1
|
Armbruster L, Pożoga M, Wu Z, Eirich J, Thulasi Devendrakumar K, De La Torre C, Miklánková P, Huber M, Bradic F, Poschet G, Weidenhausen J, Merker S, Ruppert T, Sticht C, Sinning I, Finkemeier I, Li X, Hell R, Wirtz M. Nα-acetyltransferase NAA50 mediates plant immunity independent of the Nα-acetyltransferase A complex. PLANT PHYSIOLOGY 2024; 195:3097-3118. [PMID: 38588051 DOI: 10.1093/plphys/kiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.
Collapse
Affiliation(s)
- Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marlena Pożoga
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Pavlina Miklánková
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian Bradic
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weidenhausen
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Sabine Merker
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Irmgard Sinning
- Structural Biology, Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, BC, Canada
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Zahoor I, Nematullah M, Ahmed ME, Fatma M, Mir S, Ayasolla K, Cerghet M, Palaniyandi S, Ceci V, Carrera G, Buttari F, Centonze D, Mao-Draayer Y, Rattan R, Chiurchiù V, Giri S. Maresin-1 promotes neuroprotection and prevents disease progression in experimental models of multiple sclerosis through metabolic reprogramming and shaping innate and adaptive disease-associated cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559216. [PMID: 37808700 PMCID: PMC10557612 DOI: 10.1101/2023.09.25.559216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Multiple sclerosis (MS) is one of the most common inflammatory neurodegenerative diseases in young adults and causes neurological abnormalities and disability. We studied the effect of maresin 1 (MaR1) on the progression of disease in a relapsing-remitting form of experimental allergic encephalomyelitis (RR-EAE). Treatment with MaR1 in RR-EAE accelerated inflammation resolution, protected against neurological deficits, and delayed disease progression by decreasing immune cell infiltration (CD4+IL17+ and CD4+IFNγ+) into the CNS. Furthermore, the administration of MaR1 increased the production of IL-10, predominantly in macrophages and CD4+ cells. However, neutralizing IL-10 with an anti-IL-10 antibody abolished the protective effect of MaR1 on RR-EAE, suggesting that IL-10 plays a role in mediating the protective effect of MaR1 on EAE. Metabolism is rapidly becoming recognized as an important factor influencing the effector function of many immune cells. Using cutting-edge metabolic assays, our study revealed that compared with vehicle treatment, MaR1 treatment effectively restored the metabolic dysregulation observed in CD4+ cells, macrophages, and microglia in the treated group. Furthermore, MaR1 treatment reversed defective efferocytosis in EAE mice, which was potentially facilitated by the induction of metabolic alterations in macrophages and microglia. MaR1 treatment also protected myelin in the EAE group and regulated the metabolism of O4+ oligodendrocytes by restoring metabolic dysregulation through improved mitochondrial function and decreased glycolysis. Overall, in a preclinical MS animal model, MaR1 treatment produced anti-inflammatory and neuroprotective effects. It also triggered metabolic reprogramming in disease-associated cell types, accelerated efferocytosis, and preserved myelination. These data support that MaR1 has potential as a novel treatment agent for MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | | | | | - Mena Fatma
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Sajad Mir
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamesh Ayasolla
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Suresh Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Veronica Ceci
- Institute of Translational Pharmacology, National Research Council, Rome, 00133, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Giulia Carrera
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| | - Yang Mao-Draayer
- Michigan Institute for Neurological Disorders, Farmington Hills, MI 48334, USA
| | - Ramandeep Rattan
- Women’s Health Services, Henry Ford Health, Detroit, MI 48202, USA
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, 00133, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, 00143, Italy
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Knoch D, Meyer RC, Heuermann MC, Riewe D, Peleke FF, Szymański J, Abbadi A, Snowdon RJ, Altmann T. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:713-728. [PMID: 37964699 DOI: 10.1111/tpj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, 14195, Berlin, Germany
| | - Fritz F Peleke
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Institute of Bio- and Geosciences IBG-4: Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| |
Collapse
|
5
|
Bleckmann A, Spitzlberger N, Denninger P, Ehrnsberger HF, Wang L, Bruckmann A, Reich S, Holzinger P, Medenbach J, Grasser KD, Dresselhaus T. Cytosolic RGG RNA-binding proteins are temperature sensitive flowering time regulators in Arabidopsis. Biol Chem 2023; 404:1069-1084. [PMID: 37674329 DOI: 10.1515/hsz-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
