1
|
Zhao W, Qi C, Mao Y, Ye F, Xia T, Zhao M, Min P, Zhang Y, Du J. High MICAL-L2 promotes cancer progression and drug resistance in renal clear cell carcinoma cells through stabilization of ACTN4 following vimentin expression. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167628. [PMID: 39689763 DOI: 10.1016/j.bbadis.2024.167628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Targeted therapies persist as the conventional method of treatment of kidney clear cell carcinoma (KIRC). However, resistance to these drugs emerges as a significant impediment to the management of renal cancer. MICAL-L2 plays a pivotal role in cytoskeleton rearrangement. This study sought to elucidate the clinical relevance of MICAL-L2 in KIRC and its regulatory mechanism driving cancer progression and resistance to therapy. TCGA data mining was utilized to assess the expression of MICAL-L2 in samples from patients with KIRC. Kaplan-Meier analysis and immunohistochemistry were employed to explore the clinical significance of MICAL-L2. In vitro experiments, including assays for wound healing and Transwell migration, CCK-8, EDU staining, RT-PCR, flow cytometry, and co-immunoprecipitation analysis were conducted to investigate the effects of MICAL-L2 on the drug sensitivity of KIRC cells and to elucidate the molecular mechanisms involved. The results showed that MICAL-L2 was overexpressed in KIRC tissues. High levels of MICAL-L2 were associated with poor survival and a poor response to drug therapy among patients with KIRC. Overexpression of MICAL-L2 stimulated cell migration, proliferation, and rendered KIRC cells insensitive to sunitinib and everolimus, two traditional therapies for KIRC. Furthermore, MICAL-L2 overexpression accelerated cancer progression and resistance to therapy in KIRC cells by interacting with its downstream regulator α-actinin-4 (ACTN4) in a Rab13-dependent manner, which reduced the degradation of ACTN4, leading to increased Vimentin expression. All these findings indicate that MICAL-L2 plays a crucial role in the progression of KIRC and suggest that MICAL-L2 may serve as a potential therapeutic target for KIRC treatment.
Collapse
Affiliation(s)
- Weizhen Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenxiang Qi
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yixin Mao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fengwen Ye
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tianxiang Xia
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingyu Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pengxiang Min
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
2
|
Hillman C, Kearn J, Parker MO. A unified approach to investigating 4 dpf zebrafish larval behaviour through a standardised light/dark assay. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111084. [PMID: 39002928 DOI: 10.1016/j.pnpbp.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Zebrafish are a dynamic research model in the domains of neuropsychopharmacology, biological psychiatry and behaviour. Working with larvae ≤4 days post-fertilisation (dpf) offers an avenue for high-throughput investigation whilst aligning with the 3Rs principles of animal research. The light/dark assay, which is the most widely used behavioural assay for larval neuropharmacology research, lacks experimental reliability and standardisation. This study aimed to formulate a robust, reproducible and standardised light/dark behavioural assay using 4 dpf zebrafish larvae. Considerable between-batch and inter-individual variability was found, which we rectified with a normalisation approach to ensure a reliable foundation for analysis. We then identified that 5-min light/dark transition periods are optimal for locomotor activity. We also found that a 30-min acclimation in the light was found to produce significantly increased dark phase larval locomotion. Next, we confirmed the pharmacological predictivity of the standardised assay using ethanol which, as predicted, caused hyperlocomotion at low concentrations and hypolocomotion at high concentrations. Finally, the assay was validated by assessing the behavioural phenotype of hyperactive transgenic (adgrl3.1-/-) larvae, which was rescued with psychostimulant medications. Our standardised assay not only provides a clear experimental and analytical framework to work with 4 dpf larvae, but also facilitates between-laboratory collaboration using our normalisation approach.
