1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Szabo A, Akkouh I, Osete JR, de Assis DR, Kondratskaya E, Hughes T, Ueland T, Andreassen OA, Djurovic S. NLRP3 inflammasome mediates astroglial dysregulation of innate and adaptive immune responses in schizophrenia. Brain Behav Immun 2024; 124:144-156. [PMID: 39617069 DOI: 10.1016/j.bbi.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Mounting evidence indicates the involvement of neuroinflammation in the development of schizophrenia (SCZ), but the potential role of astroglia in this phenomenon remains poorly understood. We assessed the molecular and functional consequences of inflammasome activation using induced pluripotent stem cell (iPSC)-derived astrocytes generated from SCZ patients and healthy controls (CTRL). Screening protein levels in astrocytes at baseline identified lower expression of the NLRP3-ASC complex in SCZ, but increased Caspase-1 activity upon specific NLRP3 stimulation compared to CTRL. Using transcriptional profiling, we found corresponding downregulations of NLRP3 and ASC/PYCARD in both iPSC-derived astrocytes, and in a large (n = 429) brain postmortem case-control sample. Functional analyses following NLRP3 activation revealed an inflammatory phenotype characterized by elevated production of IL-1β/IL-18 and skewed priming of helper T lymphocytes (Th1/Th17) by SCZ astrocytes. This phenotype was rescued by specific inhibition of NLRP3 activation, demonstrating its dependence on the NLRP3 inflammasome. Taken together, SCZ iPSC-astrocytes display unique, NLRP3-dependent inflammatory characteristics that are manifested via various cellular functions, as well as via dysregulated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Attila Szabo
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ibrahim Akkouh
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elena Kondratskaya
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Harris AR, McGivern P, Gilbert F, Van Bergen N. Defining Biomarkers in Stem Cell-Derived Tissue Constructs for Drug and Disease Screening. Adv Healthc Mater 2024; 13:e2401433. [PMID: 38741544 DOI: 10.1002/adhm.202401433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/24/2024] [Indexed: 05/16/2024]
Abstract
The development of stem cell-derived tissue constructs (SCTCs) for clinical applications, including regenerative medicine, drug and disease screening offers significant hope for detecting and treating intractable disorders. SCTCs display a variety of biomarkers that can be used to understand biological mechanisms, assess drug interactions, and predict disease. Although SCTCs can be derived from patients and share the same genetic make-up, they are nevertheless distinct from human patients in many significant ways, which can undermine the clinical significance of measurements in SCTCs. This study defines biomarkers, how they apply to SCTCs, and clarifies specific ethical issues associated with the use of SCTCs for drug and disease screening.
Collapse
Affiliation(s)
- Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Patrick McGivern
- School of Humanities and Social Inquiry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Frederic Gilbert
- School of Humanities, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
| |
Collapse
|
4
|
Sæther LS, Szabo A, Akkouh IA, Haatveit B, Mohn C, Vaskinn A, Aukrust P, Ormerod MBEG, Eiel Steen N, Melle I, Djurovic S, Andreassen OA, Ueland T, Ueland T. Cognitive and inflammatory heterogeneity in severe mental illness: Translating findings from blood to brain. Brain Behav Immun 2024; 118:287-299. [PMID: 38461955 DOI: 10.1016/j.bbi.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.
Collapse
Affiliation(s)
- Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; National Centre for Suicide Research and Prevention, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Monica B E G Ormerod
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital/University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| |
Collapse
|
5
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
6
|
Niemis W, Peterson SR, Javier C, Nguyen A, Subiah S, Palmer RHC. On the utilization of the induced pluripotent stem cell (iPSC) model to study substance use disorders: A scoping review protocol. PLoS One 2023; 18:e0292238. [PMID: 37824561 PMCID: PMC10569547 DOI: 10.1371/journal.pone.0292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
INTRODUCTION Induced pluripotent stem cells (iPSCs) are cells derived from somatic cells via reprogramming techniques. The iPSC approach has been increasingly used in neuropsychiatric research in the last decade. Though substance use disorders (SUDs) are a commonly occurring psychiatric disorder, the application of iPSC model in addiction research has been limited. No comprehensive review has been reported. We conducted a scoping review to collate existing evidence on the iPSC technologies applied to SUD research. We aim to identify current knowledge gaps and limitations in order to advance the use of iPSCs in the SUD field. METHODS AND ANALYSIS We employed a scoping review using the methodological framework first created by Arksey and O'Malley and further updated by Levac et al. and the Joanna Briggs Institute (JBI). We adopted the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Protocols (PRISMA-P) to report items for the protocol. We searched evidence from four electronic databases: PubMed®, Embase®, Web of Science™, and Scopus®. Primary research, systematic reviews, and meta-analyses were included and limited to studies published in English, at the time from 2007 to March 2022. This is an "ongoing" scoping review. Searched studies will be independently screened, selected, and extracted by two reviewers. Disagreement will be solved by the third reviewer and discussion. Extracted data will be analyzed in descriptive and quantitative approaches, then summarized and presented in appropriate formats. Results will be reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline and disseminated through a peer-reviewed publication and conference presentations. CONCLUSION To our best knowledge, this is the first comprehensive scoping review of iPSC methods specifically applied to a broad range of addictive drugs/substances that lead to SUDs or misuse behavior. REGISTRATION This protocol is registered on Zenodo repository (https://zenodo.org/) with doi:10.5281/zenodo.7915252.
Collapse
Affiliation(s)
- Wasiri Niemis
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Shenita R. Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, United States of America
| | - Chrisabella Javier
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Amy Nguyen
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Sanchi Subiah
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
7
|
Shevade K, Peddada S, Mader K, Przybyla L. Functional genomics in stem cell models: considerations and applications. Front Cell Dev Biol 2023; 11:1236553. [PMID: 37554308 PMCID: PMC10404852 DOI: 10.3389/fcell.2023.1236553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Protocols to differentiate human pluripotent stem cells have advanced in terms of cell type specificity and tissue-level complexity over the past 2 decades, which has facilitated human disease modeling in the most relevant cell types. The ability to generate induced PSCs (iPSCs) from patients further enables the study of disease mutations in an appropriate cellular context to reveal the mechanisms that underlie disease etiology and progression. As iPSC-derived disease models have improved in robustness and scale, they have also been adopted more widely for use in drug screens to discover new therapies and therapeutic targets. Advancement in genome editing technologies, in particular the discovery of CRISPR-Cas9, has further allowed for rapid development of iPSCs containing disease-causing mutations. CRISPR-Cas9 technologies have now evolved beyond creating single gene edits, aided by the fusion of inhibitory (CRISPRi) or activation (CRISPRa) domains to a catalytically dead Cas9 protein, enabling inhibition or activation of endogenous gene loci. These tools have been used in CRISPR knockout, CRISPRi, or CRISPRa screens to identify genetic modifiers that synergize or antagonize with disease mutations in a systematic and unbiased manner, resulting in identification of disease mechanisms and discovery of new therapeutic targets to accelerate drug discovery research. However, many technical challenges remain when applying large-scale functional genomics approaches to differentiated PSC populations. Here we review current technologies in the field of iPSC disease modeling and CRISPR-based functional genomics screens and practical considerations for implementation across a range of modalities, applications, and disease areas, as well as explore CRISPR screens that have been performed in iPSC models to-date and the insights and therapies these screens have produced.
