1
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Lin P, Shen G, Guo K, Qin S, Pu Q, Wang Z, Gao P, Xia Z, Khan N, Jiang J, Xia Q, Wu M. Type III CRISPR-based RNA editing for programmable control of SARS-CoV-2 and human coronaviruses. Nucleic Acids Res 2022; 50:e47. [PMID: 35166837 PMCID: PMC9071467 DOI: 10.1093/nar/gkac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/20/2021] [Accepted: 01/30/2022] [Indexed: 01/18/2023] Open
Abstract
Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.
Collapse
Affiliation(s)
- Ping Lin
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jianxin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
3
|
Ke W, Afonin KA. Exosomes as natural delivery carriers for programmable therapeutic nucleic acid nanoparticles (NANPs). Adv Drug Deliv Rev 2021; 176:113835. [PMID: 34144087 PMCID: PMC8440450 DOI: 10.1016/j.addr.2021.113835] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
With recent advances in nanotechnology and therapeutic nucleic acids (TNAs), various nucleic acid nanoparticles (NANPs) have demonstrated great promise in diagnostics and therapeutics. However, the full realization of NANPs' potential necessitates the development of a safe, efficient, biocompatible, stable, tissue-specific, and non-immunogenic delivery system. Exosomes, the smallest extracellular vesicles and an endogenous source of nanocarriers, offer these advantages while avoiding complications associated with manufactured agents. The lipid membranes of exosomes surround a hydrophilic core, allowing for the simultaneous incorporation of hydrophobic and hydrophilic drugs, nucleic acids, and proteins. Additional capabilities for post-isolation exosome surface modifications with imaging agents, targeting ligands, and covalent linkages also pave the way for their diverse biomedical applications. This review focuses on exosomes: their biogenesis, intracellular trafficking, transportation capacities, and applications with emphasis on the delivery of TNAs and programmable NANPs. We also highlight some of the current challenges and discuss opportunities related to the development of therapeutic exosome-based formulations and their clinical translation.
Collapse
Affiliation(s)
- Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
4
|
Currá A, Cacciabue M, Gravisaco MJ, Asurmendi S, Taboga O, Gismondi MI. Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus. PeerJ 2021; 9:e11227. [PMID: 34178434 PMCID: PMC8197037 DOI: 10.7717/peerj.11227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D). Three target sequences were predicted within 3D considering RNA accessibility as a major criterion. The silencing efficacy of short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs) targeting the selected sequences was confirmed in fluorescent reporter assays. Furthermore, BHK-21 cells transiently expressing shRNAs or amiRNAs proved 70 to >95% inhibition of FMDV growth. Interestingly, dual expression of amiRNAs did not improve FMDV silencing. Lastly, stable cell lines constitutively expressing amiRNAs were established and characterized in terms of antiviral activity against FMDV. As expected, viral replication in these cell lines was delayed. These results show that the target RNA-accessibility-guided approach for RNAi design rendered efficient amiRNAs that constrain FMDV replication. The application of amiRNAs to complement FMDV vaccination in specific epidemiological scenarios shall be explored further.
Collapse
Affiliation(s)
- Anabella Currá
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marco Cacciabue
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - María I. Gismondi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
5
|
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell 2019; 76:826-837.e11. [PMID: 31607545 PMCID: PMC7422627 DOI: 10.1016/j.molcel.2019.09.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.
Collapse
Affiliation(s)
- Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| | - Cameron Myhrvold
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Amber Carter
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Cynthia Y Luo
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan L Yozwiak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA; Department of Immunology and Infectious Disease, T.H. Chan Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
7
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
8
|
Herrera-Carrillo E, Harwig A, Berkhout B. Silencing of HIV-1 by AgoshRNA molecules. Gene Ther 2017; 24:453-461. [DOI: 10.1038/gt.2017.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
|
9
|
Martins AN, Ke W, Jawahar V, Striplin M, Striplin C, Freed EO, Afonin KA. Intracellular Reassociation of RNA-DNA Hybrids that Activates RNAi in HIV-Infected Cells. Methods Mol Biol 2017; 1632:269-283. [PMID: 28730446 PMCID: PMC6941940 DOI: 10.1007/978-1-4939-7138-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus Type 1 (HIV-1) is the major cause of acquired immune deficiency syndrome (AIDS). In 2014, it was estimated that 1.2 million people died from AIDS-related illnesses. RNA interference-based therapy to block HIV replication is a field that, as of now, is without any FDA-approved drugs available for clinical use. In this chapter we describe a protocol for testing and utilizing a new approach that relies on reassociation of RNA-DNA hybrids activating RNAi and blocking HIV replication in human cells.
