent manner and the neuronal splicing is differentially regulated depending on the characteristics of the target transcript. Specifically, we found that SAM68 regulates interleukin-1 receptor-associated protein splicing through the interaction with U1 small nuclear ribonucleoprotein. In contrast, the ALE splicing of protocadherin-15 (Pcdh15), a gene implicated in several neuropsychiatric disorders, is independent of U1 small nuclear ribonucleoprotein but modulated by the calcium/calmodulin-dependent protein kinase signaling pathway. We found that the aberrant ALE selection of Pcdh15 led to a conversion from a membrane-bound to a soluble isoform and consequently disrupted its localization into excitatory and inhibitory synapses. Notably, the neuronal expression of the soluble form of PCDH15 preferentially affected the number of inhibitory synapses. Moreover, the soluble form of PCDH15 interacted physically with α-neurexins and further disrupted neuroligin-2-induced inhibitory synapses in artificial synapse formation assays. Our findings provide novel insights into the role of neuron-specific alternative 3'UTR isoform selections in synapse development.
Collapse
Affiliation(s)
- Mohamed Darwish
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masatoshi Ito
- The Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Yoko Iijima
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Akinori Takase
- The Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Noriko Ayukawa
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Satoko Suzuki
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Masami Tanaka
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Kanae Komori
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Kaida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takatoshi Iijima
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan.
| |
Collapse
|
19
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
20
|
Colijn MA. Response to Treatment in 3q29 Deletion Syndrome-Associated Psychosis: A Mini-Review. Neuropsychobiology 2023; 82:263-270. [PMID: 37607488 DOI: 10.1159/000531747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
3q29 deletion syndrome is characterized by various developmental abnormalities, medical issues, and neuropsychiatric symptoms, including psychosis. Although this syndrome may confer the greatest risk for schizophrenia of any copy number variation, response to antipsychotic medication has infrequently been described in the literature, and no reviews on the topic currently exist. As such, the purpose of this article was to review treatment response in 3q29 deletion syndrome-associated psychosis. A review of the literature was completed in December 2022 for English language articles that described treatment response to antipsychotic medications in affected individuals with schizophrenia-like presentations. Five articles that collectively described eight individuals were included. Four individuals had a poor treatment response to non-clozapine antipsychotic medications, three had a partial response, and one individual's response to treatment was not described, despite having taken psychotropic medications of some kind. Additionally, three individuals received clozapine; one of whom partially responded, while two exhibited a good response. Treatment response did not clearly differ according to developmental history. 3q29 deletion syndrome may be associated with treatment-resistant psychotic symptoms. As such, clozapine therapy should be considered in such individuals, provided they meet criteria for treatment-resistant schizophrenia and no contraindications exist. However, this mini-review also highlights the need for more published case reports/series before more specific treatment recommendations can be made.
Collapse
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
22
|
Liao J, Dong G, Zhu W, Wulaer B, Mizoguchi H, Sawahata M, Liu Y, Kaibuchi K, Ozaki N, Nabeshima T, Nagai T, Yamada K. Rho kinase inhibitors ameliorate cognitive impairment in a male mouse model of methamphetamine-induced schizophrenia. Pharmacol Res 2023; 194:106838. [PMID: 37390993 DOI: 10.1016/j.phrs.2023.106838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive deficits. Current antipsychotic treatment in SCZ improves positive symptoms but has major side effects and little impact on negative symptoms and cognitive impairment. The pathoetiology of SCZ remains unclear, but is known to involve small GTPase signaling. Rho kinase, an effector of small GTPase Rho, is highly expressed in the brain and plays a major role in neurite elongation and neuronal architecture. This study used a touchscreen-based visual discrimination (VD) task to investigate the effects of Rho kinase inhibitors on cognitive impairment in a methamphetamine (METH)-treated male mouse model of SCZ. Systemic injection of the Rho kinase inhibitor fasudil dose-dependently ameliorated METH-induced VD impairment. Fasudil also significantly suppressed the increase in the number of c-Fos-positive cells in the infralimbic medial prefrontal cortex (infralimbic mPFC) and dorsomedial striatum (DMS) following METH treatment. Bilateral microinjections of Y-27632, another Rho kinase inhibitor, into the infralimbic mPFC or DMS significantly ameliorated METH-induced VD impairment. Two proteins downstream of Rho kinase, myosin phosphatase-targeting subunit 1 (MYPT1; Thr696) and myosin light chain kinase 2 (MLC2; Thr18/Ser19), exhibited increased phosphorylation in the infralimbic mPFC and DMS, respectively, after METH treatment, and fasudil inhibited these increases. Oral administration of haloperidol and fasudil ameliorated METH-induced VD impairment, while clozapine had little effect. Oral administration of haloperidol and clozapine suppressed METH-induced hyperactivity, but fasudil had no effect. These results suggest that METH activates Rho kinase in the infralimbic mPFC and DMS, which leads to cognitive impairment in male mice. Rho kinase inhibitors ameliorate METH-induced cognitive impairment, perhaps via the cortico-striatal circuit.
