1
|
Devesa I, Fernández-Ballester G, Fernandez-Carvajal A, Ferrer-Montiel A. A review of the patent literature surrounding TRPV1 modulators. Expert Opin Ther Pat 2025:1-15. [PMID: 39952645 DOI: 10.1080/13543776.2025.2467698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION TRPV1, a pivotal therapeutic target for chronic pain and pruritus, has been validated in the pathogenesis of several pathologies from diabetes to cancer. Despite the constellation of chemical structures and strategies, none of these molecules has yet been clinically developed as a new drug application due to safety concerns, particularly in thermoregulation. Thus, clinical development of TRPV1 modulators remains a challenge. AREAS COVERED This review covers the patent literature on TRPV1 modulators (2019-2024, PubMed, Google Patents, and Espacenet), from orthosteric ligands to innovative compounds of biotechnological origin such as interfering RNAs or antibodies, and dual modulators that can act on TRPV1 and associated proteins in different tissues. EXPERT OPINION Therapeutic strategies that preferentially act on dysfunctional TRPV1 channels appear essential, along with a superior understanding of the underlying mechanisms affecting changes in core body temperature (CBT). Recent findings describing differential receptor interactions of antagonists that do not affect CBT may pave the way to the next generation of orally active TRPV1 inhibitors. Although we have thus far experienced a bitter feeling in TRPV1 drug development, the recent progress in different disciplines, including human-based preclinical models, will set an interdisciplinary approach to design and develop clinically relevant TRPV1 modulators.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
2
|
Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim MG, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 2025; 20:16. [PMID: 39920775 PMCID: PMC11806887 DOI: 10.1186/s13024-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. METHODS Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. RESULTS Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. CONCLUSIONS Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suhyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyeon Chu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Phuong Thi Thanh Nguyen
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Uiyeol Park
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Gyeong Kim
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Grewo Lim
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
3
|
Piña R, Ugarte G, Guevara C, Pino R, Valdebenito K, Romero S, Gómez del Campo A, Cornejo VH, Pertusa M, Madrid R. A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage. Front Pharmacol 2024; 15:1484387. [PMID: 39703391 PMCID: PMC11655194 DOI: 10.3389/fphar.2024.1484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca2+ imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery in vivo, we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch. We found that cold allodynia induced by IoN-CCI is linked to an increase in the proportion of cold-sensitive neurons (CSNs) contributing to this branch and a shift in their thermal thresholds to higher temperatures. These changes are correlated to a reduction of the Kv1.1-1.2-dependent brake potassium current IKD in IoN CSNs and a rise in the percentage of trigeminal neurons expressing TRPM8. The analysis of the electrophysiological properties of CSNs contributing to the IoN suggests that painful cold hypersensitivity involves the recruitment of silent nociceptive afferents that become sensitive to mild cold in response to nerve damage. Notably, pharmacological suppression of TRPM8 channels and AAV-based transduction of trigeminal neurons with the Kv1.1 channel in vivo effectively reverted the nociceptive phenotype in injured animals. Altogether, our results unveil a crucial role of TRPM8 and Kv1 channels in orofacial cold allodynia, suggesting that both the specific TRPM8-blocking and the AAV-driven expression of potassium channels underlying IKD in trigeminal neurons can be effective tools to revert this damage-triggered sensory alteration.