Collapse
Affiliation(s)
- Angelica N Martins
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Vaishnavi Jawahar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Morriah Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, NCI, Frederick, MD, 21702, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA.
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.
| |
Collapse
|
10
|
Scarborough RJ, Adams KL, Del Corpo O, Daher A, Gatignol A. Evaluation of the Efficacy And Toxicity of RNAs Targeting HIV-1 Production for Use in Gene or Drug Therapy. J Vis Exp 2016. [PMID: 27684275 DOI: 10.3791/54486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Small RNA therapies targeting post-integration steps in the HIV-1 replication cycle are among the top candidates for gene therapy and have the potential to be used as drug therapies for HIV-1 infection. Post-integration inhibitors include ribozymes, short hairpin (sh) RNAs, small interfering (si) RNAs, U1 interference (U1i) RNAs and RNA aptamers. Many of these have been identified using transient co-transfection assays with an HIV-1 expression plasmid and some have advanced to clinical trials. In addition to measures of efficacy, small RNAs have been evaluated for their potential to affect the expression of human RNAs, alter cell growth and/or differentiation, and elicit innate immune responses. In the protocols described here, a set of transient transfection assays designed to evaluate the efficacy and toxicity of RNA molecules targeting post-integration steps in the HIV-1 replication cycle are described. We have used these assays to identify new ribozymes and optimize the format of shRNAs and siRNAs targeting HIV-1 RNA. The methods provide a quick set of assays that are useful for screening new anti-HIV-1 RNAs and could be adapted to screen other post-integration inhibitors of HIV-1 replication.
Collapse
Affiliation(s)
- Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research; Department of Microbiology & Immunology, McGill University
| | - Kelsey L Adams
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research; Department of Microbiology & Immunology, McGill University
| | - Olivier Del Corpo
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research; Department of Microbiology & Immunology, McGill University
| | - Aïcha Daher
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research; Department of Microbiology & Immunology, McGill University; Department of Medicine, McGill University;
| |
Collapse
|
11
|
Watters KE, Yu AM, Strobel EJ, Settle AH, Lucks JB. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods 2016; 103:34-48. [PMID: 27064082 DOI: 10.1016/j.ymeth.2016.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
RNA molecules adopt a wide variety of structures that perform many cellular functions, including, among others, catalysis, small molecule sensing, and cellular defense. Our ability to characterize, predict, and design RNA structures are key factors for understanding and controlling the biological roles of RNAs. Fortunately, there has been rapid progress in this area, especially with respect to experimental methods that can characterize RNA structures in a high throughput fashion using chemical probing and next-generation sequencing. Here, we describe one such method, selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), which measures nucleotide resolution flexibility information for RNAs in vitro and in vivo. We outline the process of designing and performing a SHAPE-Seq experiment and describe methods for using experimental SHAPE-Seq data to restrain computational folding algorithms to generate more accurate predictions of RNA secondary structure. We also provide a number of examples of SHAPE-Seq reactivity spectra obtained in vitro and in vivo and discuss important considerations for performing SHAPE-Seq experiments, both in terms of collecting and analyzing data. Finally, we discuss improvements and extensions of these experimental and computational techniques that promise to deepen our knowledge of RNA folding and function.