Collapse
Affiliation(s)
- Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Geyao Dong
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Wenjun Zhu
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bolati Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Liu
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1129, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan.
| |
Collapse
|
23
|
Farrell M, Dietterich TE, Harner MK, Bruno LM, Filmyer DM, Shaughnessy RA, Lichtenstein ML, Britt AM, Biondi TF, Crowley JJ, Lázaro-Muñoz G, Forsingdal AE, Nielsen J, Didriksen M, Berg JS, Wen J, Szatkiewicz J, Mary Xavier R, Sullivan PF, Josiassen RC. Increased Prevalence of Rare Copy Number Variants in Treatment-Resistant Psychosis. Schizophr Bull 2023; 49:881-892. [PMID: 36454006 PMCID: PMC10318882 DOI: 10.1093/schbul/sbac175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND It remains unknown why ~30% of patients with psychotic disorders fail to respond to treatment. Previous genomic investigations of treatment-resistant psychosis have been inconclusive, but some evidence suggests a possible link between rare disease-associated copy number variants (CNVs) and worse clinical outcomes in schizophrenia. Here, we identified schizophrenia-associated CNVs in patients with treatment-resistant psychotic symptoms and then compared the prevalence of these CNVs to previously published schizophrenia cases not selected for treatment resistance. METHODS CNVs were identified using chromosomal microarray (CMA) and whole exome sequencing (WES) in 509 patients with treatment-resistant psychosis (a lack of clinical response to ≥3 adequate antipsychotic medication trials over at least 5 years of psychiatric hospitalization). Prevalence of schizophrenia-associated CNVs in this sample was compared to that in a previously published large schizophrenia cohort study. RESULTS Integrating CMA and WES data, we identified 47 cases (9.2%) with at least one CNV of known or possible neuropsychiatric risk. 4.7% (n = 24) carried a known neurodevelopmental risk CNV. The prevalence of well-replicated schizophrenia-associated CNVs was 4.1%, with duplications of the 16p11.2 and 15q11.2-q13.1 regions, and deletions of the 22q11.2 chromosomal region as the most frequent CNVs. Pairwise loci-based analysis identified duplications of 15q11.2-q13.1 to be independently associated with treatment resistance. CONCLUSIONS These findings suggest that CNVs may uniquely impact clinical phenotypes beyond increasing risk for schizophrenia and may potentially serve as biological entry points for studying treatment resistance. Further investigation will be necessary to elucidate the spectrum of phenotypic characteristics observed in adult psychiatric patients with disease-associated CNVs.
Collapse
Affiliation(s)
- Martilias Farrell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Lisa M Bruno
- Translational Neuroscience, LLC, Conshohocken, PA, USA
| | | | | | | | - Allison M Britt
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tamara F Biondi
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jacob Nielsen
- Division of Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rose Mary Xavier
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
24
|
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors involved in its aetiology. Genetic liability contributing to the development of schizophrenia is a subject of extensive research activity, as reliable data regarding its aetiology would enable the improvement of its therapy and the development of new methods of treatment. A multitude of studies in this field focus on genetic variants, such as copy number variations (CNVs) or single-nucleotide variants (SNVs). Certain genetic disorders caused by CNVs including 22q11.2 microdeletion syndrome, Burnside-Butler syndrome (15q11.2 BP1-BP2 microdeletion) or 1q21.1 microduplication/microdeletion syndrome are associated with a higher risk of developing schizophrenia. In this article, we provide a unifying framework linking these CNVs and their associated genetic disorders with schizophrenia and its various neural and behavioural abnormalities.