Collapse
Affiliation(s)
- Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| | - James Kearn
- Defence Science and Technology Laboratory (DSTL), UK.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
3
|
Pang T, Ding N, Zhao Y, Zhao J, Yang L, Chang S. Novel genetic loci of inhibitory control in ADHD and healthy children and genetic correlations with ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110988. [PMID: 38430954 DOI: 10.1016/j.pnpbp.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Cumulative evidence has showed the deficits of inhibitory control in patients with attention deficit hyperactivity disorder (ADHD), which is considered as an endophenotype of ADHD. Genetic study of inhibitory control could advance gene discovery and further facilitate the understanding of ADHD genetic basis, but the studies were limited in both the general population and ADHD patients. To reveal genetic risk variants of inhibitory control and its potential genetic relationship with ADHD, we conducted genome-wide association studies (GWAS) on inhibitory control using three datasets, which included 783 and 957 ADHD patients and 1350 healthy children. Subsequently, we employed polygenic risk scores (PRS) to explore the association of inhibitory control with ADHD and related psychiatric disorders. Firstly, we identified three significant loci for inhibitory control in the healthy dataset, two loci in the case dataset, and one locus in the meta-analysis of three datasets. Besides, we found more risk genes and variants by applying transcriptome-wide association study (TWAS) and conditional FDR method. Then, we constructed a network by connecting the genes identified in our study, leading to the identification of several vital genes. Lastly, we identified a potential relationship between inhibitory control and ADHD and autism by PRS analysis and found the direct and mediated contribution of the identified genetic loci on ADHD symptoms by mediation analysis. In conclusion, we revealed some genetic risk variants associated with inhibitory control and elucidated the benefit of inhibitory control as an endophenotype, providing valuable insights into the mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ning Ding
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China.
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Current State of Modeling Human Psychiatric Disorders Using Zebrafish. Int J Mol Sci 2023; 24:ijms24043187. [PMID: 36834599 PMCID: PMC9959486 DOI: 10.3390/ijms24043187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Psychiatric disorders are highly prevalent brain pathologies that represent an urgent, unmet biomedical problem. Since reliable clinical diagnoses are essential for the treatment of psychiatric disorders, their animal models with robust, relevant behavioral and physiological endpoints become necessary. Zebrafish (Danio rerio) display well-defined, complex behaviors in major neurobehavioral domains which are evolutionarily conserved and strikingly parallel to those seen in rodents and humans. Although zebrafish are increasingly often used to model psychiatric disorders, there are also multiple challenges with such models as well. The field may therefore benefit from a balanced, disease-oriented discussion that considers the clinical prevalence, the pathological complexity, and societal importance of the disorders in question, and the extent of its detalization in zebrafish central nervous system (CNS) studies. Here, we critically discuss the use of zebrafish for modeling human psychiatric disorders in general, and highlight the topics for further in-depth consideration, in order to foster and (re)focus translational biological neuroscience research utilizing zebrafish. Recent developments in molecular biology research utilizing this model species have also been summarized here, collectively calling for a wider use of zebrafish in translational CNS disease modeling.
Collapse
|
5
|
Liu H, Zhao X, Xue G, Chen C, Dong Q, Gao X, Yang L, Chen C. TTLL11 gene is associated with sustained attention performance and brain networks: A genome-wide association study of a healthy Chinese sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12835. [PMID: 36511133 PMCID: PMC9994169 DOI: 10.1111/gbb.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Genetic studies on attention have mainly focused on children with attention-deficit/hyperactivity disorder (ADHD), so little systematic research has been conducted on genetic correlates of attention performance and their potential brain mechanisms among healthy individuals. The current study included a genome-wide association study (GWAS, N = 1145 healthy young adults) aimed to identify genes associated with sustained attention and an imaging genetics study (an independent sample of 483 healthy young adults) to examine any identified genes' influences on brain function. The GWAS found that TTLL11 showed genome-wide significant associations with sustained attention, with rs13298112 as the most significant SNP and the GG homozygotes showing more impulsive but also more focused responses than the A allele carriers. A retrospective examination of previously published ADHD GWAS results confirmed an un-reported, small but statistically significant effect of TTLL11 on ADHD. The imaging genetics study replicated this association and showed that the TTLL11 gene was associated with resting state activity and connectivity of the somatomoter network, and can be predicted by dorsal attention network connectivity. Specifically, the GG homozygotes showed lower brain activity, weaker brain network connectivity, and non-significant brain-attention association compared to the A allele carriers. Expression database showed that expression of this gene is enriched in the brain and that the G allele is associated with lower expression level than the A allele. These results suggest that TTLL11 may play a major role in healthy individuals' attention performance and may also contribute to the etiology of ADHD.