Collapse
Affiliation(s)
- Kyle E Watters
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Angela M Yu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States; Tri-Institutional Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, Weill Cornell Medical College, New York, New York, Memorial Sloan-Kettering Cancer Center, New York, New York, United States; Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Eric J Strobel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Alex H Settle
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Julius B Lucks
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
12
|
Afonin KA, Viard M, Tedbury P, Bindewald E, Parlea L, Howington M, Valdman M, Johns-Boehme A, Brainerd C, Freed EO, Shapiro BA. The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. NANO LETTERS 2016; 16:1746-53. [PMID: 26926382 PMCID: PMC6345527 DOI: 10.1021/acs.nanolett.5b04676] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Current work reports the use of single-stranded RNA toeholds of different lengths to promote the reassociation of various RNA-DNA hybrids, which results in activation of multiple split functionalities inside human cells. The process of reassociation is analyzed and followed with a novel computational multistrand secondary structure prediction algorithm and various experiments. All of our previously designed RNA/DNA nanoparticles employed single-stranded DNA toeholds to initiate reassociation. The use of RNA toeholds is advantageous because of the simpler design rules, the shorter toeholds, and the smaller size of the resulting nanoparticles (by up to 120 nucleotides per particle) compared to the same hybrid nanoparticles with single-stranded DNA toeholds. Moreover, the cotranscriptional assemblies result in higher yields for hybrid nanoparticles with ssRNA toeholds.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Philip Tedbury
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marshall Howington
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Melissa Valdman
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Alizah Johns-Boehme
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Cara Brainerd
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
13
|
El Tannir Z, Afonin KA, Shapiro BA. RNA and DNA nanoparticles for triggering RNA interference. RNA & DISEASE 2015; 2:e724. [PMID: 34307840 PMCID: PMC8301276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Control over the delivery of different functionalities and their synchronized activation in vivo is a challenging undertaking that requires careful design and implementation. The goal of the research highlighted herein was to develop a platform allowing the simultaneous activation of multiple RNA interference pathways and other functionalities inside cells. Our team has developed several RNA, RNA/DNA and DNA/RNA nanoparticles able to successfully complete such tasks. The reported designs can potentially be used to target myriad of different diseases.
Collapse
Affiliation(s)
- Ziad El Tannir
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
14
|
Gupta K, Afonin KA, Viard M, Herrero V, Kasprzak W, Kagiampakis I, Kim T, Koyfman AY, Puri A, Stepler M, Sappe A, KewalRamani VN, Grinberg S, Linder C, Heldman E, Blumenthal R, Shapiro BA. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications. J Control Release 2015; 213:142-151. [PMID: 26151705 PMCID: PMC4699870 DOI: 10.1016/j.jconrel.2015.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/01/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
In this study we have investigated a new class of cationic lipids--"bolaamphiphiles" or "bolas"--for their ability to efficiently deliver small interfering RNAs (siRNAs) to cancer cells. The bolas of this study consist of a hydrophobic chain with one or more positively charged head groups at each end. Recently, we reported that micelles of the bolas GLH-19 and GLH-20 (derived from vernonia oil) efficiently deliver siRNAs, while having relatively low toxicities in vitro and in vivo. Our previous studies validated that; bolaamphiphiles can be designed to vary the magnitude of siRNA shielding, its delivery, and its subsequent release. To further understand the structural features of bolas critical for siRNAs delivery, new structurally related bolas (GLH-58 and GLH-60) were designed and synthesized from jojoba oil. Both bolas have similar hydrophobic domains and contain either one, in GLH-58, or two, in GLH-60 positively charged head groups at each end of the hydrophobic core. We have computationally predicted and experimentally validated that GLH-58 formed more stable nano sized micelles than GLH-60 and performed significantly better in comparison to GLH-60 for siRNA delivery. GLH-58/siRNA complexes demonstrated better efficiency in silencing the expression of the GFP gene in human breast cancer cells at concentrations of 5μg/mL, well below the toxic dose. Moreover, delivery of multiple different siRNAs targeting the HIV genome demonstrated further inhibition of virus production.
Collapse
Affiliation(s)
- Kshitij Gupta
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Kirill A Afonin
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Mathias Viard
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702, USA
| | - Virginia Herrero
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702, USA
| | - Ioannis Kagiampakis
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Taejin Kim
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexey Y Koyfman
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Marissa Stepler
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alison Sappe
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vineet N KewalRamani
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarina Grinberg
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Charles Linder
- Department of Biotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eliahu Heldman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Robert Blumenthal
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Liu YP, Karg M, Herrera-Carrillo E, Berkhout B. Towards Antiviral shRNAs Based on the AgoshRNA Design. PLoS One 2015; 10:e0128618. [PMID: 26087209 PMCID: PMC4472832 DOI: 10.1371/journal.pone.0128618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Margarete Karg
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Afonin KA, Viard M, Kagiampakis I, Case CL, Dobrovolskaia MA, Hofmann J, Vrzak A, Kireeva M, Kasprzak WK, KewalRamani VN, Shapiro BA. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS NANO 2015; 9:251-9. [PMID: 25521794 PMCID: PMC4310632 DOI: 10.1021/nn504508s] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/11/2014] [Indexed: 05/08/2023]
Abstract
Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ioannis Kagiampakis
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Christopher L. Case
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Jen Hofmann
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ashlee Vrzak
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
18
|
Cantara WA, Olson ED, Musier-Forsyth K. Progress and outlook in structural biology of large viral RNAs. Virus Res 2014; 193:24-38. [PMID: 24956407 PMCID: PMC4252365 DOI: 10.1016/j.virusres.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023]
Abstract
The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.