Collapse
Affiliation(s)
- Kaivalya Shevade
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Yang G, Ullah HMA, Parker E, Gorsi B, Libowitz M, Maguire C, King JB, Coon H, Lopez-Larson M, Anderson JS, Yandell M, Shcheglovitov A. Neurite outgrowth deficits caused by rare PLXNB1 mutation in pediatric bipolar disorder. Mol Psychiatry 2023; 28:2525-2539. [PMID: 37032361 DOI: 10.1038/s41380-023-02035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Pediatric bipolar disorder (PBD) is a severe mood dysregulation condition that affects 0.5-1% of children and teens in the United States. It is associated with recurrent episodes of mania and depression and an increased risk of suicidality. However, the genetics and neuropathology of PBD are largely unknown. Here, we used a combinatorial family-based approach to characterize cellular, molecular, genetic, and network-level deficits associated with PBD. We recruited a PBD patient and three unaffected family members from a family with a history of psychiatric illnesses. Using resting-state functional magnetic resonance imaging (rs-fMRI), we detected altered resting-state functional connectivity in the patient as compared to an unaffected sibling. Using transcriptomic profiling of patient and control induced pluripotent stem cell (iPSC)-derived telencephalic organoids, we found aberrant signaling in the molecular pathways related to neurite outgrowth. We corroborated the presence of neurite outgrowth deficits in patient iPSC-derived cortical neurons and identified a rare homozygous loss-of-function PLXNB1 variant (c.1360C>C; p.Ser454Arg) responsible for the deficits in the patient. Expression of wild-type PLXNB1, but not the variant, rescued neurite outgrowth in patient neurons, and expression of the variant caused the neurite outgrowth deficits in cortical neurons from PlxnB1 knockout mice. These results indicate that dysregulated PLXNB1 signaling may contribute to an increased risk of PBD and other mood dysregulation-related disorders by disrupting neurite outgrowth and functional brain connectivity. Overall, this study established and validated a novel family-based combinatorial approach for studying cellular and molecular deficits in psychiatric disorders and identified dysfunctional PLXNB1 signaling and neurite outgrowth as potential risk factors for PBD.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Ethan Parker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Bushra Gorsi
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, USA
| | - Mark Libowitz
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA
| | - Jace B King
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Melissa Lopez-Larson
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Lopez-Larson and Associates, Park City, UT, USA
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Alex Shcheglovitov
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, USA.
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
12
|
Harris AR, Walker MJ, Gilbert F, McGivern P. Investigating the feasibility and ethical implications of phenotypic screening using stem cell-derived tissue models to detect and manage disease. Stem Cell Reports 2022; 17:1023-1032. [PMID: 35487211 PMCID: PMC9133639 DOI: 10.1016/j.stemcr.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Stem-cell-derived tissue models generated from sick people are being used to understand human development and disease, drug development, and drug screening. However, it is possible to detect disease phenotypes before a patient displays symptoms, allowing for their use as a disease screening tool. This raises numerous issues, some of which can be addressed using similar approaches from genetic screenings, while others are unique. One issue is the relationship between disease disposition, biomarker detection, and patient symptoms and how tissue models could be used to define disease. Other issues include decisions of when to screen, what diseases to screen for, and what treatment options should be offered.
Collapse
Affiliation(s)
- Alexander R Harris
- Aikenhead Centre for Medical Discovery, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mary Jean Walker
- Department of Politics, Media, and Philosophy, La Trobe University, Bundoora, VIC 3086, Australia
| | - Frederic Gilbert
- School of Humanities, University of Tasmania, Hobart, TAS, Australia
| | - Patrick McGivern
- School of Humanities and Social Inquiry, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Polho GB, Cardillo GM, Kerr DS, Chile T, Gattaz WF, Forlenza OV, Brentani HP, De-Paula VJ. Antipsychotics preserve telomere length in peripheral blood mononuclear cells after acute oxidative stress injury. Neural Regen Res 2022; 17:1156-1160. [PMID: 34558545 PMCID: PMC8552857 DOI: 10.4103/1673-5374.324852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/04/2022] Open
Abstract
Antipsychotics may prolong or retain telomere length, affect mitochondrial function, and then affect the metabolism of nerve cells. To validate the hypothesis that antipsychotics can prolong telomere length after oxidative stress injury, leukocytes from healthy volunteers were extracted using Ficoll-Histopaque density gradient. The mononuclear cells layer was resuspended in cell culture medium. Oxidative stress was induced with hydrogen peroxide in cultured leukocytes. Four days later, leukocytes were treated with aripiprazole, haloperidol or clozapine for 7 days. Real-time PCR revealed that treatments with aripiprazole and haloperidol increased the telomere length by 23% and 20% in peripheral blood mononuclear cells after acute oxidative stress injury. These results suggest that haloperidol and aripiprazole can reduce the damage to telomeres induced by oxidative stress. The experiment procedure was approved by the Ethics Committee of Faculty of Medicine of the University of São Paulo (FMUSP/CAAE approval No. 52622616.8.0000.0065).
