1
|
McMurphy TB, Park A, Heizer PJ, Bottenfield C, Kurasawa JH, Ikeda Y, Doran MR. AAV-mediated co-expression of an immunogenic transgene plus PD-L1 enables sustained expression through immunological evasion. Sci Rep 2024; 14:28853. [PMID: 39572604 PMCID: PMC11582688 DOI: 10.1038/s41598-024-75698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors can mediate long-term expression of immunogenic transgenes in vivo through transduction of tolerogenic cells in the liver. Tissue-targeted AAV vectors allow transduction of non-hepatic cells, but this necessitates development of strategies to minimize transgene immunogenicity. Here, we first validated that AAV capsids with tissue-specific tropism and transgene promoters enabled expression of the immunogenic protein, firefly luciferase, in liver, muscle, or adipose tissue. Cellular immunity was detectable in animals where luciferase was expressed in muscle or adipose, but not liver tissue. With the objective of enhancing tolerance of transduced non-hepatic cells, AAV vectors were engineered to co-express luciferase plus the immune checkpoint protein, PD-L1. In animals where transduced cells expressed luciferase but not PD-L1, there was incremental depletion of transduced cells over time. By contrast, the bioluminescent signal increased incrementally over the study, and was significantly greater, in the muscle and adipose tissue of animals where PD-L1 was co-expressed with luciferase. Our data demonstrate that PD-L1 co-expression facilitates persistent, tissue-targeted expression of immunogenic transgenes without transducing tolerogenic hepatic cells. Our strategy of PD-L1 co-expression may provide a versatile platform for sustained expression of immunogenic transgenes in gene and cell therapies.
Collapse
Affiliation(s)
- Travis B McMurphy
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Andrew Park
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Patrick J Heizer
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Crystal Bottenfield
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James H Kurasawa
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Yasuhiro Ikeda
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Michael R Doran
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
2
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
3
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
4
|
Kumar SRP, Biswas M, Cao D, Arisa S, Muñoz-Melero M, Lam AK, Piñeros AR, Kapur R, Kaisho T, Kaufman RJ, Xiao W, Shayakhmetov DM, Terhorst C, de Jong YP, Herzog RW. TLR9-independent CD8 + T cell responses in hepatic AAV gene transfer through IL-1R1-MyD88 signaling. Mol Ther 2024; 32:325-339. [PMID: 38053332 PMCID: PMC10861967 DOI: 10.1016/j.ymthe.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1β contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.
Collapse
Affiliation(s)
- Sandeep R P Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Moanaro Biswas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Maite Muñoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Anh K Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Annie R Piñeros
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Randal J Kaufman
- Center for Genetic Disorders and Aging Research, Samford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Emory Vaccine Center, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
6
|
The Clinical, Pathological, and Prognostic Value of High PD-1 Expression and the Presence of Epstein–Barr Virus Reactivation in Patients with Laryngeal Cancer. Cancers (Basel) 2022; 14:cancers14030480. [PMID: 35158748 PMCID: PMC8833734 DOI: 10.3390/cancers14030480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Our immune reaction depends on some ‘immune checkpoints’, such as PD-1, PD-L1 and CTLA4, that maintain homeostasis and define new pathways in the fight against carcinogenesis. Viral infections, including EBV (Epstein-Barr Virus) are one of the risk factors for laryngeal cancer. The aim of our study was to evaluate the level of PD-1 receptor in blood, tumor and lymph node samples collected from 45 laryngeal cancer patients and 20 healthy volunteers from control group. We detected the presence of EBV molecules in cancer samples and show the relationship between tumor progression and the level of PD-1 receptor. We confirmed, that EBV infection may affect the PD-1/PD-L1 pathway and develop the laryngeal cancer. What is important, the level of PD-1 on CD4+ T cells in lymph nodes increased the risk of death, so it can be an important prognostic factor (marker) for laryngeal cancer patients’ treatment and their prognosis. Abstract Due to the development of molecular diagnostic techniques, the latest research in the diagnosis of cancer diseases, including laryngeal cancer, has been focused on the occurrence of specific types of molecular patterns, including markers expressed on cells of the immune system (e.g., PD-1, PD-L1, and CTLA-4), which may be directly or indirectly involved in the development of neoplastic diseases. Laryngeal cancer is one of the diseases that is diagnosed more often in men than in women, and many factors are involved in its development, including environmental and lifestyle factors, viral infections (e.g., HPV, HHV-1, and EBV), and disorders of the immune system. In this study, we determined the level of PD-1 receptor expression on T and B lymphocytes and their relationships based on the classification of the grade and TNM scale, in turn based on blood, tumor, and lymph node samples from patients diagnosed with laryngeal cancer. In addition, we determined the presence of EBV genetic material in the tested biological materials as well as the degree of cancer advancement and its correlation with the level of PD-1 receptor expression. The results suggested that the level of PD-1 expression on T and B lymphocytes was significantly higher in the tumor samples as compared to the lymph node samples, and their comparison with the immunophenotype results from the blood samples provided statistically significant data on changes in the incidence of individual subpopulations of T and B lymphocytes and the level of PD-1 receptor expression. The analysis of the individual parameters of the TNM scale also showed significant changes between the PD-1 expression and the tested biological material in individual subgroups of the scale. We also found that the expression of PD-1 on the CD4+ T cells from the lymph node samples caused an almost 1.5-fold increase in the risk of death. In the analyses of the presence of EBV, the highest concentration was recorded in the tumor samples, then for the lymph node samples, and followed by the blood samples. Furthermore, we showed that the presence of EBV genetic material was positively correlated with the level of PD-1 expression in the tested biological materials.