Collapse
Affiliation(s)
| | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
19
|
Herrera-Carrillo E, Berkhout B. Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets 2014; 19:245-63. [PMID: 25388088 DOI: 10.1517/14728222.2014.980236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. AREAS COVERED In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. EXPERT OPINION Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Academic Medical Center University of Amsterdam, Department of Medical Microbiology , Meibergdreef 15, Amsterdam, 1105 AZ , The Netherlands
| | | |
Collapse
|
20
|
Afonin K, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA. Multifunctional RNA nanoparticles. NANO LETTERS 2014; 14:5662-71. [PMID: 25267559 PMCID: PMC4189619 DOI: 10.1021/nl502385k] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Indexed: 05/06/2023]
Abstract
Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Alexey Y. Koyfman
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Angelica N. Martins
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Martin Panigaj
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Ravi Desai
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Arti Santhanam
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wade W. Grabow
- Department
of Chemistry, Seattle Pacific University, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Biomolecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Eliahu Heldman
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Jakob Reiser
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Wah Chiu
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Eric O. Freed
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
21
|
Abstract
A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression.
Collapse
|
22
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
23
|
van Hemert F, van der Kuyl AC, Berkhout B. On the nucleotide composition and structure of retroviral RNA genomes. Virus Res 2014; 193:16-23. [PMID: 24675274 DOI: 10.1016/j.virusres.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023]
Abstract
Retroviral RNA genomes display a rich variety in their nucleotide composition. For instance, the single-stranded RNA genome of human T cell leukemia virus (HTLV-1) is C-rich and G-poor and that of the human immunodeficiency virus (HIV-1) is A-rich and C-poor. Animal retroviruses add further variation to this unexplained, but many times remarkable virus-specific property. We previously described that the nucleotide bias is even more extreme in the unpaired regions of the structured HIV-1 RNA genome, which has been probed by SHAPE technology. We now document that the same trend is apparent for the MFold-predicted RNA structure of HIV-1 RNA and subsequently investigated the predicted structures of the RNA genomes of other retroviruses. We conclude that all virus-specific signatures are enhanced for the unpaired nucleotides in the RNA genome. Consequently, the differences in nucleotide count between the diverse human and animal retroviruses are further exposed in the single stranded genome regions. We used a skew analysis to visualize these striking differences in nucleotide usage. Evolutionary events responsible for these nucleotide signatures will be discussed.
Collapse
Affiliation(s)
- Formijn van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Herrera-Carrillo E, Liu YP, Berkhout B. The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. Mol Ther 2014; 22:596-606. [PMID: 24336172 PMCID: PMC3944328 DOI: 10.1038/mt.2013.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/01/2013] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) is highly effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication by the expression of antiviral short hairpin RNA (shRNA) in stably transduced T-cell lines. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against highly conserved regions of the HIV-1 RNA genome. The future in vivo application of such a gene therapy protocol will reach only a fraction of the T cells, such that HIV-1 replication will continue in the unmodified T cells, thereby possibly frustrating the therapy by generation of HIV-1 variants that escape from the inhibition imposed by the protected cells. We studied virus inhibition and evolution in pure cultures of shRNA-expressing cells versus mixed cell cultures of protected and unprotected T cells. The addition of the unprotected T cells indeed seems to accelerate HIV-1 evolution and escape from a single shRNA inhibitor. However, expression of three antiviral shRNAs from a single lentiviral vector prevents virus escape even in the presence of unprotected cells. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Gismondi MI, Ortiz XP, Currá AP, Asurmendi S, Taboga O. Artificial microRNAs as antiviral strategy to FMDV: structural implications of target selection. J Virol Methods 2014; 199:1-10. [PMID: 24406623 DOI: 10.1016/j.jviromet.2013.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) appears as a promising strategy to control virus replication. While the antiviral power of short-hairpin RNAs or small-interfering RNAs against FMDV has been demonstrated widely, safer RNAi effectors such as artificial microRNAs (amiRs) have not been evaluated extensively. In this work, transgenic monoclonal cell lines constitutively expressing different amiRs targeting FMDV 3D-coding region or 3'UTR were established. Certain cell lines showed an effective, sequence-specific amiR-mediated silencing activity that was accomplished by degradation of the target mRNA, as demonstrated in co-transfection experiments of reporter genes fused to FMDV target sequences. However, FMDV replication in these amiR-expressing cells was affected barely. Experiments aimed at elucidating the cause of RNAi failure demonstrated limited accessibility of the targeted region in the molecular environment of the viral RNA. Since RNAi is mediated by large-dimension silencing complexes containing the siRNA and not simply by a linear oligonucleotide, we propose that target selection should consider not only the local RNA structure but also the global conformation of target RNA.