Collapse
Affiliation(s)
- Gabriel B. Polho
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Giancarlo M. Cardillo
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Daniel S. Kerr
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Thais Chile
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Wagner F. Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Helena P. Brentani
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Vanessa J. De-Paula
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| |
Collapse
|
14
|
Yde Ohki CM, McNeill RV, Nieberler M, Radtke F, Kittel-Schneider S, Grünblatt E. Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD. Curr Top Behav Neurosci 2022; 57:483-501. [PMID: 35543866 DOI: 10.1007/7854_2022_346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although research using animal models, peripheral and clinical biomarkers, multimodal neuroimaging techniques and (epi)genetic information has advanced our understanding of Attention-Deficit Hyperactivity Disorder (ADHD), the aetiopathology of this neurodevelopmental disorder has still not been elucidated. Moreover, as the primary affected tissue is the brain, access to samples is problematic. Alternative models are therefore required, facilitating cellular and molecular analysis. Recent developments in stem cell research have introduced the possibility to reprogram somatic cells from patients, in this case ADHD, and healthy controls back into their pluripotent state, meaning that they can then be differentiated into any cell or tissue type. The potential to translate patients' somatic cells into stem cells, and thereafter to use 2- and 3-dimensional (2D and 3D) neuronal cells to model neurodevelopmental disorders and/or test novel drug therapeutics, is discussed in this chapter.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
15
|
A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11:554. [PMID: 34716291 PMCID: PMC8556332 DOI: 10.1038/s41398-021-01681-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
Collapse
|
16
|
Dinneen TJ, Ghrálaigh FN, Walsh R, Lopez LM, Gallagher L. How does genetic variation modify ND-CNV phenotypes? Trends Genet 2021; 38:140-151. [PMID: 34364706 DOI: 10.1016/j.tig.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Rare copy-number variants (CNVs) associated with neurodevelopmental disorders (NDDs), i.e., ND-CNVs, provide an insight into the neurobiology of NDDs and, potentially, a link between biology and clinical outcomes. However, ND-CNVs are characterised by incomplete penetrance resulting in heterogeneous carrier phenotypes, ranging from non-affected to multimorbid psychiatric, neurological, and physical phenotypes. Recent evidence indicates that other variants in the genome, or 'other hits', may partially explain the variable expressivity of ND-CNVs. These may be other rare variants or the aggregated effects of common variants that modify NDD risk. Here we discuss the recent findings, current questions, and future challenges relating to other hits research in the context of ND-CNVs and their potential for improved clinical diagnostics and therapeutics for ND-CNV carriers.
Collapse
Affiliation(s)
- Thomas J Dinneen
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| | - Fiana Ní Ghrálaigh
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland; Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Ruth Walsh
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Lorna M Lopez
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland; Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Louise Gallagher
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Akkouh IA, Hughes T, Steen VM, Glover JC, Andreassen OA, Djurovic S, Szabo A. Transcriptome analysis reveals disparate expression of inflammation-related miRNAs and their gene targets in iPSC-astrocytes from people with schizophrenia. Brain Behav Immun 2021; 94:235-244. [PMID: 33571628 DOI: 10.1016/j.bbi.2021.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the high heritability of schizophrenia (SCZ), details of its pathophysiology and etiology are still unknown. Recent findings suggest that aberrant inflammatory regulation and microRNAs (miRNAs) are involved. Here we performed a comparative analysis of the global miRNome of human induced pluripotent stem cell (iPSC)-astrocytes, derived from SCZ patients and healthy controls (CTRLs), at baseline and following inflammatory modulation using IL-1β. We identified four differentially expressed miRNAs (miR-337-3p, miR-127-5p, miR-206, miR-1185-1-3p) in SCZ astrocytes that exhibited significantly lower baseline expression relative to CTRLs. Group-specific differential expression (DE) analyses exploring possible distinctions in the modulatory capacity of IL-1β on miRNA expression in SCZ versus CTRL astroglia revealed trends toward altered miRNA expressions. In addition, we analyzed peripheral blood samples from a large cohort of SCZ patients (n = 484) and CTRLs (n = 496) screening for the expression of specific gene targets of the four DE miRNAs that were identified in our baseline astrocyte setup. Three of these genes, LAMTOR4, IL23R, and ERBB3, had a significantly lower expression in the blood of SCZ patients compared to CTRLs after multiple testing correction. We also found nominally significant differences for ERBB2 and IRAK1, which similarly displayed lower expressions in SCZ versus CTRL. Furthermore, we found matching patterns between the expressions of identified miRNAs and their target genes when comparing our in vitro and in vivo results. The current results further our understanding of the pathobiological basis of SCZ.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Chang H, Cai X, Li HJ, Liu WP, Zhao LJ, Zhang CY, Wang JY, Liu JW, Ma XL, Wang L, Yao YG, Luo XJ, Li M, Xiao X. Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Biol Psychiatry 2021; 89:246-255. [PMID: 33246552 DOI: 10.1016/j.biopsych.2020.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have reported hundreds of genomic loci associated with schizophrenia, yet identifying the functional risk variations is a key step in elucidating the underlying mechanisms. METHODS We applied multiple bioinformatics and molecular approaches, including expression quantitative trait loci analyses, epigenome signature identification, luciferase reporter assay, chromatin conformation capture, homology-directed genome editing by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9), RNA sequencing, and ATAC-Seq (assay for transposase-accessible chromatin using sequencing). RESULTS We found that the schizophrenia GWAS risk variations at 16p11.2 were significantly associated with messenger RNA levels of multiple genes in human brain, and one of the leading expression quantitative trait loci genes, MAPK3, is located ∼200 kb away from these risk variations in the genome. Further analyses based on the epigenome marks in human brain and cell lines suggested that a noncoding single nucleotide polymorphism, rs4420550 (p = 2.36 × 10-9 in schizophrenia GWAS), was within a DNA enhancer region, which was validated via in vitro luciferase reporter assays. The chromatin conformation capture experiment showed that the rs4420550 region physically interacted with the MAPK3 promoter and TAOK2 promoter. Precise CRISPR/Cas9 editing of a single base pair in cells followed by RNA sequencing further confirmed the regulatory effects of rs4420550 on the transcription of 16p11.2 genes, and ATAC-Seq demonstrated that rs4420550 affected chromatin accessibility at the 16p11.2 region. The rs4420550-[A/A] cells showed significantly higher proliferation rates compared with rs4420550-[G/G] cells. CONCLUSIONS These results together suggest that rs4420550 is a functional risk variation, and this study illustrates an example of comprehensive functional characterization of schizophrenia GWAS risk loci.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun-Yang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Lei Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
19
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
20
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhang C, Xiao X, Li T, Li M. Translational genomics and beyond in bipolar disorder. Mol Psychiatry 2021; 26:186-202. [PMID: 32424235 DOI: 10.1038/s41380-020-0782-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWAS) have revealed multiple genomic loci conferring risk of bipolar disorder (BD), providing hints for its underlying pathobiology. However, there are still remaining questions to answer. For example, discordance exists between BD heritability estimated with earlier epidemiological evidence and that calculated based on common GWAS variations. Where is the "missing heritability"? How can we explain the biology of the disease based on genetic findings? In this review, we summarize the accomplishments and limitations of current BD GWAS, and discuss potential reasons for the "missing heritability." In addition, progresses of research for the biological mechanisms underlying BD genetic risk using brain tissues, reprogrammed cells, and model animals are reviewed. While our knowledge of BD genetic basis is significantly promoted by these efforts, the complexities of gene regulation in the genome, the spatial-temporal heterogeneity during brain development, and the limitations of different experimental models should always be considered. Notably, several genes have been widely studied given their relatively well-characterized involvement in BD (e.g., CACAN1C and ANK3), and findings of these genes are summarized to both outline possible biological mechanisms of BD and describe examples of translating GWAS discoveries into the pathophysiology.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China. .,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, Szele FG. Evidence for Decreased Density of Calretinin-Immunopositive Neurons in the Caudate Nucleus in Patients With Schizophrenia. Front Neuroanat 2020; 14:581685. [PMID: 33281566 PMCID: PMC7691639 DOI: 10.3389/fnana.2020.581685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia (SCH) and autism spectrum disorder (ASD) share several common aetiological and symptomatic features suggesting they may be included in a common spectrum. For example, recent results suggest that excitatory/inhibitory imbalance is relevant in the etiology of SCH and ASD. Numerous studies have investigated this imbalance in regions like the ventromedial and dorsolateral prefrontal cortex (DLPFC). However, relatively little is known about neuroanatomical changes that could reduce inhibition in subcortical structures, such as the caudate nucleus (CN), in neuropsychiatric disorders. We recently showed a significant decrease in calretinin-immunopositive (CR-ip) interneuronal density in the CN of patients with ASD without significant change in the density of neuropeptide Y-immunopositive (NPY-ip) neurons. These subtypes together constitute more than 50% of caudate interneurons and are likely necessary for maintaining excitatory/inhibitory balance. Consequently, and since SCH and ASD share characteristic features, here we tested the hypothesis, that the density of CR-ip neurons in the CN is decreased in patients with SCH. We used immunohistochemistry and qPCR for CR and NPY in six patients with schizophrenia and six control subjects. As expected, small, medium and large CR-ip interneurons were detected in the CN. We found a 38% decrease in the density of all CR-ip interneurons (P < 0.01) that was driven by the loss of the small CR-ip interneurons (P < 0.01) in patients with SCH. The densities of the large CR-ip and of the NPY-ip interneurons were not significantly altered. The lower density detected could have been due to inflammation-induced degeneration. However, the state of microglial activation assessed by quantification of ionized calcium-binding adapter molecule 1 (Iba1)- and transmembrane protein 119 (TMEM119)-immunopositive cells showed no significant difference between patients with SCH and controls. Our results warrant further studies focussing on the role of CR-ip neurons and on the striatum being a possible hub for information selection and regulation of associative cortical fields whose function have been altered in SCH.
