1
|
Mori FK, Shimosawa T. The Fetal Environment and the Development of Hypertension-The Epigenetic Modification by Glucocorticoids. Int J Mol Sci 2025; 26:420. [PMID: 39796274 PMCID: PMC11720225 DOI: 10.3390/ijms26010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation. We have shown that the IUGR model induced DNA hypomethylation in the paraventricular nucleus (PVN) in the brain, which in turn activates sympathetic activities, the renin-angiotensin system (RAS), contributing to the development of salt-sensitive hypertension. Even in adulthood, strong stress and/or exogenous steroids have been shown to induce epigenetic changes in the brain. Furthermore, DNA hypomethylation in the PVN is also observed in other hypertensive rat models, which suggests that it contributes significantly to the origins of elevated blood pressure. These findings suggest that if we can alter epigenetic changes in the brain, we can treat or prevent hypertension.
Collapse
Affiliation(s)
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan;
| |
Collapse
|
2
|
Aroke EN, Nagidi JG, Srinivasasainagendra V, Quinn TL, Agbor FBAT, Kinnie KR, Tiwari HK, Goodin BR. The Pace of Biological Aging Partially Explains the Relationship Between Socioeconomic Status and Chronic Low Back Pain Outcomes. J Pain Res 2024; 17:4317-4329. [PMID: 39712464 PMCID: PMC11662669 DOI: 10.2147/jpr.s481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Having a lower socioeconomic status (SES) is a predictor of age-related chronic conditions, including chronic low back pain (cLBP). We aimed to examine whether the pace of biological aging mediates the relationship between SES and cLBP outcomes - pain intensity, pain interference, and physical performance. Methods We used the Dunedin Pace of Aging Calculated from the Epigenome (DunedinPACE) software to determine the pace of biological aging in adults ages 18 to 85 years with no cLBP (n = 74), low-impact pain (n = 56), and high-impact pain (n = 77). Results The mean chronological age of the participants was 40.9 years (SD= 15.1); 107 (51.7%) were female, and 108 (52.2%) were Black. On average, the pace of biological aging was 5% faster [DunedinPACE = 1.05 (SD = 0.14)] in the sample (DunedinPACE value of 1 = normal pace of aging). Individuals with higher levels of education had a significantly slower pace of biological aging than those with lower education levels (F = 5.546, p = 0.001). After adjusting for sex and race, household income level significantly correlated with the pace of biological aging (r = -0.17, p = 0.02), pain intensity (r = -0.21, p = 0.003), pain interference (r = -0.21, p = 0.003), and physical performance (r = 0.20, p = 0.005). In mediation analyses adjusting for sex, race, and body mass index (BMI), the pace of biological aging mediates the relationship between household income (but not education) level and cLBP intensity, interference, as well as physical performance. Discussion Results indicate that lower SES contributes to faster biological aging, possibly contributing to greater pain intensity and interference, as well as lower physical performance. Future interventions slowing the pace of biological aging may improve cLBP outcomes.
Collapse
Affiliation(s)
- Edwin N Aroke
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jai Ganesh Nagidi
- Department of Computer Science, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fiona B A T Agbor
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiari R Kinnie
- Department of Acute, Chronic, and Continuing Care, School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, School of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
3
|
Reyes Del Paso GA, Duschek S, Contreras-Merino AM, Davydov DM. Long-term stress exposure, cortisol level and cardiovascular activity and reactivity: Observations in patients with fibromyalgia. Psychophysiology 2024; 61:e14649. [PMID: 38984813 DOI: 10.1111/psyp.14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Previous research suggested that exposure to long-lasting or repeated laboratory stressors may lead to rearrangement of cardiovascular control, with a shift of regulation mechanisms from dominant cardiac to dominant vascular influences between the early and late response phases, respectively. This study investigated whether similar rearrangement occurs during life stress accompanying chronic disease by analyzing also associations between cortisol level and cardiovascular variables in patients with fibromyalgia (FM). In 47 women with FM and 36 healthy women (HW), cardiovascular recordings were taken during active body posture changes (sitting, lying down, and standing). Moreover, hair cortisol concentration (HCC) was obtained. During standing, which involved orthostatic challenge, FM patients showed higher total peripheral resistance (TPR) but lower stroke volume (SV), cardiac output (CO), and baroreflex sensitivity than HW. During sitting and lying down, TPR was more closely associated with blood pressure (BP) than CO in FM patients; in contrast, CO was more closely associated with BP than TPR in HW. HCC correlated positively with TPR and BP in FM patients, but negatively with TPR and BP and positively with SV and CO in HW. Results suggest that chronic disease-related stress is associated with alterations in cardiovascular regulation toward greater involvement of vascular than cardiac mechanisms in BP control. Stress-related cortisol release may contribute to the long-term rearrangement of autonomic regulation. At the behavioral level, the dominance of vascular over cardiovascular control may relate to reduced somatic mobilization during an active fight-flight response in favor of passive and behaviorally immobile coping.
Collapse
Affiliation(s)
| | - Stefan Duschek
- Institute of Psychology, UMIT Tirol, Hall in Tirol, Austria
| | | | | |
Collapse
|
4
|
Verhoeven JE, Wolkowitz OM, Barr Satz I, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Söderberg Veibäck G, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LKM, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, California, USA
- Center for Health and Community, University of California, San Francisco, California, USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, California, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Kristoffer N T Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
6
|
Nikolić T, Bogosavljević MV, Stojković T, Kanazir S, Lončarević-Vasiljković N, Radonjić NV, Popić J, Petronijević N. Effects of Antipsychotics on the Hypothalamus-Pituitary-Adrenal Axis in a Phencyclidine Animal Model of Schizophrenia. Cells 2024; 13:1425. [PMID: 39272997 PMCID: PMC11394463 DOI: 10.3390/cells13171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins. The perinatal administration of phencyclidine (PCP) to rodents represents an animal model of SCH. This study investigated the effects of perinatal PCP exposure and subsequent haloperidol/clozapine treatment on corticosterone levels measured by ELISA and the expression of GR-related proteins (GR, pGR, HSP70, HSP90, FKBP51, and 11β-Hydroxysteroid dehydrogenase-11β-HSD) determined by Western blot, in different brain regions of adult rats. Six groups of male rats were treated on the 2nd, 6th, 9th, and 12th postnatal days (PN), with either PCP or saline. Subsequently, one saline and one PCP group received haloperidol/clozapine from PN day 35 to PN day 100. The results showed altered GR sensitivity in the rat brain after PCP exposure, which decreased after haloperidol/clozapine treatment. These findings highlight disturbances in the HPA axis in a PCP-induced model of SCH and the potential protective effects of antipsychotics. To the best of our knowledge, this is the first study to investigate the effects of antipsychotic drugs on the HPA axis in a PCP animal model of SCH.
Collapse
Affiliation(s)
- Tatjana Nikolić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (T.N.); (M.V.B.)
| | - Milica Velimirović Bogosavljević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (T.N.); (M.V.B.)
| | - Tihomir Stojković
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (T.N.); (M.V.B.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nataša Lončarević-Vasiljković
- iNOVA4Health, NOVA Medical School|Faculdade Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal;
| | - Nevena V. Radonjić
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jelena Popić
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Nataša Petronijević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (T.N.); (M.V.B.)
