1
|
Gromova OA, Torshin II, Chuchalin AG. [Ferritin as a biomarker of aging: geroprotective peptides of standardized human placental hydrolysate. A review]. TERAPEVT ARKH 2024; 96:826-835. [PMID: 39404729 DOI: 10.26442/00403660.2024.08.202811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 10/25/2024]
Abstract
Ferritin, an iron transport protein, is an acute phase protein of inflammation and oxidative stress (OS), a biomarker of cytolysis and ferroptosis. Inflammation, OS and iron overload are characteristic processes of the pathophysiology of aging. Human placental hydrolysates (HPHs) are promising hepatoprotective agents for anti-aging therapy. The goal of the team of authors was to systematize data on ferritin as a marker of aging and to identify peptides that counteract the aging pathophysiology, including through the regulation of iron and ferritin metabolism, in the HPH Laennec (manufactured by Japan Bioproducts). The results of basic and clinical studies confirm the above relationships and indicate that blood ferritin levels characterize the chronological and biological aging of the human body.
Collapse
Affiliation(s)
- O A Gromova
- Federal Research Center "Informatics and Control"
| | - I I Torshin
- Federal Research Center "Informatics and Control"
| | - A G Chuchalin
- Pirogov Russian National Research Medical University
| |
Collapse
|
2
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
3
|
Sohrabi HR, Gavett BE, Weinborn M, Speelman CP, Bucks RS, Martins RN. The McCusker Subjective Cognitive Impairment Inventory (McSCI): a novel measure of perceived cognitive decline. Age Ageing 2024; 53:afae138. [PMID: 38972330 PMCID: PMC11227899 DOI: 10.1093/ageing/afae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Subjective cognitive decline (SCD), i.e. self/other-reported concerns on one's cognitive functioning without objective evidence of significant decline, is an indicator of dementia risk. There is little consensus on reliability and validity of the available SCD measures. Therefore, introducing a novel and psychometrically sound measure of SCD is timely. OBJECTIVE The psychometric properties of a new SCD measure, the McCusker Subjective Cognitive Impairment Inventory-Self-Report (McSCI-S), are reported. METHODS Through review of previously published measures as well as our clinical and research data on people with SCD, we developed a 46-item self-report questionnaire to assess concerns on six cognitive domains, namely, memory, language, orientation, attention and concentration, visuoconstruction abilities and executive function. The McSCI-S was examined in a cohort of 526 participants using factor analysis, item response theory analysis and receiver operating characteristic (ROC) curve. RESULTS A unidimensional model provided acceptable fit (CFI = 0.94, TLI = 0.94, RMSEA [90% CI] = 0.052 [.049, 0.055], WRMR = 1.45). The McSCI-S internal consistency was excellent (.96). A cut-off score of ≥24 is proposed to identify participants with SCDs. Higher McSCI-S scores were associated with poorer general cognition, episodic verbal memory, executive function and greater memory complaints and depressive scores (P < .001), controlling for age, sex and education. CONCLUSIONS Excellent reliability and construct validity suggest the McSCI-S estimates SCDs with acceptable accuracy while capturing self-reported concerns for various cognitive domains. The psychometric analysis indicated that this measure can be used in cohort studies as well as on individual, clinical settings to assess SCDs.
Collapse
Affiliation(s)
- Hamid R Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Psychology, Murdoch University, Building 440, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Brandon E Gavett
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Perth, Crawley WA 6009, Australia
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael Weinborn
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Perth, Crawley WA 6009, Australia
| | - Craig P Speelman
- Experimental Psychology Unit, School of Arts and Humanities, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
| | - Romola S Bucks
- School of Psychological Science, University of Western Australia, 35 Stirling Highway, Perth, Crawley WA 6009, Australia
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
4
|
Li H, Jiang X, Xiao Y, Zhang Y, Zhang W, Doherty M, Nestor J, Li C, Ye J, Sha T, Lyu H, Wei J, Zeng C, Lei G. Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways. Bone Res 2023; 11:58. [PMID: 37914703 PMCID: PMC10620170 DOI: 10.1038/s41413-023-00292-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
Hand osteoarthritis is a common heterogeneous joint disorder with unclear molecular mechanisms and no disease-modifying drugs. In this study, we performed single-cell RNA sequencing analysis to compare the cellular composition and subpopulation-specific gene expression between cartilage with macroscopically confirmed osteoarthritis (n = 5) and cartilage without osteoarthritis (n = 5) from the interphalangeal joints of five donors. Of 105 142 cells, we identified 13 subpopulations, including a novel subpopulation with inflammation-modulating potential annotated as inflammatory chondrocytes. Fibrocartilage chondrocytes exhibited extensive alteration of gene expression patterns in osteoarthritic cartilage compared with nonosteoarthritic cartilage. Both inflammatory chondrocytes and fibrocartilage chondrocytes showed a trend toward increased numbers in osteoarthritic cartilage. In these two subpopulations from osteoarthritic cartilage, the ferroptosis pathway was enriched, and expression of iron overload-related genes, e.g., FTH1, was elevated. To verify these findings, we conducted a Mendelian randomization study using UK Biobank and a population-based cross-sectional study using data collected from Xiangya Osteoarthritis Study. Genetic predisposition toward higher expression of FTH1 mRNA significantly increased the risk of hand osteoarthritis (odds ratio = 1.07, 95% confidence interval: 1.02-1.11) among participants (n = 332 668) in UK Biobank. High levels of serum ferritin (encoded by FTH1), a biomarker of body iron overload, were significantly associated with a high prevalence of hand osteoarthritis among participants (n = 1 241) of Xiangya Osteoarthritis Study (P-for-trend = 0.037). In conclusion, our findings indicate that inflammatory and fibrocartilage chondrocytes are key subpopulations and that ferroptosis may be a key pathway in hand osteoarthritis, providing new insights into the pathophysiology and potential therapeutic targets of hand osteoarthritis.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofeng Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Weiya Zhang
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
- Pain Centre Versus Arthritis UK, Nottingham, NG5 1PB, UK
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
- Pain Centre Versus Arthritis UK, Nottingham, NG5 1PB, UK
| | - Jacquelyn Nestor
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Changjun Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Ye
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Sha
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Houchen Lyu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, 410008, Hunan, China.
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C, Li M. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3564-3587. [PMID: 37703318 DOI: 10.1021/acschemneuro.3c00343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Qi Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Jingyi Sun
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Tian Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Lina Feng
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mingquan Li
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
6
|
Yuan J, Pedrini S, Thota R, Doecke J, Chatterjee P, Sohrabi HR, Teunissen CE, Verberk IMW, Stoops E, Vanderstichele H, Meloni BP, Mitchell C, Rainey-Smith S, Goozee K, Tai ACP, Ashton N, Zetterberg H, Blennow K, Gao J, Liu D, Mastaglia F, Inderjeeth C, Zheng M, Martins RN. Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults. NPJ AGING 2023; 9:17. [PMID: 37666862 PMCID: PMC10477312 DOI: 10.1038/s41514-023-00114-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 09/06/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aβ) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aβ- (n = 65) and Aβ+ (n = 35) according to their brain Aβ load assessed using Aβ-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including Aβ40, Aβ42, Aβ42/Aβ40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the Aβ+ group (71.49 ± 25.00 pmol/L) compared with the Aβ- group (56.51 ± 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain Aβ load (ρ = 0.321, P = 0.001). Importantly, plasma SOST combined with Aβ42/Aβ40 ratio significantly increased the area under the curve (AUC) when compared with using Aβ42/Aβ40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.
Collapse
Grants
- 2018-02532 Vetenskapsrådet (Swedish Research Council)
- KB is supported by the Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), and the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495).