Collapse
Affiliation(s)
- Istvan Adorjan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences, London, United Kingdom
| | - Virginia Feher
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Daniel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Steven A Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Elanzew A, Nießing B, Langendoerfer D, Rippel O, Piotrowski T, Schenk F, Kulik M, Peitz M, Breitkreuz Y, Jung S, Wanek P, Stappert L, Schmitt RH, Haupt S, Zenke M, König N, Brüstle O. The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2020; 8:580352. [PMID: 33240865 PMCID: PMC7680974 DOI: 10.3389/fbioe.2020.580352] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
While human induced pluripotent stem cells (hiPSCs) provide novel prospects for disease-modeling, the high phenotypic variability seen across different lines demands usage of large hiPSC cohorts to decipher the impact of individual genetic variants. Thus, a much higher grade of parallelization, and throughput in the production of hiPSCs is needed, which can only be achieved by implementing automated solutions for cell reprogramming, and hiPSC expansion. Here, we describe the StemCellFactory, an automated, modular platform covering the entire process of hiPSC production, ranging from adult human fibroblast expansion, Sendai virus-based reprogramming to automated isolation, and parallel expansion of hiPSC clones. We have developed a feeder-free, Sendai virus-mediated reprogramming protocol suitable for cell culture processing via a robotic liquid handling unit that delivers footprint-free hiPSCs within 3 weeks with state-of-the-art efficiencies. Evolving hiPSC colonies are automatically detected, harvested, and clonally propagated in 24-well plates. In order to ensure high fidelity performance, we have implemented a high-speed microscope for in-process quality control, and image-based confluence measurements for automated dilution ratio calculation. This confluence-based splitting approach enables parallel, and individual expansion of hiPSCs in 24-well plates or scale-up in 6-well plates across at least 10 passages. Automatically expanded hiPSCs exhibit normal growth characteristics, and show sustained expression of the pluripotency associated stem cell marker TRA-1-60 over at least 5 weeks (10 passages). Our set-up enables automated, user-independent expansion of hiPSCs under fully defined conditions, and could be exploited to generate a large number of hiPSC lines for disease modeling, and drug screening at industrial scale, and quality.
Collapse
Affiliation(s)
- Andreas Elanzew
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Bastian Nießing
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | | | - Oliver Rippel
- LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany.,Fraunhofer Institute for Production Technology, Aachen, Germany
| | | | | | - Michael Kulik
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Yannik Breitkreuz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Sven Jung
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Paul Wanek
- Institute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Robert H Schmitt
- Fraunhofer Institute for Production Technology, Aachen, Germany.,Laboratory for Machine Tools and Production, RWTH Aachen University, Aachen, Germany
| | - Simone Haupt
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Niels König
- Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| |
Collapse
|
24
|
Bourdon JL, Davies RA, Long EC. Four Actionable Bottlenecks and Potential Solutions to Translating Psychiatric Genetics Research: An Expert Review. Public Health Genomics 2020; 23:171-183. [PMID: 33147585 PMCID: PMC7854816 DOI: 10.1159/000510832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psychiatric genetics has had limited success in translational efforts. A thorough understanding of the present state of translation in this field will be useful in the facilitation and assessment of future translational progress. PURPOSE A narrative literature review was conducted. Combinations of 3 groups of terms were searched in EBSCOhost, Google Scholar, and PubMed. The review occurred in multiple steps, including abstract collection, inclusion/exclusion criteria review, coding, and analysis of included papers. RESULTS One hundred and fourteen articles were analyzed for the narrative review. Across those, 4 bottlenecks were noted that, if addressed, may provide insights and help improve and increase translation in the field of psychiatric genetics. These 4 bottlenecks are emphasizing linear translational frameworks, relying on molecular genomic findings, prioritizing certain psychiatric disorders, and publishing more reviews than experiments. CONCLUSIONS These entwined bottlenecks are examined with one another. Awareness of these bottlenecks can inform stakeholders who work to translate and/or utilize psychiatric genetic information. Potential solutions include utilizing nonlinear translational frameworks as well as a wider array of psychiatric genetic information (e.g., family history and gene-environment interplay) in this area of research, expanding which psychiatric disorders are considered for translation, and when possible, conducting original research. Researchers are urged to consider how their research is translational in the context of the frameworks, genetic information, and psychiatric disorders discussed in this review. At a broader level, these efforts should be supported with translational efforts in funding and policy shifts.