| |
Collapse
|
7
|
Ma X, Xu S, Zhou Y, Zhang Q, Yang H, Wan B, Yang Y, Miao Z, Xu X. Targeting Nr2e3 to Modulate Tet2 Expression: Therapeutic Potential for Depression Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400726. [PMID: 38881534 PMCID: PMC11336902 DOI: 10.1002/advs.202400726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic mechanisms such as DNA methylation and hydroxymethylation play a significant role in depression. This research has shown that Ten-eleven translocation 2 (Tet2) deficiency prompts depression-like behaviors, but Tet2's transcriptional regulation remains unclear. In the study, bioinformatics is used to identify nuclear receptor subfamily 2 group E member 3 (Nr2e3) as a potential Tet2 regulator. Nr2e3 is found to enhance Tet2's transcriptional activity by binding to its promoter region. Nr2e3 knockdown in mouse hippocampus leads to reduced Tet2 expression, depression-like behaviors, decreased hydroxymethylation of synaptic genes, and downregulation of synaptic proteins like postsynaptic density 95 KDa (PSD95) and N-methy-d-aspartate receptor 1 (NMDAR1). Fewer dendritic spines are also observed. Nr2e3 thus appears to play an antidepressant role under stress. In search of potential treatments, small molecule compounds to increase Nr2e3 expression are screened. Azacyclonal (AZA) is found to enhance the Nr2e3/Tet2 pathway and exhibited antidepressant effects in stressed mice, increasing PSD95 and NMDAR1 expression and dendritic spine density. This study illuminates Tet2's upstream regulatory mechanism, providing a new target for identifying early depression biomarkers and developing treatments.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurologythe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Shiyao Xu
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaohui Zhou
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Qian Zhang
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Hao Yang
- Department of Fetologythe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Bo Wan
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yong Yang
- Department of Psychiatrythe Affiliated Guangji Hospital of Soochow UniversitySuzhouJiangsu215000China
| | - Zhigang Miao
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Xingshun Xu
- Department of Neurologythe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Jiangsu Key Laboratory of Neuropsychiatric DiseasesSoochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
8
|
Pérez RF, Tezanos P, Peñarroya A, González-Ramón A, Urdinguio RG, Gancedo-Verdejo J, Tejedor JR, Santamarina-Ojeda P, Alba-Linares JJ, Sainz-Ledo L, Roberti A, López V, Mangas C, Moro M, Cintado Reyes E, Muela Martínez P, Rodríguez-Santamaría M, Ortea I, Iglesias-Rey R, Castilla-Silgado J, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Sanchez-Mut JV, Trejo JL, Fernández AF, Fraga MF. A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment. Nat Commun 2024; 15:5829. [PMID: 39013876 PMCID: PMC11252340 DOI: 10.1038/s41467-024-49608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging involves the deterioration of organismal function, leading to the emergence of multiple pathologies. Environmental stimuli, including lifestyle, can influence the trajectory of this process and may be used as tools in the pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this context, we have generated bulk tissue and single cell multi-omic maps of the male mouse dorsal hippocampus in young and old animals exposed to environmental stimulation in the form of enriched environments. We present a molecular atlas of the aging process, highlighting two distinct axes, related to inflammation and to the dysregulation of mRNA metabolism, at the functional RNA and protein level. Additionally, we report the alteration of heterochromatin domains, including the loss of bivalent chromatin and the uncovering of a heterochromatin-switch phenomenon whereby constitutive heterochromatin loss is partially mitigated through gains in facultative heterochromatin. Notably, we observed the multi-omic reversal of a great number of aging-associated alterations in the context of environmental enrichment, which was particularly linked to glial and oligodendrocyte pathways. In conclusion, our work describes the epigenomic landscape of environmental stimulation in the context of aging and reveals how lifestyle intervention can lead to the multi-layered reversal of aging-associated decline.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Alfonso Peñarroya
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Alejandro González-Ramón
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Javier Gancedo-Verdejo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan José Alba-Linares
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Lidia Sainz-Ledo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Annalisa Roberti
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Virginia López
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Cristina Mangas
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - María Moro
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Elisa Cintado Reyes
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Pablo Muela Martínez
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Mar Rodríguez-Santamaría
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Bioterio y unidad de imagen preclínica, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Ignacio Ortea
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Proteomics Unit, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), 33011, Oviedo, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Juan Castilla-Silgado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Jose Vicente Sanchez-Mut
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - José Luis Trejo
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- Departamento de Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
9
|
Eichenauer H, Fischer S, Gardini E, Onsongo S, Ehlert U. Effects of improved on-farm crop storage on DNA methylation of mothers and their infants: evidence from a randomized controlled trial in Kenya. Clin Epigenetics 2024; 16:90. [PMID: 38978139 PMCID: PMC11232227 DOI: 10.1186/s13148-024-01693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Stress during pregnancy can lead to adverse maternal and infant health outcomes through epigenetic changes in the hypothalamic-pituitary-adrenal axis. Among farmers in low-income countries, one important stressor is food insecurity, which can be reduced using hermetic storage bags. This study aimed to determine, for the first time, whether a hermetic storage bag intervention during pregnancy positively affects maternal and infant DNA methylation of the hypothalamic-pituitary-adrenal axis-related genes FKBP5 and NR3C1. We further analyzed whether anthropometrics, stress, and mental health were associated with DNA methylation. METHODS This study was part of a larger matched-pair randomized controlled trial focusing on the impact of improved on-farm storage on food security, poverty, and net income of smallholder farming households. A total of N = 149 mothers were recruited by telephone and invited to attend a study appointment at health facilities in Kakamega County, Western Kenya, with their infants in April or May 2021. During the appointment, anthropometric measurements were taken, questionnaires on stress and mental health were administered, and saliva samples were collected. Logistic and multiple linear regression were used to examine the effect of the intervention and related measures on DNA methylation. RESULTS Mothers in the intervention group showed higher mean NR3C1 methylation levels than those in the control group, corrected for multiple testing. Maternal postpartum body mass index was positively associated with infant NR3C1 CpG3 DNA methylation. The more stressful life events a mother had experienced in the previous 12 months (including during pregnancy), the lower her FKBP5 CpG3 methylation levels. CONCLUSIONS Food insecurity and stressful life events during pregnancy seem to exert significant effects on maternal DNA methylation. While these stressors did not appear to impact infant DNA methylation in the present study, maternal postpartum body mass index was significantly related to infant methylation. These findings suggest that while infants may be protected from excessive maternal glucocorticoids by placental barrier activity, maternal metabolic status is still reflected in their epigenetic make-up. Trial registration This study was part of a larger matched-pair randomized controlled trial on the impact of improved on-farm crop storage on welfare, nutrition, and human health. Registration can be found in the American Economic Association (AEA) RCT Registry, RCT ID: AEARCTR-0005845.
Collapse
Affiliation(s)
- Heike Eichenauer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Susanne Fischer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Elena Gardini
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | | | - Ulrike Ehlert
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland.
| |
Collapse
|
10
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Kozlowska K, Scher S. Recent advances in understanding the neurobiology of pediatric functional neurological disorder. Expert Rev Neurother 2024; 24:497-516. [PMID: 38591353 DOI: 10.1080/14737175.2024.2333390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Functional neurological disorder (FND) is a neuropsychiatric disorder that manifests in a broad array of functional motor, sensory, or cognitive symptoms, which arise from complex interactions between brain, mind, body, and context. Children with FND make up 10%-20% of presentations to neurology services in children's hospitals and up to 20% of adolescents admitted to hospital for the management of intractable seizures. AREAS COVERED The current review focuses on the neurobiology of pediatric FND. The authors present an overview of the small but growing body of research pertaining to the biological, emotion-processing, cognitive, mental health, physical health, and social system levels. EXPERT OPINION Emerging research suggests that pediatric FND is underpinned by aberrant changes within and between neuron-glial (brain) networks, with a variety of factors - on multiple system levels - contributing to brain network changes. In pediatric practice, adverse childhood experiences (ACEs) are commonly reported, and activation or dysregulation of stress-system components is a frequent finding. Our growing understanding of the neurobiology of pediatric FND has yielded important flow-on effects for assessing and diagnosing FND, for developing targeted treatment interventions, and for improving the treatment outcomes of children and adolescents with FND.
Collapse
Affiliation(s)
- Kasia Kozlowska
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Brain Dynamics Centre, Westmead Institute of Medical Research, Westmead, NSW, Australia
- University of Sydney Medical School, Camperdown, NSW, Australia
| | - Stephen Scher
- University of Sydney Medical School, Camperdown, NSW, Australia
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|
12
|
Eachus H, Ryu S. Glucocorticoid effects on the brain: from adaptive developmental plasticity to allostatic overload. J Exp Biol 2024; 227:jeb246128. [PMID: 38449327 PMCID: PMC10949071 DOI: 10.1242/jeb.246128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Exposure to stress during early life may alter the developmental trajectory of an animal by a mechanism known as adaptive plasticity. For example, to enhance reproductive success in an adverse environment, it is known that animals accelerate their growth during development. However, these short-term fitness benefits are often associated with reduced longevity, a phenomenon known as the growth rate-lifespan trade-off. In humans, early life stress exposure compromises health later in life and increases disease susceptibility. Glucocorticoids (GCs) are major stress hormones implicated in these processes. This Review discusses the evidence for GC-mediated adaptive plasticity in development, leading to allostatic overload in later life. We focus on GC-induced effects on brain structure and function, including neurogenesis; highlight the need for longitudinal studies; and discuss approaches to identify molecular mechanisms mediating GC-induced alteration of the brain developmental trajectory leading to adult dysfunctions. Further understanding of how stress and GC exposure can alter developmental trajectories at the molecular and cellular level is of critical importance to reduce the burden of mental and physical ill health across the life course.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
13
|
Chang J, Xu Y, Fu Y, Liu J, Jiang D, Pan J, Ouyang H, Liu W, Xu J, Tian Y, Huang Y, Ruan J, Shen X. The dynamic landscape of chromatin accessibility and active regulatory elements in the mediobasal hypothalamus influences the seasonal activation of the reproductive axis in the male quail under long light exposure. BMC Genomics 2024; 25:197. [PMID: 38373887 PMCID: PMC10877898 DOI: 10.1186/s12864-024-10097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.