Collapse
Affiliation(s)
- Jun Yuan
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Rohith Thota
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - James Doecke
- Australian E-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
- The Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, 9052, Gent, Belgium
| | | | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Christopher Mitchell
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Stephanie Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Macquarie Park, NSW, Australia
| | - Andrew Chi Pang Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Nicholas Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Delin Liu
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Charles Inderjeeth
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Sir Charles Gairdner and Osborne Park Health Care Group, Perth, Australia
| | - Minghao Zheng
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia.
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
- The Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
Wu L, Xian X, Tan Z, Dong F, Xu G, Zhang M, Zhang F. The Role of Iron Metabolism, Lipid Metabolism, and Redox Homeostasis in Alzheimer's Disease: from the Perspective of Ferroptosis. Mol Neurobiol 2023; 60:2832-2850. [PMID: 36735178 DOI: 10.1007/s12035-023-03245-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
In the development of Alzheimer's disease (AD), cell death is common. Novel cell death form-ferroptosis is discovered in recent years. Ferroptosis is an iron-regulated programmed cell death mechanism and has been identified in AD clinical samples. Typical characteristics of ferroptosis involve the specific changes in cell morphology, iron-dependent aggregation of reactive oxygen species (ROS) and lipid peroxides, loss of glutathione (GSH), inactivation of glutathione peroxidase 4 (GPX4), and a unique group of regulatory genes. Increasing evidence demonstrates that ferroptosis may be associated with neurological dysfunction in AD. However, the underlying mechanisms have not been fully elucidated. This article reviews the potential role of ferroptosis in AD, the involvement of ferroptosis in the pathological progression of AD through the mechanisms of iron metabolism, lipid metabolism, and redox homeostasis, as well as a range of potential therapies targeting ferroptosis for AD. Intervention strategies based on ferroptosis are promising for Alzheimer's disease treatment at present, but further researches are still needed.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Xiaohui Xian
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
8
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023; 375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
9
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
10
|
Blood Analytes as Biomarkers of Mechanisms Involved in Alzheimer’s Disease Progression. Int J Mol Sci 2022; 23:ijms232113289. [DOI: 10.3390/ijms232113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, but the pathogenetic factors are not yet well known, and the relationships between brain and systemic biochemical derangements and disease onset and progression are unclear. We aim to focus on blood biomarkers for an accurate prognosis of the disease. We used a dataset characterized by longitudinal findings collected over the past 10 years from 90 AD patients. The dataset included 277 observations (both clinical and biochemical ones, encompassing blood analytes encompassing routine profiles for different organs, together with immunoinflammatory and oxidative markers). Subjects were grouped into four severity classes according to the Clinical Dementia Rating (CDR) Scale: mild (CDR = 0.5 and CDR = 1), moderate (CDR = 2), severe (CDR = 3) and very severe (CDR = 4 and CDR = 5). Statistical models were used for the identification of potential blood markers of AD progression. Moreover, we employed the Pathfinder tool of the Reactome database to investigate the biological pathways in which the analytes of interest could be involved. Statistical results reveal an inverse significant relation between four analytes (high-density cholesterol, total cholesterol, iron and ferritin) with AD severity. In addition, the Reactome database suggests that such analytes could be involved in pathways that are altered in AD progression. Indeed, the identified blood markers include molecules that reflect the heterogeneous pathogenetic mechanisms of AD. The combination of such blood analytes might be an early indicator of AD progression and constitute useful therapeutic targets.
Collapse
|
11
|
Pal A, Cerchiaro G, Rani I, Ventriglia M, Rongioletti M, Longobardi A, Squitti R. Iron in Alzheimer's Disease: From Physiology to Disease Disabilities. Biomolecules 2022; 12:1248. [PMID: 36139084 PMCID: PMC9496246 DOI: 10.3390/biom12091248] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) play a key role in the neurodegeneration processes. Increased oxidative stress damages lipids, proteins, and nucleic acids in brain tissue, and it is tied to the loss of biometal homeostasis. For this reason, attention has been focused on transition metals involved in several biochemical reactions producing ROS. Even though a bulk of evidence has uncovered the role of metals in the generation of the toxic pathways at the base of Alzheimer's disease (AD), this matter has been sidelined by the advent of the Amyloid Cascade Hypothesis. However, the link between metals and AD has been investigated in the last two decades, focusing on their local accumulation in brain areas known to be critical for AD. Recent evidence revealed a relation between iron and AD, particularly in relation to its capacity to increase the risk of the disease through ferroptosis. In this review, we briefly summarize the major points characterizing the function of iron in our body and highlight why, even though it is essential for our life, we have to monitor its dysfunction, particularly if we want to control our risk of AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André 09210-580, SP, Brazil
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar University (MMU), Mullana, Ambala 133203, Haryana, India
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Rosanna Squitti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
12
|
Li TR, Yang Q, Hu X, Han Y. Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage. Curr Neuropharmacol 2022; 20:713-737. [PMID: 34030620 PMCID: PMC9878962 DOI: 10.2174/1570159x19666210524153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly "asymptomatic" in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, 50924, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China;,Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China;,National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China;,School of Biomedical Engineering, Hainan University, Haikou, 570228, China;,Address correspondence to this author at the Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Tel: +86 13621011941; E-mail:
| |
Collapse
|
13
|
Liu F, Zhang Z, Zhang L, Meng R, Gao J, Jin M, Li M, Wang X. Effect of metal ions on Alzheimer's disease. Brain Behav 2022; 12:e2527. [PMID: 35212185 PMCID: PMC8933773 DOI: 10.1002/brb3.2527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 11/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. The typical pathological changes of AD are Aβ deposition, neurofibrillary tangles, neuron loss, and chronic inflammation. The balance of metal ions is essential for numerous physiological functions, especially in the central nervous system. More studies showed that metal ions participate in the development of AD. However, the involvement of metal ions in AD is controversial. Thus, we reviewed articles about the relationship between metal ions and AD and discussed some contradictory reports in order to better understand the role of metal ions in AD.
Collapse
Affiliation(s)
- Fan Liu
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhuo Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lin Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ruo‐Ni Meng
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jia Gao
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Jin
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Li
- Department of Orthopaedic SurgeryThird Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiao‐Peng Wang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
14
|
Majerníková N, den Dunnen WFA, Dolga AM. The Potential of Ferroptosis-Targeting Therapies for Alzheimer's Disease: From Mechanism to Transcriptomic Analysis. Front Aging Neurosci 2022; 13:745046. [PMID: 34987375 PMCID: PMC8721139 DOI: 10.3389/fnagi.2021.745046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, currently affects 40–50 million people worldwide. Despite the extensive research into amyloid β (Aβ) deposition and tau protein hyperphosphorylation (p-tau), an effective treatment to stop or slow down the progression of neurodegeneration is missing. Emerging evidence suggests that ferroptosis, an iron-dependent and lipid peroxidation-driven type of programmed cell death, contributes to neurodegeneration in AD. Therefore, how to intervene against ferroptosis in the context of AD has become one of the questions addressed by studies aiming to develop novel therapeutic strategies. However, the underlying molecular mechanism of ferroptosis in AD, when ferroptosis occurs in the disease course, and which ferroptosis-related genes are differentially expressed in AD remains to be established. In this review, we summarize the current knowledge on cell mechanisms involved in ferroptosis, we discuss how these processes relate to AD, and we analyze which ferroptosis-related genes are differentially expressed in AD brain dependant on cell type, disease progression and gender. In addition, we point out the existing targets for therapeutic options to prevent ferroptosis in AD. Future studies should focus on developing new tools able to demonstrate where and when cells undergo ferroptosis in AD brain and build more translatable AD models for identifying anti-ferroptotic agents able to slow down neurodegeneration.