Collapse
|
7
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Ghosh S, Roy K, Rajalingam R, Martin S, Pal C. Cytokines in the generation and function of regulatory T cell subsets in leishmaniasis. Cytokine 2021; 147:155266. [DOI: 10.1016/j.cyto.2020.155266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
|
9
|
Gougeon ML, Poirier-Beaudouin B, Ausseil J, Zérah M, Artaud C, Heard JM, Deiva K, Tardieu M. Cell-Mediated Immunity to NAGLU Transgene Following Intracerebral Gene Therapy in Children With Mucopolysaccharidosis Type IIIB Syndrome. Front Immunol 2021; 12:655478. [PMID: 34040605 PMCID: PMC8141743 DOI: 10.3389/fimmu.2021.655478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients’ CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Jérome Ausseil
- Service de Biochimie Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Michel Zérah
- Pediatric Neurosurgery Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker; Institut Imagine, Université René Descartes; NeuroGenCell, Institut du cerveau et de la moelle, Paris, France
| | - Cécile Artaud
- Institut Pasteur, Centre for Translational Science, Clinical Core, Paris, France
| | - Jean-Michel Heard
- Institut Pasteur, Biotherapy and Neurodegenerative Diseases Unit, Neuroscience Department, INSERM U1115, Paris, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| | - Marc Tardieu
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Kumar SRP, Wang X, Avuthu N, Bertolini TB, Terhorst C, Guda C, Daniell H, Herzog RW. Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Front Immunol 2020; 11:844. [PMID: 32508814 PMCID: PMC7251037 DOI: 10.3389/fimmu.2020.00844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Fusion proteins, which consist of factor VIII or factor IX and the transmucosal carrier cholera toxin subunit B, expressed in chloroplasts and bioencapsulated within plant cells, initiate tolerogenic immune responses in the intestine when administered orally. This approach induces regulatory T cells (Treg), which suppress inhibitory antibody formation directed at hemophilia proteins induced by intravenous replacement therapy in hemophilia A and B mice. Further analyses of Treg CD4+ lymphocyte sub-populations in hemophilia B mice reveal a marked increase in the frequency of CD4+CD25-FoxP3-LAP+ T cells (but not of CD4+CD25+FoxP3+ T cells) in the lamina propria of the small but not large intestine. The adoptive transfer of very small numbers of CD4+CD25-LAP+ Treg isolated from the spleen of tolerized mice was superior in suppression of antibodies directed against FIX when compared to CD4+CD25+ T cells. Thus, tolerance induction by oral delivery of antigens bioencapsulated in plant cells occurs via the unique immune system of the small intestine, and suppression of antibody formation is primarily carried out by induced latency-associated peptide (LAP) expressing Treg that likely migrate to the spleen. Tolerogenic antigen presentation in the small intestine requires partial enzymatic degradation of plant cell wall by commensal bacteria in order to release the antigen. Microbiome analysis of hemophilia B mice showed marked differences between small and large intestine. Remarkably, bacterial species known to produce a broad spectrum of enzymes involved in degradation of plant cell wall components were found in the small intestine, in particular in the duodenum. These were highly distinct from populations of cell wall degrading bacteria found in the large intestine. Therefore, FIX antigen presentation and Treg induction by the immune system of the small intestine relies on activity of a distinct microbiome that can potentially be augmented to further enhance this approach.
Collapse
Affiliation(s)
- Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
| | - Xiaomei Wang
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, IN, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D, Reid TR. TGF-beta: a master immune regulator. Expert Opin Ther Targets 2020; 24:427-438. [PMID: 32228232 DOI: 10.1080/14728222.2020.1744568] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Transforming Growth Factor-Beta (TGF-β) is a master regulator of numerous cellular functions including cellular immunity. In cancer, TGF-β can function as a tumor promoter via several mechanisms including immunosuppression. Since the immune checkpoint pathways are co-opted in cancer to induce T cell tolerance, this review posits that TGF-β is a master checkpoint in cancer, whose negative regulatory influence overrides and controls that of other immune checkpoints.Areas Covered: This review examines therapeutic agents that target TGF-β and its signaling pathways for the treatment of cancer which may be classifiable as checkpoint inhibitors in the broadest sense. This concept is supported by the observations that 1) only a subset of patients benefit from current checkpoint inhibitor therapies, 2) the presence of TGF-β in the tumor microenvironment is associated with excluded or cold tumors, and resistance to checkpoint inhibitors, and 3) existing biomarkers such as PD-1, PD-L1, microsatellite instability and tumor mutational burden are inadequate to reliably and adequately identify immuno-responsive patients. By contrast, TGF-β overexpression is a widespread and profoundly negative molecular hallmark in multiple tumor types.Expert Opinion: TGF-β status may serve as a biomarker to predict responsiveness and as a therapeutic target to increase the activity of immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Arnold Oronsky
- EpicentRx, San Diego, CA, USA.,InterWest Partners, Menlo Park, CA, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Sher
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tony R Reid
- Department of Medical Oncology, UC San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
12
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Immune Response Mechanisms against AAV Vectors in Animal Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:198-208. [PMID: 31970198 PMCID: PMC6965504 DOI: 10.1016/j.omtm.2019.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.