Collapse
Affiliation(s)
- Jianye Chang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanglong Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuting Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaxin Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510642, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
14
|
Vidovič E, Pelikan S, Atanasova M, Kouter K, Pileckyte I, Oblak A, Novak Šarotar B, Videtič Paska A, Bon J. DNA Methylation Patterns in Relation to Acute Severity and Duration of Anxiety and Depression. Curr Issues Mol Biol 2023; 45:7286-7303. [PMID: 37754245 PMCID: PMC10527760 DOI: 10.3390/cimb45090461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Depression and anxiety are common mental disorders that often occur together. Stress is an important risk factor for both disorders, affecting pathophysiological processes through epigenetic changes that mediate gene-environment interactions. In this study, we explored two proposed models about the dynamic nature of DNA methylation in anxiety and depression: a stable change, in which DNA methylation accumulates over time as a function of the duration of clinical symptoms of anxiety and depression, or a flexible change, in which DNA methylation correlates with the acute severity of clinical symptoms. Symptom severity was assessed using clinical questionnaires for anxiety and depression (BDI-II, IDS-C, and HAM-A), and the current episode and the total lifetime symptom duration was obtained from patients' medical records. Peripheral blood DNA methylation levels were determined for the BDNF, COMT, and SLC6A4 genes. We found a significant negative correlation between COMT_1 amplicon methylation and acute symptom scores, with BDI-II (R(22) = 0.190, p = 0.033), IDS-C (R(22) = 0.199, p = 0.029), and HAM-A (R(22) = 0.231, p = 0.018) all showing a similar degree of correlation. Our results suggest that DNA methylation follows flexible dynamics, with methylation levels closely associated with acute clinical presentation rather than with the duration of anxiety and depression. These results provide important insights into the dynamic nature of DNA methylation in anxiety and affective disorders and contribute to our understanding of the complex interplay between stress, epigenetics, and individual phenotype.
Collapse
Affiliation(s)
- Eva Vidovič
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Sebastian Pelikan
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Marija Atanasova
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Kouter
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, 08018 Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Brigita Novak Šarotar
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Eachus H, Oberski L, Paveley J, Bacila I, Ashton JP, Esposito U, Seifuddin F, Pirooznia M, Elhaik E, Placzek M, Krone NP, Cunliffe VT. Glucocorticoid receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Dis Model Mech 2023; 16:dmm050141. [PMID: 37525888 PMCID: PMC10565112 DOI: 10.1242/dmm.050141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.
Collapse
Affiliation(s)
- Helen Eachus
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Lara Oberski
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jack Paveley
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irina Bacila
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - John-Paul Ashton
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Umberto Esposito
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Eran Elhaik
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nils P. Krone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent T. Cunliffe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
17
|
Muir RQ, Klocke BJ, Jennings MS, Molina PA, Hsu JS, Kellum CE, Alexander KL, Lee G, Foote JB, Lorenz RG, Pollock JS, Maynard CL. Early Life Stress in Mice Leads to Impaired Colonic Corticosterone Production and Prolonged Inflammation Following Induction of Colitis. Inflamm Bowel Dis 2023; 29:960-972. [PMID: 36661889 PMCID: PMC10233396 DOI: 10.1093/ibd/izac280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Early life stress (ELS) is an environmental trigger believed to promote increased risk of IBD. Our goal was to identify mechanisms whereby ELS in mice affects susceptibility to and/or severity of gut inflammation. METHODS We utilized 2 published animal models of ELS. In the first model, newborn mice were separated from the dam daily for 4 to 8 hours starting on postnatal day 2 and then weaned early on postnatal day 17. Control mice were left undisturbed with the dams until weaning on postnatal day 21. In the second model, dams were fed dexamethasone or vehicle ad libitum in drinking water on postpartum days 1 to 14. Plasma and colonic corticosterone were measured in juvenile and adult mice. Colitis was induced in 4-week-old mice via intraperitoneal injection of interleukin (IL)-10 receptor blocking antibody every 5 days for 15 days. Five or 15 days later, colitis scores and transcripts for Tnf, glucocorticoid receptors, and steroidogenic enzymes were measured. RESULTS Mice exposed to ELS displayed reduced plasma and colonic corticosterone. Control animals showed improvements in indices of inflammation following cessation of interleukin-10 receptor blockade, whereas ELS-exposed animals maintained high levels of Tnf and histological signs of colitis. In colitic animals, prior exposure to ELS was associated with significantly lower expression of genes associated with corticosterone synthesis and responsiveness. Finally, TNF stimulation of colonic crypt cells from ELS mice led to increased inhibition of corticosterone synthesis. CONCLUSIONS Our study identifies impaired local glucocorticoid production and responsiveness as a potential mechanism whereby ELS predisposes to chronic colitis in susceptible hosts.
Collapse
Affiliation(s)
- Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Barbara J Klocke
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Patrick A Molina
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jung-Shan Hsu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Cailin E Kellum
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Goo Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin G Lorenz
- Department of Research Pathology, Genentech, San Francisco, CAUSA
| | - Jennifer S Pollock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, ALUSA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
18
|
Sanwald S, Montag C, Kiefer M. Association between parental separation, childhood trauma, neuroticism, and depression: a case control study. Front Psychiatry 2023; 14:1112664. [PMID: 37229385 PMCID: PMC10204799 DOI: 10.3389/fpsyt.2023.1112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background Parental separation has been suggested to be associated with depression development in offspring. The new family constellation subsequent to separation could be associated with elevated scores of childhood trauma, shaping more emotionally instable personalities. This could ultimately be a risk factor for mood disorders and particularly the development of depression in life. Methods To test this hypothesis, we investigated the associations between parental separation, childhood trauma (CTQ) and personality (NEO-FFI) in a sample of N = 119 patients diagnosed with depression and N = 119 age and sex matched healthy controls. Results While parental separation was associated with elevated scores of childhood trauma, there was no association between parental separation and Neuroticism. Furthermore, in a logistic regression analysis, Neuroticism and childhood trauma were found to be significant predictors for depression diagnosis (yes/no), but not parental separation (yes/no). Conclusion Parental separation might be associated with depression only indirectly via childhood trauma. Childhood trauma or Neuroticism seem more directly related to the development of depression. However, it is worthwhile to install prevention programs helping parents and children to cope with parental separation in order to minimize the impact of separation and associated stressors.
Collapse
Affiliation(s)
- Simon Sanwald
- Department of Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| | | | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Markus Kiefer
- Department of Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
20
|
Domschke K. A Methylome-Based Signature of Stress: Association With Accelerated Epigenetic Aging and Alcohol Use. Biol Psychiatry 2023; 93:296-297. [PMID: 36653105 DOI: 10.1016/j.biopsych.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
DNA methylation age acceleration is associated with risk of diabetes complications. COMMUNICATIONS MEDICINE 2023; 3:21. [PMID: 36765171 PMCID: PMC9918553 DOI: 10.1038/s43856-023-00250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Patients with Type 2 diabetes mellitus (T2D) are at risk for micro- and macrovascular complications. Implementable risk scores are needed to improve targeted prevention for patients that are particularly susceptible to complications. The epigenetic clock estimates an individual's biological age using DNA methylation profiles. METHODS In this study, we examined older adults of the Berlin Aging Study II that were reexamined on average 7.4 years after baseline assessment as part of the GendAge study. DNA methylation age (DNAmA) and its deviation from chronological age DNAmA acceleration (DNAmAA) were calculated with the 7-CpG clock (available at both timepoints, n = 1,071), Horvath's clock, Hannum's clock, PhenoAge and GrimAge (available at follow-up only, n = 1,067). T2D associated complications were assessed with the Diabetes Complications Severity Index (DCSI). RESULTS We report on a statistically significant association between oral glucose tolerance test results and Hannum and PhenoAge DNAmAA. PhenoAge was also associated with fasting glucose. In contrast, we found no cross-sectional association after covariate adjustment between DNAmAA and a diagnosis of T2D. However, longitudinal analyses showed that every additional year of 7-CpG DNAmAA at baseline increased the odds for developing one or more additional complications or worsening of an already existing complication during the follow-up period by 11% in male participants with T2D. This association persisted after covariate adjustment (OR = 1.11, p = 0.045, n = 56). CONCLUSION Although our results remain to be independently validated, this study shows promising evidence of utility of the 7-CpG clock in identifying patients with diabetes who are at high risk for developing complications.