Collapse
|
25
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Ohgidani M, Kushima I, Inamine S, Kyuragi S, Sagata N, Nakao T, Kanba S, Ozaki N, Kato TA. A case of bipolar disorder with AIF1 (coding gene of Iba-1) deletion: A pilot in vitro analysis using blood-derived microglia-like cells. Psychiatry Clin Neurosci 2023; 77:128-130. [PMID: 36349416 DOI: 10.1111/pcn.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Itaru Kushima
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sota Kyuragi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Lo T, Kushima I, Aleksic B, Yoshimi A, Someya T, Watanabe Y, Ozaki N. Clinical manifestations of schizophrenia in four patients with variants in voltage-gated calcium channel-encoding genes: a case series. Psychiatry Clin Neurosci 2023; 77:57-59. [PMID: 36271890 PMCID: PMC10099977 DOI: 10.1111/pcn.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/03/2022] [Accepted: 10/16/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Kushima I, Aleksic B, Kimura H, Nakatochi M, Lo T, Ikeda M, Arai M, Hashimoto R, Numata S, Okamura Y, Obara T, Inada T, Ozaki N. X chromosome aneuploidies and schizophrenia: association analysis and phenotypic characterization. Psychiatry Clin Neurosci 2022; 76:667-673. [PMID: 36073611 PMCID: PMC10086948 DOI: 10.1111/pcn.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
AIM The aims of the present study were: (i) to examine the association between schizophrenia (SCZ) and 47, XXY or 47, XXX in a large case-control sample; and (ii) to characterize the clinical features of patients with SCZ with these X chromosome aneuploidies. METHODS To identify 47, XXY and 47, XXX, array comparative genomic hybridization (aCGH) was performed in 3188 patients with SCZ and 3586 controls. We examined the association between 47, XXY and 47, XXX and SCZ in males and females separately using exact conditional tests to control for platform effects. Clinical data were retrospectively examined for patients with SCZ with X chromosome aneuploidies. RESULTS Of the analyzed samples, 3117 patients (97.8%) and 3519 controls (98.1%) passed our quality control. X chromosome aneuploidies were exclusively identified in patients: 47, XXY in seven patients (0.56%), 47, XXX in six patients (0.42%). Statistical analysis revealed a significant association between SCZ and 47, XXY (P = 0.028) and 47, XXX (P = 0.011). Phenotypic data were available from 12 patients. Treatment-resistance to antipsychotics and manic symptoms were observed in six patients each (four with 47, XXY and two with 47, XXX for both), respectively. Statistical analysis revealed that treatment-resistance to antipsychotics, mood stabilizer use, and manic symptoms were significantly more common in patients with 47, XXY than in male patients without pathogenic copy number variations. CONCLUSION These findings indicate that both 47, XXY and 47, XXX are significantly associated with risk for SCZ. Patients with SCZ with 47, XXY may be characterized by treatment-resistance and manic symptoms.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yasunobu Okamura
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Taku Obara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
31
|
Su Y, Yang X, Yang L, Liu X, She Z, Zhang Y, Dong Z. Thyroid hormones regulate reelin expression in neuropsychiatric disorders. Can J Physiol Pharmacol 2022; 100:1033-1044. [PMID: 36166833 DOI: 10.1139/cjpp-2022-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incidence and prevalence of hypothyroidism in pregnancy have increased over the past two decades, leading to the occurrence of neuropsychiatric disorders. However, the underlying mechanisms of thyroid hormone (TH)-regulated gene expression and neuropsychiatric development during the postnatal period remain unknown. Recent achievements have shown that reelin, a large extracellular glycoprotein, plays a crucial role in neuronal migration and localization during the development of neocortex and cerebellar cortex, thereby participating in the development of neuropsychiatric diseases. Reelin-induced neuronal migration requires triiodothyronine (T3) from the deiodination of thyroxine (T4) by fetal brain deiodinases. Previous studies have reported decreased reelin levels and abnormal gene expression, which are the same as the pathological alternations in reelin-induced neuropsychiatric disorders including schizophrenia and autism. Low T3 in the fetal brain due to hypothyroxinemia during pregnancy may be detrimental to neuronal migration, leading to neuropsychiatric disorders. In this review, we focus on the reelin expression between hypothyroidism and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yadi Su
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xiaoyu Yang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401334, PR China
| | - Xinjing Liu
- College of Public Health and Management, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhenghang She
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Youwen Zhang