Collapse
Affiliation(s)
- Hejun Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoyu Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuping Gao
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Child and Adolescent Mental Health Centre, Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders and NHC Key Laboratory of Mental Health (Peking University Sixth Hospital), Beijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
7
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
8
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
9
|
Fu G, Chen W, Li H, Wang Y, Liu L, Qian Q. A potential association of RNF219-AS1 with ADHD: Evidence from categorical analysis of clinical phenotypes and from quantitative exploration of executive function and white matter microstructure endophenotypes. CNS Neurosci Ther 2021; 27:603-616. [PMID: 33644999 PMCID: PMC8025624 DOI: 10.1111/cns.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS Attention-deficit/hyperactivity disorder (ADHD) is a neuropsychiatric disorder of substantial heritability, yet emerging evidence suggests that key risk variants might reside in the noncoding regions of the genome. Our study explored the association of lncRNAs (long noncoding RNAs) with ADHD as represented at three different phenotypic levels guided by the Research Domain Criteria (RDoC) framework: (i) ADHD caseness and symptom dimension, (ii) executive functions as functional endophenotype, and (iii) potential genetic influence on white matter architecture as brain structural endophenotype. METHODS Genotype data of 107 tag single nucleotide polymorphisms (SNP) from 10 candidate lncRNAs were analyzed in 1040 children with ADHD and 630 controls of Chinese Han descent. Executive functions including inhibition and set-shifting were assessed by STROOP and trail making tests, respectively. Imaging genetic analyses were performed in a subgroup of 33 children with ADHD and 55 controls using fractional anisotropy (FA). RESULTS One SNP rs3908461 polymorphism in RNF219-AS1 was found to be significantly associated with ADHD caseness: with C-allele detected as the risk genotype in the allelic model (P = 8.607E-05) and dominant genotypic model (P = 9.628E-05). Nominal genotypic effects on inhibition (p = 0.020) and set-shifting (p = 0.046) were detected. While no direct effect on ADHD core symptoms was detected, mediation analysis suggested that SNP rs3908461 potentially exerted an indirect effect through inhibition function [B = 0.21 (SE = 0.12), 95% CI = 0.02-0.49]. Imaging genetic analyses detected significant associations between rs3908461 genotypes and FA values in corpus callosum, left superior longitudinal fasciculus, left posterior limb of internal capsule, left posterior thalamic radiate (include optic radiation), and the left anterior corona radiate (P FWE corrected < 0.05). CONCLUSION Our present study examined the potential roles of lncRNA in genetic etiological of ADHD and provided preliminary evidence in support of the potential RNF219-AS1 involvement in the pathophysiology of ADHD in line with the RDoC framework.
Collapse
Affiliation(s)
- Guang‐Hui Fu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Wai Chen
- Mental Health ServiceFiona Stanley HospitalPerthAustralia
- Graduate School of EducationThe University of Western AustraliaPerthAustralia
- School of MedicineThe University of Notre Dame AustraliaFremantleAustralia
- School of PsychologyMurdoch UniversityPerthAustralia
| | - Hai‐Mei Li
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Yu‐Feng Wang
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| | - Qiu‐Jin Qian
- Peking University Sixth Hospital/Institute of Mental HealthBeijingChina
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental HealthMinistry of Health (Peking UniversityBeijingChina
| |
Collapse
|
10
|
Shi X, Guan K, Peng X, Xu B, Zhou X, Wang S, Xu S, Zheng M, Huang J, Wan X, Guan W, Su KP, Ye M, Gao X, Yin Z, Li X. Ghrelin modulates dopaminergic neuron formation and attention deficit hyperactivity disorder-like behaviors: From animals to human models. Brain Behav Immun 2021; 94:327-337. [PMID: 33412253 DOI: 10.1016/j.bbi.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children. The orexigenic hormone ghrelin is important in neuroprotection and neurodevelopment, which may play an important role in psychopathogenesis of ADHD. This study aimed to systematically investigate the genomic and pharmacological manipulations of ghrelin functioning in ADHD-like symptoms in zebrafish models and validated the effects of ghrelin polymorphisms in human subjects with ADHD. We firstly generated ghrelinΔ/Δ zebrafish mutant, which displayed hyperactive, attention deficit-like and impulsive-like behaviors, as well as endophenotypes, mimicking human ADHD. GhrelinΔ/Δ zebrafish exhibited downregulated expression levels of wnt1, wnt3a, wnt5a that are critical for dopaminergic neuron development to possibly regulate their number and spatial organization. Pharmacological blockade of wnt signaling with XAV939 induced a reduced moving activity and less dopaminergic neurons; whereas, wnt agonist SB415286 rescued hyperactivity and dopaminergic neuron loss in ghrelinΔ/Δ zebrafish. In addition, we further identified and validated a SNP, rs696217, on orexigenic hormone preproghrelin/ghrelin (T408T, Met72Met) to be associated with a higher risk of ADHD in a case-controlled association study with 248 subjects with ADHD and 208 subjects of healthy controls. Together, our results reveal a novel endogenous role for orexigenic hormone ghrelin in ADHD, which provides insights into genetic regulation and drug screens for the identification of novel treatments of ADHD.