Collapse
|
22
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
23
|
Graafland N, Essers E, Posthumus A, Gootjes D, Ambrós A, Steegers E, Guxens M. Exposure to outdoor residential noise during pregnancy, embryonic size, fetal growth, and birth outcomes. ENVIRONMENT INTERNATIONAL 2023; 171:107730. [PMID: 36640487 DOI: 10.1016/j.envint.2023.107730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Previous literature suggested that noise exposure during pregnancy was not associated with adverse birth outcomes. However, no studies evaluated the association between noise exposure and embryonic and fetal growth, or mutually assessed other urban environmental exposures such as traffic-related air pollution or natural spaces. METHODS We included 7947 pregnant women from the Generation R Study, the Netherlands. We estimated total (road traffic, aircraft, railway, and industry), road traffic, and railway noise at the participants' home addresses during pregnancy using environmental noise maps. We estimated traffic-related air pollution using land-use regression models, greenness within a 300 m buffer using the normalized difference vegetation index, and distance to blue spaces using topographical maps at the home addresses. Embryonic size (crown-rump length) and fetal growth parameters (head circumference, femur length, and estimated fetal weight) were measured by ultrasound at several gestational ages. Information on neonatal anthropometrics at birth (head circumference, length, and weight) and adverse birth outcomes (preterm birth, low birth weight, and small for gestational age) were retrieved from medical records. RESULTS Higher total noise exposure during pregnancy was associated with larger crown-rump length (0.07 SDS [95%CI 0.00 to 0.14]). No association was found with fetal growth parameters, neonatal anthropometrics, and adverse birth outcomes. Similar results were observed for road traffic noise exposure, while railway noise exposure was not associated with any of the outcomes. Traffic-related air pollution was not associated with crown-rump length. Total noise exposure mediated 15% of the association between exposure to greenness and smaller crown-rump length. No association was observed between distance to blue spaces and total noise exposure. CONCLUSION Exposure to outdoor residential noise during pregnancy was associated with larger embryonic size. Moreover, a reduction of total noise exposure during pregnancy partially mediated the association between exposure to greenness and smaller embryonic size. Additional research is warranted to confirm and further understand these novel findings.
Collapse
Affiliation(s)
- Naomi Graafland
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Esmée Essers
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Anke Posthumus
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Dionne Gootjes
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Albert Ambrós
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Eric Steegers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Wiley KS, Camilo C, Gouveia G, Euclydes V, Panter-Brick C, Matijasevich A, Ferraro AA, Fracolli LA, Chiesa AM, Miguel EC, Polanczyk GV, Brentani H. Maternal distress, DNA methylation, and fetal programing of stress physiology in Brazilian mother-infant pairs. Dev Psychobiol 2023; 65:e22352. [PMID: 36567654 PMCID: PMC9792831 DOI: 10.1002/dev.22352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
Maternal prenatal psychosocial stress is associated with adverse hypothalamic-pituitary-adrenal axis (HPAA) function among infants. Although the biological mechanisms influencing this process remain unknown, altered DNA methylation is considered to be one potential mechanism. We investigated associations between maternal prenatal psychological distress, infant salivary DNA methylation, and stress physiology at 12 months. Mother's distress was measured via depression and anxiety in early and late pregnancy in a cohort of 80 pregnant adolescents. Maternal hair cortisol was collected during pregnancy. Saliva samples were collected from infants at 12 months to quantify DNA methylation of three stress-related genes (FKBP5, NR3C1, OXTR) (n = 62) and diurnal cortisol (n = 29). Multivariable linear regression was used to test for associations between prenatal psychological distress, and infant DNA methylation and cortisol. Hair cortisol concentrations in late pregnancy were negatively associated with two sites of FKBP5 (site 1: B = -22.33, p = .003; site 2: B = -15.60, p = .012). Infants of mothers with elevated anxiety symptoms in late pregnancy had lower levels of OXTR2 CpG2 methylation (B = -2.17, p = .03) and higher evening salivary cortisol (B = 0.41, p = .03). Furthermore, OXTR2 methylation was inversely associated with evening cortisol (B = -0.14, p-value ≤ .001). Our results are, to our knowledge, the first evidence that the methylation of the oxytocin receptor may contribute to the regulation of HPAA during infancy.
Collapse
Affiliation(s)
- Kyle S. Wiley
- Department of Anthropology, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline Camilo
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Gouveia
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Verônica Euclydes
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre Archanjo Ferraro
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lislaine Aparecida Fracolli
- Departamento de Enfermagem Em Saúde Coletiva da Escola de Enfermagem, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anna Maria Chiesa
- Departamento de Enfermagem Em Saúde Coletiva da Escola de Enfermagem, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme V. Polanczyk
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Chung J, Mukerji S, Kozlowska K. Cortisol and α-amylase awakening response in children and adolescents with functional neurological (conversion) disorder. Aust N Z J Psychiatry 2023; 57:115-129. [PMID: 35297291 DOI: 10.1177/00048674221082520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Stress system dysregulation is considered to have an important role in the aetiology of paediatric functional neurological (conversion) disorder. This study examined salivary cortisol and α-amylase awakening responses in children with functional neurological disorder to determine activation patterns of the hypothalamic-pituitary-adrenal axis and sympathetic system. A healthy cortisol awakening response involves a robust increase in cortisol within 30 minutes of awakening. Alpha-amylase awakening response is variable in children. METHODS Cortisol and α-amylase were measured in saliva from 32 patients with functional neurological disorder (26 girls and 6 boys, aged 11.3-16.1 years) and 31 healthy controls (23 girls and 8 boys, aged 8.6-17.7 years). Saliva samples were collected using a Salivette sampling device at two time points - upon awakening and 30 minutes after awakening. RESULTS Patients with functional neurological disorder showed a decrease in cortisol awakening response (-4 nmol.min/L) and controls showed an increase (107 nmol.min/L), t(55) = -.4.6, p < 0.001. Within the functional neurological disorder group, 57% showed an attenuated cortisol awakening response and 43% showed an obliterated/reversed cortisol awakening response: Cortisol awakening response was negatively correlated with adverse childhood experiences, r(58) = -0.6, p = 0.002, and subjective distress (total Depression Anxiety and Stress Scales score), r(58) = -0.4, p = 0.050. In controls, cortisol awakening response showed no correlation with adverse childhood experiences and a positive correlation with subjective distress, r(56) = 0.4, p = 0.023. Total cortisol remained similar between the functional neurological disorder and control group. No significant differences were observed between the functional neurological disorder and control group in any of the α-amylase analyses. DISCUSSION The results suggest dysregulation of the hypothalamic-pituitary-adrenal axis in children with functional neurological disorder. Hypothalamic-pituitary-adrenal dysregulation in children with functional neurological disorder may contribute to comorbid symptoms of fatigue, sleep disturbance and subjective loss of well-being because circadian rhythms and energy metabolism are disrupted. Hypothalamic-pituitary-adrenal dysregulation - and changes in glucocorticoid (cortisol) signalling at the molecular level - may also contribute to increased vulnerability for functional neurological disorder symptoms because of epigenetically mediated changes to neural networks implicated in functional neurological disorder.