Collapse
Affiliation(s)
- Jessica L Bourdon
- Department of Psychiatry, Brown School of Social Work, Washington University in St. Louis, St. Louis, Missouri, USA,
| | - Rachel A Davies
- Yerkes National Primate Research Center, Division of Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia, USA
| | - Elizabeth C Long
- Edna Bennett Pierce Prevention Research Center, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
25
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
26
|
Lago SG, Tomasik J, van Rees GF, Ramsey JM, Haenisch F, Cooper JD, Broek JA, Suarez-Pinilla P, Ruland T, Auyeug B, Mikova O, Kabacs N, Arolt V, Baron-Cohen S, Crespo-Facorro B, Bahn S. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol Psychiatry 2020; 25:2355-2372. [PMID: 30038233 DOI: 10.1038/s41380-018-0123-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 12/26/2022]
Abstract
Neuropsychiatric disorders overlap in symptoms and share genetic risk factors, challenging their current classification into distinct diagnostic categories. Novel cross-disorder approaches are needed to improve our understanding of the heterogeneous nature of neuropsychiatric diseases and overcome existing bottlenecks in their diagnosis and treatment. Here we employ high-content multi-parameter phospho-specific flow cytometry, fluorescent cell barcoding and automated sample preparation to characterize ex vivo signaling network responses (n = 1764) measured at the single-cell level in B and T lymphocytes across patients diagnosed with four major neuropsychiatric disorders: autism spectrum condition (ASC), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ; n = 25 each), alongside matched healthy controls (n = 100). We identified 25 nodes (individual cell subtype-epitope-ligand combinations) significantly altered relative to the control group, with variable overlap between different neuropsychiatric diseases and heterogeneously expressed at the level of each individual patient. Reconstruction of the diagnostic categories from the altered nodes revealed an overlapping neuropsychiatric spectrum extending from MDD on one end, through BD and SCZ, to ASC on the other end. Network analysis showed that although the pathway structure of the epitopes was broadly preserved across the clinical groups, there were multiple discrete alterations in network connectivity, such as disconnections within the antigen/integrin receptor pathway and increased negative regulation within the Akt1 pathway in CD4+ T cells from ASC and SCZ patients, in addition to increased correlation of Stat1 (pY701) and Stat5 (pY694) responses in B cells from BD and MDD patients. Our results support the "dimensional" approach to neuropsychiatric disease classification and suggest potential novel drug targets along the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Geertje F van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jordan M Ramsey
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Frieder Haenisch
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jason D Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jantine A Broek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Tillmann Ruland
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Bonnie Auyeug
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Psychology Department, Edinburgh University, Scotland, UK
| | - Olya Mikova
- Foundation Biological Psychiatry, Sofia, Bulgaria
| | - Nikolett Kabacs
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,CLASS Clinic, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Abstract
Based on the analysis of literature, the authors describe the neuropathophysiological mechanism of the formation of synapses, synaptic transmission and plasticity, which may underlie the pathogenesis of autism. The results of some studies confirm the involvement of aberrant expression of genes and proteins of synaptic contacts, cell adhesion molecules p120ctn, CNTN5, CNTN6, activation of NMDA glutamate, TrkB, p75 receptors, Ca2+-input, BDNF, serotonin and testosterone. This leads to an imbalance in the exciting, inhibitory synaptic transmission and forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD) at the level of individual neurons and their chains due to suppression of GABA synthesis, expression of its ionotropic and metabotropic receptors, G proteins, NGF, TrkA receptors, a reduction in the number of GABAergic neurons, their contacts and disruption of differentiation. The pathology of the nuclei of the thalamus, especially the reticular nucleus (RN), is associated with a disturbance of the expression of the subunits of metabotropic GABAβ receptors, Ca2+ channels, GABA excretion and the work of chlorine transmitters. These failures do not ensure the inhibitory effect of OC on the exciting associative and ventral nuclei of the thalamus, nor modify the incoming information to the cerebral cortex (CC) from these thalamus nuclei, the dentate gyrus of the hippocampus and the nuclei of the reticular formation. Information propagating into the somatosensory and associative regions of CC is not modified by mirror neurons (MN) when performing arbitrary actions, which prevents the formation of an adequate image in the neural networks of the associative cortex and promotes the development of hyperexcitability, irritability, increased visual and auditory sensitivity, anxiety, and the ability to form a holistic image based on the actions of other people.
Collapse
Affiliation(s)
- A N Chernov
- Almazov National Medical Research Center of the Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
28
|
Akkouh IA, Ueland T, Hansson L, Inderhaug E, Hughes T, Steen NE, Aukrust P, Andreassen OA, Szabo A, Djurovic S. Decreased IL-1β-induced CCL20 response in human iPSC-astrocytes in schizophrenia: Potential attenuating effects on recruitment of regulatory T cells. Brain Behav Immun 2020; 87:634-644. [PMID: 32109548 DOI: 10.1016/j.bbi.2020.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with a high heritability. Although its pathophysiology is mainly unknown, dysregulated immune activation and inflammation have recently emerged as possible candidates in the underlying mechanisms of SCZ. Previous studies suggest that aberrant inflammasome activation, glia dysregulation, and brain inflammation may be involved in the pathophysiology of the disorder. Here, we studied the effects of inflammatory modulation on human induced pluripotent stem cell (iPSC)-derived astrocytes generated from SCZ patients and healthy controls (CTRL). Inflammasome activation was mimicked by short-term IL-1β exposure, and gene expression were measured with high-coverage RNA-Seq to ensure a global characterization of the transcriptional effects of the treatment. IL-1β exposure modulated several pathways involved in innate immune responses, cell cycle regulation, and metabolism in both SCZ and CTRL astrocytes. Significant differences were found in the expression of HILPDA and CCL20 genes, both of which had reduced up-regulation upon IL-1β treatment in SCZ astrocytes compared to CTRL astrocytes. CCL20 data were further validated and confirmed using qPCR, ELISA, and regulatory T lymphocyte (Treg) migration assays. Additionally, we found significantly decreased mRNA expression of the Treg-specific marker FOXP3 in the blood of a large cohort of SCZ patients (n = 484) compared to CTRL (n = 472). Since CCL20 is a specific chemoattractant for CD4+CD25+CCR6+ Tregs, which are crucially involved in anti-inflammatory responses during brain (auto)inflammation, our results imply a plausible role for an altered astroglia-CCL20-CCR6-Treg axis in SCZ pathophysiology.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen-Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Lars Hansson
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elin Inderhaug
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- K.G. Jebsen-Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway; K.G. Jebsen Inflammatory Research Center, University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
29
|
Drakulic D, Djurovic S, Syed YA, Trattaro S, Caporale N, Falk A, Ofir R, Heine VM, Chawner SJRA, Rodriguez-Moreno A, van den Bree MBM, Testa G, Petrakis S, Harwood AJ. Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Mol Autism 2020; 11:42. [PMID: 32487215 PMCID: PMC7268297 DOI: 10.1186/s13229-020-00343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.