Collapse
|
15
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Keeler GD, Markusic DM, Hoffman BE. Liver induced transgene tolerance with AAV vectors. Cell Immunol 2019; 342:103728. [PMID: 29576315 PMCID: PMC5988960 DOI: 10.1016/j.cellimm.2017.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/24/2022]
Abstract
Immune tolerance is a vital component of immunity, as persistent activation of immune cells causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in which patients lack any expression of protein, during treatment with enzyme replacement therapy, or gene therapy. While the liver has long been known as being tolerogenic, it was only recently appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver induced tolerance, discuss different factors influencing successful tolerance induction with AAV, and applications where AAV mediated tolerance may be helpful.
Collapse
Affiliation(s)
- Geoffrey D Keeler
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - David M Markusic
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States
| | - Brad E Hoffman
- Department of Pediatrics, Div. Cell and Molecular Therapy, University of Florida, United States; Department of Neuroscience, University of Florida, United States.
| |
Collapse
|
17
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 2019; 138:563-590. [PMID: 31115652 DOI: 10.1007/s00439-019-02028-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
|
19
|
Palaschak B, Herzog RW, Markusic DM. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods Mol Biol 2019; 1950:333-360. [PMID: 30783984 DOI: 10.1007/978-1-4939-9139-6_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.,Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - David M Markusic
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Lin G, Liu Y, Li S, Mao Y, Wang J, Shuang Z, Chen J, Li S. Elevated neutrophil-to-lymphocyte ratio is an independent poor prognostic factor in patients with intrahepatic cholangiocarcinoma. Oncotarget 2018; 7:50963-50971. [PMID: 26918355 PMCID: PMC5239451 DOI: 10.18632/oncotarget.7680] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/13/2016] [Indexed: 01/30/2023] Open
Abstract
We investigated whether elevated neutrophil-to-lymphocyte ratio (NLR) was associated with poor anti-tumor immunity and prognosis in patients with intrahepatic cholangiocarcinoma (ICC). Clinicopathologic data of 102 patients with ICC who underwent hepatectomy was retrospectively analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the survival and prognosis. The percentage of overall lymphocytes, T cells and CD8+ T cells in the high NLR group was lower than that in the low NLR group. The percentage of PD-1+CD4+ and PD-1+CD8+ T cells was higher and the percentage of IFN-γ+CD4+ and IFN-γ+CD8+ T cells was lower in the high NLR group than that in the low NLR group (p = 0.045, p = 0.008; p = 0.012, p = 0.006). Density of tumor-infiltrating CD3+ T cells in the high NLR group was lower than that in the low NLR group (p < 0.001). Elevated NLR was an independent predictor for poor overall survival (OS; p = 0.035) and recurrence-free survival (RFS; p = 0.008). These results indicate that elevated NLR is associated with poor anti-tumor immunity and could be a poor biomarker for prognosis in patients with ICC.
Collapse
Affiliation(s)
- Guohe Lin
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongcheng Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhong Li
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun-Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun-Yat-sen University Cancer Center, Guangzhou, China
| | - Zeyu Shuang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun-Yat-sen University Cancer Center, Guangzhou, China
| | - Jianlin Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun-Yat-sen University Cancer Center, Guangzhou, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,National Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun-Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
21
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Gene Therapy-Induced Antigen-Specific Tregs Inhibit Neuro-inflammation and Reverse Disease in a Mouse Model of Multiple Sclerosis. Mol Ther 2017; 26:173-183. [PMID: 28943274 PMCID: PMC5762980 DOI: 10.1016/j.ymthe.2017.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
The devastating neurodegenerative disease multiple sclerosis (MS) could substantially benefit from an adeno-associated virus (AAV) immunotherapy designed to restore a robust and durable antigen-specific tolerance. However, developing a sufficiently potent and lasting immune-regulatory therapy that can intervene in ongoing disease is a major challenge and has thus been elusive. We addressed this problem by developing a highly effective and robust tolerance-inducing in vivo gene therapy. Using a pre-clinical animal model, we designed a liver-targeting gene transfer vector that expresses full-length myelin oligodendrocyte glycoprotein (MOG) in hepatocytes. We show that by harnessing the tolerogenic nature of the liver, this powerful gene immunotherapy restores immune tolerance by inducing functional MOG-specific regulatory T cells (Tregs) in vivo, independent of major histocompatibility complex (MHC) restrictions. We demonstrate that mice treated prophylactically are protected from developing disease and neurological deficits. More importantly, we demonstrate that when given to mice with preexisting disease, ranging from mild neurological deficits to severe paralysis, the gene immunotherapy abrogated CNS inflammation and significantly reversed clinical symptoms of disease. This specialized approach for inducing antigen-specific immune tolerance has significant therapeutic potential for treating MS and other autoimmune disorders.