Collapse
Affiliation(s)
- Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camilo Guevara
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
| | - Richard Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine Valdebenito
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sofía Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Ana Gómez del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Víctor Hugo Cornejo
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| |
Collapse
|
4
|
Rahman MM, Jo YY, Kim YH, Park CK. Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci 2024; 355:122954. [PMID: 39128820 DOI: 10.1016/j.lfs.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Neuropathic pain, a common symptom of several disorders, exerts a substantial socioeconomic burden worldwide. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel predominantly ex-pressed in nociceptive neurons, plays a pivotal role in nociception, by detecting various endogenous and exogenous stimuli, including heat, pro-inflammatory mediators, and physical stressors. Dysregulation of TRPV1 signaling further contributes to the pathophysiology of neuropathic pain. Therefore, targeting TRPV1 is a promising strategy for developing novel analgesics with improved efficacy and safety profiles. Several pharmacological approaches to modulate TRPV1 activity, including agonists, antagonists, and biological TRPV1 RNA interference (RNAi, small interfering RNA [siRNA]) have been explored. Despite preclinical success, the clinical translation of TRPV1-targeted therapies has encountered challenges, including hyperthermia, hypothermia, pungency, and desensitization. Nevertheless, ongoing research efforts aim to refine TRPV1-targeted interventions through structural modifications, development of selective modulators, and discovery of natural, peptide-based drug candidates. Herein, we provide guidance for researchers and clinicians involved in the development of new interventions specifically targeting TRPV1 by reviewing the existing literature and highlighting current research activities. This study further discusses potential future research endeavors for enhancing the efficacy, safety, and tolerability of TRPV1 candidates, and thereby facilitates the translation of these discoveries into effective clinical interventions to alleviate neuropathic pain disorders.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Youn-Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
5
|
Higuchi T, Shimada Y, Takahashi Y, Kato F, Ohashi T, Kobayashi H. Restoration of peripheral neuropathy in Fabry mice via intrathecal administration of an adeno-associated virus vector encoding mGLA cDNA. Mol Genet Metab 2024; 143:108545. [PMID: 39068683 DOI: 10.1016/j.ymgme.2024.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Anderson-Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a pathological variant of the α-galactosidase A (GLA) gene that results in deficient GLA activity. GLA deficiency leads to the accumulation of globotriaosylceramide (Gb3) and lyso-Gb3 in many tissues. A certain number of FD patients have burning pain or acroparesthesia in the feet and hands since childhood. Enzyme replacement therapy (ERT) is available for FD patients. However, ERT does not dramatically improve these FD-related peripheral neuropathic pain. We generated an adeno-associated virus serotype PHP.eB (AAV-PHP.eB) vector encoding mouse GLA cDNA, which was administered to FD mice intrathecally (it) or intravenously (iv). In the it-administered AAV (it-AAV) FD mice, the GLA enzyme activity in the lumbar dorsal root ganglion (DRG) was significantly greater than that in the untreated (NT) FD mice, and the level of activity was similar to that in wild-type (WT) B6 mice. However, in iv-administered AAV (iv-AAV) FD mice, GLA activity in the DRG did not increase compared to that in NT FD mice. Gb3 storage in the DRG of it-AAV FD mice was reduced compared to that in the DRG of NT FD mice. However, compared with NT FD mice, iv-AAV FD mice did not exhibit a significant reduction in the expression of the Gb3 substrate. Compared with WT mice, FD mice were thermally hyposensitive at 52 °C according to the hot plate test. The it-AAV FD mice showed significant recovery from thermal hyposensitivity. However, the iv-AAV FD mice did not exhibit significant improvement in thermal hyposensitivity. These results suggest that the intrathecal delivery of AAV-PHP.eB-mGLA may be a valuable tool for the treatment of FD-related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Yukari Takahashi
- Division of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Fusao Kato
- Division of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan; Department of Human Health Science and Therapeutics, The Jikei University School of Nursing, Tokyo 1828570, Japan.
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| |
Collapse
|
6
|
Yousefian-Jazi A, Kim S, Choi SH, Chu J, Nguyen PTT, Park U, Lim K, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603186. [PMID: 39071309 PMCID: PMC11275751 DOI: 10.1101/2024.07.15.603186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic changes and epigenetic modifications are associated with neuronal dysfunction in the pathogenesis of neurodegenerative disorders. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Here, we identified an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element, using convolutional neural network. The enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