Collapse
Affiliation(s)
- Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, 152, Serbia
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, 5007, Bergen, Norway
| | - Yasir Ahmed Syed
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Nicolò Caporale
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081, Amsterdam, The Netherlands
| | - Samuel J R A Chawner
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio Rodriguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra. de Utrera, Km 1, 41013, Seville, Spain
| | - Marianne B M van den Bree
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, Via Cristina Belgioioso 171, 20157, Milan, Italy
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| | - Adrian J Harwood
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
30
|
A Caenorhabditis elegans Model for Integrating the Functions of Neuropsychiatric Risk Genes Identifies Components Required for Normal Dendritic Morphology. G3-GENES GENOMES GENETICS 2020; 10:1617-1628. [PMID: 32132169 PMCID: PMC7202017 DOI: 10.1534/g3.119.400925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Analysis of patient-derived DNA samples has identified hundreds of variants that are likely involved in neuropsychiatric diseases such as autism spectrum disorder (ASD) and schizophrenia (SCZ). While these studies couple behavioral phenotypes to individual genotypes, the number and diversity of candidate genes implicated in these disorders highlights the fact that the mechanistic underpinnings of these disorders are largely unknown. Here, we describe a RNAi-based screening platform that uses C. elegans to screen candidate neuropsychiatric risk genes (NRGs) for roles in controlling dendritic arborization. To benchmark this approach, we queried published lists of NRGs whose variants in ASD and SCZ are predicted to result in complete or partial loss of gene function. We found that a significant fraction (>16%) of these candidate NRGs are essential for dendritic development. Furthermore, these gene sets are enriched for dendritic arbor phenotypes (>14 fold) when compared to control RNAi datasets of over 500 human orthologs. The diversity of PVD structural abnormalities observed in these assays suggests that the functions of diverse NRGs (encoding transcription factors, chromatin remodelers, molecular chaperones and cytoskeleton-related proteins) converge to regulate neuronal morphology and that individual NRGs may play distinct roles in dendritic branching. We also demonstrate that the experimental value of this platform by providing additional insights into the molecular frameworks of candidate NRGs. Specifically, we show that ANK2/UNC-44 function is directly integrated with known regulators of dendritic arborization and suggest that altering the dosage of ARID1B/LET-526 expression during development affects neuronal morphology without diminishing aspects of cell fate specification.
Collapse
|
31
|
Sawahata M, Mori D, Arioka Y, Kubo H, Kushima I, Kitagawa K, Sobue A, Shishido E, Sekiguchi M, Kodama A, Ikeda R, Aleksic B, Kimura H, Ishizuka K, Nagai T, Kaibuchi K, Nabeshima T, Yamada K, Ozaki N. Generation and analysis of novel Reln-deleted mouse model corresponding to exonic Reln deletion in schizophrenia. Psychiatry Clin Neurosci 2020; 74:318-327. [PMID: 32065683 PMCID: PMC7318658 DOI: 10.1111/pcn.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
AIM A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia. METHODS A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed. RESULTS The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice. CONCLUSION The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hisako Kubo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kanako Kitagawa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Yang ZH, Cai X, Qu N, Zhao LJ, Zhong BL, Zhang SF, Chen J, Xia B, Jiang HY, Zhou DY, Liu WP, Chang H, Xiao X, Li Y, Li M. Identification of a functional 339 bp Alu insertion polymorphism in the schizophrenia-associated locus at 10q24.32. Zool Res 2020; 41:84-89. [PMID: 31840948 PMCID: PMC6956716 DOI: 10.24272/j.issn.2095-8137.2020.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhi-Hui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Hong-Yan Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dan-Yang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. E-mail:
| |
Collapse
|
33
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
34
|
Psychiatric Genetics, Epigenetics, and Cellular Models in Coming Years. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4. [PMID: 31608310 PMCID: PMC6788748 DOI: 10.20900/jpbs.20190012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychiatric genetic studies have uncovered hundreds of loci associated with various psychiatric disorders. We take the opportunity to review achievements in the past and provide our view of what is coming in the fields of molecular genetics, epigenetics, and cellular models. We expect that SNP-array and sequencing-based studies of genetic associations will continue to expand, covering more disorders, drug responses, phenotypes, and diverse populations. Epigenetic studies of psychiatric disorders will be another promising field with the growing recognition that environmental factors impact the risk for psychiatric disorders by modulating epigenetic factors. Functional studies of genetic findings will be needed in cellular models to provide important connections between genetic and epigenetic variants and biological phenotypes.
Collapse
|
35
|
Mäki-Marttunen T, Kaufmann T, Elvsåshagen T, Devor A, Djurovic S, Westlye LT, Linne ML, Rietschel M, Schubert D, Borgwardt S, Efrim-Budisteanu M, Bettella F, Halnes G, Hagen E, Næss S, Ness TV, Moberget T, Metzner C, Edwards AG, Fyhn M, Dale AM, Einevoll GT, Andreassen OA. Biophysical Psychiatry-How Computational Neuroscience Can Help to Understand the Complex Mechanisms of Mental Disorders. Front Psychiatry 2019; 10:534. [PMID: 31440172 PMCID: PMC6691488 DOI: 10.3389/fpsyt.2019.00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The brain is the most complex of human organs, and the pathophysiology underlying abnormal brain function in psychiatric disorders is largely unknown. Despite the rapid development of diagnostic tools and treatments in most areas of medicine, our understanding of mental disorders and their treatment has made limited progress during the last decades. While recent advances in genetics and neuroscience have a large potential, the complexity and multidimensionality of the brain processes hinder the discovery of disease mechanisms that would link genetic findings to clinical symptoms and behavior. This applies also to schizophrenia, for which genome-wide association studies have identified a large number of genetic risk loci, spanning hundreds of genes with diverse functionalities. Importantly, the multitude of the associated variants and their prevalence in the healthy population limit the potential of a reductionist functional genetics approach as a stand-alone solution to discover the disease pathology. In this review, we outline the key concepts of a "biophysical psychiatry," an approach that employs large-scale mechanistic, biophysics-founded computational modelling to increase transdisciplinary understanding of the pathophysiology and strive toward robust predictions. We discuss recent scientific advances that allow a synthesis of previously disparate fields of psychiatry, neurophysiology, functional genomics, and computational modelling to tackle open questions regarding the pathophysiology of heritable mental disorders. We argue that the complexity of the increasing amount of genetic data exceeds the capabilities of classical experimental assays and requires computational approaches. Biophysical psychiatry, based on modelling diseased brain networks using existing and future knowledge of basic genetic, biochemical, and functional properties on a single neuron to a microcircuit level, may allow a leap forward in deriving interpretable biomarkers and move the field toward novel treatment options.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anna Devor
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dirk Schubert
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Magdalena Efrim-Budisteanu
- Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Francesco Bettella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Halnes
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo, Norway
| | - Solveig Næss
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn V. Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christoph Metzner
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United Kingdom
- Institute of Software Engineering and Theoretical Computer Science, Technische Universität zu Berlin, Berlin, Germany
| | - Andrew G. Edwards
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Gaute T. Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Moslem M, Olive J, Falk A. Stem cell models of schizophrenia, what have we learned and what is the potential? Schizophr Res 2019; 210:3-12. [PMID: 30587427 DOI: 10.1016/j.schres.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a complex disorder with clinical manifestations in early adulthood. However, it may start with disruption of brain development caused by genetic or environmental factors, or both. Early deteriorating effects of genetic/environmental factors on neural development might be key to described disease causing mechanisms. Establishing cellular models with cells from affected individual using the induced pluripotent stem cells (iPSC) technology could be used to mimic early neurodevelopment alterations caused by risk genes or environmental stressors. Indeed, cellular models have allowed identification and further study of risk factors and the biological pathways in which they are involved. New advancements in differentiation methods such as defined and robust monolayer protocols and cerebral 3D organoids have made it possible to faithfully mimic neural development and neuronal functionality while CRISPR-editing tools assist to engineer isogenic cell lines to precisely explore genetic variation in polygenic diseases such as schizophrenia. Here we review the current field of iPSC models of schizophrenia and how risk factors can be modelled as well as discussing the common biological pathways involved.