Collapse
Affiliation(s)
- Nad'a Majerníková
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research (MOLAR), University Medical Centre Groningen, Groningen, Netherlands
| | - Amalia M Dolga
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
16
|
Chatterjee P, Fagan AM, Xiong C, McKay M, Bhatnagar A, Wu Y, Singh AK, Taddei K, Martins I, Gardener SL, Molloy MP, Multhaup G, Masters CL, Schofield PR, Benzinger TLS, Morris JC, Bateman RJ, Greenberg SM, Wermer MJH, van Buchem MA, Sohrabi HR, Martins RN. Presymptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy-Related Blood Metabolite Alterations. J Alzheimers Dis 2021; 79:895-903. [PMID: 33361604 DOI: 10.3233/jad-201267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is one of the major causes of intracerebral hemorrhage and vascular dementia in older adults. Early diagnosis will provide clinicians with an opportunity to intervene early with suitable strategies, highlighting the importance of pre-symptomatic CAA biomarkers. OBJECTIVE Investigation of pre-symptomatic CAA related blood metabolite alterations in Dutch-type hereditary CAA mutation carriers (D-CAA MCs). METHODS Plasma metabolites were measured using mass-spectrometry (AbsoluteIDQ® p400 HR kit) and were compared between pre-symptomatic D-CAA MCs (n = 9) and non-carriers (D-CAA NCs, n = 8) from the same pedigree. Metabolites that survived correction for multiple comparisons were further compared between D-CAA MCs and additional control groups (cognitively unimpaired adults). RESULTS 275 metabolites were measured in the plasma, 22 of which were observed to be significantly lower in theD-CAAMCs compared to D-CAA NCs, following adjustment for potential confounding factors age, sex, and APOE ε4 (p < 00.05). After adjusting for multiple comparisons, only spermidine remained significantly lower in theD-CAAMCscompared to theD-CAA NCs (p < 0.00018). Plasma spermidine was also significantly lower in D-CAA MCs compared to the cognitively unimpaired young adult and older adult groups (p < 0.01). Spermidinewas also observed to correlate with CSF Aβ40 (rs = 0.621, p = 0.024), CSF Aβ42 (rs = 0.714, p = 0.006), and brain Aβ load (rs = -0.527, p = 0.030). CONCLUSION The current study provides pilot data on D-CAA linked metabolite signals, that also associated with Aβ neuropathology and are involved in several biological pathways that have previously been linked to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Matthew McKay
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Atul Bhatnagar
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Abhay K Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha L Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia.,Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, St Leonards, NSW, Australia
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VA, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marieke J H Wermer
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
| | | |
Collapse
|
17
|
Amadoro G, Latina V, Balzamino BO, Squitti R, Varano M, Calissano P, Micera A. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration. Front Neurosci 2021; 15:735928. [PMID: 34566573 PMCID: PMC8459906 DOI: 10.3389/fnins.2021.735928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aβ and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aβ and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | | | | | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | | | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| |
Collapse
|
18
|
Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, Karikari TK, Simrén J, Vanmechelen E, Armstrong NJ, Hone E, Asih PR, Taddei K, Doré V, Villemagne VL, Sohrabi HR, Zetterberg H, Masters CL, Blennow K, Martins RN. Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease. Alzheimers Dement 2021; 18:1141-1154. [PMID: 34494715 DOI: 10.1002/alz.12447] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD). METHODS Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis. RESULTS Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume. DISCUSSION These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michelle Tegg
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Australia.,KaRa Institute of Neurological Disease, Macquarie Park, Australia
| | - Abhay K Singh
- Macquarie Business School, Macquarie University, North Ryde, New South Wales, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Nicola J Armstrong
- Department of Mathematics & Statistics, Curtin University, Bentley, Western Australia, Australia
| | - Eugene Hone
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Prita R Asih
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| | - Vincent Doré
- eHealth, CSIRO Health and Biosecurity, Herston, Queensland, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia.,Department of Psychiatry, University of Pittsburgh, Pennsylvania, USA
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia.,Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Australia.,KaRa Institute of Neurological Disease, Macquarie Park, Australia.,Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
| |
Collapse
|
19
|
Ficiarà E, Munir Z, Boschi S, Caligiuri ME, Guiot C. Alteration of Iron Concentration in Alzheimer's Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis. Int J Mol Sci 2021; 22:4479. [PMID: 33923052 PMCID: PMC8123284 DOI: 10.3390/ijms22094479] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Zunaira Munir
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Silvia Boschi
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| |
Collapse
|
20
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
21
|
Shamsi A, Shahwan M, Khan MS, Husain FM, Alhumaydhi FA, Aljohani ASM, Rehman MT, Hassan MI, Islam A. Elucidating the Interaction of Human Ferritin with Quercetin and Naringenin: Implication of Natural Products in Neurodegenerative Diseases: Molecular Docking and Dynamics Simulation Insight. ACS OMEGA 2021; 6:7922-7930. [PMID: 33778303 PMCID: PMC7992174 DOI: 10.1021/acsomega.1c00527] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
Recent research has advocated the significant contribution of metal dyshomeostasis in developing and progressing Alzheimer's disease (AD). Disruption of homeostasis creates an imbalance of the metal ions that causes neuronal dysfunction and death. Flavonoids such as quercetin and naringenin play an essential role in iron homeostasis and are widely explored in treating various complex diseases. Iron is a critical player in many physiological activities, and hence, its homeostasis is essential for the normal functioning of the brain. Iron deficiency and iron overload contribute to AD development, highlighting the importance of maintaining iron homeostasis. Ferritin is an iron protein associated with the storage and sequestration of excess ferrous iron, playing a pivotal role in maintaining iron levels. Flavonoids are the most common polyphenolic compounds present in the human diet and are known to exert multiple neuroprotective actions. Naringenin and quercetin are extensively explored polyphenols having a broad range of therapeutic potential ranging from cancers to neurodegenerative disorders. This study aims to investigate their binding, employing molecular docking and molecular dynamics (MD) simulation in light of these polyphenols' and ferritin's therapeutic importance in AD. In this study, we performed structure-based docking of quercetin and naringenin with human ferritin. First, the binding affinity of quercetin and naringenin toward ferritin was estimated, and then their close interactions were explored to find the stable poses. All-atom 100 ns MD simulations further escorted the docking study, followed by principal component and free energy landscape analyses. The dynamic studies helped investigate the conformational dynamic, structural stability, and interaction mechanism of ferritin with quercetin and naringenin. The MD analysis suggested that the binding of quercetin and naringenin with ferritin stabilizes throughout the simulation period and leads to fewer conformational deviations. This study gives an insight at the atomistic level into the interaction between quercetin and naringenin with ferritin, thereby aiding in understanding the activity and mechanism of protein and drug binding. The study is clinically significant as iron participates in the occurrence of AD.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
- . Cell: +91-8266852171
| | - Moyad Shahwan
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
- College
of Pharmacy & Health Sciences, Ajman
University, Ajman, UAE
| | - Mohd Shahnawaz Khan
- Protein
Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department
of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi
Arabia
| | - Abdullah S. M. Aljohani
- Department
of Veterinary Medicine, College of Agriculture and Veterinary medicine, Qassim University, Buraydah 52571, Saudi
Arabia
| | - Md. Tabish Rehman
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
22
|
Jouini N, Saied Z, Ben Sassi S, Nebli F, Messaoud T, Hentati F, Belal S. Impacts of Iron Metabolism Dysregulation on Alzheimer's Disease. J Alzheimers Dis 2021; 80:1439-1450. [PMID: 33682709 DOI: 10.3233/jad-201250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Iron plays an important role in maintaining cell survival, with normal iron trafficking known to be regulated by the ceruloplasmin-transferrin (Cp-Tf) antioxidant system. Disruption to this system is thought to be detrimental to normal brain function. OBJECTIVE To determine whether an imbalance of iron and the proteins involved in its metabolism (ceruloplasmin and transferrin) are linked to Alzheimer's disease (AD) and to the expression of amyloid-beta (Aβ) peptide 1-42 (Aβ1-42), which is a major species of Aβ, and the most toxic. METHODS We evaluated the concentrations of iron, calcium, magnesium, and Aβ1-42 in the cerebrospinal fluid (CSF) of patients with AD and cognitively normal controls. Correlations between the components of the Cp-Tf antioxidant system in plasma were studied to determine the role of peripheral blood in the onset and/or development of AD. We used commercial ELISA immunoassays to measure Aβ1-42, immunoturbidimetry to quantify ceruloplasmin and transferrin, and colorimetry to quantify iron, calcium, and magnesium. RESULTS We found that the AD group had lower CSF concentrations of Aβ1-42 (p < 0.001) and calcium (p < 0.001), but a higher CSF concentration of iron (p < 0.001). Significantly lower plasma concentrations of ceruloplasmin (p = 0.003), transferrin (mean, p < 0.001), and iron (p < 0.001) were observed in the AD group than in cognitively normal adults. Moreover, we found a strong interdependence between most of these components. CONCLUSION Iron dyshomeostasis has a crucial role in the onset of AD and/or its development. Correcting metal misdistribution is an appealing therapeutic strategy for AD.