Collapse
Affiliation(s)
- Xulai Shi
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Kaiyu Guan
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Xuyan Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Bingru Xu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Xianyong Zhou
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Shao Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Shengnan Xu
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Jing Huang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiaoyang Wan
- Institute of Infectious Liver Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Kuan-Pin Su
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Minjie Ye
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China.
| |
Collapse
|
11
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
12
|
Shared polygenic risk for ADHD, executive dysfunction and other psychiatric disorders. Transl Psychiatry 2020; 10:182. [PMID: 32518222 PMCID: PMC7283259 DOI: 10.1038/s41398-020-00872-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Many psychiatric disorders are associated with impaired executive functioning (EF). The associated EF component varies by psychiatric disorders, and this variation might be due to genetic liability. We explored the genetic association between five psychiatric disorders and EF in clinically-recruited attention deficit hyperactivity disorder (ADHD) children using polygenic risk score (PRS) methodology. Genome-wide association study (GWAS) summary data for ADHD, major depressive disorder (MDD), schizophrenia (SZ), bipolar disorder (BIP) and autism were used to calculate the PRSs. EF was evaluated by the Stroop test for inhibitory control, the trail-making test for cognitive flexibility, and the digital span test for working memory in a Chinese ADHD cohort (n = 1147). Exploratory factor analysis of the three measures identified one principal component for EF (EF-PC). Linear regression models were used to analyze the association between each PRS and the EF measures. The role of EF measures in mediating the effects of the PRSs on ADHD symptoms was also analyzed. The result showed the PRSs for MDD, ADHD and BIP were all significantly associated with the EF-PC. For each EF component, the association results were different for the PRSs of the five psychiatric disorders: the PRSs for ADHD and MDD were associated with inhibitory control (adjusted P = 0.0183 and 0.0313, respectively), the PRS for BIP was associated with working memory (adjusted P = 0.0416), and the PRS for SZ was associated with cognitive flexibility (adjusted P = 0.0335). All three EF measures were significantly correlated with ADHD symptoms. In mediation analyses, the ADHD and MDD PRSs, which were associated with inhibitory control, had significant indirect effects on ADHD symptoms through the mediation of inhibitory control. These findings indicate that the polygenic risks for several psychiatric disorders influence specific executive dysfunction in children with ADHD. The results helped to clarify the relationship between risk genes of each mental disorder and the intermediate cognitive domain, which may further help elucidate the risk genes and motivate efforts to develop EF measures as a diagnostic marker and future treatment target.
Collapse
|
13
|
Wasilewska I, Gupta RK, Wojtaś B, Palchevska O, Kuźnicki J. stim2b Knockout Induces Hyperactivity and Susceptibility to Seizures in Zebrafish Larvae. Cells 2020; 9:cells9051285. [PMID: 32455839 PMCID: PMC7291033 DOI: 10.3390/cells9051285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
In neurons, stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) and are involved in calcium signaling pathways. However, STIM activity in neurological diseases is unclear and should be clarified by studies that are performed in vivo rather than in cultured cells in vitro. The present study investigated the role of neuronal Stim2b protein in zebrafish. We generated stim2b knockout zebrafish, which were fertile and had a regular lifespan. Using various behavioral tests, we found that stim2b−/− zebrafish larvae were hyperactive compared with wild-type fish. The mutants exhibited increases in mobility and thigmotaxis and disruptions of phototaxis. They were also more sensitive to pentylenetetrazol and glutamate treatments. Using lightsheet microscopy, a higher average oscillation frequency and higher average amplitude of neuronal Ca2+ oscillations were observed in stim2b−/− larvae. RNA sequencing detected upregulation of the annexin 3a and gpr39 genes and downregulation of the rrm2, neuroguidin, and homer2 genes. The latter gene encodes a protein that is involved in several processes that are involved in Ca2+ homeostasis in neurons, including metabotropic glutamate receptors. We propose that Stim2b deficiency in neurons dysregulates SOCE and triggers changes in gene expression, thereby causing abnormal behavior, such as hyperactivity and susceptibility to seizures.