|
7
|
Jiang Y, Zhu Z, Wang B, Yuan Y, Zhang Q, Li Y, Du Y, Gong P. Neuronal TRPV1-CGRP axis regulates bone defect repair through Hippo signaling pathway. Cell Signal 2023:110779. [PMID: 37336315 DOI: 10.1016/j.cellsig.2023.110779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is highly expressed on sensory neurons where it serves as a polymodal receptor for detecting physical and chemical stimuli. However, the role of TRPV1 in bone metabolism remains largely unclear. This study aimed to investigate the underlying mechanism of neuronal TRPV1 in regulating bone defect repair. In vivo experiment verified that TRPV1 activation could trigger dorsal root ganglion (DRG) producing the neuropeptide calcitonin gene-related peptide (CGRP) in mice. The accelerated bone healing of femoral defect in this process was observed compared to the control group (p < 0.05). Conversely, Trpv1 knockdown led to the reduced CGRP expression in DRG and nerves innervating femur bone tissue, following impaired bone formation and osteogenic capability in the defect region (p < 0.05), which could be rescued by local CGRP treatment. In vitro, results revealed that TRPV1 function in DRG neurons contributed essentially to the regulation of osteoblast physiology through affecting the production and secretion of CGRP. The capsaicin-activated neuronal TRPV1-CGRP axis could enhance the proliferation, migration and differentiation of osteoblasts (p < 0.05). Furthermore, we found that the promoting role of neuronal TRPV1 in osteogenesis were associated with Hippo signaling pathway, reflected by the phosphorylation protein level of large tumor suppressor 1 (LATS1), MOB kinase activator 1 (MOB1) and Yes-associated protein (YAP), as well as the subcellular location of YAP. Our study clarified the effects and intrinsic mechanisms of neuronal TRPV1 on bone defect repair, which might offer us a therapeutic implication for bone disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanfeng Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Germain ND, Chung WK, Sarmiere PD. RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Mol Aspects Med 2022; 91:101148. [PMID: 36257857 DOI: 10.1016/j.mam.2022.101148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have greatly facilitated the identification of genomic variants underlying rare neurodevelopmental and neurodegenerative disorders. Understanding the fundamental causes of rare monogenic disorders has made gene therapy a possible treatment approach for these conditions. RNA interference (RNAi) technologies such as small interfering RNA (siRNA), microRNA (miRNA), and short hairpin RNA (shRNA), and other oligonucleotide-based modalities such as antisense oligonucleotides (ASOs) are being developed as potential therapeutic approaches for manipulating expression of the genes that cause a variety of neurological diseases. Here, we offer a brief review of the mechanism of action of these RNAi approaches; provide deeper discussion of the advantages, challenges, and specific considerations related to the development of RNAi therapeutics for neurological disease; and highlight examples of rare neurological diseases for which RNAi therapeutics hold great promise.
Collapse
Affiliation(s)
- Noelle D Germain
- Ovid Therapeutics, Inc., 1460 Broadway, New York, NY, 10036, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | | |
Collapse
|
9
|
Zhu L, Tan B, Dwight SS, Beahm B, Wilsey M, Crawford BE, Schweighardt B, Cook JW, Wechsler T, Mueller WF. AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency. Mol Ther Methods Clin Dev 2022; 27:259-271. [PMID: 36320418 PMCID: PMC9593239 DOI: 10.1016/j.omtm.2022.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
N-glycanase 1 (NGLY1) Deficiency is a progressive, ultra-rare, autosomal recessive disorder with no approved therapy and five core clinical features: severe global developmental delay, hyperkinetic movement disorder, elevated liver transaminases, alacrima, and peripheral neuropathy. Here, we confirmed and characterized the Ngly1 -/- / rat as a relevant disease model. GS-100, a gene therapy candidate, is a recombinant, single-stranded adeno-associated virus (AAV) 9 vector designed to deliver a functional copy of the human NGLY1 gene. Using the Ngly1 -/- rat, we tested different administration routes for GS-100: intracerebroventricular (ICV), intravenous (IV), or the dual route (IV + ICV). ICV and IV + ICV administration resulted in widespread biodistribution of human NGLY1 DNA and corresponding mRNA and protein expression in CNS tissues. GS-100 delivered by ICV or IV + ICV significantly reduced levels of the substrate biomarker N-acetylglucosamine-asparagine (GlcNAc-Asn or GNA) in CSF and brain tissue compared with untreated Ngly1-/- rats. ICV and IV + ICV administration of GS-100 resulted in behavioral improvements in rotarod and rearing tests, whereas IV-only administration did not. IV + ICV did not provide additional benefit compared with ICV administration alone. These data provide evidence that GS-100 could be an effective therapy for NGLY1 Deficiency using the ICV route of administration.