Collapse
Affiliation(s)
- Najla Jouini
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Biology Laboratory, Children's Hospital, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia.,Current address: Institute of Technology, Tralee, Co. Kerry, Ireland
| | - Zakaria Saied
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Samia Ben Sassi
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Fatma Nebli
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | | | - Faycel Hentati
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| | - Samir Belal
- Faculty of Medicine of Tunis, Neurosciences Department, University of Tunis El Manar, Tunis, Tunisia.,Neurology Department, National Institute of Neurology, Tunis, Tunisia
| |
Collapse
|
23
|
Ashford MT, Veitch DP, Neuhaus J, Nosheny RL, Tosun D, Weiner MW. The search for a convenient procedure to detect one of the earliest signs of Alzheimer's disease: A systematic review of the prediction of brain amyloid status. Alzheimers Dement 2021; 17:866-887. [PMID: 33583100 DOI: 10.1002/alz.12253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Convenient, cost-effective tests for amyloid beta (Aβ) are needed to identify those at higher risk for developing Alzheimer's disease (AD). This systematic review evaluates recent models that predict dichotomous Aβ. (PROSPERO: CRD42020144734). METHODS We searched Embase and identified 73 studies from 29,581 for review. We assessed study quality using established tools, extracted information, and reported results narratively. RESULTS We identified few high-quality studies due to concerns about Aβ determination and analytical issues. The most promising convenient, inexpensive classifiers consist of age, apolipoprotein E genotype, cognitive measures, and/or plasma Aβ. Plasma Aβ may be sufficient if pre-analytical variables are standardized and scalable assays developed. Some models lowered costs associated with clinical trial recruitment or clinical screening. DISCUSSION Conclusions about models are difficult due to study heterogeneity and quality. Promising prediction models used demographic, cognitive/neuropsychological, imaging, and plasma Aβ measures. Further studies using standardized Aβ determination, and improved model validation are required.
Collapse
Affiliation(s)
- Miriam T Ashford
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.,Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Rachel L Nosheny
- Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA.,Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, California, USA.,Department of Veterans Affairs Medical Center, Center for Imaging and Neurodegenerative Diseases, San Francisco, California, USA.,Department of Psychiatry, University of California San Francisco, San Francisco, California, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Chatterjee P, Pedrini S, Stoops E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, Zetterberg H, Blennow K, Teunissen CE, Vanderstichele HM, Martins RN. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease. Transl Psychiatry 2021; 11:27. [PMID: 33431793 PMCID: PMC7801513 DOI: 10.1038/s41398-020-01137-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein, can be measured in blood samples, and has been associated with Alzheimer's disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-β (Aβ) load. Cross-sectional analyses were carried out for plasma GFAP and plasma Aβ1-42/Aβ1-40 ratio, a blood-based marker associated with brain Aβ load, in participants (65-90 years) categorised into low (Aβ-, n = 63) and high (Aβ+, n = 33) brain Aβ load groups via Aβ positron emission tomography. Plasma GFAP, Aβ1-42, and Aβ1-40 were measured using the Single molecule array (Simoa) platform. Plasma GFAP levels were significantly higher (p < 0.00001), and plasma Aβ1-42/Aβ1-40 ratios were significantly lower (p < 0.005), in Aβ+ participants compared to Aβ- participants, adjusted for covariates age, sex, and apolipoprotein E-ε4 carriage. A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished Aβ+ from Aβ- (area under the curve, AUC = 0.78), but was outperformed when plasma GFAP was added to the base model (AUC = 0.91) and further improved with plasma Aβ1-42/Aβ1-40 ratio (AUC = 0.92). The current findings demonstrate that plasma GFAP levels are elevated in cognitively normal older adults at risk of AD. These observations suggest that astrocytic damage or activation begins from the pre-symptomatic stage of AD and is associated with brain Aβ load. Observations from the present study highlight the potential of plasma GFAP to contribute to a diagnostic blood biomarker panel (along with plasma Aβ1-42/Aβ1-40 ratios) for cognitively normal older adults at risk of AD.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - Steve Pedrini
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | | | - Kathryn Goozee
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.489025.2KaRa Institute of Neurological Diseases, Macquarie Park, NSW Australia ,Anglicare, Castle Hill Sydney, NSW Australia ,grid.1012.20000 0004 1936 7910School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia ,The Cooperative Research Centre for Mental Health, Carlton South, Australia
| | - Victor L. Villemagne
- grid.410678.cDepartment of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC Australia
| | - Prita R. Asih
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia
| | - Inge M. W. Verberk
- grid.484519.5Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Preeti Dave
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia ,Anglicare, Castle Hill Sydney, NSW Australia
| | - Kevin Taddei
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.429545.b0000 0004 5905 2729Australian Alzheimer’s Research Foundation, Nedlands, WA Australia
| | - Hamid R. Sohrabi
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.429545.b0000 0004 5905 2729Australian Alzheimer’s Research Foundation, Nedlands, WA Australia ,grid.1025.60000 0004 0436 6763Centre for Healthy Ageing, School of Psychology and Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA Australia
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom ,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Charlotte E. Teunissen
- grid.484519.5Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | - Ralph N. Martins
- grid.1004.50000 0001 2158 5405Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.489025.2KaRa Institute of Neurological Diseases, Macquarie Park, NSW Australia ,grid.1012.20000 0004 1936 7910School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA Australia ,The Cooperative Research Centre for Mental Health, Carlton South, Australia ,grid.429545.b0000 0004 5905 2729Australian Alzheimer’s Research Foundation, Nedlands, WA Australia
| |
Collapse
|
25
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
26
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Shahwan M, Khan MS, Husain FM, Shamsi A. Understanding binding between donepezil and human ferritin: molecular docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2020; 40:3871-3879. [PMID: 33228460 DOI: 10.1080/07391102.2020.1851302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Donepezil is an acetylcholinesterase inhibitor (AChEI) in use to treat symptomatic patients of mild to moderate Alzheimer's disease (AD). Ferritin is an iron protein associated with storage and sequestration of excess ferrous iron in a way maintaining proper function of cellular processes and plays a key role in AD since steady-state dysregulation of metal ion metabolism in vivo is associated with AD pathology. In lieu of therapeutics importance of ferritin and donepezil in AD, this study aims at investigating the binding between these two employing molecular docking and molecular dynamics (MD) simulation. In this study, we performed structure-based docking of donepezil with human Ferritin. Primarily, the top pose based on the binding affinity was selected and then interaction analysis was carried out to find the stable pose. Structural annotations by docking analysis were further accompanied by all-atom MD simulation for 100 ns followed by principal component and free energy landscape analyses to investigate the conformational changes, stability, and interaction mechanism of ferritin with donepezil. MD simulation suggested that the binding of donepezil stabilizes the ferritin structure and leads to fewer conformational changes. This study gives an insight at the atomistic level into the interaction between donepezil and ferritin thereby aiding in understanding the activity and mechanism of protein and drug binding. The study is clinically significant as iron participates in the occurrence of AD.