mRNA translation is tightly regulated by various classes of RNA-binding proteins (RBPs) during development and in response to changing environmental conditions. In this study, we characterize the arginine-glycine-glycine (RGG) motif containing RBP family of Arabidopsis thaliana representing homologues of the multifunctional translation regulators and ribosomal preservation factors Stm1 from yeast (ScStm1) and human SERBP1 (HsSERBP1). The Arabidopsis genome encodes three RGG proteins named AtRGGA, AtRGGB and AtRGGC. While AtRGGA is ubiquitously expressed, AtRGGB and AtRGGC are enriched in dividing cells. All AtRGGs localize almost exclusively to the cytoplasm and bind with high affinity to ssRNA, while being capable to interact with most nucleic acids, except dsRNA. A protein-interactome study shows that AtRGGs interact with ribosomal proteins and proteins involved in RNA processing and transport. In contrast to ScStm1, AtRGGs are enriched in ribosome-free fractions in polysome profiles, suggesting additional plant-specific functions. Mutant studies show that AtRGG proteins differentially regulate flowering time, with a distinct and complex temperature dependency for each AtRGG protein. In conclusion, we suggest that AtRGGs function in fine-tuning translation efficiency to control flowering time and potentially other developmental processes in response to environmental changes.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Nicole Spitzlberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Denninger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Hans F Ehrnsberger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Stefan Reich
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Philipp Holzinger
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Jan Medenbach
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Suhail H, Nematullah M, Rashid F, Sajad M, Fatma M, Singh J, Zahoor I, Cheung WL, Tiwari N, Ayasolla K, Kumar A, Hoda N, Rattan R, Giri S. An early glycolysis burst in microglia regulates mitochondrial dysfunction in oligodendrocytes under neuroinflammation. iScience 2023; 26:107921. [PMID: 37841597 PMCID: PMC10568429 DOI: 10.1016/j.isci.2023.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Metabolism and energy processes governing oligodendrocyte function during neuroinflammatory disease are of great interest. However, how varied cellular environments affect oligodendrocyte activity during neuroinflammation is unknown. We demonstrate that activated microglial energy metabolism controls oligodendrocyte mitochondrial respiration and activity. Lipopolysaccharide/interferon gamma promote glycolysis and decrease mitochondrial respiration and myelin protein synthesis in rat brain glial cells. Enriched microglia showed an early burst in glycolysis. In microglia-conditioned medium, oligodendrocytes did not respire and expressed less myelin. SCENITH revealed metabolic derangement in microglia and O4-positive oligodendrocytes in endotoxemia and experimental autoimmune encephalitogenic models. The early burst of glycolysis in microglia was mediated by PDPK1 and protein kinase B/AKT signaling. We found that microglia-produced NO and itaconate, a tricarboxylic acid bifurcated metabolite, reduced mitochondrial respiration in oligodendrocytes. During inflammation, we discovered a signaling pathway in microglia that could be used as a therapeutic target to restore mitochondrial function in oligodendrocytes and induce remyelination.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Mir Sajad
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Mena Fatma
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Insha Zahoor
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Wing Lee Cheung
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nivedita Tiwari
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Kameshwar Ayasolla
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ashok Kumar
- Department of Ophthalmology/Kresge Eye Institute, Department of Anatomy and Cell Biology, Department of Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| | - Nasrul Hoda
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women’s Health Services, Henry Ford Health System, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
8
|
Smirnova J, Loerke J, Kleinau G, Schmidt A, Bürger J, Meyer EH, Mielke T, Scheerer P, Bock R, Spahn CMT, Zoschke R. Structure of the actively translating plant 80S ribosome at 2.2 Å resolution. NATURE PLANTS 2023; 9:987-1000. [PMID: 37156858 PMCID: PMC10281867 DOI: 10.1038/s41477-023-01407-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.
Collapse
Affiliation(s)
- Julia Smirnova
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Schmidt
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Etienne H Meyer
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Reimo Zoschke
- Department III, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Hou X, Mu L, Hu X, Guo S. Warming and microplastic pollution shape the carbon and nitrogen cycles of algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130775. [PMID: 36669419 DOI: 10.1016/j.jhazmat.2023.130775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Oceans absorb most excess heat from anthropogenic activities, leading to ocean warming. Moreover, microplastic pollution from anthropogenic activities is serious in marine environments and is accessible to various organisms. However, the combined effects of environmentally realistic ocean warming and microplastic pollution (OW+MP) on dominant marine species phytoplankton and related biochemical cycles are unclear. We investigated the combined effects on the dominant genera of diatoms (Chaetoceros gracilis, C. gracilis) over 100 generations. As a biological adjustment strategy, the growth rates of C. gracilis were nonsignificantly changed by OW+MP, body size decreased, and the chlorophyll a (Chl a) content and photosynthetic efficiency significantly decreased by 32.5% and 10.86%, respectively. The OW+MP condition inhibited carbon and nitrogen assimilation and sequestration capacity and allocated carbon into flexible forms of carbohydrates instead of proteins. Furthermore, the decrease in Si:C and Si:N ratios affected carbon transport to both the mesopelagic layer and deep ocean. Integrated transcriptomics and metabolomics showed that OW+MP disturbed ribosome and nitrogen metabolism. Given the rising concurrence of warming and MP pollution, the changes in metabolism suggest that the covariation in carbon, nitrogen and silicon biochemical cycles and the hidden influence on biodiversity and food web changes in the ocean should be reconsidered.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China.