Collapse
Affiliation(s)
- Lei Zhu
- Grace Science, LLC, Menlo Park, CA 94025, USA
| | - Brandon Tan
- Grace Science, LLC, Menlo Park, CA 94025, USA
| | | | | | - Matt Wilsey
- Grace Science, LLC, Menlo Park, CA 94025, USA
| | | | | | | | | | - William F. Mueller
- Grace Science, LLC, Menlo Park, CA 94025, USA
- Corresponding author William F. Mueller, Grace Science, LLC, 1142 Crane Street, Ste 4, Menlo Park, CA 94025, USA.
| |
Collapse
|
10
|
Miyashita A, Kobayashi M, Ishibashi S, Nagata T, Chandrasekhar A, Zochodne DW, Yokota T. The Role of Long Noncoding RNA MALAT1 in Diabetic Polyneuropathy and the Impact of Its Silencing in the Dorsal Root Ganglion by a DNA/RNA Heteroduplex Oligonucleotide. Diabetes 2022; 71:1299-1312. [PMID: 35276003 DOI: 10.2337/db21-0918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Diabetic polyneuropathy (DPN) is the most common complication of diabetes, yet its pathophysiology has not been established. Accumulating evidence suggests that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays pivotal roles in the regulation of cell growth and survival during diabetic complications. This study aimed to investigate the impact of MALAT1 silencing in dorsal root ganglion (DRG) sensory neurons, using an α-tocopherol-conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO), on the peripheral nervous system of diabetic mice. We identified MALAT1 upregulation in the DRG of chronic diabetic mice that suggested either a pathological change or one that might be protective, and systemic intravenous injection of Toc-HDO effectively inhibited its gene expression. However, we unexpectedly noted that this intervention paradoxically exacerbated disease with increased thermal and mechanical nociceptive thresholds, indicating further sensory loss, greater sciatic-tibial nerve conduction slowing, and additional declines of intraepidermal nerve fiber density in the hind paw footpads. Serine/arginine-rich splicing factors, which are involved in pre-mRNA splicing by interacting with MALAT1, reside in nuclear speckles in wild-type and diabetic DRG neurons; MALAT1 silencing was associated with their disruption. The findings provide evidence for an important role that MALAT1 plays in DPN, suggesting neuroprotection and regulation of pre-mRNA splicing in nuclear speckles. This is also the first example in which a systemically delivered nucleotide therapy had a direct impact on DRG diabetic neurons and their axons.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ambika Chandrasekhar
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Sun L, Tong CK, Morgenstern TJ, Zhou H, Yang G, Colecraft HM. Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2118129119. [PMID: 35561213 PMCID: PMC9171802 DOI: 10.1073/pnas.2118129119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aβlator comprises a nanobody targeted to CaV channel cytosolic auxiliary β subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aβlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aβlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Chi-Kun Tong
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
| | - Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032
- Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
12
|
Tadokoro T, Bravo-Hernandez M, Agashkov K, Kobayashi Y, Platoshyn O, Navarro M, Marsala S, Miyanohara A, Yoshizumi T, Shigyo M, Krotov V, Juhas S, Juhasova J, Nguyen D, Kupcova Skalnikova H, Motlik J, Studenovska H, Proks V, Reddy R, Driscoll SP, Glenn TD, Kemthong T, Malaivijitnond S, Tomori Z, Vanicky I, Kakinohana M, Pfaff SL, Ciacci J, Belan P, Marsala M. Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Mol Ther 2022; 30:2722-2745. [PMID: 35524407 PMCID: PMC9372322 DOI: 10.1016/j.ymthe.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously-induced change in developmentally-imprinted excitatory neurotransmitter phenotype of these neurons to inhibitory has not yet been achieved. Here we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-Aminobutyric acid,) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) which persisted for minimum 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (such as sedation, motor weakness or loss of normal sensation) were seen between 2-13 months post-treatment in naive adult mice, pigs and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord- or peripheral nerve-injury induced neuropathic pain.