- College of Pediatrics, Chongqing Medical University, Chongqing, 401334, PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
32
|
Di Donato N, Guerrini R, Billington CJ, Barkovich AJ, Dinkel P, Freri E, Heide M, Gershon ES, Gertler TS, Hopkin RJ, Jacob S, Keedy SK, Kooshavar D, Lockhart PJ, Lohmann DR, Mahmoud IG, Parrini E, Schrock E, Severi G, Timms AE, Webster RI, Willis MJH, Zaki MS, Gleeson JG, Leventer RJ, Dobyns WB. Monoallelic and biallelic mutations in RELN underlie a graded series of neurodevelopmental disorders. Brain 2022; 145:3274-3287. [PMID: 35769015 PMCID: PMC9989350 DOI: 10.1093/brain/awac164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Charles J Billington
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - A James Barkovich
- Departments of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Philine Dinkel
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- German Primate Center, Leibniz Institute for Primate Research, 37077 Goettingen, Germany
| | - Elliot S Gershon
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Robert J Hopkin
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Department of Pediatrics, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Daniz Kooshavar
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Paul J Lockhart
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Dietmar R Lohmann
- Institut fur Humangenetik, Universitatsklinikum Essen, 45147 Essen, Germany
| | - Iman G Mahmoud
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Evelin Schrock
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Giulia Severi
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Richard I Webster
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney 2145, Australia
| | - Mary J H Willis
- Uniformed Services University School of Medicine and Naval Medical Center, Department of Pediatrics, San Diego, CA 92134, USA
| | - Maha S Zaki
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo Governorate 12622, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
33
|
Kushima I, Inada T, Ohi K, Egawa J, Ozaki N. Case series of four psychiatric patients with copy number variations in the neurexin 1 gene. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e36. [PMID: 38868694 PMCID: PMC11114373 DOI: 10.1002/pcn5.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 06/14/2024]
Affiliation(s)
- Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
- Medical Genomics CenterNagoya University HospitalNagoyaJapan
| | - Toshiya Inada
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| | - Kazutaka Ohi
- Department of PsychiatryGifu University Graduate School of MedicineGifuJapan
- Department of General Internal MedicineKanazawa Medical UniversityIshikawaJapan
| | - Jun Egawa
- Department of PsychiatryNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Norio Ozaki
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
34
|
Kushima I, Imaeda M, Tanaka S, Kato H, Oya-Ito T, Nakatochi M, Aleksic B, Ozaki N. Contribution of copy number variations to the risk of severe eating disorders. Psychiatry Clin Neurosci 2022; 76:423-428. [PMID: 35611833 PMCID: PMC9546291 DOI: 10.1111/pcn.13430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
AIM Eating disorders (EDs) are complex, multifactorial psychiatric conditions. Previous studies identified pathogenic copy number variations associated with NDDs (NDD-CNVs) in ED patients. However, no statistical evidence for an association between NDD-CNVs and EDs has been demonstrated. Therefore, we examined whether NDD-CNVs confer risk for EDs. METHODS Using array comparative genomic hybridization (aCGH), we conducted a high-resolution CNV analysis of 71 severe female ED patients and 1045 female controls. According to the American College of Medical Genetics guidelines, we identified NDD-CNVs or pathogenic/likely pathogenic CNVs in NDD-linked loci. Gene set analysis was performed to examine the involvement of synaptic dysfunction in EDs. Clinical data were retrospectively examined for ED patients with NDD-CNVs. RESULTS Of the samples analyzed with aCGH, 70 severe ED patients (98.6%) and 1036 controls (99.1%) passed our quality control filtering. We obtained 189 and 2539 rare CNVs from patients and controls, respectively. NDD-CNVs were identified in 10.0% (7/70) of patients and 2.3% (24/1036) of controls. Statistical analysis revealed a significant association between NDD-CNVs and EDs (odds ratio = 4.69, P = 0.0023). NDD-CNVs in ED patients included 45,X and deletions at KATNAL2, DIP2A, PTPRT, RBFOX1, CNTN4, MACROD2, and FAM92B. Four of these genes were related to synaptic function. In gene set analysis, we observed a nominally significant enrichment of rare exonic CNVs in synaptic signaling in ED patients (odds ratio = 2.55, P = 0.0254). CONCLUSION Our study provides the first preliminary evidence that NDD-CNVs may confer risk for severe EDs. The pathophysiology may involve synaptic dysfunction.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Miho Imaeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Satoshi Tanaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,National Hospital Organization Higashiowari National Hospital, Nagoya, Japan.,The Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Oya-Ito