Collapse
|
23
|
Chan CC, Lai CW, Wu CJ, Chen LC, Tao MH, Kuo ML. Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice. Hum Gene Ther 2017; 27:631-42. [PMID: 27178525 DOI: 10.1089/hum.2015.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-β in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma.
Collapse
Affiliation(s)
- Cheng-Chi Chan
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan
| | - Chin-Wen Lai
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan .,3 Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University , Taoyuan, Taiwan
| | - Chia-Jen Wu
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Li-Chen Chen
- 4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan
| | - Mi-Hua Tao
- 2 Institute of Biomedical Sciences , Academia Sinica, Taipei, Taiwan
| | - Ming-Ling Kuo
- 1 Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan, Taiwan .,4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital , Taoyuan, Taiwan .,5 Department of Microbiology and Immunology, College of Medicine, Chang Gung University , Taoyuan, Taiwan .,6 Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| |
Collapse
|
24
|
Herzog RW, Cooper M, Perrin GQ, Biswas M, Martino AT, Morel L, Terhorst C, Hoffman BE. Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer. Cell Immunol 2017; 342:103682. [PMID: 28888664 DOI: 10.1016/j.cellimm.2017.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
Abstract
Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| | - Mario Cooper
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - George Q Perrin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Ashley T Martino
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Investigation, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, BIDMC, Harvard Medical School, Boston, MA, United States
| | - Brad E Hoffman
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Abstract
After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed.
Collapse
Affiliation(s)
- Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
The Balance between CD8 + T Cell-Mediated Clearance of AAV-Encoded Antigen in the Liver and Tolerance Is Dependent on the Vector Dose. Mol Ther 2017; 25:880-891. [PMID: 28284982 DOI: 10.1016/j.ymthe.2017.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
The liver continuously receives antigens from circulation and the gastrointestinal tract. A complex immune regulatory system has evolved in order to both limit inflammation and promote tolerance in the liver. Although in situ immune tolerance mechanisms enable successful gene therapy and liver transplantation, at the same time they facilitate chronic infections by pathogens such as hepatitis viruses. It is, however, poorly understood why hepatocytes infected with hepatitis viruses or transduced with adeno-associated virus (AAV)-based vectors may be rejected by CD8+ T cells several months later. We found that hepatic transfer of limited doses of an AAV-ovalbumin vector rapidly induced antigen-specific CD8+ T cells that only became functionally competent after >2 months. At this time, CD8+ T cells had downregulated negative checkpoint markers, e.g., the programmed death 1 [PD-1] receptor, and upregulated expression of relevant cytokines. At further reduced vector dose, only intrahepatic rather than systemic CD8+ T cell responses occurred, showing identical delay in antigen clearance. In contrast, PD-1-deficient mice rapidly cleared ovalbumin. Interestingly, higher vector dose directed sustained transgene expression without CD8+ T cell responses. Regulatory T cells, IL-10 expression, and Fas-L contributed to high-dose tolerance. Thus, viral vector doses profoundly impact CD8+ T cell responses.
Collapse
|
27
|
Perrin GQ, Zolotukhin I, Sherman A, Biswas M, de Jong YP, Terhorst C, Davidoff AM, Herzog RW. Dynamics of antigen presentation to transgene product-specific CD4 + T cells and of Treg induction upon hepatic AAV gene transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16083. [PMID: 27933310 PMCID: PMC5142511 DOI: 10.1038/mtm.2016.83] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.
Collapse
Affiliation(s)
- George Q Perrin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Alexandra Sherman
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine , New York, New York, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
28
|
Wang X, Terhorst C, Herzog RW. In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cell Immunol 2016; 301:18-29. [PMID: 26454643 PMCID: PMC4761281 DOI: 10.1016/j.cellimm.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Current therapy for the X-linked coagulation disorder hemophilia is based on intravenous infusion of the specifically deficient coagulation factor. However, 20-30% of hemophilia A patients (factor VIII, FVIII, deficiency) generate inhibitory antibodies against FVIII. While formation of inhibitors directed against factor IX, FIX, resulting from hemophilia B treatment is comparatively rare, a serious complication that is often associated with additional immunotoxicities, e.g. anaphylaxis, occurs. Current immune tolerance protocols to eradiate inhibitors are lengthy, expensive, not effective in all patients, and there are no prophylactic tolerance regimens to prevent inhibitor formation. The outcomes of recent experiments in animal models of hemophilia demonstrate that regulatory CD4(+) T cells (Treg) are of paramount importance in controlling B cell responses to FVIII and FIX. This article reviews several novel strategies designed to in vivo induce coagulation factor-specific Treg cells and discusses the subsets of Treg that may promote immune tolerance in hemophilia. Among others, drug- and gene transfer-based protocols, lymphocyte transplant, and oral tolerance are reviewed.