Collapse
Affiliation(s)
- Iga Wasilewska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Oksana Palchevska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
- Correspondence:
| |
Collapse
|
14
|
Zhang Y, Sun Y, Yu Z, Sun Y, Chang X, Lu L, Chang S, Shi J. Risk factors and an early prediction model for persistent methamphetamine-related psychiatric symptoms. Addict Biol 2020; 25:e12709. [PMID: 30821087 DOI: 10.1111/adb.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/27/2022]
Abstract
Methamphetamine (MA)-related psychiatric symptoms (MAP) are serious comorbidities of MA use and result in many social problems such as violence and suicide. We investigated the sociodemographic and genetic risk factors for persistent MAP of MA users (MUs) and constructed an early MAP prediction model. Derivation and replication samples had 1734 and 905 MUs, respectively. Symptom Checklist 90, Childhood Trauma Questionnaire, Attention-Deficit Hyperactivity Disorder (ADHD) Rating Scale-IV, and Social Support Rating Scale were used to assess the past-year prevalence of general MAP and life events retrospectively. Genome-wide association study (GWAS) was used to analyze MAP-related genetic factors. The prediction model was constructed by integrating the risk life events and clinical and genetic features using logistic regression. Of the 2639 MUs, 1293 (48.83%) had past-year MAP. The severity of MA addiction (SMA), childhood trauma, childhood ADHD symptoms, and social support were reliable risk factors for persistent MAP. By integrating these risk factors and the polygenic risk score from GWAS from derivation samples, the area under the curve (AUC) of the predictive model for MAP was 0.754 (95% CI 0.717~0.771). The risk factors and prediction model were also verified in replication samples. In addition, SMA, ADHD, and social support were mediators for the effect of the risk genetic factor on persistent MAP. Our study identified several risk factors for persistent MAP and will be helpful for developing scalable tools for the prevention of persistent and general MAP.
Collapse
Affiliation(s)
- Yang Zhang
- National Institute on Drug Dependence; Peking University; Beijing China
- Department of Pharmacology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing China
| | - Yan Sun
- National Institute on Drug Dependence; Peking University; Beijing China
| | - Zhoulong Yu
- National Institute on Drug Dependence; Peking University; Beijing China
- Department of Pharmacology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing China
| | - Yankun Sun
- National Institute on Drug Dependence; Peking University; Beijing China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University; Beijing China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health; Ministry of Health (Peking University); Beijing China
| | - Xiangwen Chang
- National Institute on Drug Dependence; Peking University; Beijing China
- Department of Pharmacology, School of Basic Medical Sciences; Peking University Health Science Center; Beijing China
| | - Lin Lu
- National Institute on Drug Dependence; Peking University; Beijing China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University; Beijing China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health; Ministry of Health (Peking University); Beijing China
| | - Suhua Chang
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University; Beijing China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health; Ministry of Health (Peking University); Beijing China
| | - Jie Shi
- National Institute on Drug Dependence; Peking University; Beijing China
- Beijing Key Laboratory on Drug Dependence Research; Beijing China
| |
Collapse
|
15
|
CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes. Mol Psychiatry 2020; 25:3322-3336. [PMID: 31363163 PMCID: PMC7714693 DOI: 10.1038/s41380-018-0233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 11/08/2022]
Abstract
The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D-amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine-induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. The multiple abnormalities described here might be responsible for synaptic alterations and lead to complex behavioral abnormalities. Collectively, CK1δ OE mice share characteristics typically associated with ADHD and should represent a valuable model to investigate the disease in vivo.