Collapse
Affiliation(s)
- Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.,Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Central University, New Delhi, India
| |
Collapse
|
28
|
De Luca A, Fostinelli S, Ferrari C, Binetti G, Benussi L, Borroni B, Rossi L, Rongioletti M, Ghidoni R, Squitti R. Iron Serum Markers Profile in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2020; 78:1373-1380. [PMID: 33185611 DOI: 10.3233/jad-201047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative syndrome. Defects of copper (Cu) and iron (Fe) homeostasis are involved in the development of several neurodegenerative diseases and their homeostasis is interconnected by the Cu-protein ceruloplasmin (Cp), responsible for Fe oxidative state. In this study we assessed Fe, transferrin (Trf), ferritin, Cp specific activity (eCp/iCp), Cp/Trf ratio, and Trf saturation in 60 FTLD patients and 43 healthy controls, and discussed the results in relation to Cu homeostasis. The significant decrease of the eCp/iCp in the FTLD patients supports the involvement of Fe imbalance in the onset and progression of FTLD.
Collapse
Affiliation(s)
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Statistics Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
29
|
Larrick JW, Larrick JW, Mendelsohn AR. Contribution of Ferroptosis to Aging and Frailty. Rejuvenation Res 2020; 23:434-438. [PMID: 32977738 DOI: 10.1089/rej.2020.2390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently characterized cell death phenotype resulting from iron-catalyzed peroxidation of polyunsaturated fatty acid phospholipids. Increased dysfunctional iron metabolism is thought to lead to increased levels of iron and ferroptosis, which in turn leads to cell and organismal death at least in the nematode Caenorhabditis elegans. Drugs that block lipid peroxidation or scavenge intracellular iron extend healthspan and lifespan in C. elegans independently of other mechanisms such as the daf-1/daf-16 (insulin/insulin-like growth factor 1 [IGF-1]) pathway, but unlike many aging mechanisms do not alter temporal scaling across the life cycle of C. elegans, but rather act at specific late points in the organism's life history, temporarily blocking execution of critical dysfunction that results in listless worms. As such, inhibition of ferroptosis may be a means to extend healthspan and treat frailty and possibly neurodegenerative diseases that have a reported role for iron dyshomeostasis. However, a significant effort to understand ferroptosis in the context of mammalian and human biology is necessary. For example, some tumors block ferroptosis to survive. The constraints of balancing iron metabolism are significant and will require careful consideration in any drug development program.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | | | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
30
|
Brosseron F, Kleemann K, Kolbe CC, Santarelli F, Castro-Gomez S, Tacik P, Latz E, Jessen F, Heneka MT. Interrelations of Alzheimer´s disease candidate biomarkers neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and neuroinflammation. J Neurochem 2020; 157:2210-2224. [PMID: 32894885 DOI: 10.1111/jnc.15175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
There is growing evidence that promising biomarkers of inflammation in Alzheimer´s disease (AD) and other neurodegenerative diseases correlate strongest to levels of tau or neurofilament, indicating an inflammatory response to neuronal damage or death. To test this hypothesis, we investigated three AD candidate markers (ferritin, fatty acid binding protein 3 (FABP-3), and neurogranin) in interrelation to established AD and inflammatory protein markers. We further aimed to determine if such interrelations would be evident in pathological subjects only or also under non-pathological circumstances. Cerebrospinal fluid levels of the three proteins were quantified in samples from the University Clinic of Bonn (UKB) Department of Neurodegenerative Diseases & Geriatric Psychiatry, Germany. Data were analyzed based on clinical or biomarker-defined stratification of subjects with adjustment for covariates age, sex, and APOE status. Levels of ferritin, FABP-3 and neurogranin were elevated in subjects with pathological levels of t-tau independent of beta-amyloid status. The three markers correlated with each other, tau isoforms, age, and those inflammatory markers previously described as related to neurodegeneration, predominantly sTREM2, macrophage migration inhibitory factor, soluble vascular endothelial growth factor receptor, soluble vascular cell adhesion molecule 1 (sVCAM-1), and C1q. These interrelations existed in subjects with pathological and sub-pathological tau levels, in particular for FABP-3 and neurogranin. Relations to ferritin were independent of absolute levels of tau, too, but showed differing trajectories between pathological and non-pathological subjects. A specific set of inflammatory markers is highly related to markers of neuronal damage such as tau, neurogranin, or FABP-3. These proteins could be used as readouts of the inflammatory response during the neurodegeneration phase of AD.
Collapse
Affiliation(s)
- Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | | | | | - Francesco Santarelli
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pawel Tacik
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Innate Immune, University of Bonn Medical Center, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
31
|
Chatterjee P, Cheong Y, Bhatnagar A, Goozee K, Wu Y, McKay M, Martins IJ, Lim WLF, Pedrini S, Tegg M, Villemagne VL, Asih PR, Dave P, Shah TM, Dias CB, Fuller SJ, Hillebrandt H, Gupta S, Hone E, Taddei K, Zetterberg H, Blennow K, Sohrabi HR, Martins RN. Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults. J Neurochem 2020; 159:389-402. [DOI: 10.1111/jnc.15128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Yeo‐Jin Cheong
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Atul Bhatnagar
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- KaRa Institute of Neurological Disease Sydney NSW Australia
- Clinical Research Department Anglicare, Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia, Crawley WA Australia
| | - Yunqi Wu
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Matthew McKay
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Ian J. Martins
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Wei L. F. Lim
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Steve Pedrini
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Michelle Tegg
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Victor L. Villemagne
- The Florey Institute of Neuroscience and Mental Health University of Melbourne VA Australia
| | - Prita R. Asih
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Preeti Dave
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- Clinical Research Department Anglicare, Sydney NSW Australia
| | - Tejal M. Shah
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| | - Cintia B. Dias
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Stephanie J. Fuller
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Heidi Hillebrandt
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Sunil Gupta
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
| | - Eugene Hone
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
| | - Kevin Taddei
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of NeurologyQueen Square London UK
- UK Dementia Research Institute at UCL London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
- Centre for Healthy Ageing School of Psychology and Exercise Science College of Science Health, Engineering and Education Murdoch University Murdoch WA Australia
| | - Ralph N. Martins
- Department of Biomedical Sciences Macquarie University North Ryde NSW Australia
- School of Medical and Health Sciences Edith Cowan University, Patricia Sarich Neuroscience Research Institute Nedlands WA Australia
- KaRa Institute of Neurological Disease Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia, Crawley WA Australia
- Australian Alzheimer’s Research Foundation Nedlands WA Australia
| |
Collapse
|
32
|
Toyokuni S, Yanatori I, Kong Y, Zheng H, Motooka Y, Jiang L. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci 2020; 111:2665-2671. [PMID: 32437084 PMCID: PMC7419040 DOI: 10.1111/cas.14496] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Despite significant developments and persistent efforts by scientists, cancer is one of the primary causes of human death worldwide. No form of life on Earth can survive without iron, although some species can live without oxygen. Iron presents a double‐edged sword. Excess iron is a risk for carcinogenesis, while its deficiency causes anemia, leading to oxygen shortage. Every cell is eventually destined to death, either through apoptosis or necrosis. Regulated necrosis is recognized in distinct forms. Ferroptosis is defined as catalytic Fe(II)‐dependent regulated necrosis accompanied by lipid peroxidation. The main observation was necrosis of fibrosarcoma cells through inhibition of cystine/glutamate antiporter with erastin, which reduced intracellular cysteine and, thus, glutathione levels. Our current understanding of ferroptosis is relative abundance of iron (catalytic Fe[II]) in comparison with sulfur (sulfhydryls). Thus, either excess iron or sulfur deficiency causes ferroptosis. Cell proliferation inevitably requires iron for DNA synthesis and energy production. Carcinogenesis is a process toward iron addiction with ferroptosis resistance. Conversely, ferroptosis is associated with aging and neurodegeneration. Ferroptosis of immune cells during infection is advantageous for infectious agents, whereas ferroptosis resistance incubates carcinogenic soil as excess iron. Cancer cells are rich in catalytic Fe(II). Directing established cancer cells to ferroptosis is a novel strategy for discovering cancer therapies. Appropriate iron regulation could be a tactic to reduce and delay carcinogenesis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Chatterjee P, Mohammadi M, Goozee K, Shah TM, Sohrabi HR, Dias CB, Shen K, Asih PR, Dave P, Pedrini S, Ashton NJ, Hye A, Taddei K, Lovejoy DB, Zetterberg H, Blennow K, Martins RN. Serum Hepcidin Levels in Cognitively Normal Older Adults with High Neocortical Amyloid-β Load. J Alzheimers Dis 2020; 76:291-301. [PMID: 32538848 PMCID: PMC7369053 DOI: 10.3233/jad-200162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVE Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer's disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-β load (NAL). METHODS Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65-90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR)<1.35 was classified as low NAL (n = 65) and ≥1.35 (n = 35) was classified as high NAL. RESULTS Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOEɛ4 carriage (p < 0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC = 0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma Aβ42/40 ratio (AUC = 0.829). CONCLUSION The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Maryam Mohammadi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Tejal M Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, South Street, Murdoch, WA, Australia