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Nutrition, Shubun University, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, Morikawa M, Inada T, Ishizuka K, Torii Y, Nakamura Y, Tanaka S, Imaeda M, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Ogawa N, Iritani S, Hayashi Y, Lo T, Otgonbayar G, Furuta S, Iwata N, Ikeda M, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Itokawa M, Arai M, Miyashita M, Toriumi K, Ohi K, Shioiri T, Kitaichi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Sasaki T, Tochigi M, Nishimura F, Yamasue H, Kuwabara H, Wakuda T, Kato TA, Kanba S, Horikawa H, Usami M, Kodaira M, Watanabe K, Yoshikawa T, Toyota T, Yokoyama S, Munesue T, Kimura R, Funabiki Y, Kosaka H, Jung M, Kasai K, Ikegame T, Jinde S, Numata S, Kinoshita M, Kato T, Kakiuchi C, Yamakawa K, Suzuki T, Hashimoto N, Ishikawa S, Yamagata B, Nio S, Murai T, Son S, Kunii Y, Yabe H, Inagaki M, Goto YI, Okumura Y, Ito T, Arioka Y, Mori D, Ozaki N. Cross-Disorder Analysis of Genic and Regulatory Copy Number Variations in Bipolar Disorder, Schizophrenia, and Autism Spectrum Disorder. Biol Psychiatry 2022; 92:362-374. [PMID: 35667888 DOI: 10.1016/j.biopsych.2022.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS In genic CNVs, we found an increased burden of smaller (<100 kb) exonic deletions in BD, which contrasted with the highest burden of larger (>500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25-0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disorders, National Institute of Mental Health National Center of Neurology and Psychiatry, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- National Hospital Organization Higashi Owari National Hospital, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Integrated Health Sciences, Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Okehazama Hospital Brain Research Institute, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan; Department of Psychiatry, Takatsuki Hospital, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Japan Depression Center, Tokyo, Japan; Kyushu University, Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Horikawa Hospital, Kurume, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Mental Health, Aiiku Clinic, Tokyo, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Kyoto University, Kyoto, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Cognitive Science Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Hokkaido, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masumi Inagaki
- Department of Pediatrics, Tottori Prefecture Rehabilitation Center, Tottori, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuto Okumura
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Ito
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
36
|
Antipsychotic-like effects of fasudil, a Rho-kinase inhibitor, in a pharmacologic animal model of schizophrenia. Eur J Pharmacol 2022; 931:175207. [PMID: 35987254 DOI: 10.1016/j.ejphar.2022.175207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Current antipsychotics used to treat schizophrenia have associated problems, including serious side effects and treatment resistance. We recently identified a significant association of schizophrenia with exonic copy number variations in the Rho GTPase activating protein 10 (ARHGAP10) gene using genome-wide analysis. ARHGAP10 encodes a RhoGAP superfamily member that is involved in small GTPase signaling. In mice, Arhgap10 gene variations result in RhoA/Rho-kinase pathway activation. We evaluated the pharmacokinetics of fasudil and hydroxyfasudil using liquid chromatography-tandem mass spectrometry in mice. The antipsychotic effects of fasudil on hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits were also investigated in a MK-801-treated pharmacological mouse schizophrenia model. Fasudil and its major metabolite, hydroxyfasudil, were detected in the brain at concentrations above their respective Ki values for Rho-kinase after intraperitoneal injection of 10 mg kg-1 fasudil. Fasudil improved the hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits in MK-801-treated mice in a dose-dependent manner. Following oral administration of fasudil, brain hydroxyfasudil was detected at concentration above the Ki value for Rho-kinase whilst fasudil was undetectable. MK-801-induced hyperlocomotion was also improved by oral fasudil administration. These results suggest that fasudil has antipsychotic-like effects on the MK-801-treated pharmacological mouse schizophrenia model. There are two isoforms in Rho-kinase, and further investigation is needed to clarify the isoforms involved in the antipsychotic-like effects of fasudil in the MK-801-treated mouse schizophrenia model.