Collapse
|
16
|
Liu L, Gu H, Hou F, Xie X, Li X, Zhu B, Zhang J, Wei WH, Song R. Dyslexia associated functional variants in Europeans are not associated with dyslexia in Chinese. Am J Med Genet B Neuropsychiatr Genet 2019; 180:488-495. [PMID: 31264768 DOI: 10.1002/ajmg.b.32750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWAS) of developmental dyslexia (DD) often used European samples and identified only a handful associations with moderate or weak effects. This study aims to identify DD functional variants by integrating the GWAS associations with tissue-specific functional data and test the variants in a Chinese DD study cohort named READ. We colocalized associations from nine DD related GWAS with expression quantitative trait loci (eQTL) derived from brain tissues and identified two eSNPs rs349045 and rs201605. Both eSNPs had supportive evidence of chromatin interactions observed in human hippocampus tissues and their respective target genes ZNF45 and DNAH9 both had lower expression in brain tissues in schizophrenia patients than controls. In contrast, an eSNP rs4234898 previously identified based on eQTL from the lymphoblastic cell lines of dyslexic children had no chromatin interaction with its target gene SLC2A3 in hippocampus tissues and SLC2A3 expressed higher in the schizophrenia patients than controls. We genotyped the three eSNPs in the READ cohort of 372 cases and 354 controls and discovered only weak associations in rs201605 and rs4234898 with three DD symptoms (p < .05). The lack of associations could be due to low power in READ but could also implicate different etiology of DD in Chinese.
Collapse
Affiliation(s)
- Lingfei Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaiting Gu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Fontana BD, Franscescon F, Rosemberg DB, Norton WH, Kalueff AV, Parker MO. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2019; 100:9-18. [DOI: 10.1016/j.neubiorev.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/23/2023]
|
18
|
Grimm O, Kittel-Schneider S, Reif A. Recent developments in the genetics of attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci 2018; 72:654-672. [PMID: 29722101 DOI: 10.1111/pcn.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental psychiatric disorder that affects children and adults. ADHD is one of the psychiatric disorders with the strongest genetic basis according to familial, twin, and single nucleotide polymorphisms (SNP)-based epidemiological studies. In this review, we provide an update of recent insights into the genetic basis of ADHD. We discuss recent progress from genome-wide association studies (GWAS) looking at common variants as well as rare copy number variations. New analysis of gene groups, so-called functional ontologies, provide some insight into the gene networks afflicted, pointing to the role of neurodevelopmentally expressed gene networks. Bioinformatic methods, such as functional enrichment analysis and protein-protein network analysis, are used to highlight biological processes of likely relevance to the etiology of ADHD. Additionally, copy number variations seem to map on important pathways implicated in synaptic signaling and neurodevelopment. While some candidate gene associations of, for example, neurotransmitter receptors and signaling, have been replicated, they do not seem to explain significant variance in recent GWAS. We discuss insights from recent case-control SNP-GWAS that have presented the first whole-genome significant SNP in ADHD.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Zheng J, Chen YH. [Research advances in pathogenesis of attention deficit hyperactivity disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:775-780. [PMID: 30210033 PMCID: PMC7389180 DOI: 10.7499/j.issn.1008-8830.2018.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Both of genetic and environmental factors play important roles in the pathogenesis of attention deficit hyperactivity disorder (ADHD), and genetic factors can increase the susceptibility of individuals to environmental risk factors. There are extensive and various structural and functional abnormalities of the brain in patients with ADHD. Given the close functional relationship between brain areas, exploration has also been expanded to the dysfunction of brain network in recent years. As for the biochemical mechanism underlying ADHD, monoamine neurotransmitters are still most valued, and abnormalities of brain-derived neurotrophic factors and glutamic acid/γ-aminobutyric acid imbalance may also be present. Due to the abnormal neuroendocrine function and connectivity between brain areas caused by the synergistic effect of genetic and environmental factors, the prefrontal cortex loses control of the lower brain areas, so that the basal ganglia and amygdala affect normal behavioral and emotional reactions. Dysfunction of the endocrine axes may further aggravate neuroendocrine disorder. The above process may eventually lead to changes in brain structure and function, which may be associated with the development of ADHD. However, considering the heterogeneity of ADHD, its pathological process may not be the same, and the exact mechanism needs to be further clarified.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | | |
Collapse
|
20
|
Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder. Sci Rep 2018; 8:7620. [PMID: 29769613 PMCID: PMC5956073 DOI: 10.1038/s41598-018-26042-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.
Collapse
|