| | - Cintia B Dias
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Prita R Asih
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Steve Pedrini
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, VA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
34
|
Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:72. [PMID: 32517787 PMCID: PMC7285604 DOI: 10.1186/s13195-020-00634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Background Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. Methods Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. Results Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. Conclusions In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Collapse
|
35
|
Marquié M, Valero S, Castilla-Marti M, Martínez J, Rodríguez-Gómez O, Sanabria Á, Tartari JP, Monté-Rubio GC, Sotolongo-Grau O, Alegret M, Pérez-Cordón A, Roberto N, de Rojas I, Moreno-Grau S, Montrreal L, Hernández I, Rosende-Roca M, Mauleón A, Vargas L, Abdelnour C, Gil S, Esteban-De Antonio E, Espinosa A, Ortega G, Lomeña F, Pavia J, Vivas A, Tejero MÁ, Gómez-Chiari M, Simó R, Ciudin A, Hernández C, Orellana A, Benaque A, Ruiz A, Tárraga L, Boada M. Association between retinal thickness and β-amyloid brain accumulation in individuals with subjective cognitive decline: Fundació ACE Healthy Brain Initiative. ALZHEIMERS RESEARCH & THERAPY 2020; 12:37. [PMID: 32234080 PMCID: PMC7110730 DOI: 10.1186/s13195-020-00602-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Background Optical coherence tomography (OCT) of the retina is a fast and easily accessible tool for the quantification of retinal structural measurements. Multiple studies show that patients with Alzheimer’s disease (AD) exhibit thinning in several retinal layers compared to age-matched controls. Subjective cognitive decline (SCD) has been proposed as a risk factor for progression to AD. There is little data about retinal changes in preclinical AD and their correlation with amyloid-β (Aβ) uptake. Aims We investigated the association of retinal thickness quantified by OCT with Aβ accumulation and conversion to mild cognitive impairment (MCI) over 24 months in individuals with SCD. Methods One hundred twenty-nine individuals with SCD enrolled in Fundació ACE Healthy Brain Initiative underwent comprehensive neuropsychological testing, OCT scan of the retina and florbetaben (FBB) positron emission tomography (PET) at baseline (v0) and after 24 months (v2). We assessed the association of sixteen retinal thickness measurements at baseline with FBB-PET status (+/−) and global standardize uptake value ratio (SUVR) as a continuous measure at v0 and v2 and their predictive value on clinical status change (conversion to mild cognitive impairment (MCI)) at v2. Results Mean age of the sample was 64.72 ± 7.27 years; 62.8% were females. Fifteen participants were classified as FBB-PET+ at baseline and 22 at v2. Every 1 μm of increased thickness in the inner nasal macular region conferred 8% and 6% higher probability of presenting a FBB-PET+ status at v0 (OR = 1.08, 95% CI = 1.02–1.14, p = 0.007) and v2 (OR = 1.06, 95% CI = 1.02–1.11, p = 0.004), respectively. Inner nasal macular thickness also positively correlated with global SUVR (at v0: β = 0.23, p = 0.004; at v2: β = 0.26, p = 0.001). No retinal measurements were associated to conversion to MCI over 24 months. Conclusions Subtle retinal thickness changes in the macular region are already present in SCD and correlate with Aβ uptake.
Collapse
Affiliation(s)
- Marta Marquié
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Castilla-Marti
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Department of Ophthalmology, Hospital del Mar and Hospital de l'Esperança - Parc de Salut Mar, Barcelona, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Octavio Rodríguez-Gómez
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Tartari
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Gemma C Monté-Rubio
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitee Rosende-Roca
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Ana Mauleón
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Esteban-De Antonio
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Lomeña
- Department of Radiology, Hospital Clínic i Provincial de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Javier Pavia
- Department of Radiology, Hospital Clínic i Provincial de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Assumpta Vivas
- Department of Diagnostic Imaging, Clínica Corachan, Barcelona, Spain
| | | | | | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Andreea Ciudin
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Cristina Hernández
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Benaque
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades - Universitat Internacional de Catalunya (UIC), Gran Via Carles III, 85 bis, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
36
|
Chatterjee P, Zetterberg H, Goozee K, Lim CK, Jacobs KR, Ashton NJ, Hye A, Pedrini S, Sohrabi HR, Shah T, Asih PR, Dave P, Shen K, Taddei K, Lovejoy DB, Guillemin GJ, Blennow K, Martins RN. Plasma neurofilament light chain and amyloid-β are associated with the kynurenine pathway metabolites in preclinical Alzheimer's disease. J Neuroinflammation 2019; 16:186. [PMID: 31601232 PMCID: PMC6788092 DOI: 10.1186/s12974-019-1567-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Blood markers indicative of neurodegeneration (neurofilament light chain; NFL), Alzheimer’s disease amyloid pathology (amyloid-β; Aβ), and neuroinflammation (kynurenine pathway; KP metabolites) have been investigated independently in neurodegenerative diseases. However, the association of these markers of neurodegeneration and AD pathology with neuroinflammation has not been investigated previously. Therefore, the current study examined whether NFL and Aβ correlate with KP metabolites in elderly individuals to provide insight on the association between blood indicators of neurodegeneration and neuroinflammation. Methods Correlations between KP metabolites, measured using liquid chromatography and gas chromatography coupled with mass spectrometry, and plasma NFL and Aβ concentrations, measured using single molecule array (Simoa) assays, were investigated in elderly individuals aged 65–90 years, with normal global cognition (Mini-Mental State Examination Score ≥ 26) from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort. Results A positive correlation between NFL and the kynurenine to tryptophan ratio (K/T) reflecting indoleamine 2,3-dioxygenase activity was observed (r = .451, p < .0001). Positive correlations were also observed between NFL and kynurenine (r = .364, p < .0005), kynurenic acid (r = .384, p < .0001), 3-hydroxykynurenine (r = .246, p = .014), anthranilic acid (r = .311, p = .002), and quinolinic acid (r = .296, p = .003). Further, significant associations were observed between plasma Aβ40 and the K/T (r = .375, p < .0005), kynurenine (r = .374, p < .0005), kynurenic acid (r = .352, p < .0005), anthranilic acid (r = .381, p < .0005), and quinolinic acid (r = .352, p < .0005). Significant associations were also observed between plasma Aβ42 and the K/T ratio (r = .215, p = .034), kynurenic acid (r = .214, p = .035), anthranilic acid (r = .278, p = .006), and quinolinic acid (r = .224, p = .027) in the cohort. On stratifying participants based on their neocortical Aβ load (NAL) status, NFL correlated with KP metabolites irrespective of NAL status; however, associations between plasma Aβ and KP metabolites were only pronounced in individuals with high NAL while associations in individuals with low NAL were nearly absent. Conclusions The current study shows that KP metabolite changes are associated with biomarker evidence of neurodegeneration. Additionally, the association between KP metabolites and plasma Aβ seems to be NAL status dependent. Finally, the current study suggests that an association between neurodegeneration and neuroinflammation manifests in the periphery, suggesting that preventing cytoskeleton cytotoxicity by KP metabolites may have therapeutic potential. Electronic supplementary material The online version of this article (10.1186/s12974-019-1567-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kelly R Jacobs
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Abdul Hye
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, UK
| | - Steve Pedrini
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Prita R Asih
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia. .,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia. .,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia. .,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia. .,The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Ralph & Patricia Sarich Neuroscience Research Institute, 8 Verdun Street, Nedlands, WA, 6009, Australia.