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
10
|
Jammer A, Akhtar SS, Amby DB, Pandey C, Mekureyaw MF, Bak F, Roth PM, Roitsch T. Enzyme activity profiling for physiological phenotyping within functional phenomics: plant growth and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5170-5198. [PMID: 35675172 DOI: 10.1093/jxb/erac215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study. This includes the introduction of multivariate statistical analyses that can easily be implemented in similar studies, allowing researchers to extract more valuable information to identify enzymatic biosignatures. Through a literature meta-analysis, we demonstrate how enzyme activity profiling has already provided functional information on the mechanisms regulating plant development and response mechanisms to abiotic stress and pathogen attack. The high robustness of the distinct enzymatic biosignatures observed during developmental processes and under stress conditions underpins the enormous potential of enzyme activity profiling for future applications in both basic and applied research. Enzyme activity profiling will complement molecular -omics approaches to contribute to the mechanistic understanding required to narrow the genotype-to-phenotype knowledge gap and to identify predictive biomarkers for plant breeding to develop climate-resilient crops.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F Mekureyaw
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Sciences, Section of Microbial Ecology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Roth
- Institute for Computational Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- International AI Future Lab, Technical University of Munich, Munich, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
13
|
Siqueira JA, Wakin T, Batista-Silva W, Silva JCF, Vicente MH, Silva JC, Clarindo WR, Zsögön A, Peres LEP, De Veylder L, Fernie AR, Nunes-Nesi A, Araújo WL. A long and stressful day: Photoperiod shapes aluminium tolerance in plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128704. [PMID: 35313159 DOI: 10.1016/j.jhazmat.2022.128704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Matheus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Jéssica C Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wellington R Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
14
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
15
|
Stefan T, Wu XN, Zhang Y, Fernie A, Schulze WX. Regulatory Modules of Metabolites and Protein Phosphorylation in Arabidopsis Genotypes With Altered Sucrose Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:891405. [PMID: 35665154 PMCID: PMC9161306 DOI: 10.3389/fpls.2022.891405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Multi-omics data sets are increasingly being used for the interpretation of cellular processes in response to environmental cues. Especially, the posttranslational modification of proteins by phosphorylation is an important regulatory process affecting protein activity and/or localization, which, in turn, can have effects on metabolic processes and metabolite levels. Despite this importance, relationships between protein phosphorylation status and metabolite abundance remain largely underexplored. Here, we used a phosphoproteomics-metabolomics data set collected at the end of day and night in shoots and roots of Arabidopsis to propose regulatory relationships between protein phosphorylation and accumulation or allocation of metabolites. For this purpose, we introduced a novel, robust co-expression measure suited to the structure of our data sets, and we used this measure to construct metabolite-phosphopeptide networks. These networks were compared between wild type and plants with perturbations in key processes of sugar metabolism, namely, sucrose export (sweet11/12 mutant) and starch synthesis (pgm mutant). The phosphopeptide-metabolite network turned out to be highly sensitive to perturbations in sugar metabolism. Specifically, KING1, the regulatory subunit of SnRK1, was identified as a primary candidate connecting protein phosphorylation status with metabolism. We additionally identified strong changes in the fatty acid network of the sweet11/12 mutant, potentially resulting from a combination of fatty acid signaling and metabolic overflow reactions in response to high internal sucrose concentrations. Our results further suggest novel protein-metabolite relationships as candidates for future targeted research.
Collapse
Affiliation(s)
- Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- College for Life Science, Yunnan University, Kunming, China
| | - Youjun Zhang
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair Fernie
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Artins A, Caldana C. The metabolic homeostaTOR: The balance of holding on or letting grow. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102196. [PMID: 35219142 DOI: 10.1016/j.pbi.2022.102196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Plants, as autotrophic organisms, capture light energy to convert carbon dioxide into ATP, NADPH, and sugars, which are essential for the biosynthesis of building blocks, cell proliferation, biomass accumulation, and reproductive fitness. The Target Of Rapamycin (TOR) signalling pathway is a master regulator in sensing energy and nutrients, adapting the metabolic network and cell behaviour in response to environmental resource availability. In the past years, exciting advances in this endeavour have pointed out this pathway's importance in controlling metabolic homeostasis in various biological processes and systems. In this review, we discuss these recent discoveries highlighting the need for a metabolic threshold for the proper function of this kinase complex at the cellular level and across distinct tissues and organs to control growth and development in plants.
Collapse
Affiliation(s)
- Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
18
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
19
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. Int J Mol Sci 2021; 22:ijms22158172. [PMID: 34360938 PMCID: PMC8347141 DOI: 10.3390/ijms22158172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.
Collapse
|
21
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
22
|
Lopez FB, Fort A, Tadini L, Probst AV, McHale M, Friel J, Ryder P, Pontvianne F, Pesaresi P, Sulpice R, McKeown P, Brychkova G, Spillane C. Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. THE PLANT CELL 2021; 33:1135-1150. [PMID: 33793816 PMCID: PMC8225240 DOI: 10.1093/plcell/koab020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The 45S rRNA genes (rDNA) are among the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte, we reduced 45S rDNA copy number (CN) to a plateau of ∼10%. Two independent lines had rDNA CNs reduced by up to 90% at the T7 generation, named low copy number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates, and steady-state levels remained the same as wild-type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. Although overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA CN on genome stability, development, and cellular processes.
Collapse
Affiliation(s)
- Francesca B Lopez
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Luca Tadini
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Aline V Probst
- CNRS, GReD, Universit� Clermont Auvergne, INSERM, 63001 Clermont–Ferrand, France
| | - Marcus McHale
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter Ryder
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Fr�d�ric Pontvianne
- CNRS, Laboratoire G�nome et D�veloppement des Plantes (LGDP), Universit� de Perpignan Via Domitia, Perpignan, France
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Ronan Sulpice
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter McKeown
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Author for correspondence:
| |
Collapse
|
23
|
da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C 4 Species Setaria viridis, a Suitable Model for Biomass Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:637508. [PMID: 33927734 PMCID: PMC8078139 DOI: 10.3389/fpls.2021.637508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Collapse
Affiliation(s)
| | | | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | - Valéria Mafra
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
24
|
Cloutier M, Xiang D, Gao P, Kochian LV, Zou J, Datla R, Wang E. Integrative Modeling of Gene Expression and Metabolic Networks of Arabidopsis Embryos for Identification of Seed Oil Causal Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:642938. [PMID: 33889166 PMCID: PMC8056077 DOI: 10.3389/fpls.2021.642938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Fatty acids in crop seeds are a major source for both vegetable oils and industrial applications. Genetic improvement of fatty acid composition and oil content is critical to meet the current and future demands of plant-based renewable seed oils. Addressing this challenge can be approached by network modeling to capture key contributors of seed metabolism and to identify underpinning genetic targets for engineering the traits associated with seed oil composition and content. Here, we present a dynamic model, using an Ordinary Differential Equations model and integrated time-course gene expression data, to describe metabolic networks during Arabidopsis thaliana seed development. Through in silico perturbation of genes, targets were predicted in seed oil traits. Validation and supporting evidence were obtained for several of these predictions using published reports in the scientific literature. Furthermore, we investigated two predicted targets using omics datasets for both gene expression and metabolites from the seed embryo, and demonstrated the applicability of this network-based model. This work highlights that integration of dynamic gene expression atlases generates informative models which can be explored to dissect metabolic pathways and lead to the identification of causal genes associated with seed oil traits.