Collapse
Affiliation(s)
- Xiaomei Wang
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Cox Terhorst
- Div. Immunology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Shuai X, Wei-min L, Tong YL, Dong N, Sheng ZY, Yao YM. Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells. Sci Rep 2015; 5:14478. [PMID: 26411375 PMCID: PMC4585986 DOI: 10.1038/srep14478] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/01/2015] [Indexed: 12/02/2022] Open
Abstract
Interleukin-37 (IL-37) possesses the function of down-regulate systemic and local inflammation. It is unknown whether IL-37 is expressed in human regulatory T cells (Tregs) and its role in modulating the immune response of Tregs. In the present study, cell surface molecules and secretory cytokines were analyzed in order to determine the function of IL-37 in regulating inhibitory effect of human CD4+CD25+Tregs. Meanwhile, the effects of IL-37 on T cell differentiation and proliferation as co-culture of CD4+CD25+Treg/CD4+CD25−T cell were also investigated. It was showed that IL-37 was expressed in cytoplasm of CD4+CD25+Tregs, and the levels of IL-37 were gradually elevated with the enhanced activity of CD4+CD25+Tregs. Secretory cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and expressions of cell surface molecules, including forkhead/winged helix transcription factor p3 (FOXP3) and cytotoxic T-lymphocyte associated antigen (CTLA)-4, were significantly decreased when IL-37 gene was silenced by siRNA. Furthermore, down-regulation of IL-37 expression in human CD4+CD25+Tregs obviously promoted proliferation of co-cultured T cell and differentiation, together with observably enhancement of IL-2 formation. These results demonstrated that IL-37 might manifest as a critical protein involving in immunosuppression of human CD4+CD25+Tregs.
Collapse
Affiliation(s)
- Xu Shuai
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China.,Department of Hepatobiliary Surgery, the 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Li Wei-min
- Department of Hepatobiliary Surgery, the 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Ya-lin Tong
- Department of Burns and Plastic Surgery, the 181st Hospital of Chinese PLA, Guilin 541002, China
| | - Ning Dong
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Zhi-yong Sheng
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
30
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
31
|
Wang X, Su J, Sherman A, Rogers GL, Liao G, Hoffman BE, Leong KW, Terhorst C, Daniell H, Herzog RW. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood 2015; 125:2418-27. [PMID: 25700434 PMCID: PMC4392010 DOI: 10.1182/blood-2014-08-597070] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Jin Su
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Geoffrey L Rogers
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA; and
| | - Brad E Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA; and
| | - Henry Daniell
- Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
32
|
Rogers GL, Suzuki M, Zolotukhin I, Markusic DM, Morel LM, Lee B, Ertl HCJ, Herzog RW. Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer. J Innate Immun 2015; 7:302-14. [PMID: 25612611 DOI: 10.1159/000369273] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Abstract
The immune system represents a significant barrier to successful gene therapy with adeno-associated viral (AAV) vectors. In particular, adaptive immune responses to the viral capsid or the transgene product are of concern. The sensing of AAV by toll-like receptors (TLRs) TLR2 and TLR9 has been suggested to play a role in innate immunity to the virus and may also shape subsequent adaptive immune responses. Here, we investigated the functions of TLR2, TLR9 and the downstream signaling adaptor MyD88 in antibody and CD8+ T-cell responses. Antibody formation against the transgene product occurred largely independently of TLR signaling following gene transfer with AAV1 or AAV2 vectors, whereas loss of signaling through the TLR9-MyD88 pathway substantially reduced CD8+ T-cell responses. In contrast, MyD88 (but neither of the TLRs) regulated antibody responses to capsid. B cell-intrinsic MyD88 was required for the formation of anti-capsid IgG2c independently of vector serotype or route of administration. However, MyD88(-/-) mice instead produced anti-capsid IgG1 that emerged with delayed kinetics but nonetheless completely prevented in vivo readministration. We conclude that there are distinct roles for TLR9 and MyD88 in promoting adaptive immune responses to AAV-mediated gene transfer and that there are redundant MyD88-dependent and MyD88-independent mechanisms that stimulate neutralizing antibody formation against AAV.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Fla., USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
34
|
Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood 2014; 125:1107-15. [PMID: 25498909 DOI: 10.1182/blood-2014-04-566786] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Expansion of human regulatory T cells (Tregs) for clinical applications offers great promise for the treatment of undesirable immune responses in autoimmunity, transplantation, allergy, and antidrug antibody responses, including inhibitor responses in hemophilia A patients. However, polyclonal Tregs are nonspecific and therefore could potentially cause global immunosuppression. To avoid this undesirable outcome, the generation of antigen-specific Tregs would be advantageous. Herein, we report the production and properties of engineered antigen-specific Tregs, created by transduction of a recombinant T-cell receptor obtained from a hemophilia A subject's T-cell clone, into expanded human FoxP3(+) Tregs. Such engineered factor VIII (FVIII)-specific Tregs efficiently suppressed the proliferation and cytokine production of FVIII-specific T-effector cells. Moreover, studies with an HLA-transgenic, FVIII-deficient mouse model demonstrated that antibody production from FVIII-primed spleen cells in vitro were profoundly inhibited in the presence of these FVIII-specific Tregs, suggesting potential utility to treat anti-FVIII inhibitory antibody formation in hemophilia A patients.