| |
Collapse
|
37
|
Chatterjee P, Elmi M, Goozee K, Shah T, Sohrabi HR, Dias CB, Pedrini S, Shen K, Asih PR, Dave P, Taddei K, Vanderstichele H, Zetterberg H, Blennow K, Martins RN. Ultrasensitive Detection of Plasma Amyloid-β as a Biomarker for Cognitively Normal Elderly Individuals at Risk of Alzheimer’s Disease. J Alzheimers Dis 2019; 71:775-783. [DOI: 10.3233/jad-190533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mitra Elmi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
- Anglicare, Sydney, Castle Hill, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | - Cintia B. Dias
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Steve Pedrini
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, Australia
| | - Prita R. Asih
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Anglicare, Sydney, Castle Hill, NSW, Australia
- John Curtin School of Medical research, Canberra, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N. Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
38
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Matsuo M, Tazawa K. Reference range of clinical blood tests in physically independent patients of advanced age with groin hernia in a Japanese hospital. Geriatr Gerontol Int 2019; 19:780-785. [PMID: 31199563 DOI: 10.1111/ggi.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/08/2019] [Indexed: 01/21/2023]
Abstract
AIM The present study was carried out to determine the reference ranges of 43 frequently used blood tests in daily practice for physically independent patients of advanced age. METHODS We identified all patients aged ≥20 years who underwent groin hernia repair at Itoigawa General Hospital in Niigata, Japan. The patients' characteristics, preoperative data and prescribed medications were obtained by reviewing the electronic medical records. RESULTS Of 284 patients, 266 with independence in activities of daily life were included in the present study: 72 were assigned to the younger adult group (age 20-64 years), 86 were assigned to the older adult group (age 65-74 years) and 108 were assigned to the advanced age group (age ≥75 years). Patients in the advanced age group had a lower body mass index, less alcohol consumption, more hypertension, lower respiratory function and higher frequency of multidrug therapy. The multiple regression analysis showed significant differences in albumin, gamma-glutamyl transpeptidase, cholinesterase, estimated glomerular filtration rate, uric acid, triglyceride, calcium, phosphate, magnesium and peripheral blood cell counts between the advanced age group and the other two age groups. CONCLUSIONS We identified age-dependent changes in several blood tests among physically independent adults. These results will help to guide accurate interpretation of laboratory results and properly manage patients in geriatric medicine. Geriatr Gerontol Int 2019; 19: 780-785.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Department of Internal Medicine, Itoigawa General Hospital, Niigata, Japan
| | - Kenichi Tazawa
- Department of Surgery, Itoigawa General Hospital, Niigata, Japan
| |
Collapse
|
40
|
Ghidoni R, Squitti R, Siotto M, Benussi L. Innovative Biomarkers for Alzheimer's Disease: Focus on the Hidden Disease Biomarkers. J Alzheimers Dis 2019; 62:1507-1518. [PMID: 29504534 DOI: 10.3233/jad-170953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The criteria for the clinical diagnosis of AD include the analysis of biomarkers of the underlying brain disease pathology; a set of cerebrospinal fluid (CSF) tests, amyloid-β1-42 (Aβ42), total-tau (t-tau), and phosphorylated tau (p-tau), are available and their performance in a clinical setting has been assessed in several studies. Thus, in dementia research, great advances have been made in the discovery of putative biomarkers; however, disappointingly, few of them have been translated into clinically applicable assays. To find biomarkers able to reliably detect AD pathology already at prodromal stages and in blood is even more important. Recent technical breakthroughs have provided ultrasensitive methods that allow the detection of brain-specific proteins in blood. In the present review, we will focus on the usefulness of ultrasensitive technologies for biomarker discovery and trace elements detection; moreover, we will review studies on circulating nano-compartments, a promising novel source of material for molecular diagnostics.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
41
|
Nikseresht S, Bush AI, Ayton S. Treating Alzheimer's disease by targeting iron. Br J Pharmacol 2019; 176:3622-3635. [PMID: 30632143 DOI: 10.1111/bph.14567] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022] Open
Abstract
No disease modifying drugs have been approved for Alzheimer's disease despite recent major investments by industry and governments throughout the world. The burden of Alzheimer's disease is becoming increasingly unsustainable, and given the last decade of clinical trial failures, a renewed understanding of the disease mechanism is called for, and trialling of new therapeutic approaches to slow disease progression is warranted. Here, we review the evidence and rational for targeting brain iron in Alzheimer's disease. Although iron elevation in Alzheimer's disease was reported in the 1950s, renewed interest has been stimulated by the advancement of fluid and imaging biomarkers of brain iron that predict disease progression, and the recent discovery of the iron-dependent cell death pathway termed ferroptosis. We review these emerging clinical and biochemical findings and propose how this pathway may be targeted therapeutically to slow Alzheimer's disease progression. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Sara Nikseresht
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Ashton NJ, Nevado-Holgado AJ, Barber IS, Lynham S, Gupta V, Chatterjee P, Goozee K, Hone E, Pedrini S, Blennow K, Schöll M, Zetterberg H, Ellis KA, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Aarsland D, Powell J, Lovestone S, Martins R, Hye A. A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease. SCIENCE ADVANCES 2019; 5:eaau7220. [PMID: 30775436 PMCID: PMC6365111 DOI: 10.1126/sciadv.aau7220] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/19/2018] [Indexed: 05/03/2023]
Abstract
A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
Collapse
Affiliation(s)
- Nicholas J. Ashton
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King’s College, London, UK
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia
- School of Medicine, Faculty of Health, Deakin University, 3220 VIC, Australia
| | - Pratishtha Chatterjee
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
- Department of Biomedical Sciences, Macquarie University, 2109, NSW, Australia
| | - Kathryn Goozee
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
- Department of Biomedical Sciences, Macquarie University, 2109, NSW, Australia
- Clinical Research Department, Anglicare, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, WA, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia
| | - Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kathryn A. Ellis
- Academic Unit for Psychiatry of Old Age, St. George’s Hospital, University of Melbourne, VIC, Australia
| | - Ashley I. Bush
- Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia
- The Florey Institute, University of Melbourne, VIC, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. George’s Hospital, University of Melbourne, VIC, Australia
- National Ageing Research Institute, Parkville, VIC, Australia
| | | | - Dag Aarsland
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - John Powell
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | | | - Ralph Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia
- KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
- Department of Biomedical Sciences, Macquarie University, 2109, NSW, Australia
| | - Abdul Hye
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Corresponding author.