Collapse
Affiliation(s)
- Jason Chung
- Department of Clinical Biochemistry, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Shohini Mukerji
- Department of Clinical Biochemistry, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Department of Chemical Pathology, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| | - Kasia Kozlowska
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Psychological Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
26
|
Perna-Barrull D, Gomez-Muñoz L, Rodriguez-Fernandez S, Gieras A, Ampudia-Carrasco RM, Almenara-Fuentes L, Risueño RM, Querol S, Tolosa E, Vives-Pi M. Impact of Betamethasone Pretreatment on Engrafment of Cord Blood-Derived Hematopoietic Stem Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:1. [PMID: 36528821 PMCID: PMC9760591 DOI: 10.1007/s00005-022-00666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation is crucial to cure hematologic malignancies. Umbilical cord blood (UCB) is a source of stem cells, but 90% of UCB units are discarded due to low cellularity. Improving the engraftment capacities of CD34+ stem cells would allow the use of UCB that were so far rejected. Betamethasone induces long-term transcriptomic and epigenomic changes in immune cells through glucocorticoid receptor. We hypothesize that discarded UCB could be used owing to improvements induced by betamethasone. Isolated CD34+ HSC from UCB were exposed to the synthetic glucocorticoids betamethasone and fluticasone for 20 h, and cell phenotype was determined before transplantation. NSG mice were sub-lethally irradiated (1 Gy or 2 Gy) 6 h before intravenously transferring 2-5 × 105 CD34+ HSC. The peripheral blood engraftment levels and the leukocyte subsets were followed up for 20 weeks using flow cytometry. At end point, the engraftment and leukocyte subsets were determined in the spleen and bone marrow. We demonstrated that betamethasone has surprising effects in recovering immune system homeostasis. Betamethasone and fluticasone increase CXCR4 and decrease HLA class II and CD54 expression in CD34+ HSCs. Both glucocorticoids-exposed cells showed a similar engraftment in 2 Gy-irradiated NSG mice. Interestingly, betamethasone-exposed cells showed enhanced engraftment in 1 Gy-irradiated NSG mice, with a trend to increase regulatory T cell percentage when compared to control. Betamethasone induces alterations in CD34+ HSCs and improve the engraftment, leading to a faster immune system recovery, which will contribute to engrafted cells survival.
Collapse
Affiliation(s)
- David Perna-Barrull
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laia Gomez-Muñoz
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- grid.13648.380000 0001 2180 3484Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M. Ampudia-Carrasco
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Ruth M. Risueño
- grid.429289.cJosep Carreras Leukaemia Research Institute, Campus IGTP-ICO, Badalona, Spain
| | - Sergi Querol
- grid.438280.5Cell Therapy Services and Cord Blood Bank, Catalan Blood and Tissue Bank, Barcelona, Spain
| | - Eva Tolosa
- grid.13648.380000 0001 2180 3484Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
27
|
Intergenerational continuity of parent-child separation among mother-offspring dyads: Implication for child cognitive development in rural China. Soc Sci Med 2022; 315:115538. [PMID: 36402011 DOI: 10.1016/j.socscimed.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
The labor migration in China often leads to parent-child separation. Research to date has primarily focused on understanding mental and cognitive outcomes for children exposed to parent-child separation, with little consideration for the cumulative effects of intergenerational continuity of parent-child separation. A total of 2729 children between the ages of 4 and 6, along with one parent (primarily mothers, 86.2%) and/or one primary caregiver (if the child is separated from both parents), were recruited in the rural area of Anhui Province, China. A unique subsample of children (n = 249) with persistent experience of parent-child separation or whose mother reported being left behind by her parents during early childhood were enrolled for cognitive assessment. A total of 239 age-, gender- and residence-matched children without any parent-child separation experience were selected as the control group. Child cognitive performance was examined with the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence, Fourth edition (WPPSI-IV). The association between intergenerational continuity of parent-child separation and child cognition was described using multivariate OLS regression models. Compared to mother-offspring dyads without any history of parent-child separation, girls (n = 236/450, 52.4%) who experienced the intergenerational continuity of parent-child separation showed a significant decrease of 5.73 points (95% CI: -9.83, -1.62; p = 0.006) on full-scale intelligence quotient (FSIQ) and a decrease of 5.71 points (95% CI: -9.80, 1.63; p = 0.006) on verbal comprehension index. No similar result was observed in boys. The cumulative effects of parent-child separation among mother-offspring dyads on child cognitive development highlight the need for effective early intervention to break the intergenerational cycle of disadvantage. Sex differences and possible epigenetic mechanisms underlying the intergenerational effects of parent-child separation warrant further investigation.
Collapse
|
28
|
Murray KO, Brant JO, Kladde MP, Clanton TL. Long-term epigenetic and metabolomic changes in the mouse ventricular myocardium after exertional heat stroke. Physiol Genomics 2022; 54:486-500. [PMID: 36215393 PMCID: PMC9705024 DOI: 10.1152/physiolgenomics.00147.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence from human epidemiological studies suggests that exertional heat stroke (EHS) results in an elevated risk of long-term cardiovascular and systemic disease. Previous results using a preclinical mouse model of EHS demonstrated severe metabolic imbalances in ventricular myocardium developing at 9-14 days of recovery. Whether this resolves over time is unknown. We hypothesized that the long-term effects of EHS on the heart reflect retained maladaptive epigenetic responses. In this study, we evaluated genome-wide DNA methylation, RNA-Seq, and metabolomic profiles of the left ventricular myocardium in female C57BL/6 mice, 30 days after EHS (exercise in 37.5°C; n = 7-8), compared with exercise controls. EHS mice ran to loss of consciousness, reaching core temperatures of 42.4 ± 0.2°C. All mice recovered quickly. After 30 days, the left ventricles were rapidly frozen for DNA methyl sequencing, RNA-Seq, and untargeted metabolomics. Ventricular DNA from EHS mice revealed >13,000 differentially methylated cytosines (DMCs) and >900 differentially methylated regions (DMRs; ≥5 DMCs with ≤300 bp between each CpG). Pathway analysis using DMRs revealed alterations in genes regulating basic cell functions, DNA binding, transcription, and metabolism. Metabolomics and mRNA expression revealed modest changes that are consistent with a return to homeostasis. Methylation status did not predict RNA expression or metabolic state at 30 days. We conclude that EHS induces a sustained DNA methylation memory lasting over 30 days of recovery, but ventricular gene expression and metabolism return to a relative homeostasis at rest. Such long-lasting alterations to the DNA methylation landscape could alter responsiveness to environmental or clinical challenges later in life.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Jason O Brant
- Department of Biostatistics, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Lim N, Wood N, Prasad A, Waters K, Singh-Grewal D, Dale RC, Elkadi J, Scher S, Kozlowska K. COVID-19 Vaccination in Young People with Functional Neurological Disorder: A Case-Control Study. Vaccines (Basel) 2022; 10:2031. [PMID: 36560442 PMCID: PMC9782633 DOI: 10.3390/vaccines10122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The emergence of acute-onset functional neurological symptoms, the focus of this study, is one of three stress responses related to immunisation. This case-control study documents the experience of 61 young people with past or current functional neurological disorder (FND) in relation to the COVID-19 vaccination program in Australia. METHODS Information about the young person's/parent's choice and response pertaining to COVID-19 vaccination was collected as part of routine clinical care or FND research program follow-up. RESULTS 61 young people treated for FND (47 females, mean age = 16.22 years) and 46 healthy controls (34 females, mean age = 16.37 years) were included in the study. Vaccination rates were high: 58/61 (95.1%) in the FND group and 45/46 (97.8%) in the control group. In the FND group, 2 young people (2/61, 3.3%) presented with new-onset FND following COVID-19 vaccination; two young people with resolved FND reported an FND relapse (2/36, 5.56%); and two young people with unresolved FND (2/20, 10.0%) reported an FND exacerbation. In the control group no FND symptoms were reported. CONCLUSIONS Acute-onset FND symptoms following COVID-19 vaccination are uncommon in the general population. In young people prone to FND, COVID-19 vaccination can sometimes trigger new-onset FND, FND relapse, or FND exacerbation.
Collapse
Affiliation(s)
- Natalie Lim
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Archana Prasad
- Department of General Medicine, The Children’s Hospital at Westmead Clinical School, Westmead, NSW 2145, Australia
| | - Karen Waters
- Sleep Medicine, The Children’s Hospital at Westmead, Westmead Clinical School, Westmead, NSW 2145, Australia
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Davinder Singh-Grewal
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Department of Rheumatology, Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Russell C. Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- The Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Joseph Elkadi
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Stephen Scher
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Speciality of Psychiatry, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Brain Dynamics Centre at Westmead Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
30
|
No evidence for intervention-associated DNA methylation changes in monocytes of patients with posttraumatic stress disorder. Sci Rep 2022; 12:17347. [PMID: 36253434 PMCID: PMC9576776 DOI: 10.1038/s41598-022-22177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
DNA methylation patterns can be responsive to environmental influences. This observation has sparked interest in the potential for psychological interventions to influence epigenetic processes. Recent studies have observed correlations between DNA methylation changes and therapy outcome. However, most did not control for changes in cell composition. This study had two aims: first, we sought to replicate therapy-associated changes in DNA methylation of commonly assessed candidate genes in isolated monocytes from 60 female patients with post-traumatic stress disorder (PTSD). Our second, exploratory goal was to identify novel genomic regions with substantial pre-to-post intervention DNA methylation changes by performing whole-genome bisulfite sequencing (WGBS) in two patients with PTSD. Equivalence testing and Bayesian analyses provided evidence against physiologically meaningful intervention-associated DNA methylation changes in monocytes of PTSD patients in commonly investigated target genes (NR3C1, FKBP5, SLC6A4, OXTR). Furthermore, WGBS yielded only a limited set of candidate regions with suggestive evidence of differential DNA methylation pre- to post-therapy. These differential DNA methylation patterns did not prove replicable when investigated in the entire cohort. We conclude that there is no evidence for major, recurrent intervention-associated DNA methylation changes in the investigated genes in monocytes of patients with PTSD.