Collapse
Affiliation(s)
- Mathieu Cloutier
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edwin Wang
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Marti L, Savatin DV, Gigli-Bisceglia N, de Turris V, Cervone F, De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. PLANT, CELL & ENVIRONMENT 2021; 44:931-947. [PMID: 33314180 DOI: 10.1111/pce.13978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered. Arabidopsis NPK1-related Proteins (ANPs) are mitogen-activated protein kinase kinase kinases previously shown to have a role in immunity. In this article, we studied the in vivo intracellular dynamics of ANP1- and ANP3-GFP fusions and found that under basal physiological conditions both proteins are present in the cytosol, while ANP3 is also localized in mitochondria. After elicitor perception, both proteins are present also in the plastids and nuclei, revealing a localization pattern that is so far unique. The N-terminal region of the protein kinases is responsible for their localization in mitochondria and plastids. Moreover, we found that the localization of ANPs coincides with the sites of elicitor-induced ROS accumulation and that plants lacking ANP function do not accumulate intracellular ROS.
Collapse
Affiliation(s)
- Lucia Marti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Nora Gigli-Bisceglia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
27
|
Lin L, Cao J, Du A, An Q, Chen X, Yuan S, Batool W, Shabbir A, Zhang D, Wang Z, Norvienyeku J. eIF3k Domain-Containing Protein Regulates Conidiogenesis, Appressorium Turgor, Virulence, Stress Tolerance, and Physiological and Pathogenic Development of Magnaporthe oryzae Oryzae. FRONTIERS IN PLANT SCIENCE 2021; 12:748120. [PMID: 34733303 PMCID: PMC8558559 DOI: 10.3389/fpls.2021.748120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 05/05/2023]
Abstract
The eukaryotic translation initiation factor 3 (eIF3) complex consists of essential and non-essential sub-complexes. Non-essential eIF3 complex subunits, such as eIF3e, eIF3j, eIF3k, and eIF3l, modulate stress tolerance and enhance the lifespan of Neurospora crassa and Caenorhabditis elegans. However, there is limited knowledge of the role of the non-essential eIF3 sub-complex in the pathophysiological development of plant fungal pathogens. Here, we deployed genetic and biochemical techniques to explore the influence of a hypothetical protein containing eIF3k domain in Magnaporthe oryzae Oryzae (MoOeIF3k) on reproduction, hyphae morphogenesis, stress tolerance, and pathogenesis. Also, the targeted disruption of MoOeIF3k suppressed vegetative growth and asexual sporulation in ΔMoOeif3k strains significantly. We demonstrated that MoOeIF3k promotes the initiation and development of the rice blast disease by positively regulating the mobilization and degradation of glycogen, appressorium integrity, host penetration, and colonization during host-pathogen interaction. For the first time, we demonstrated that the eIF3k subunit supports the survival of the blast fungus by suppressing vegetative growth and possibly regulating the conversions and utilization of stored cellular energy reserves under starvation conditions. We also observed that the deletion of MoOeIF3k accelerated ribosomal RNA (rRNA) generation in the ΔMoOeif3k strains with a corresponding increase in total protein output. In summary, this study unravels the pathophysiological significance of eIF3k filamentous fungi. The findings also underscored the need to systematically evaluate the individual subunits of the non-essential eIF3 sub-complex during host-pathogen interaction. Further studies are required to unravel the influence of synergetic coordination between translation and transcriptional regulatory machinery on the pathogenesis of filamentous fungi pathogens.
Collapse
Affiliation(s)
- Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaying Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anqiang Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuli An
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangshuang Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wajjiha Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ammarah Shabbir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Zonghua Wang,
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- *Correspondence: Justice Norvienyeku,
| |
Collapse
|
28
|
Martins MCM, Mafra V, Monte-Bello CC, Caldana C. The Contribution of Metabolomics to Systems Biology: Current Applications Bridging Genotype and Phenotype in Plant Science. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:91-105. [DOI: 10.1007/978-3-030-80352-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
30
|
Küken A, Gennermann K, Nikoloski Z. Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2168-2177. [PMID: 32656814 DOI: 10.1111/tpj.14890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measured in vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximal in vivo catalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements from Arabidopsis thaliana rosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings in Escherichia coli, we demonstrate weaker concordance between the plant-specific in vitro and in vivo enzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximal in vivo catalytic rates, and available quantitative metabolomics data are below reported KM values and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.
Collapse
Affiliation(s)
- Anika Küken
- System Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
| | - Kristin Gennermann
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- System Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, Germany
| |
Collapse
|
31
|
The Importance of Protein Phosphorylation for Signaling and Metabolism in Response to Diel Light Cycling and Nutrient Availability in a Marine Diatom. BIOLOGY 2020; 9:biology9070155. [PMID: 32640597 PMCID: PMC7408324 DOI: 10.3390/biology9070155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and protein homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.