| |
Collapse
|
43
|
Shi Z, Li M, Wang Y, Liu J, El-Obeid T. High iron intake is associated with poor cognition among Chinese old adults and varied by weight status-a 15-y longitudinal study in 4852 adults. Am J Clin Nutr 2019; 109:109-116. [PMID: 30649164 PMCID: PMC6900563 DOI: 10.1093/ajcn/nqy254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background High body iron status has been shown to be associated with adverse health outcomes. However, the relation between high body iron status, body mass index (BMI), and cognition is still understudied. Objective This study aimed to examine the association between iron intake and cognitive function in Chinese adults and tested the interaction effect of iron intake and BMI on cognition. Design Longitudinal study data from a nationwide sample (n = 4852; age ≥55 y) from the China Health and Nutrition Survey during 1991-2006 were used. Of the participants, 3302 had completed cognitive screening tests in ≥2 surveys. Cognitive function was assessed in 1997, 2000, 2004, and 2006. Dietary iron intake was obtained from a 3-d food record during home visits in 1991, 1993, 1997, 2000, 2004, and 2006. Multivariable mixed linear regression and logistic regression were used. Results The cumulative mean ± SD iron intake in 1997 of tested subjects was 23.7 ± 11.3 mg/d (25.4 mg/d in men and 22.2 mg/d in women). High iron intake was associated with poor cognition. In fully adjusted models, across the quartiles of iron intake the regression coefficients (95% CIs) were 0, -0.39 (-0.77, -0.01), -0.55 (-0.95, -0.15), and -0.90 (-1.33, -0.47), respectively. Comparing extreme quartiles of iron intake (high), the OR (95% CI) for poor cognitive function was 1.30 (1.04, 1.64). There was a significant interaction between iron intake and BMI. The association between high iron intake and poor cognition was stronger among those with a high BMI than those with a low BMI. Among those with a BMI (kg/m2) >24, across quartiles of iron intake the ORs (95% CIs) for poor cognitive function were 1.00, 1.27 (0.91, 1.78), 1.41 (0.97, 2.04), and 2.04 (1.38, 3.01), respectively. Conclusion Higher iron intake is associated with poor cognition in Chinese adults, especially among those with a high BMI.
Collapse
Affiliation(s)
- Zumin Shi
- Human Nutrition Department, Qatar University, Doha, Qatar
| | - Ming Li
- Center for Population Health Research, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Youfa Wang
- Global Health Institute, Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA
| | - Tahra El-Obeid
- Human Nutrition Department, Qatar University, Doha, Qatar
| |
Collapse
|
44
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
45
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
46
|
Lumsden AL, Rogers JT, Majd S, Newman M, Sutherland GT, Verdile G, Lardelli M. Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Front Neurosci 2018; 12:533. [PMID: 30150923 PMCID: PMC6099262 DOI: 10.3389/fnins.2018.00533] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
The overwhelming majority of dominant mutations causing early onset familial Alzheimer’s disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid β (Aβ). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer’s disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship – the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer’s disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a “Stress Threshold Change of State” model of Alzheimer’s disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia.
Collapse
Affiliation(s)
- Amanda L Lumsden
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Harvard University, Charlestown, MA, United States
| | - Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Morgan Newman
- Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Greg T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Michael Lardelli
- Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
47
|
Chatterjee P, Goozee K, Lim CK, James I, Shen K, Jacobs KR, Sohrabi HR, Shah T, Asih PR, Dave P, ManYan C, Taddei K, Lovejoy DB, Chung R, Guillemin GJ, Martins RN. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci Rep 2018; 8:8008. [PMID: 29789640 PMCID: PMC5964182 DOI: 10.1038/s41598-018-25968-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
The kynurenine pathway (KP) is dysregulated in neuroinflammatory diseases including Alzheimer’s disease (AD), however has not been investigated in preclinical AD characterized by high neocortical amyloid-β load (NAL), prior to cognitive impairment. Serum KP metabolites were measured in the cognitively normal KARVIAH cohort. Participants, aged 65–90 y, were categorised into NAL+ (n = 35) and NAL− (n = 65) using a standard uptake value ratio cut-off = 1.35. Employing linear models adjusting for age and APOEε4, higher kynurenine and anthranilic acid (AA) in NAL+ versus NAL− participants were observed in females (kynurenine, p = 0.004; AA, p = 0.001) but not males (NALxGender, p = 0.001, 0.038, respectively). To evaluate the predictive potential of kynurenine or/and AA for NAL+ in females, logistic regressions with NAL+/− as outcome were carried out. After age and APOEε4 adjustment, kynurenine and AA were individually and jointly significant predictors (p = 0.007, 0.005, 0.0004, respectively). Areas under the receiver operating characteristic curves were 0.794 using age and APOEε4 as predictors, and 0.844, 0.866 and 0.871 when kynurenine, AA and both were added. Findings from the current study exhibit increased KP activation in NAL+ females and highlight the predictive potential of KP metabolites, AA and kynurenine, for NAL+. Additionally, the current study also provides insight into he influence of gender in AD pathogenesis.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ian James
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Kelly R Jacobs
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Prita R Asih
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Candice ManYan
- Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia. .,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia. .,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia. .,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia. .,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia.
| |
Collapse
|
48
|
Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci Rep 2018; 8:6898. [PMID: 29720594 PMCID: PMC5932027 DOI: 10.1038/s41598-018-25021-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022] Open
Abstract
We present a quantitative study of different molecular iron forms found in the temporal cortex of Alzheimer (AD) patients. Applying the methodology we developed in our previous work, we quantify the concentrations of non-heme Fe(III) by Electron Paramagnetic Resonance (EPR), magnetite/maghemite and ferrihydrite by SQUID magnetometry, together with the MRI transverse relaxation rate [Formula: see text], to obtain a systematic view of molecular iron in the temporal cortex. Significantly higher values of [Formula: see text], a larger concentration of ferrihydrite, and a larger magnetic moment of magnetite/maghemite particles are found in the brain of AD patients. Moreover, we found correlations between the concentration of the iron detected by EPR, the concentration of the ferrihydrite mineral and the average iron loading of ferritin. We discuss these findings in the framework of iron dis-homeostasis, which has been proposed to occur in the brain of AD patients.
Collapse
|
49
|
Chatterjee P, Goozee K, Sohrabi HR, Shen K, Shah T, Asih PR, Dave P, ManYan C, Taddei K, Chung R, Zetterberg H, Blennow K, Martins RN. Association of Plasma Neurofilament Light Chain with Neocortical Amyloid-β Load and Cognitive Performance in Cognitively Normal Elderly Participants. J Alzheimers Dis 2018; 63:479-487. [DOI: 10.3233/jad-180025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
- Department of Clinical Research, Anglicare, Sydney, Castle Hill, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Hamid R. Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- Australian Alzheimer Research Foundation, Nedlands, WA, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer Research Foundation, Nedlands, WA, Australia
| | - Prita R. Asih
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Department of Clinical Research, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Candice ManYan
- Department of Clinical Research, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer Research Foundation, Nedlands, WA, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ralph N. Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- Australian Alzheimer Research Foundation, Nedlands, WA, Australia
| |
Collapse
|