Collapse
|
31
|
Nicolaides NC. The Human Glucocorticoid Receptor Beta: From Molecular Mechanisms to Clinical Implications. Endocrinology 2022; 163:6691806. [PMID: 36059139 DOI: 10.1210/endocr/bqac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Glucocorticoids play a fundamental role in a plethora of cellular processes and physiologic functions through binding on a ubiquitously expressed receptor, the glucocorticoid receptor (GR), which functions as a ligand-activated transcription factor influencing the transcription rate of numerous genes in a positive or negative fashion. For many years, we believed that the pleiotropic actions of glucocorticoids were mediated by a single GR protein expressed by the NR3C1 gene. Nowadays, we know that the NR3C1 gene encodes 2 main receptor isoforms, the GRα and the GRβ, through alternative splicing of the last exons. Furthermore, the alternative initiation of GR mRNA translation generates 8 distinct GRα and possibly 8 different GRβ receptor isoforms. The tremendous progress of cellular, molecular, and structural biology in association with the data explosion provided by bioinformatics have enabled a deeper understanding of the role of GRβ in cellular homeostasis. In this review article, I will provide an update on the cellular properties and functions of hGRβ and summarize the current knowledge about the evolving role of the beta isoform of glucocorticoid receptor in endocrine physiology, pathophysiology, and beyond.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
32
|
Epigenetic aging and perceived psychological stress in old age. Transl Psychiatry 2022; 12:410. [PMID: 36163242 PMCID: PMC9513097 DOI: 10.1038/s41398-022-02181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath's, Hannum's, PhenoAge and GrimAge DNAmAA). Cohen's Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from 1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age = 75.6 years, SD = 3.8 years, 52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for the lack of associations and highlight directions for future research.
Collapse
|
33
|
Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience 2022; 25:104960. [PMID: 36065188 PMCID: PMC9440308 DOI: 10.1016/j.isci.2022.104960] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes. Physiological stress levels of cortisol drive robust changes in key cell phenotypes Stress-driven changes in cell phenotypes are abrogated by concomitant GR blockade GR activation induces functional and phenotypically relevant epigenomic changes
Collapse
|
34
|
Wulsin LR, Sagui-Henson SJ, Roos LG, Wang D, Jenkins B, Cohen BE, Shah AJ, Slavich GM. Stress Measurement in Primary Care: Conceptual Issues, Barriers, Resources, and Recommendations for Study. Psychosom Med 2022; 84:267-275. [PMID: 35067657 PMCID: PMC8976751 DOI: 10.1097/psy.0000000000001051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Exposure to stressors in daily life and dysregulated stress responses are associated with increased risk for a variety of chronic mental and physical health problems, including anxiety disorders, depression, asthma, heart disease, certain cancers, and autoimmune and neurodegenerative disorders. Despite this fact, stress exposure and responses are rarely assessed in the primary care setting and infrequently targeted for disease prevention or treatment. METHOD In this narrative review, we describe the primary reasons for this striking disjoint between the centrality of stress for promoting disease and how rarely it is assessed by summarizing the main conceptual, measurement, practical, and reimbursement issues that have made stress difficult to routinely measure in primary care. The following issues will be reviewed: a) assessment of stress in primary care, b) biobehavioral pathways linking stress and illness, c) the value of stress measurements for improving outcomes in primary care, d) barriers to measuring and managing stress, and e) key research questions relevant to stress assessment and intervention in primary care. RESULTS On the basis of our synthesis, we suggest several approaches that can be pursued to advance this work, including feasibility and acceptability studies, cost-benefit studies, and clinical improvement studies. CONCLUSIONS Although stress is recognized as a key contributor to chronic disease risk and mortality, additional research is needed to determine how and when instruments for assessing life stress might be useful in the primary care setting, and how stress-related data could be integrated into disease prevention and treatment strategies to reduce chronic disease burden and improve human health and well-being.
Collapse
Affiliation(s)
- Lawson R Wulsin
- From the Departments of Psychiatry and Family Medicine, University of Cincinnati, and Cincinnati Veterans Administration Medical Center (Wulsin), Cincinnati, Ohio; Osher Center for Integrative Medicine (Sagui-Henson), University of California, San Francisco, San Francisco, California; Health Psychology PhD Program (Roos), University of North Carolina at Charlotte, Charlotte, North Carolina; Center for Economic and Social Research (Wang), University of Southern California, Los Angeles; Department of Psychology, Chapman University, Center on Stress & Health, and Department of Anesthesiology and Perioperative Care (Jenkins), University of California, Irvine; Department of Medicine, University of California, San Francisco, and San Francisco Veterans Affairs Healthcare System (Cohen), San Francisco, California; Department of Epidemiology (Shah), Rollins School of Public Health, Emory University; Department of Medicine, Division of Cardiology (Shah), Emory University School of Medicine, Atlanta; and Atlanta Veterans Affairs Healthcare System (Shah), Decatur, Georgia; and Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences (Slavich), University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wintermann GB, Bierling AL, Peters EMJ, Abraham S, Beissert S, Weidner K. Childhood Trauma and Psychosocial Stress Affect Treatment Outcome in Patients With Psoriasis Starting a New Treatment Episode. Front Psychiatry 2022; 13:848708. [PMID: 35546938 PMCID: PMC9083906 DOI: 10.3389/fpsyt.2022.848708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Traumatic childhood experiences and psychosocial stress may predispose the evolvement of somatic diseases. Psoriasis is a multifactorial chronic inflammatory skin disease that often associates with current and past stress. Both may entail pathological alterations in major stress axes and a balance shift in the level of T helper type 1 (Th1) and 2 (Th2) cytokines, affecting the development and course of psoriasis. Until now, it is unclear whether traumatic stress experiences during the childhood or current stress are more frequent in psoriatic compared to skin-healthy individuals, and if they interact with treatment outcome. METHOD In a prospective cohort study, the impact of acute and early childhood stress on the course of dermatological treatment were studied in patients with moderate to severe psoriasis (PSO). Patients were examined before (T1) and about 3 months after (T2) the beginning of a new treatment episode. Assessments included clinical outcomes (Psoriasis Area and Severity Index-PASI, Structured Clinical Interview SCID-I) and patient-reported outcomes (PRO) (Childhood Trauma Questionnaire-CTQ, Perceived Stress Scale-PSS, itching/scratching, Dermatology Life Quality Index-DLQI, Hospital Anxiety and Depression Scale, Body Surface Area, Self-Administered PASI). RESULTS N = 83 PSO patients (median age 53.7, IQR 37.8, 62.5) and n = 66 skin-healthy control subjects (HC) (median age 51.5, IQR 33.3, 59.2) participated. PSO had higher CTQ physical neglect than HC, as well as higher PRO levels. The positive impact of improved skin on the skin-related quality of life was moderated by the perceived stress. Acute stress at T1 had a positive effect both on the skin severity and the skin-related quality of life. CTQ total closely interacted with baseline psoriasis severity, and was associated with higher improvement from T1 to T2. CONCLUSION One might tentatively conclude, that chronic psychosocial stressors like childhood maltreatment may predispose the manifestation of psoriasis. The latter may be amplified by acute psychological stressors. In addition, the present evidence suggests that systemic therapies work well in PSO, with childhood trauma and acute psychosocial stress. Both should therefore be routinely assessed and addressed in PSO.
Collapse
Affiliation(s)
- Gloria-Beatrice Wintermann
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universitaet Dresden, Dresden, Germany
| | - Antonie Louise Bierling
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universitaet Dresden, Dresden, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, University Hospital Giessen, Gießen, Germany.,Universitätsmedizin Charité, Berlin, Germany
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, Technische Universitaet Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, Technische Universitaet Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
36
|
García-Eguren G, González-Ramírez M, Vizán P, Giró O, Vega-Beyhart A, Boswell L, Mora M, Halperin I, Carmona F, Gracia M, Casals G, Squarcia M, Enseñat J, Vidal O, Di Croce L, Hanzu FA. Glucocorticoid-induced Fingerprints on Visceral Adipose Tissue Transcriptome and Epigenome. J Clin Endocrinol Metab 2022; 107:150-166. [PMID: 34487152 DOI: 10.1210/clinem/dgab662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.