Collapse
|
35
|
Sherman A, Su J, Lin S, Wang X, Herzog RW, Daniell H. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood 2014; 124:1659-68. [PMID: 24825864 PMCID: PMC4155273 DOI: 10.1182/blood-2013-10-528737] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/29/2014] [Indexed: 11/20/2022] Open
Abstract
Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 µg/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor β and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL; and
| | - Jin Su
- Department of Biochemistry and Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shina Lin
- Department of Biochemistry and Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaomei Wang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL; and
| | - Roland W Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL; and
| | - Henry Daniell
- Department of Biochemistry and Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
Liao G, O'Keeffe MS, Wang G, van Driel B, de Waal Malefyt R, Reinecker HC, Herzog RW, Terhorst C. Glucocorticoid-Induced TNF Receptor Family-Related Protein Ligand is Requisite for Optimal Functioning of Regulatory CD4(+) T Cells. Front Immunol 2014; 5:35. [PMID: 24550919 PMCID: PMC3909995 DOI: 10.3389/fimmu.2014.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (TNFRSF18, CD357) is constitutively expressed on regulatory T cells (Tregs) and is inducible on effector T cells. In this report, we examine the role of glucocorticoid-induced TNF receptor family-related protein ligand (GITR-L), which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L−/− mice is impaired after injection of the dendritic cells (DCs) inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L−/− mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L−/−FoxP3(GFP) reporter mice using adeno-associated virus (AAV8-OVA) the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen-specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L−/−Rag−/− and Rag−/− mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L−/− but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.
Collapse
Affiliation(s)
- Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Michael S O'Keeffe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Guoxing Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Boaz van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | | | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, FL , USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
37
|
Rogers GL, Martino AT, Zolotukhin I, Ertl HCJ, Herzog RW. Role of the vector genome and underlying factor IX mutation in immune responses to AAV gene therapy for hemophilia B. J Transl Med 2014; 12:25. [PMID: 24460861 PMCID: PMC3904690 DOI: 10.1186/1479-5876-12-25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV (ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein, human factor IX (hF.IX). Methods Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8+ T cell responses to hF.IX. Results Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX expression) but stronger CD8+ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9 nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression regardless of the vector genome. Conclusions The nature of the AAV genome can impact the CD8+ T cell response to the therapeutic transgene product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific immunity than the molecular form of the AAV genome.
Collapse
Affiliation(s)
| | | | | | | | - Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
38
|
Sack BK, Herzog RW, Terhorst C, Markusic DM. Development of Gene Transfer for Induction of Antigen-specific Tolerance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14013. [PMID: 25558460 PMCID: PMC4280786 DOI: 10.1038/mtm.2014.13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene replacement therapies, like organ and cell transplantation are likely to introduce neo-antigens that elicit rejection via humoral and/or effector T cell immune responses. Nonetheless, thanks to an ever growing body of pre-clinical studies it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as "self". In addition, expression of the therapeutic protein in pro-tolerogenic antigen presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in pre-clinical studies aimed at the treatment of inherited protein deficiencies, e.g. lysosomal storage disorders and hemophilia, and of type I diabetes and multiple sclerosis. In this review we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.
Collapse
Affiliation(s)
- Brandon K Sack
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115. USA
| | - David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Abstract
The liver is a very complex organ with a large variety of functions, making it an attractive organ for gene replacement therapy. Many genetic disorders can be corrected by delivering gene products directly into the liver using viral vectors. In this chapter, we will describe gene delivery via portal vein administration in mice and dogs to correct the blood coagulation disorder hemophilia B. Although there are multiple delivery routes for both viral and non-viral vectors in animals, portal vein administration delivers vectors directly and efficiently into the liver. Complete correction of murine hemophilia B and multi-year near-correction of canine hemophilia B have been achieved following portal vein delivery of adeno-associated viral (AAV) vectors expressing factor IX from hepatocyte-specific promoters. Peripheral vein injection can lead to increased vector dissemination to off-target organ such as the lung and spleen. Below, we will describe portal vein injection delivery route via laparotomy.
Collapse
|
40
|
Gao X, Zhao L, Wang S, Yang J, Yang X. Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T-cell subsets in respiratory tract infection. Mol Med 2013; 19:346-56. [PMID: 24100657 DOI: 10.2119/molmed.2013.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/25/2013] [Indexed: 11/06/2022] Open
Abstract
An association between inducible costimulator ligand (ICOS-L) expression and interleukin (IL)-10 production by dendritic cells (DCs) has been commonly found in infectious disease. DCs with higher ICOS-L expression and IL-10 production are reportedly more efficient in inducing regulatory T cells (Tregs). Here we use the Chlamydia muridarum (Cm) lung infection model in IL-10 knockout (KO) mice to test the relationship between IL-10 production and ICOS-L expression by DCs. We examined ICOS-L expression, the development of T-cell subsets, including Treg, Th17 and Th1 cell, in the background of IL-10 deficiency and its relationship with ICOS-L/ICOS signaling after infection. Surprisingly, we found that the IL-10 KO mice exhibited significantly higher ICOS-L expression by DCs. Moreover, IL-10 KO mice showed lower Tregs but higher Th17 and Th1 responses, but only the Th17 response depended on ICOS signaling. Consistently, most of the Th17 cells were ICOS⁺, whereas most of the Th1 cells were ICOS⁻ in the infected mice. Furthermore, neutralization of IL-17 in IL-10 KO mice significantly exacerbated lung infection. The data suggest that ICOS-L expression on DC may be negatively regulated by IL-10 and that ICOS-L expression on DC in the presence or absence of IL-10 costimulation may promote Treg or Th17 response, without significant impact on Th1.