Collapse
|
37
|
Establishment of induced pluripotent stem cells from a patient with 16p13.11 duplication and VPS13B deletion. Stem Cell Res 2022; 64:102884. [PMID: 35944312 DOI: 10.1016/j.scr.2022.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022] Open
Abstract
VPS13B deletion and 16p13.11 duplication are related to mental disorders, such as schizophrenia. However, how these variants affect human neurons and contribute to the development of mental disorders is yet to be elucidated. In this study, we generated induced pluripotent stem cells (iPSCs) from a patient with 16p13.11 duplication and VPS13B deletion. The iPSCs indicated pluripotency marker expression and the differentiation capacity into three germ layers in vitro. Therefore, these iPSC lines will be useful tools to further understand the pathophysiology of mental disorders.
Collapse
|
38
|
Kushima I, Uematsu M, Ishizuka K, Aleksic B, Ozaki N. Psychiatric patients with a de novo 17q12 deletion: Two case reports. Psychiatry Clin Neurosci 2022; 76:345-347. [PMID: 35429202 DOI: 10.1111/pcn.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Mariko Uematsu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Kariya Hospital, Kariya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
39
|
Nawa Y, Kushima I, Aleksic B, Yamamoto M, Kimura H, Banno M, Hashimoto R, Ozaki N. Treatment-resistant schizophrenia in patients with 3q29 deletion: A case series of four patients. Psychiatry Clin Neurosci 2022; 76:338-339. [PMID: 35355370 DOI: 10.1111/pcn.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Seichiryo Hospital, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
Chen CH, Cheng MC, Hu TM, Ping LY, Kushima I, Aleksic B. Identification of rare mutations of the vasoactive intestinal peptide receptor 2 gene in schizophrenia. Psychiatr Genet 2022; 32:125-130. [PMID: 35353798 DOI: 10.1097/ypg.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Studies showed that rare copy number variations (CNVs) encompassing the vasoactive intestinal peptide receptor 2 gene (VIPR2) were associated with schizophrenia, indicating VIPR2 is a risk gene for schizophrenia. We hypothesized that besides CNV, rare pathogenic single-nucleotide variant (SNV) or small insertion/deletion (Indel) of VIPR2 might be present in some patients and contribute to the pathogenesis of schizophrenia. METHODS We performed genome-wide CNV analysis to screen CNV at the VIPR2 locus and targeted sequencing of all the exons of VIPR2 to search for SNV and indel in a sample of patients with chronic schizophrenia from Taiwan. RESULTS We detected a 230-kb microduplication encompassing the VIPR2 in 1 out of 200 patients. Furthermore, we identified six ultrarare SNVs, including one splicing SNV and five missense SNVs, in 516 patients. In-silico analyses showed these SNVs had a damaging effect on the function of VIPR2. CONCLUSION Our findings support the idea that besides CNV, rare pathogenic SNVs of VIPR2 might contribute to the pathogenesis of schizophrenia in some patients.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya
- Medical Genomics Center, Nagoya University Hospital, Aichi, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya
| |
Collapse
|
41
|
Yamaguchi R, Matsudaira I, Takeuchi H, Imanishi T, Kimura R, Tomita H, Kawashima R, Taki Y. RELN rs7341475 associates with brain structure in japanese healthy females. Neuroscience 2022; 494:38-50. [DOI: 10.1016/j.neuroscience.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
42
|
Furuta S, Aleksic B, Nawa Y, Kimura H, Kushima I, Ishizuka K, Kato H, Toyama M, Arioka Y, Mori D, Morikawa M, Inada T, Ozaki N. Investigation of OLIG2 as a candidate gene for schizophrenia and autism spectrum disorder. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:260-268. [PMID: 35967956 PMCID: PMC9350582 DOI: 10.18999/nagjms.84.2.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
A number of genomic mutations that are thought to be strongly involved in the development of schizophrenia (SCZ) and autism spectrum disorder (ASD) have been identified. Abnormalities involving oligodendrocytes have been reported in SCZ, and as a related gene, oligodendrocyte lineage transcription factor 2 (OLIG2) has been reported to be strongly associated with SCZ. In this study, based on the common disease-rare variant hypothesis, target sequencing of candidate genes was performed to identify rare mutations with a high effect size and the possibility that the identified mutations may increase the risks of SCZ and ASD in the Japanese population. In this study, the exon region of OLIG2 was targeted; 370 patients with SCZ and 192 with ASD were subjected to next-generation sequencing. As a result, one rare missense mutation (A33T) was detected. We used the Sanger method to validate this missense mutation with a low frequency (<1%), and then carried out a genetic association analysis involving 3299 unrelated individuals (1447 with SCZ, 380 with ASD, and 1472 healthy controls) to clarify whether A33T was associated with SCZ or ASD. A33T was not found in either case group, and in only one control. We did not find evidence that p.A33T is involved in the onset of ASD or SCZ; however, associations with this variant need to be evaluated in larger samples to confirm our results.