Collapse
|
32
|
Salih KJ, Duncan O, Li L, O'Leary B, Fenske R, Trösch J, Millar AH. Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:128-139. [PMID: 32027433 DOI: 10.1111/tpj.14713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/05/2020] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
Abiotic stress in plants causes accumulation of reactive oxygen species (ROS) leading to the need for new protein synthesis to defend against ROS and to replace existing proteins that are damaged by oxidation. Functional plant ribosomes are critical for these activities, however we know little about the impact of oxidative stress on plant ribosome abundance, turnover, and function. Using Arabidopsis cell culture as a model system, we induced oxidative stress using 1 µm of H2 O2 or 5 µm menadione to more than halve cell growth rate and limit total protein content. We show that ribosome content on a total cell protein basis decreased in oxidatively stressed cells. However, overall protein synthesis rates on a ribosome abundance basis showed the resident ribosomes retained their function in oxidatively stressed cells. 15 N progressive labelling was used to calculate the rate of ribosome synthesis and degradation to track the fate of 62 r-proteins. The degradation rates and the synthesis rates of most r-proteins slowed following oxidative stress leading to an ageing population of ribosomes in stressed cells. However, there were exceptions to this trend; r-protein RPS14C doubled its degradation rate in both oxidative treatments. Overall, we show that ribosome abundance decreases and their age increases with oxidative stress in line with loss of cell growth rate and total cellular protein amount, but ribosome function of the ageing ribosomes appeared to be maintained concomittently with differences in the turnover rate and abundance of specific ribosomal proteins. Data are available via ProteomeXchange with identifier PXD012840.
Collapse
Affiliation(s)
- Karzan J Salih
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- Pharmaceutical Chemistry Department, Medical and Applied Science College, Charmo University, 46023, Chamchamal-Sulaimani, Kurdistan Region, Iraq
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Brendan O'Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
33
|
Niedermaier S, Schneider T, Bahl MO, Matsubara S, Huesgen PF. Photoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light. Front Genet 2020; 11:154. [PMID: 32194630 PMCID: PMC7066320 DOI: 10.3389/fgene.2020.00154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 01/19/2023] Open
Abstract
Plants are subjected to strong fluctuations in light intensity in their natural growth environment, caused both by unpredictable changes due to weather conditions and movement of clouds and upper canopy leaves and predictable changes during day-night cycle. The mechanisms of long-term acclimation to fluctuating light (FL) are still not well understood. Here, we used quantitative mass spectrometry to investigate long-term acclimation of low light-grown Arabidopsis thaliana to a FL condition that induces mild photooxidative stress. On the third day of exposure to FL, young and mature leaves were harvested in the morning and at the end of day for proteome analysis using a stable isotope labeling approach. We identified 2,313 proteins, out of which 559 proteins exhibited significant changes in abundance in at least one of the four experimental groups (morning-young, morning-mature, end-of-day-young, end-of-day-mature). A core set of 49 proteins showed significant responses to FL in three or four experimental groups, which included enhanced accumulation of proteins involved in photoprotection, cyclic electron flow around photosystem I, photorespiration, and glycolysis, while specific glutathione transferases and proteins involved in translation and chlorophyll biosynthesis were reduced in abundance. In addition, we observed pathway- and protein-specific changes predominantly at the end of day, whereas few changes were observed exclusively in the morning. Comparison of the proteome data with the matching transcript data revealed gene- and protein-specific responses, with several chloroplast-localized proteins decreasing in abundance despite increased gene expression under FL. Together, our data shows moderate but widespread alterations of protein abundance during acclimation to FL and suggests an important role of post-transcriptional regulation of protein abundance.
Collapse
Affiliation(s)
| | - Trang Schneider
- IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.,iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | - Pitter F Huesgen
- ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Lee S, Micalizzi D, Truesdell SS, Bukhari SIA, Boukhali M, Lombardi-Story J, Kato Y, Choo MK, Dey-Guha I, Ji F, Nicholson BT, Myers DT, Lee D, Mazzola MA, Raheja R, Langenbucher A, Haradhvala NJ, Lawrence MS, Gandhi R, Tiedje C, Diaz-Muñoz MD, Sweetser DA, Sadreyev R, Sykes D, Haas W, Haber DA, Maheswaran S, Vasudevan S. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Genome Biol 2020; 21:33. [PMID: 32039742 PMCID: PMC7011231 DOI: 10.1186/s13059-020-1936-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Collapse
Affiliation(s)
- Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Douglas Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Syed I A Bukhari
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Jennifer Lombardi-Story
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Yasutaka Kato
- Laboratory of Oncology, Hokuto Hospital, Obihiro, Japan
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ipsita Dey-Guha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, 1257-1258, South Korea
| | - Maria A Mazzola
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Radhika Raheja
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Nicholas J Haradhvala
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Roopali Gandhi
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Manuel D Diaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - David A Sweetser
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - David Sykes
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
36
|
Monroe JD. Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth. PLANT DIRECT 2020; 4:e00199. [PMID: 32072133 PMCID: PMC7011640 DOI: 10.1002/pld3.199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 05/14/2023]
Abstract
Starch degradation in chloroplasts requires β-amylase (BAM) activity, but in Arabidopsis, there are nine BAM proteins, five of which are thought to be catalytic. Although single-gene knockouts revealed the necessity of BAM3 for starch degradation, contributions of other BAMs are poorly understood. Moreover, it is not possible to detect the contribution of individual BAMs in plants containing multiple active BAMs. Therefore, we constructed a set of five quadruple mutants each expressing only one catalytically active BAM, and a quintuple mutant missing all of these BAMs (B-Null). Using these mutants, we assessed the influence of each individual BAM on plant growth and on leaf starch degradation. Both BAM1 and BAM3 alone support wild-type (WT) levels of growth. BAM3 alone is sufficient to degrade leaf starch completely whereas BAM1 alone can only partially degrade leaf starch. In contrast, BAM2, BAM5, and BAM6 have no detectable effect on starch degradation or plant growth, being comparable with the B-Null plants. B-Null plant extracts contained no measurable amylase activity, whereas BAM3 and BAM1 contributed about 70% and 14% of the WT activity, respectively. BAM2 activity was low but detectable and BAM6 contributed no measurable activity. Interestingly, activity of BAM1 and BAM3 in the mutants varied little developmentally or diurnally, and did not increase appreciably in response to osmotic or cold stress. With these genetic lines, we now have new opportunities to investigate members of this diverse gene family.