Collapse
Affiliation(s)
- María Inés Gismondi
- Instituto de Biotecnología, CICVyA, INTA, Dr. N. Repetto y Los Reseros s/n, CP 1686 Hurlingham, Buenos Aires, Argentina.
| | - Xoana P Ortiz
- Instituto de Biotecnología, CICVyA, INTA, Dr. N. Repetto y Los Reseros s/n, CP 1686 Hurlingham, Buenos Aires, Argentina.
| | - Anabella P Currá
- Instituto de Biotecnología, CICVyA, INTA, Dr. N. Repetto y Los Reseros s/n, CP 1686 Hurlingham, Buenos Aires, Argentina.
| | - Sebastián Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Dr. N. Repetto y Los Reseros s/n, CP 1686 Hurlingham, Buenos Aires, Argentina.
| | - Oscar Taboga
- Instituto de Biotecnología, CICVyA, INTA, Dr. N. Repetto y Los Reseros s/n, CP 1686 Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL, Weeks KM, Swanstrom R. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog 2013; 9:e1003294. [PMID: 23593004 PMCID: PMC3616985 DOI: 10.1371/journal.ppat.1003294] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve.
Collapse
Affiliation(s)
- Elizabeth Pollom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristen K. Dang
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Lake Potter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christina L. Burch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
27
|
Afonin KA, Viard M, Martins AN, Lockett SJ, Maciag AE, Freed EO, Heldman E, Jaeger L, Blumenthal R, Shapiro BA. Activation of different split functionalities on re-association of RNA-DNA hybrids. NATURE NANOTECHNOLOGY 2013; 8:296-304. [PMID: 23542902 PMCID: PMC3618561 DOI: 10.1038/nnano.2013.44] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/26/2013] [Indexed: 05/12/2023]
Abstract
Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Angelica N. Martins
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen J. Lockett
- Advanced Technology Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eric O. Freed
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eliahu Heldman
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Abstract
An RNA secondary structure model for the complete HIV-1 genome has recently been published based on SHAPE technology. Several well-known RNA motifs such as TAR and RRE were confirmed and numerous new structured motifs were described that may play important roles in virus replication. The 9 kb viral RNA genome is densely packed with many RNA hairpin motifs and the collective fold may play an important role in HIV-1 biology. We initially focused on 16 RNA hairpin motifs scattered along the viral genome. We considered conservation of these structures, despite sequence variation among virus isolates, as a first indication for a significant function. Four relatively small hairpins exhibited considerable structural conservation and were selected for experimental validation in virus replication assays. Mutations were introduced into the HIV-1 RNA genome to destabilize individual RNA structures without affecting the protein-coding properties (silent codon changes). No major virus replication defects were scored, suggesting that these four hairpin structures do not play essential roles in HIV-1 replication.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center; University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
29
|
Leonard CW, Hajdin CE, Karabiber F, Mathews DH, Favorov O, Dokholyan NV, Weeks KM. Principles for understanding the accuracy of SHAPE-directed RNA structure modeling. Biochemistry 2013; 52:588-95. [PMID: 23316814 PMCID: PMC3578230 DOI: 10.1021/bi300755u] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accurate RNA structure modeling is an important, incompletely solved, challenge. Single-nucleotide resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) yields an experimental measurement of local nucleotide flexibility that can be incorporated as pseudo-free energy change constraints to direct secondary structure predictions. Prior work from our laboratory has emphasized both the overall accuracy of this approach and the need for nuanced interpretation of modeled structures. Recent studies by Das and colleagues [Kladwang, W., et al. (2011) Biochemistry 50, 8049; Nat. Chem. 3, 954], focused on analyzing six small RNAs, yielded poorer RNA secondary structure predictions than expected on the basis of prior benchmarking efforts. To understand the features that led to these divergent results, we re-examined four RNAs