Collapse
Affiliation(s)
- Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Toyama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Institute for Advanced Research, Nagoya University, Nagoya, Japan
,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
43
|
Morikawa R, Watanabe Y, Igeta H, Arta RK, Ikeda M, Okazaki S, Hoya S, Saito T, Otsuka I, Egawa J, Tanifuji T, Iwata N, Someya T. Novel missense SETD1A variants in Japanese patients with schizophrenia: Resequencing and association analysis. Psychiatry Res 2022; 310:114481. [PMID: 35235885 DOI: 10.1016/j.psychres.2022.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
SETD1A has been identified as a substantial risk gene for schizophrenia. To further investigate the role of SETD1A in the genetic etiology of schizophrenia in the Japanese population, we performed resequencing and association analyses. First, we resequenced the SETD1A coding regions of 974 patients with schizophrenia. Then, we genotyped variants, prioritized via resequencing, in 2,027 patients with schizophrenia and 2,664 controls. Next, we examined the association between SETD1A and schizophrenia in 3,001 patients with schizophrenia and 2,664 controls. Finally, we performed a retrospective chart review of patients with prioritized SETD1A variants. We identified two novel missense variants (p.Ser575Pro and p.Glu857Gln) via resequencing. We did not detect these variants in 4,691 individuals via genotyping. These variants were not significantly associated with schizophrenia in the association analysis. Additionally, we found that a schizophrenia patient with the p.Glu857Gln variant had developmental delays. In conclusion, novel SETD1A missense variants were exclusively identified in Japanese patients with schizophrenia. However, our study does not provide evidence for the contribution of these variants to the genetic etiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Reza K Arta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
44
|
Hayashi Y, Kushima I, Aleksic B, Senaha T, Ozaki N. Variable psychiatric manifestations in patients with 16p11.2 duplication: a case series of 4 patients. Psychiatry Clin Neurosci 2022; 76:86-88. [PMID: 34940990 DOI: 10.1111/pcn.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsu Senaha
- Department of Psychiatry, KACHI Memorial Hospital, Toyohashi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
New Strategies for the Treatment of Neuropsychiatric Disorders Based on Reelin Dysfunction. Int J Mol Sci 2022; 23:ijms23031829. [PMID: 35163751 PMCID: PMC8836358 DOI: 10.3390/ijms23031829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Reelin is an extracellular matrix protein that is mainly produced in Cajal-Retzius cells and controls neuronal migration, which is important for the proper formation of cortical layers in the developmental stage of the brain. In the adult brain, Reelin plays a crucial role in the regulation of N-methyl-D-aspartate receptor-dependent synaptic function, and its expression decreases postnatally. Clinical studies showed reductions in Reelin protein and mRNA expression levels in patients with psychiatric disorders; however, the causal relationship remains unclear. Reelin-deficient mice exhibit an abnormal neuronal morphology and behavior, while Reelin supplementation ameliorates learning deficits, synaptic dysfunctions, and spine loss in animal models with Reelin deficiency. These findings suggest that the neuronal deficits and brain dysfunctions associated with the down-regulated expression of Reelin are attenuated by enhancements in its expression and functions in the brain. In this review, we summarize findings on the role of Reelin in neuropsychiatric disorders and discuss potential therapeutic approaches for neuropsychiatric disorders associated with Reelin dysfunctions.