Collapse
Affiliation(s)
- Guillermo García-Eguren
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar González-Ramírez
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizán
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arturo Vega-Beyhart
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Boswell
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Mora
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irene Halperin
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Carmona
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Meritxell Gracia
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Gregori Casals
- Biomedical Diagnostics Centre, Hospital Clinic, Barcelona, Spain
| | - Mattia Squarcia
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Radiology, Hospital Clínic, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Endocrine Surgery Department, Hospital Clinic, Barcelona, Spain
| | - Oscar Vidal
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Felicia A Hanzu
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Lei MK, Berg MT, Simons RL, Beach SRH. Neighborhood structural disadvantage and biological aging in a sample of Black middle age and young adults. Soc Sci Med 2022; 293:114654. [PMID: 34923353 PMCID: PMC8810597 DOI: 10.1016/j.socscimed.2021.114654] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Research on the social determinants of health has suggested that neighborhood disadvantage may undermine healthy aging and is particularly relevant for understanding health disparities. Recently, this work has examined deoxyribonucleic acid methylation (DNAm)-based measures of biological aging to understand the risk factors for morbidity and mortality. However, it is unknown whether neighborhood disadvantage is related to different indices of DNAm-based aging among Black Americans and whether such neighborhood effects vary as a function of age or gender. METHODS Our analyses of a Black American sample included 448 young adults and 493 middle-aged adults. We measured neighborhood disadvantage using the Area Deprivation Index at the census block group level. DNAm-based accelerated aging indices were measured using established procedures. Regressions with clustered standard errors were used for the analysis. RESULTS Neighborhood disadvantage was independently associated with acceleration in PhenoAge, GrimAge, and DunedinPoAm, among young and middle-aged adults. Further, there was no evidence that gender conditioned the effects of neighborhood disadvantage on the aging indices. CONCLUSIONS Regardless of age groups or gender, accelerated biological aging among Black Americans is partly rooted in differences in neighborhood disadvantage. From a policy standpoint, our findings suggest that programs that decrease neighborhood disadvantage are likely to increase healthy aging, especially among Black Americans.
Collapse
Affiliation(s)
- Man-Kit Lei
- Department of Sociology, University of Georgia, USA.
| | - Mark T Berg
- Department of Sociology and Criminology & Public Policy Center, University of Iowa, USA
| | | | | |
Collapse
|
38
|
Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry 2022; 27:502-513. [PMID: 34290370 DOI: 10.1038/s41380-021-01224-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Stress is defined as a state of threatened homeodynamic balance by a wide range of intrinsic or extrinsic, real or perceived challenges or stimuli, defined as stressors. To preserve this optimal homeodynamic state within a physiologic range, organisms have developed a highly sophisticated system, the stress system, which serves self-regulation and adaptability of the organism by energy redirection according to the current needs. Repeated, ephemeral, and motivating stress states lead to adaptive responses and response habituations, being fairly beneficial; in contrast, inadequate, aversive, excessive, or prolonged stress may surpass the regulatory capacity and adjustive resources of the organism and produce maladaptive responses and a chronically altered homeodynamic state associated with compromised mental and physical health and life expectancy. Neuroendocrine responses to stress depend on developmental timing, duration, time of day and nature of stressors leading to a vulnerable phenotype with disrupted stress reactivity (i.e., hyper- or hypoactivation of the stress system), impaired glucocorticoid signaling, and accumulated cacostatic load with cumulatively elevated long-term risk of mental and physical morbidity. This article offers a brief overview on the organization and physiology of the human stress system and its (re)activity, refreshes the plethora of somatic effects of acute and chronic stress and discusses a conceptual model of acute and chronic stress pathophysiology as a continuum in chronic disease development.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA.
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
39
|
Perna-Barrull D, Murillo M, Real N, Gomez-Muñoz L, Rodriguez-Fernandez S, Bel J, Puig-Domingo M, Vives-Pi M. Prenatal Betamethasone Exposure and its Impact on Pediatric Type 1 Diabetes Mellitus: A Preliminary Study in a Spanish Cohort. J Diabetes Res 2022; 2022:6598600. [PMID: 35308094 PMCID: PMC8930272 DOI: 10.1155/2022/6598600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Betamethasone, a glucocorticoid used to induce lung maturation when there is a risk of preterm delivery, can affect the immune system maturation and type 1 diabetes (T1D) incidence in the progeny. It has been described that prenatal betamethasone protects offspring from experimental T1D development. The main aim of this study was to evaluate the possible association between betamethasone prenatal exposure and T1D in humans. Research Design and Methods. A retrospective case-control study with a total of 945 children, including 471 patients with T1D and 474 healthy siblings, was performed. Participants were volunteers from the Germans Trias i Pujol Hospital and DiabetesCero Foundation. Parents of children enrolled in the study completed a questionnaire that included questions about weeks of gestation, preterm delivery risk, weight at birth, and prenatal betamethasone exposure of their children. Multiple logistic regression was used to detect the association between betamethasone exposure and T1D. RESULTS We compared T1D prevalence between subjects prenatally exposed or unexposed to betamethasone. The percent of children with T1D in the exposed group was 37.5% (21 of 56), and in the unexposed group was 49.52% (410 of 828) (p = 0.139). The percentage of betamethasone-treated subjects with T1D in the preterm group (18.05%, 13 of 72) was significantly higher than that found in the control group (12.5%, 9 of 72) (p = 0.003). The odds ratio for T1D associated with betamethasone in the univariate logistic regression was 0.59 (95% confidence interval, 0.33; 1.03 [p = 0.062]) and in the multivariate logistic regression was 0.83 (95% confidence interval, 0.45; 1.52 [p = 0.389]). CONCLUSIONS The results demonstrate that the prenatal exposure to betamethasone does not increase T1D susceptibility, and may even be associated with a trend towards decreased risk of developing the disease. These preliminary findings require further prospective studies with clinical data to confirm betamethasone exposure effect on T1D risk.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Murillo
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Nati Real
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Laia Gomez-Muñoz
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Joan Bel
- Pediatrics Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Manel Puig-Domingo
- Endocrinology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Vives-Pi
- Immunology Service Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, 08916 Badalona, Spain
| |
Collapse
|
40
|
Falcinelli M, Thaker PH, Lutgendorf SK, Conzen SD, Flaherty RL, Flint MS. The Role of Psychologic Stress in Cancer Initiation: Clinical Relevance and Potential Molecular Mechanisms. Cancer Res 2021; 81:5131-5140. [PMID: 34266894 PMCID: PMC8530873 DOI: 10.1158/0008-5472.can-21-0684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
The hypothesis that the physiologic response to psychologic stress influences the initiation of cancer is highly controversial. The link between initiating stressors, the psychologic stress response, and disease is plausible, considering that the stress response is associated with defined physiologic outcomes and molecular mechanisms. In light of this, we review the clinical relevance of psychologic stress on the risk of cancer, and we propose potential molecular pathways that may link the stress response to early stages of malignant cell transformation.