Collapse
Affiliation(s)
- Xiaoling Gao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Laboratory for Infection and Immunity, Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
The role of apoptosis in immune hyporesponsiveness following AAV8 liver gene transfer. Mol Ther 2013; 21:2227-35. [PMID: 24126962 DOI: 10.1038/mt.2013.94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
Gene therapy provides a significant opportunity to treat a variety of inherited and acquired diseases. However, adverse immune responses toward the adeno-associated virus (AAV) antigens may limit its success. The mechanisms responsible for immunity or tolerance toward AAV-encoded transgene products remain poorly defined. Studies in mice demonstrate that AAV2/8 gene transfer to liver is associated with immunological hyporesponsiveness toward both AAV vector and antigenic transgene product. To evaluate the role of activation-induced cell death (AICD) and cytokine withdrawal (intrinsic cell death) in the deletion of mature T lymphocytes, we compared immunological responses in hepatic AAV2/8 transfer in murine recipients lacking the Fas receptor, and recipients overexpressing Bcl-xL, to WT murine counterparts. Prolonged transgene expression was dependent on both Fas signaling and Bcl-xL-regulated apoptosis in T cells. Abrogation of intrinsic cell death enhanced Th1 responses, whereas AICD functioned to limit neutralizing antibody production toward AAV2/8. In addition, immune hyporesponsiveness and stable transgene expression was dependent on upregulation of FasL expression on transduced hepatocytes and a corresponding apoptosis of infiltrating Fas (+) cells. These data provide evidence that both AICD and apoptosis due to cytokine withdrawal of lymphocytes are essential for immune hyporesponsiveness toward hepatic AAV2/8-encoded transgene product in the setting of liver gene transfer.
Collapse
|
42
|
Markusic DM, Hoffman BE, Perrin GQ, Nayak S, Wang X, LoDuca PA, High KA, Herzog RW. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol Med 2013; 5:1698-709. [PMID: 24106230 PMCID: PMC3840486 DOI: 10.1002/emmm.201302859] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/30/2022] Open
Abstract
Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (‘inhibitors’) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ≥4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 2013; 23:399-413. [DOI: 10.1002/rmv.1762] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Sangeetha Hareendran
- Centre for Stem Cell Research; Christian Medical College; Vellore Tamil Nadu India
| | - Balaji Balakrishnan
- Department of Hematology; Christian Medical College; Vellore Tamil Nadu India
| | - Dwaipayan Sen
- Department of Hematology; Christian Medical College; Vellore Tamil Nadu India
| | - Sanjay Kumar
- Centre for Stem Cell Research; Christian Medical College; Vellore Tamil Nadu India
| | - Alok Srivastava
- Centre for Stem Cell Research; Christian Medical College; Vellore Tamil Nadu India
- Department of Hematology; Christian Medical College; Vellore Tamil Nadu India
| | - Giridhara R. Jayandharan
- Centre for Stem Cell Research; Christian Medical College; Vellore Tamil Nadu India
- Department of Hematology; Christian Medical College; Vellore Tamil Nadu India
| |
Collapse
|
44
|
Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 2013; 121:2224-33. [PMID: 23325831 DOI: 10.1182/blood-2012-10-460733] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent clinical trials have shown that evasion of CD8(+) T-cell responses against viral capsid is critical for successful liver-directed gene therapy with adeno-associated viral (AAV) vectors for hemophilia. Preclinical models to test whether use of alternate serotypes or capsid variants could avoid this deleterious response have been lacking. Here, the ability of CD8(+) T cells ("cap-CD8," specific for a capsid epitope presented by human B*0702 or murine H2-L(d) molecules) to target AAV-infected hepatocytes was investigated. In a murine model based on adoptive transfer of ex vivo expanded cap-CD8, AAV2-transduced livers showed CD8(+) T-cell infiltrates, transaminitis, significant reduction in factor IX transgene expression, and loss of transduced hepatocytes. AAV8 gene transfer resulted in prolonged susceptibility to cap-CD8, consistent with recent clinical findings. In contrast, using an AAV2(Y-F) mutant capsid, which is known to be less degraded by proteasomes, preserved transgene expression and largely avoided hepatotoxicity. In vitro assays confirmed reduced major histocompatibility complex class I presentation of this capsid and killing of human or murine hepatocytes compared with AAV2. In conclusion, AAV capsids can be engineered to substantially reduce the risk of destruction by cytotoxic T lymphocytes, whereas use of alternative serotypes per se does not circumvent this obstacle.