Collapse
Affiliation(s)
- Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jessica Olive
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Life Sciences, Imperial College London, United Kingdom.
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Milanesi E, Voinsky I, Hadar A, Srouji A, Maj C, Shekhtman T, Gershovits M, Gilad S, Chillotti C, Squassina A, Potash JB, Schulze TG, Goes FS, Zandi P, Kelsoe JR, Gurwitz D. RNA sequencing of bipolar disorder lymphoblastoid cell lines implicates the neurotrophic factor HRP-3 in lithium's clinical efficacy. World J Biol Psychiatry 2019; 20:449-461. [PMID: 28854847 DOI: 10.1080/15622975.2017.1372629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Lithium remains the oldest and most effective treatment for mood stabilisation in bipolar disorder (BD), even though at least half of patients are only partially responsive or do not respond. This study aimed to identify biomarkers associated with lithium response in BD, based on comparing RNA sequencing information derived from lymphoblastoid cell lines (LCLs) of lithium-responsive (LR) versus lithium non-responsive (LNR) BD patients, to assess gene expression variations that might bear on treatment outcome. Methods: RNA sequencing was carried out on 24 LCLs from female BD patients (12 LR and 12 LNR) followed by qPCR validation in two additional independent cohorts (41 and 17 BD patients, respectively). Results: Fifty-six genes showed nominal differential expression comparing LR and LNR (FC ≥ |1.3|, P ≤ 0.01). The differential expression of HDGFRP3 and ID2 was validated by qPCR in the independent cohorts. Conclusions: We observed higher expression levels of HDGFRP3 and ID2 in BD patients who favourably respond to lithium. Both of these genes are involved in neurogenesis, and HDGFRP3 has been suggested to be a neurotrophic factor. Additional studies in larger BD cohorts are needed to confirm the potential of HDGFRP3 and ID2 expression levels in blood cells as tentative favourable lithium response biomarkers.
Collapse
Affiliation(s)
- Elena Milanesi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Ala Srouji
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich , Munich , Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health , Mannheim , Germany
| | - Carlo Maj
- Genetics Unit, IRCCS, San Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California , San Diego , CA , USA
| | - Michael Gershovits
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science , Rehovot , Israel
| | - Shlomit Gilad
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science , Rehovot , Israel
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari , Cagliari , Italy
| | - Alessio Squassina
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, School of Medicine, University of Cagliari , Cagliari , Italy
| | - James B Potash
- Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City , IA , USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich , Munich , Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health , Mannheim , Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Georg-August-University , Göttingen , Germany
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University , Baltimore , MD , USA
| | - Peter Zandi
- Department of Psychiatry, Johns Hopkins University , Baltimore , MD , USA
| | - John R Kelsoe
- Department of Psychiatry, University of California , San Diego , CA , USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
38
|
Xu SJ, Heller EA. Recent advances in neuroepigenetic editing. Curr Opin Neurobiol 2019; 59:26-33. [PMID: 31015104 DOI: 10.1016/j.conb.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 02/09/2023]
Abstract
A wealth of studies in the mammalian nervous system indicate the role of epigenetic gene regulation in both basic neurobiological function and disease. However, the relationship between epigenetic regulation and neuropathology is largely correlational due to the presence of mixed cell populations within brain regions and the genome-wide effects of classical approaches to manipulate the epigenome. Locus-specific epigenetic editing allows direct epigenetic regulation of specific genes to elucidate the direct causal relationship between epigenetic modifications and transcription. This review discusses some of the latest innovations in the efficacy and flexibility in this approach that hold promise for neurobiological application.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics and Penn Epigenetics Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Ori APS, Bot MHM, Molenhuis RT, Olde Loohuis LM, Ophoff RA. A Longitudinal Model of Human Neuronal Differentiation for Functional Investigation of Schizophrenia Polygenic Risk. Biol Psychiatry 2019; 85:544-553. [PMID: 30340753 PMCID: PMC6401362 DOI: 10.1016/j.biopsych.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/18/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Common psychiatric disorders are characterized by complex disease architectures with many small genetic effects that contribute and complicate biological understanding of their etiology. There is therefore a pressing need for in vitro experimental systems that allow for interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms. METHODS We have developed an analytical framework that integrates genome-wide disease risk from genome-wide association studies with longitudinal in vitro gene expression profiles of human neuronal differentiation. RESULTS We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders is significantly associated with genes that are differentially expressed and upregulated during differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the association with schizophrenia risk. CONCLUSIONS These findings reveal that in vitro human neuronal differentiation can be used to translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.