yielding the poorest results in this recent work: tRNA(Phe), the adenine and cyclic-di-GMP riboswitches, and 5S rRNA. Most of the errors reported by Das and colleagues reflected nonstandard experiment and data processing choices, and selective scoring rules. For two RNAs, tRNA(Phe) and the adenine riboswitch, secondary structure predictions are nearly perfect if no experimental information is included but were rendered inaccurate by the SHAPE data of Das and colleagues. When best practices were used, single-sequence SHAPE-directed secondary structure modeling recovered ~93% of individual base pairs and >90% of helices in the four RNAs, essentially indistinguishable from the results of the mutate-and-map approach with the exception of a single helix in the 5S rRNA. The field of experimentally directed RNA secondary structure prediction is entering a phase focused on the most difficult prediction challenges. We outline five constructive principles for guiding this field forward.
Collapse
Affiliation(s)
| | - Christine E. Hajdin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Fethullah Karabiber
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - David H. Mathews
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Oleg Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
30
|
Grimm D, Dalmay T, van Rij RP. Everybody wins! Poland hosts thrilling competitions of viruses, RNAi and football teams. EMBO Rep 2012; 13:874-6. [PMID: 22986551 PMCID: PMC3463971 DOI: 10.1038/embor.2012.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ESF-EMBO conference on 'Antiviral RNAi: From Molecular Biology towards Applications' took place in June 2012 in Pultusk, Poland. It brought together scientists working at the interface of RNAi and virus infections in different organisms, covering the complete range from basic mechanisms of RNA silencing to RNAi-based antiviral therapy.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Infectious Diseases, Virology, Cluster of Excellence Cell Networks, Heidelberg University Hospital, Heidelberg, Germany.
| | | | | |
Collapse
|
31
|
The highly conserved 5' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs. J Biomed Sci 2012; 19:73. [PMID: 22889374 PMCID: PMC3438048 DOI: 10.1186/1423-0127-19-73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 08/08/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is a highly infectious agent that plays an etiological role in hand, foot, and mouth disease. It is associated with severe neurological complications and has caused significant mortalities in recent large-scale outbreaks. Currently, no effective vaccine or specific clinical therapy is available against EV71. METHODS Unmodified 21 nucleotide small interfering RNAs (siRNAs) and classic 2'-modified (2'-O-methylation or 2'-fluoro modification) siRNAs were designed to target highly conserved 5' untranslated region (UTR) of the EV71 genome and employed as anti-EV71 agents. Real-time TaqMan RT-PCR, western blot analysis and plaque assays were carried out to evaluate specific viral inhibition by the siRNAs. RESULTS Transfection of rhabdomyosarcoma (RD) cells with siRNAs targeting the EV71 genomic 5' UTR significantly delayed and alleviated the cytopathic effects of EV71 infection, increased cell viability in EV71-infected RD cells. The inhibitory effect on EV71 replication was sequence-specific and dosage-dependent, with significant corresponding decreases in viral RNA, VP1 protein and viral titer. Appropriate 2'-modified siRNAs exhibited similar RNA interference (RNAi) activity with dramatically increased serum stability in comparison with unmodified counterparts. CONCLUSION Sequences were identified within the highly conserved 5' UTR that can be targeted to effectively inhibit EV71 replication through RNAi strategies. Appropriate 2'-modified siRNAs provide a promising approach to optimizing siRNAs to overcome barriers on RNAi-based antiviral therapies for broader administration.
Collapse
|
32
|
Berkhout B, Das AT. HIV-1 Escape From RNAi Antivirals: Yet Another Houdini Action? MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e26. [PMID: 23344078 PMCID: PMC3390223 DOI: 10.1038/mtna.2012.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 2012; 1:79-90. [PMID: 24175213 PMCID: PMC3782270 DOI: 10.5501/wjv.v1.i3.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/16/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|