Collapse
|
45
|
Markusic DM, Herzog RW. Liver-Directed Adeno-Associated Viral Gene Therapy for Hemophilia. ACTA ACUST UNITED AC 2013; 1:1-9. [PMID: 23565343 DOI: 10.4172/2157-7412.s1-009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemophilia A and B are monogenic bleeding disorders resulting from loss of functional coagulation factors VIII or IX, respectively. Prophylactic treatment requires frequent intravenous injections of exogenous factor VIII (F.VIII) or factor IX (F.IX), due to the short half-life of both factors. Hemophilia patients are at risk of developing neutralizing antibodies to F.VIII (~25-30%) or F.IX (~2-4%), which require the use of expensive bypass agents and immune tolerance induction protocols. Viral vector mediated liver gene transfer of F.VIII or F.IX offers an alternative treatment for hemophilia with easily defined clinical endpoints and no need for strict regulation of coagulation factor expression, as both proteins circulate as inactive zymogens. Adeno-associated viral (AAV) vectors are derived from a non-pathogenic human virus that efficiently transduce non-dividing cells, such as hepatocytes, and provide stable transgene expression. In vivo liver gene transfer of AAV-F.VIII and -F.IX vectors has restored hemostasis in murine and canine hemophilia models long-term, and has also been shown to induce immune tolerance. Consequently, two Phase I/II clinical trials have been conducted, based on hepatic AAV-FIX gene transfer to patients with severe hemophilia B. The first trial, utilizing serotype 2, demonstrated transient correction, which was limited by a cellular immune response against the viral capsid. However, sustained therapeutic expression has been achieved in a second trial, using AAV8 for expression of a codon-optimized F.IX transgene. Translation of F.VIII gene transfer studies into the clinic may require additional optimization of gene transfer and vector to effectively express the larger cDNA of F.VIII.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
46
|
Rogers GL, Hoffman BE. Optimal Immunofluorescent Staining for Human Factor IX and Infiltrating T Cells following Gene Therapy for Hemophilia B. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264888 DOI: 10.4172/2157-7412.s1-012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunofluorescent imaging is a valuable tool for investigating the outcome of gene therapy within the transduced tissue. With a multi-labeling technique, it is possible to both characterize local expression of the transgene and to evaluate the severity of the adaptive immune response through cytotoxic T cell infiltration. It is critical that the experimental parameters are optimal in order to prevent misinterpretation of important pathological events. To optimize this staining protocol, murine liver and skeletal muscle was transduced using recombinant adeno-associated virus encoding human factor IX. After testing several common cryo-preservative and fixative techniques, we found that optimal tissue integrity and antigen (factor IX and CD8) detection was achieved by freezing muscle tissue on liquid nitrogen-cooled isopentane (also called methylbutane or 2-methylbutane), followed by fixation with acetone at room temperature. The staining protocol described herein requires only about two hours, yet maintains exquisite specificity even at high magnification under confocal microscopy.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | | |
Collapse
|
47
|
Pichard V, Aubert D, Boni S, Battaglia S, Ivacik D, Nguyen TH, Arbuthnot P, Ferry N. Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells. PLoS One 2012; 7:e51952. [PMID: 23251659 PMCID: PMC3522580 DOI: 10.1371/journal.pone.0051952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/07/2012] [Indexed: 12/28/2022] Open
Abstract
Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation.
Collapse
Affiliation(s)
- Virginie Pichard
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 948, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Perrin GQ, Herzog RW. Making dendritic cells that turn immune responses off. Hum Gene Ther 2012; 23:ix-xi. [PMID: 22822900 DOI: 10.1089/hum.2012.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- George Q Perrin
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
49
|
The threefold protrusions of adeno-associated virus type 8 are involved in cell surface targeting as well as postattachment processing. J Virol 2012; 86:9396-408. [PMID: 22718833 DOI: 10.1128/jvi.00209-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids (588)QQNTA(592) of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process.
Collapse
|
50
|
Sule G, Suzuki M, Guse K, Cela R, Rodgers JR, Lee B. Cytokine-conditioned dendritic cells induce humoral tolerance to protein therapy in mice. Hum Gene Ther 2012; 23:769-80. [PMID: 22468961 DOI: 10.1089/hum.2011.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A major obstacle in the genetic therapy of inherited metabolic disease is host immune responses to the therapeutic protein. This is best exemplified by inhibitor formation in the protein therapy for hemophilia A. An approach to overcoming this is induction of immunological tolerance to the therapeutic protein. Tolerogenic dendritic cells (DCtols) have been reported to induce tolerance. In addition, cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β(1) are known to induce tolerance. To model protein therapy, we used ovalbumin (OVA) as antigen in BALB/c mice and their transgenic derivative, DO11.10 mice. In this study we show that adoptive transfer of antigen-pulsed dendritic cells (DCs) treated with a combination of IL-10 and TGF-β(1) can suppress the antibody response in mice. Adoptive transfer of cytokine-conditioned DCs in preimmunized mice results in reduction of antibody response in the mice. Furthermore, the effect is antigen specific, as the recipient mice were able to mount a potent antibody response to the control antigen. Last, we show that TGF-β(1) and IL-10-conditioned DCs are able to inhibit anti-FVIII antibody responses in FVIII knockout (KO) mice. Analysis of the contribution of IL-10 and TGF-β(1) to the DCtol phenotype shows that IL-10 treatment of DCs is sufficient for inducing OVA-specific tolerance in BALB/c mice, but we observed a requirement for treatment with both human TGF-β(1) and human IL-10 to significantly inhibit anti-FVIII antibody responses in FVIII KO mice. This paper demonstrates that autologous cell therapy for antigen-targeted immune suppression may be developed to facilitate long-term therapy.
Collapse
Affiliation(s)
- Gautam Sule
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|