Collapse
Affiliation(s)
- Anil P S Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Merel H M Bot
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Remco T Molenhuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
40
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
41
|
Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, Moberget T, Elvsåshagen T, Metzner C, Devor A, Edwards AG, Fyhn M, Djurovic S, Dale AM, Andreassen OA, Einevoll GT. Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cereb Cortex 2019; 29:875-891. [PMID: 30475994 PMCID: PMC6319172 DOI: 10.1093/cercor/bhy291] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have implicated many ion channels in schizophrenia pathophysiology. Although the functions of these channels are relatively well characterized by single-cell studies, the contributions of common variation in these channels to neurophysiological biomarkers and symptoms of schizophrenia remain elusive. Here, using computational modeling, we show that a common biomarker of schizophrenia, namely, an increase in delta-oscillation power, may be a direct consequence of altered expression or kinetics of voltage-gated ion channels or calcium transporters. Our model of a circuit of layer V pyramidal cells highlights multiple types of schizophrenia-related variants that contribute to altered dynamics in the delta-frequency band. Moreover, our model predicts that the same membrane mechanisms that increase the layer V pyramidal cell network gain and response to delta-frequency oscillations may also cause a deficit in a single-cell correlate of the prepulse inhibition, which is a behavioral biomarker highly associated with schizophrenia.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Simula Research Laboratory, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Krull
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Solveig Næss
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn V Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Christoph Metzner
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, UK
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gaute T Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
42
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
43
|
Increased expression of BDNF mRNA in the frontal cortex of autistic patients. Behav Brain Res 2019; 359:903-909. [DOI: 10.1016/j.bbr.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
|
44
|
Ryynänen T, Toivanen M, Salminen T, Ylä-Outinen L, Narkilahti S, Lekkala J. Ion Beam Assisted E-Beam Deposited TiN Microelectrodes-Applied to Neuronal Cell Culture Medium Evaluation. Front Neurosci 2018; 12:882. [PMID: 30568570 PMCID: PMC6290344 DOI: 10.3389/fnins.2018.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Microelectrode material and cell culture medium have significant roles in the signal-to-noise ratio and cell well-being in in vitro electrophysiological studies. Here, we report an ion beam assisted e-beam deposition (IBAD) based process as an alternative titanium nitride (TiN) deposition method for sputtering in the fabrication of state-of-the-art TiN microelectrode arrays (MEAs). The effects of evaporation and nitrogen flow rates were evaluated while developing the IBAD TiN deposition process. Moreover, the produced IBAD TiN microelectrodes were characterized by impedance, charge transfer capacity (CTC) and noise measurements for electrical properties, AFM and SEM for topological imaging, and EDS for material composition. The impedance (at 1 kHz) of brand new 30 μm IBAD TiN microelectrodes was found to be double but still below 100 kΩ compared with commercial reference MEAs with sputtered TiN microelectrodes of the same size. On the contrary, the noise level of IBAD TiN MEAs was lower compared with that of commercial sputtered TiN MEAs in equal conditions. In CTC IBAD TiN electrodes (3.3 mC/cm2) also outperformed the sputtered counterparts (2.0 mC/cm2). To verify the suitability of IBAD TiN microelectrodes for cell measurements, human pluripotent stem cell (hPSC)-derived neuronal networks were cultured on IBAD TiN MEAs and commercial sputtered TiN MEAs in two different media: neural differentiation medium (NDM) and BrainPhys (BPH). The effect of cell culture media to hPSC derived neuronal networks was evaluated to gain more stable and more active networks. Higher spontaneous activity levels were measured from the neuronal networks cultured in BPH compared with those in NDM in both MEA types. However, BPH caused more problems in cell survival in long-term cultures by inducing neuronal network retraction and clump formation after 1–2 weeks. In addition, BPH was found to corrode the Si3N4 insulator layer more than NDM medium. The developed IBAD TiN process gives MEA manufacturers more choices to choose which method to use to deposit TiN electrodes and the medium evaluation results remind that not only electrode material but also insulator layer and cell culturing medium have crucial role in successful long term MEA measurements.
Collapse
Affiliation(s)
- Tomi Ryynänen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Maria Toivanen
- NeuroGroup, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Turkka Salminen
- Laboratory of Photonics, Tampere University of Technology, Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jukka Lekkala
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
45
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
46
|
Smeland OB, Andreassen OA. How can genetics help understand the relationship between cognitive dysfunction and schizophrenia? Scand J Psychol 2018; 59:26-31. [PMID: 29356008 DOI: 10.1111/sjop.12407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023]
Abstract
Despite the consistent finding that cognitive dysfunction is a core characteristic of schizophrenia (SCZ), little is known about the underlying pathophysiology. Recent progress in human genetics, driven by large genome-wide association studies (GWAS), has provided new data about the genetic architecture of complex human traits, including cognition and SCZ. Novel analytical tools have provided unprecedented opportunities to leverage the large amount of information from GWAS. Here we review the latest findings related to genetic architecture and risk genes of SCZ and cognitive functions, and recent findings of overlapping genetic factors. The recent GWAS of SCZ implicate over 100 risk gene loci, each with a small effect. A similar genetic architecture seems to be present in cognitive domains, suggesting that these phenotypes are highly polygenic. Further, GWAS have revealed more than 20 gene loci associated with cognitive traits, including intelligence, general cognition (g-factor), reaction time and verbal-numerical reasoning. Several gene loci have been implicated in educational attainment, a proxy measure of cognitive function. Recently, overlapping gene loci were found between education and SCZ, and between SCZ and cognitive traits, suggesting common genetic risk between SCZ and cognitive dysfunction. Mathematical modeling of GWAS of cognition and SCZ indicate that only a fraction of the heritability is identified. The evidence suggests a polygenic architecture for SCZ and cognitive functions, and a large degree of shared genetic risk. This indicates novel molecular genetic mechanisms and strengthens the notion that SCZ is more likely a part of the normal distribution and not a separate entity.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Abstract
The genetic complexity, clinical variability, and inaccessibility of affected tissue in neurodegenerative and neuropsychiatric disorders have largely prevented the development of effective disease-modifying therapeutics. A precision medicine approach that integrates genomics, deep clinical phenotyping, and patient stem cell models may facilitate identification of underlying biological drivers and targeted drug development.
Collapse
|
48
|
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr Top Dev Biol 2018; 129:99-122. [PMID: 29801532 DOI: 10.1016/bs.ctdb.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease.
Collapse
|
49
|
Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic Brain Aneuploidy in Mental Illnesses: An Association of Low-level Post-zygotic Aneuploidy with Schizophrenia and Comorbid Psychiatric Disorders. Curr Genomics 2018; 19:163-172. [PMID: 29606903 PMCID: PMC5850504 DOI: 10.2174/1389202918666170717154340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.
Collapse
Affiliation(s)
- Yuri B. Yurov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G. Vorsanova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Irina A. Demidova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Alexei D. Kolotii
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Ivan Y. Iourov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
50
|
Liang N, Trujillo CA, Negraes PD, Muotri AR, Lameu C, Ulrich H. Stem cell contributions to neurological disease modeling and personalized medicine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:54-62. [PMID: 28576415 DOI: 10.1016/j.pnpbp.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) represent a revolutionary tool for disease modeling and drug discovery. The generation of tissue-relevant cell types exhibiting a patient's genetic and molecular background offers the ability to develop individual and effective therapies. In this review, we present some major achievements in the neuroscience field using iPSCs and discuss promising perspectives in personalized medicine. In addition to disease modeling, the understanding of the cellular and molecular basis of neurological disorders is explored, including the discovery of new targets and potential drugs. Ultimately, we highlight how iPSC technology, together with genome editing approaches, may bring a deep impact on pre-clinical trials by reducing costs and increasing the success of treatments in a personalized fashion.
Collapse
Affiliation(s)
- Nicholas Liang
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Cleber A Trujillo
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Priscilla D Negraes
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|