Collapse
|
37
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Olas JJ, Fichtner F, Apelt F. All roads lead to growth: imaging-based and biochemical methods to measure plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:11-21. [PMID: 31613967 PMCID: PMC6913701 DOI: 10.1093/jxb/erz406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/28/2019] [Indexed: 05/31/2023]
Abstract
Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
| | - Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
39
|
Toribio R, Muñoz A, Castro-Sanz AB, Merchante C, Castellano MM. A novel eIF4E-interacting protein that forms non-canonical translation initiation complexes. NATURE PLANTS 2019; 5:1283-1296. [PMID: 31819221 PMCID: PMC6914366 DOI: 10.1038/s41477-019-0553-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Translation is a fundamental step in gene expression that regulates multiple developmental and stress responses. One key step of translation initiation is the association between eIF4E and eIF4G. This process is regulated in different eukaryotes by proteins that bind to eIF4E; however, evidence of eIF4E-interacting proteins able to regulate translation is missing in plants. Here, we report the discovery of CERES, a plant eIF4E-interacting protein. CERES contains an LRR domain and a canonical eIF4E-binding site. Although the CERES-eIF4E complex does not include eIF4G, CERES forms part of cap-binding complexes, interacts with eIF4A, PABP and eIF3, and co-sediments with translation initiation complexes in vivo. Moreover, CERES promotes translation in vitro and general translation in vivo, while it modulates the translation of specific mRNAs related to light and carbohydrate response. These data suggest that CERES is a non-canonical translation initiation factor that modulates translation in plants.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Cordova, Spain
| | - Ana B Castro-Sanz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga- Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Málaga, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
40
|
Song S, Wood TK. Persister cells resuscitate via ribosome modification by 23S rRNA pseudouridine synthase RluD. Environ Microbiol 2019; 22:850-857. [DOI: 10.1111/1462-2920.14828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sooyeon Song
- Department of Chemical EngineeringPennsylvania State University University Park Pennsylvania 16802‐4400 USA
| | - Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State University University Park Pennsylvania 16802‐4400 USA
| |
Collapse
|
41
|
Joshi J, Folz JS, Gregory JF, McCarty DR, Fiehn O, Hanson AD. Rethinking the PDH Bypass and GABA Shunt as Thiamin-Deficiency Workarounds. PLANT PHYSIOLOGY 2019; 181:389-393. [PMID: 31409697 PMCID: PMC6776870 DOI: 10.1104/pp.19.00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 05/18/2023]
Abstract
The PDH bypass and the GABA shunt serve to maintain mainline metabolic fluxes during episodes of organellar thiamin diphosphate deficiency.
Collapse
Affiliation(s)
- Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Jacob S Folz
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California 95616
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
42
|
Lobo AKM, Orr DJ, Gutierrez MO, Andralojc PJ, Sparks C, Parry MAJ, Carmo-Silva E. Overexpression of ca1pase Decreases Rubisco Abundance and Grain Yield in Wheat. PLANT PHYSIOLOGY 2019; 181:471-479. [PMID: 31366720 PMCID: PMC6776845 DOI: 10.1104/pp.19.00693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/20/2019] [Indexed: 05/22/2023]
Abstract
Rubisco catalyzes the fixation of CO2 into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-d-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tight-binding inhibitors, contributing to the maintenance of Rubisco activity. Here, we investigated the hypothesis that overexpressing ca1pase would decrease the abundance of Rubisco inhibitors, thereby increasing the activity of Rubisco and enhancing photosynthetic performance and productivity in wheat (Triticum aestivum). Plants of four independent wheat transgenic lines overexpressing ca1pase showed up to 30-fold increases in ca1pase expression compared to the wild type. Plants overexpressing ca1pase had lower numbers of Rubisco tight-binding inhibitors and higher Rubisco activation state than the wild type; however, there were 17% to 60% fewer Rubisco active sites in the four transgenic lines than in the wild type. The lower Rubisco content in plants overexpressing ca1pase resulted in lower initial and total carboxylating activities measured in flag leaves at the end of the vegetative stage and lower aboveground biomass and grain yield measured in fully mature plants. Hence, contrary to what would be expected, ca1pase overexpression decreased Rubisco content and compromised wheat grain yields. These results support a possible role for Rubisco inhibitors in protecting the enzyme and maintaining an adequate number of Rubisco active sites to support carboxylation rates in planta.