Collapse
Affiliation(s)
- Marta Falcinelli
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Renée L Flaherty
- Division of Breast Cancer Research, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom.
| |
Collapse
|
41
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
42
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Chalfun G, Reis MM, de Oliveira MBG, de Araújo Brasil A, Dos Santos Salú M, da Cunha AJLA, Prata-Barbosa A, de Magalhães-Barbosa MC. Perinatal stress and methylation of the NR3C1 gene in newborns: systematic review. Epigenetics 2021; 17:1003-1019. [PMID: 34519616 DOI: 10.1080/15592294.2021.1980691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adverse experiences in the perinatal period have been associated with the methylation of the human glucocorticoid receptor gene (NR3C1) and long-term diseases. We conducted a systematic review on the association between adversities in the perinatal period and DNA methylation in the 1 F region of the NR3C1 gene in newborns. We explored the MEDLINE, Web of Science, Scopus, Scielo, and Lilacs databases without time or language limitations. Two independent reviewers performed the selection of articles and data extraction. A third participated in the methodological quality assessment and consensus meetings at all stages. Finally, ten studies were selected. Methodological quality was considered moderate in six and low in four. Methylation changes were reported in 41 of the 47 CpG sites of exon 1 F. Six studies addressed maternal conditions during pregnancy: two reported methylation changes at the same sites (CpG 10, 13, 20, 21 and 47), and four at one or more sites from CpG 35 to 39. Four studies addressed neonatal parameters and morbidities: methylation changes at the same sites 4, 8, 10, 16, 25, and 35 were reported in two. Hypermethylation associated with stressful conditions prevailed. Hypomethylation was more often associated with protective conditions (maternal-foetal attachment during pregnancy, breast milk intake, higher birth weight or Apgar). In conclusion, methylation changes in several sites of the 1 F region of the NR3C1 gene in newborns and very young infants were associated with perinatal stress, but more robust and comparable results are needed to corroborate site-specific associations.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | | | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research and Education (Idor), Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro (Ufrj), Rio De Janeiro, RJ, Brazil
| | | |
Collapse
|
44
|
Naturalistic Stress Hormone Levels Drive Cumulative Epigenomic Changes along the Cellular Lifespan. Int J Mol Sci 2021; 22:ijms22168778. [PMID: 34445485 PMCID: PMC8395735 DOI: 10.3390/ijms22168778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental stress is ubiquitous in modern societies and can exert a profound and cumulative impact on cell function and health phenotypes. This impact is thought to be in large part mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans. While the underlying molecular mechanisms are unclear, epigenetics-the chemical changes that regulate genomic function without altering the genetic code-has emerged as a key link between environmental exposures and phenotypic outcomes. The present study assessed genome-wide DNA (CpG) methylation, one of the key epigenetic mechanisms, at three timepoints during prolonged (51-day) exposure of cultured human fibroblasts to naturalistic cortisol levels, which can be reached in human tissues during in vivo stress. The findings support a spatiotemporal model of profound and widespread stress hormone-driven methylomic changes that emerge at selected CpG sites, are more likely to spread to nearby located CpGs, and quantitatively accrue at open sea, glucocorticoid receptor binding, and chromatin-accessible sites. Taken together, these findings provide novel insights into how prolonged stress may impact the epigenome, with potentially important implications for stress-related phenotypes.
Collapse
|
45
|
Roth CB, Papassotiropoulos A, Brühl AB, Lang UE, Huber CG. Psychiatry in the Digital Age: A Blessing or a Curse? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8302. [PMID: 34444055 PMCID: PMC8391902 DOI: 10.3390/ijerph18168302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Social distancing and the shortage of healthcare professionals during the COVID-19 pandemic, the impact of population aging on the healthcare system, as well as the rapid pace of digital innovation are catalyzing the development and implementation of new technologies and digital services in psychiatry. Is this transformation a blessing or a curse for psychiatry? To answer this question, we conducted a literature review covering a broad range of new technologies and eHealth services, including telepsychiatry; computer-, internet-, and app-based cognitive behavioral therapy; virtual reality; digital applied games; a digital medicine system; omics; neuroimaging; machine learning; precision psychiatry; clinical decision support; electronic health records; physician charting; digital language translators; and online mental health resources for patients. We found that eHealth services provide effective, scalable, and cost-efficient options for the treatment of people with limited or no access to mental health care. This review highlights innovative technologies spearheading the way to more effective and safer treatments. We identified artificially intelligent tools that relieve physicians from routine tasks, allowing them to focus on collaborative doctor-patient relationships. The transformation of traditional clinics into digital ones is outlined, and the challenges associated with the successful deployment of digitalization in psychiatry are highlighted.
Collapse
Affiliation(s)
- Carl B. Roth
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland; (A.P.); (A.B.B.); (U.E.L.); (C.G.H.)
| | - Andreas Papassotiropoulos
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland; (A.P.); (A.B.B.); (U.E.L.); (C.G.H.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CH-4055 Basel, Switzerland
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, CH-4055 Basel, Switzerland
- Biozentrum, Life Sciences Training Facility, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Annette B. Brühl
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland; (A.P.); (A.B.B.); (U.E.L.); (C.G.H.)
| | - Undine E. Lang
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland; (A.P.); (A.B.B.); (U.E.L.); (C.G.H.)
| | - Christian G. Huber
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Wilhelm Klein-Strasse 27, CH-4002 Basel, Switzerland; (A.P.); (A.B.B.); (U.E.L.); (C.G.H.)
| |
Collapse
|
46
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
47
|
Zhang Q, Hu Q, Wang J, Miao Z, Li Z, Zhao Y, Wan B, Allen EG, Sun M, Jin P, Xu X. Stress modulates Ahi1-dependent nuclear localization of Ten-Eleven Translocation Protein 2. Hum Mol Genet 2021; 30:2149-2160. [PMID: 34218273 DOI: 10.1093/hmg/ddab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Major depression disorder (MDD) is one of the most common psychiatric diseases. Recent evidence supports that environmental stress affects gene expression and promotes the pathological process of depression through epigenetic mechanisms. Three Ten-Eleven Translocation (Tet) enzymes are epigenetic regulators of gene expression that promote 5-hydroxymethylcytosine (5hmC) modification of genes. Here, we show that the loss of Tet2 can induce depression-like phenotypes in mice. Paradoxically, using the paradigms of chronic stress, such as chronic mild stress (CMS) and chronic social defeat stress (CSDS), we found that depressive behaviors were associated with increased Tet2 expression but decreased global 5hmC level in hippocampus. We examined the genome-wide 5hmC profile in the hippocampus of Tet2 knockout mice and identified 651 dynamically hydroxymethylated regions, some of which overlapped with known depression-associated loci. We further showed that chronic stress could induce the abnormal nuclear translocation of Tet2 protein from cytosol. Through Tet2 immunoprecipitation and mass spectrum analyses, we identified a cellular trafficking protein, Abelson helper integration site-1 (Ahi1), which could interact with Tet2 protein. Ahi1 knockout or knockdown caused the accumulation of Tet2 in cytosol. The reduction of Ahi1 protein under chronic stress explained the abnormal Ahi1-dependent nuclear translocation of Tet2. These findings together provide the evidence for a critical role of modulating Tet2 nuclear translocation in regulating stress response.
Collapse
Affiliation(s)
- Qian Zhang
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Qicheng Hu
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Junjie Wang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuwen Zhao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Miao Sun
- The Institute of Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingshun Xu
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
48
|
Stress Modifies the Expression of Glucocorticoid-Responsive Genes by Acting at Epigenetic Levels in the Rat Prefrontal Cortex: Modulatory Activity of Lurasidone. Int J Mol Sci 2021; 22:ijms22126197. [PMID: 34201279 PMCID: PMC8228132 DOI: 10.3390/ijms22126197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023] Open
Abstract
Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.
Collapse
|
49
|
Mourtzi N, Sertedaki A, Charmandari E. Glucocorticoid Signaling and Epigenetic Alterations in Stress-Related Disorders. Int J Mol Sci 2021; 22:5964. [PMID: 34073101 PMCID: PMC8198182 DOI: 10.3390/ijms22115964] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.
Collapse
Affiliation(s)
- Niki Mourtzi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
50
|
Da Silva MLR, De Albuquerque BHDR, Allyrio TADMF, De Almeida VD, Cobucci RNDO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021; 15:60. [PMID: 34094536 PMCID: PMC8165754 DOI: 10.3892/br.2021.1436] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is associated with infection by certain types of human papillomaviruses (HPVs), and this affects women worldwide. Despite the improvements in prevention and cure of HPV-induced cervical cancer, it remains the second most common type of cancer in women in the least developed regions of the world. Epigenetic modifications are stable long-term changes that occur in the DNA, and are part of a natural evolutionary process of necessary adaptations to the environment. They do not result in changes in the DNA sequence, but do affect gene expression and genomic stability. Epigenetic changes are important in several biological processes. The effects of the environment on gene expression can contribute to the development of numerous diseases. Epigenetic modifications may serve a critical role in cancer cells, by silencing tumor suppressor genes, activating oncogenes, and exacerbating defects in DNA repair mechanisms. Although cervical cancer is directly related to a persistent high-risk HPV infection, several epigenetic changes have been identified in both the viral DNA and the genome of the infected cells: DNA methylation, histone modification and gene silencing by non-coding RNAs, which initiate and sustain epigenetic changes. In the present review, recent advances in the role of epigenetic changes in cervical cancer are summarized.
Collapse
Affiliation(s)
- Martha Laysla Ramos Da Silva
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | | | - Valéria Duarte De Almeida
- Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoro 59607-360, Brazil
| | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.,Post-Graduate Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|