Collapse
|
46
|
Liao J, Dong G, Wulaer B, Sawahata M, Mizoguchi H, Mori D, Ozaki N, Nabeshima T, Nagai T, Yamada K. Mice with exonic RELN deletion identified from a patient with schizophrenia have impaired visual discrimination learning and reversal learning in touchscreen operant tasks. Behav Brain Res 2022; 416:113569. [PMID: 34499931 DOI: 10.1016/j.bbr.2021.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
The Reelin gene (RELN) encodes a large extracellular protein, which has multiple roles in brain development and adult brain function. It activates a series of neuronal signal transduction pathways in the adult brain that function in synaptic plasticity, dendritic morphology, and cognitive function. To further investigate the roles of Reln in brain function, we generated a mouse line using the C57BL/6 J strain with the specific Reln deletion identified from a Japanese patient with schizophrenia (Reln-del mice). These mice exhibited abnormal sociality, but the pathophysiological significance of the Reln deletion for higher brain functions, such as learning and behavioral flexibility remains unclear. In this study, cognitive function in Reln-del mice was assessed using touchscreen-based visual discrimination (VD) and reversal learning (RL) tasks. Reln-del mice showed normal learning in the simple VD task, but the learning was delayed in the complex VD task as compared to their wild-type (WT) littermates. In the RL task, sessions were divided into early perseverative phase (sessions with <50% correct) and later learning phase (sessions with ≥50% correct). Reln-del mice showed normal perseveration but impaired relearning ability in both simple RL and complex RL task as compared to WT mice. These results suggest that Reln-del mice have impaired learning ability, but the behavioral flexibility is unaffected. Overall, the observed behavioral abnormalities in Reln-del mice suggest that this mouse model is a useful preclinical tool for investigating the neurobiological mechanism underlying cognitive impairments in schizophrenia and a therapeutic strategy.
Collapse
Affiliation(s)
- Jingzhu Liao
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Geyao Dong
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bolati Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Project Office for Neuropsychological Research Center, Fujita Health University Graduate School of Health Sciences, Toyoake 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan.
| |
Collapse
|
47
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
48
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
49
|
Sawahata M, Asano H, Nagai T, Ito N, Kohno T, Nabeshima T, Hattori M, Yamada K. Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacol Res 2021; 173:105832. [PMID: 34450306 DOI: 10.1016/j.phrs.2021.105832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Asano
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
50
|
Chen CH, Cheng MC, Hu TM, Ping LY. Chromosomal Microarray Analysis as First-Tier Genetic Test for Schizophrenia. Front Genet 2021; 12:620496. [PMID: 34659328 PMCID: PMC8517076 DOI: 10.3389/fgene.2021.620496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia is a chronic, devastating mental disorder with complex genetic components. Given the advancements in the molecular genetic research of schizophrenia in recent years, there is still a lack of genetic tests that can be used in clinical settings. Chromosomal microarray analysis (CMA) has been used as first-tier genetic testing for congenital abnormalities, developmental delay, and autism spectrum disorders. This study attempted to gain some experience in applying chromosomal microarray analysis as a first-tier genetic test for patients with schizophrenia. We consecutively enrolled patients with schizophrenia spectrum disorder from a clinical setting and conducted genome-wide copy number variation (CNV) analysis using a chromosomal microarray platform. We followed the 2020 “Technical Standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)” to interpret the clinical significance of CNVs detected from patients. We recruited a total of 60 patients (36 females and 24 males) into this study. We detected three pathogenic CNVs and one likely pathogenic CNV in four patients, respectively. The detection rate was 6.7% (4/60, 95% CI: 0.004–0.13), comparable with previous studies in the literature. Also, we detected thirteen CNVs classified as uncertain clinical significance in nine patients. Detecting these CNVs can help establish the molecular genetic diagnosis of schizophrenia patients and provide helpful information for genetic counseling and clinical management. Also, it can increase our understanding of the pathogenesis of schizophrenia. Hence, we suggest CMA is a valuable genetic tool and considered first-tier genetic testing for schizophrenia spectrum disorders in clinical settings.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| |
Collapse
|