Collapse
Affiliation(s)
- Ana Karla M Lobo
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, United Kingdom
- Federal University of Ceará, Department of Biochemistry and Molecular Biology, Fortaleza, Brazil
| | - Douglas J Orr
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, United Kingdom
| | - Marta Oñate Gutierrez
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, United Kingdom
| | - P John Andralojc
- Rothamsted Research, Plant Sciences Department, Harpenden, AL5 2JQ, United Kingdom
| | - Caroline Sparks
- Rothamsted Research, Plant Sciences Department, Harpenden, AL5 2JQ, United Kingdom
| | - Martin A J Parry
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, United Kingdom
- Rothamsted Research, Plant Sciences Department, Harpenden, AL5 2JQ, United Kingdom
| | - Elizabete Carmo-Silva
- Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, United Kingdom
| |
Collapse
|
43
|
Tcherkez G, Limami AM. Net photosynthetic CO 2 assimilation: more than just CO 2 and O 2 reduction cycles. THE NEW PHYTOLOGIST 2019; 223:520-529. [PMID: 30927445 DOI: 10.1111/nph.15828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Net photosynthetic assimilation in C3 plants is mostly viewed as a simple balance between CO2 fixation by Rubisco-catalyzed carboxylation and CO2 production by photorespiration (and to a lower extent, by day respiration) that can be easily manipulated during gas exchange experiments using the CO2 : O2 ratio of the environment. However, it now becomes clear that it is not so simple, because the photosynthetic response to gaseous conditions involves 'ancillary' metabolisms, even in the short-term. That is, carbon and nitrogen utilization by pathways other than the Calvin cycle and the photorespiratory cycle, as well as rapid signaling events, can influence the observed rate of net photosynthesis. The potential impact of such ancillary metabolisms is assessed as well as how it must be taken into account to avoid misinterpretation of photosynthetic CO2 response curves or low O2 effects in C3 leaves.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Anis M Limami
- IRHS Centre INRA d'Angers, Université d'Angers, 42 rue George Morel, 49070, Beaucouzé, France
| |
Collapse
|
44
|
Belouah I, Nazaret C, Pétriacq P, Prigent S, Bénard C, Mengin V, Blein-Nicolas M, Denton AK, Balliau T, Augé S, Bouchez O, Mazat JP, Stitt M, Usadel B, Zivy M, Beauvoit B, Gibon Y, Colombié S. Modeling Protein Destiny in Developing Fruit. PLANT PHYSIOLOGY 2019; 180:1709-1724. [PMID: 31015299 PMCID: PMC6752906 DOI: 10.1104/pp.19.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 05/18/2023]
Abstract
Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to estimate translation (kt ) and degradation (kd ) rate constants for almost 2,400 detected transcript-protein pairs and was satisfactorily fitted for >1,000 pairs. The model predicted median values of ∼2 min for the translation of a protein, and a protein lifetime of ∼11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that protein concentration is more strongly affected by the rate of translation than that of degradation.
Collapse
Affiliation(s)
- Isma Belouah
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Christine Nazaret
- Institut de Mathématiques de Bordeaux, Ecole Nationale Supérieure de Technologie des Biomolécules de Bordeaux-Institut Polytechnique de Bordeaux, 33400 Talence, France
| | - Pierre Pétriacq
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sylvain Prigent
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Camille Bénard
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mélisande Blein-Nicolas
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Alisandra K Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Thierry Balliau
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ségolène Augé
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Olivier Bouchez
- Institut National de la Recherche Agronomique, US1426, Service Génome et Transcriptome, Plateforme Génomique, Genotoul, 31326 Castanet-Tolosan, France
| | - Jean-Pierre Mazat
- Institute for Cellular Biochemistry and Genetics-Centre National de la Recherche Scientifique, F-33077 Bordeaux Cedex, France
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Michel Zivy
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Bertrand Beauvoit
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Yves Gibon
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sophie Colombié
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| |
Collapse
|
45
|
Zucchi E, Lu CH, Cho Y, Chang R, Adiutori R, Zubiri I, Ceroni M, Cereda C, Pansarasa O, Greensmith L, Malaspina A, Petzold A. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J Neurochem 2019; 146:631-641. [PMID: 29959860 PMCID: PMC6175430 DOI: 10.1111/jnc.14542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared with larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200‐210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte Carlo simulations of a coarse‐grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7 : 3 : 2 (NfL:NfM:NfH), we found an ‘adaptive’ Nf subunit stoichiometry of 24 : 2.4 : 1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56 ± 27k ATP (5.6 h) in control subjects compared to 123 ± 102k (12.3 h) in ALS with ‘adaptive’ (24:2.4:1.6) Nf stoichiometry (not significant) and increased significantly to 355 ± 330k (35.5 h) with ‘luxury’ (7:3:2) Nf subunit stoichiometry (p < 0.0001 for each comparison). Longitudinal disease progression‐related energy consumption was highest with a ‘luxury’ (7:3:2) Nf stoichiometry. Therefore, an energy and time‐saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands. ![]()
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Ching-Hua Lu
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Yunju Cho
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rocco Adiutori
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Ceroni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,General Neurology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, University College London, London, UK
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Petzold
- Department of Neuromuscular Diseases, MRC Centre for Neuromuscular Diseases, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, London, UK.,Amsterdam UMC, Departments of Neurology and Ophthalmology, De Boelelaan, Amsterdam, NL
| |
Collapse
|
46
|
Rodriguez CE, Bustamante CA, Budde CO, Müller GL, Drincovich MF, Lara MV. Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues. FRONTIERS IN PLANT SCIENCE 2019; 10:715. [PMID: 31214229 PMCID: PMC6558166 DOI: 10.3389/fpls.2019.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 05/20/2023]
Abstract
Peach (Prunus persica) is an important economically temperate fruit. The development follows double sigmoid curve with four phases (S1-S4). We centered our work in the early development. In addition to S1, we studied the very early stage (E) characterized by the lag zone of the exponential growing phase S1, and the second stage (S2) when the pit starts hardening. "Dixiland" peach fruit were collected at 9 (E), 29 (S1), and 53 (S2) days after flowering (DAF) and endocarp and mesocarp were separated. There was a pronounced decrease in total protein content along development in both tissues. Quantitative proteomic allowed the identification of changes in protein profiles across development and revealed the main biochemical pathways sustaining tissue differentiation. Protein metabolism was the category most represented among differentially proteins in all tissues and stages. The decrease in protein synthesis machinery observed during development would be responsible of the protein fall, rather than a proteolytic process; and reduced protein synthesis during early development would reroute cell resources to lignin biosynthesis. These changes were accompanied by net decrease in total amino acids in E1-S1 and increase in S1-S2 transitions. Amino acid profiling, showed Asn parallels this trend. Concerted changes in Asn and in enzymes involved in its metabolism reveal that increased synthesis and decreased catabolism of Asn may conduct to an Asn increase during very early development and that the β-Cyano-Alanine synthase/β-Cyano-Alanine hydratase could be the pathway for Asn synthesis in "Dixiland" peach fruit. Additionally, photosynthetic machinery decays during early development in mesocarp and endocarp. Proteins related to photosynthesis are found to a higher extent in mesocarp than in endocarp. We conclude mesocarpic photosynthesis is possible to occur early on the development, first providing both carbon and reductive power and latter only reductive power. Together with proteomic, histological tests and anatomical analysis help to provide information about changes and differences in cells and cell-walls in both tissues. Collectively, this work represents the first approach in building protein databases during peach fruit development focusing on endocarp and mesocarp tissues and provides novel insights into the biology of peach fruit development preceding pit hardening.
Collapse
Affiliation(s)
- Carlos E. Rodriguez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia A. Bustamante
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio O. Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria, San Pedro, Argentina
| | - Gabriela L. Müller
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María F. Drincovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María V. Lara
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
47
|
Chaudhary S, Jabre I, Reddy ASN, Staiger D, Syed NH. Perspective on Alternative Splicing and Proteome Complexity in Plants. TRENDS IN PLANT SCIENCE 2019; 24:496-506. [PMID: 30852095 DOI: 10.1016/j.tplants.2019.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) generates multiple transcripts from the same gene, however, AS contribution to proteome complexity remains elusive in plants. AS is prevalent under stress conditions in plants, but it is counterintuitive why plants would invest in protein synthesis under declining energy supply. We propose that plants employ AS not only to potentially increasing proteomic complexity, but also to buffer against the stress-responsive transcriptome to reduce the metabolic cost of translating all AS transcripts. To maximise efficiency under stress, plants may make fewer proteins with disordered domains via AS to diversify substrate specificity and maintain sufficient regulatory capacity. Furthermore, we suggest that chromatin state-dependent AS engenders short/long-term stress memory to mediate reproducible transcriptional response in the future.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; These authors contributed equally to this work
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; These authors contributed equally to this work
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
48
|
Mori K, Beauvoit BP, Biais B, Chabane M, Allwood JW, Deborde C, Maucourt M, Goodacre R, Cabasson C, Moing A, Rolin D, Gibon Y. Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:594. [PMID: 31156666 PMCID: PMC6529934 DOI: 10.3389/fpls.2019.00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Respiration of bulky plant organs such as fleshy fruits depends on oxygen (O2) availability and often decreases with O2 concentration to avoid anoxia, but the relationship between O2 diffusional resistance and metabolic adjustments remains unclear. Melon fruit (Cucumis melo L.) was used to study relationships between O2 availability and metabolism in fleshy fruits. Enzyme activities, primary metabolites and O2 partial pressure were quantified from the periphery to the inner fruit mesocarp, at three stages of development. Hypoxia was gradually established during fruit development, but there was no strong oxygen gradient between the outer- and the inner mesocarp. These trends were confirmed by a mathematical modeling approach combining O2 diffusion equations and O2 demand estimates of the mesocarp tissue. A multivariate analysis of metabolites, enzyme activities, O2 demand and concentration reveals that metabolite gradients and enzyme capacities observed in melon fruits reflect continuous metabolic adjustments thus ensuring a timely maturation of the mesocarp. The present results suggest that the metabolic adjustments, especially the tuning of the capacity of cytochrome c oxidase (COX) to O2-availability that occurs during growth development, contribute to optimizing the O2-demand and avoiding the establishment of an O2 gradient within the flesh.
Collapse
Affiliation(s)
- Kentaro Mori
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Benoît Biais
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Maxime Chabane
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - J. William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, United Kingdom
| | - Catherine Deborde
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Royston Goodacre
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Cécile Cabasson
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Dominique Rolin
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| |
Collapse
|
49
|
Millar AJ, Urquiza U, Freeman PL, Hume A, Plotkin GD, Sorokina O, Zardilis A, Zielinski T. Practical steps to digital organism models, from laboratory model species to 'Crops in silico. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2403-2418. [PMID: 30615184 DOI: 10.1093/jxb/ery435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
A recent initiative named 'Crops in silico' proposes that multi-scale models 'have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts' in plant science, particularly directed to crop species. To that end, the group called for 'a paradigm shift in plant modelling, from largely isolated efforts to a connected community'. 'Wet' (experimental) research has been especially productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model species allowed the emergence of an Arabidopsis research community. Parts of this community invested in 'dry' (theoretical) research, under the rubric of Systems Biology. Our past research combined concepts from Systems Biology and crop modelling. Here we outline the approaches that seem most relevant to connected, 'digital organism' initiatives. We illustrate the scale of experimental research required, by collecting the kinetic parameter values that are required for a quantitative, dynamic model of a gene regulatory network. By comparison with the Systems Biology Markup Language (SBML) community, we note computational resources and community structures that will help to realize the potential for plant Systems Biology to connect with a broader crop science community.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Uriel Urquiza
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- EPCC, Bayes Centre, University of Edinburgh, Edinburgh, UK
| | - Gordon D Plotkin
- Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Oxana Sorokina
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Argyris Zardilis
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
50
|
Ryabova LA, Robaglia C, Meyer C. Target of Rapamycin kinase: central regulatory hub for plant growth and metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2211-2216. [PMID: 30984977 PMCID: PMC6463030 DOI: 10.1093/jxb/erz108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Aix Marseille Université, CEA, CNRS, BIAM, Faculté des Sciences de Luminy, Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|