Collapse
Affiliation(s)
- Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Department of Anesthesiology, University of Ryukyus, Okinawa, Japan; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Kirill Agashkov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Vector Core Laboratory, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michiko Shigyo
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Volodymyr Krotov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Duong Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Vladimir Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Rajiv Reddy
- Department of Anesthesiology, Pain Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Zoltan Tomori
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Pavel Belan
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine; Kyiv Academic University, Kyiv, Ukraine
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
13
|
Deng SY, Tang XC, Chang YC, Xu ZZ, Chen QY, Cao N, Kong LJY, Wang Y, Ma KT, Li L, Si JQ. Improving NKCC1 Function Increases the Excitability of DRG Neurons Exacerbating Pain Induced After TRPV1 Activation of Primary Sensory Neurons. Front Cell Neurosci 2021; 15:665596. [PMID: 34113239 PMCID: PMC8185156 DOI: 10.3389/fncel.2021.665596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our aim was to investigate the effects of the protein expression and the function of sodium, potassium, and chloride co-transporter (NKCC1) in the dorsal root ganglion (DRG) after activation of transient receptor potential vanilloid 1 receptor (TRPV1) in capsaicin-induced acute inflammatory pain and the possible mechanism of action. Methods Male Sprague–Dawley rats were randomly divided into control, capsaicin, and inhibitor groups. The expression and distribution of TRPV1 and NKCC1 in rat DRG were observed by immunofluorescence. Thermal radiation and acetone test were used to detect the pain threshold of heat and cold noxious stimulation in each group. The expressions of NKCC1 mRNA, NKCC1 protein, and p-NKCC1 in the DRG were detected by PCR and western blotting (WB). Patch clamp and chloride fluorescent probe were used to observe the changes of GABA activation current and intracellular chloride concentration. After intrathecal injection of protein kinase C (PKC) inhibitor (GF109203X) or MEK/extracellular signal-regulated kinase (ERK) inhibitor (U0126), the behavioral changes and the expression of NKCC1 and p-ERK protein in L4–6 DRG were observed. Result: TRPV1 and NKCC1 were co-expressed in the DRG. Compared with the control group, the immunofluorescence intensity of NKCC1 and p-NKCC1 in the capsaicin group was significantly higher, and the expression of NKCC1 in the nuclear membrane was significantly higher than that in the control group. The expression of NKCC1 mRNA and protein of NKCC1 and p-NKCC1 in the capsaicin group were higher than those in the control group. After capsaicin injection, GF109203X inhibited the protein expression of NKCC1 and p-ERK, while U0126 inhibited the protein expression of NKCC1. In the capsaicin group, paw withdrawal thermal latency (WTL) was decreased, while cold withdrawal latency (CWL) was prolonged. Bumetanide, GF109203X, or U0126 could reverse the effect. GABA activation current significantly increased in the DRG cells of the capsaicin group, which could be reversed by bumetanide. The concentration of chloride in the DRG cells of the capsaicin group increased, but decreased after bumetanide, GF109203X, and U0126 were administered. Conclusion Activation of TRPV1 by exogenous agonists can increase the expression and function of NKCC1 protein in DRG, which is mediated by activation of PKC/p-ERK signaling pathway. These results suggest that DRG NKCC1 may participate in the inflammatory pain induced by TRPV1.
Collapse
Affiliation(s)
- Shi-Yu Deng
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesia, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xue-Chun Tang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yue-Chen Chang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Medical Teaching Experimental Center, Shihezi University Medical College, Shihezi, China
| | - Zhen-Zhen Xu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Yi Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Xiangyang Central Hospital, China
| | - Nan Cao
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liang-Jing-Yuan Kong
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ke-Tao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China
| | - Jun-Qiang Si
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Yu J, Du J, Fang J, Liu Y, Xiang X, Liang Y, Shao X, Fang J. The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains. Mol Pain 2021; 17:17448069211011315. [PMID: 33906494 PMCID: PMC8108079 DOI: 10.1177/17448069211011315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund’s adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Acupuncture and Massage, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingjun Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18:85. [PMID: 33892762 PMCID: PMC8067653 DOI: 10.1186/s12985-021-01555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions' outer shell, is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering with approaches such as directed evolution and rational design. These approaches are being used to identify variants with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduction in cell types that harbor viral reservoirs.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
16
|
Chemogenetic stimulation of proprioceptors remodels lumbar interneuron excitability and promotes motor recovery after SCI. Mol Ther 2021; 29:2483-2498. [PMID: 33895324 DOI: 10.1016/j.ymthe.2021.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Motor recovery after severe spinal cord injury (SCI) is limited due to the disruption of direct descending commands. Despite the absence of brain-derived descending inputs, sensory afferents below injury sites remain intact. Among them, proprioception acts as an important sensory source to modulate local spinal circuits and determine motor outputs. Yet, it remains unclear whether enhancing proprioceptive inputs promotes motor recovery after severe SCI. Here, we first established a viral system to selectively target lumbar proprioceptive neurons and then introduced the excitatory Gq-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus into proprioceptors to achieve specific activation of lumbar proprioceptive neurons upon CNO administration. We demonstrated that chronic activation of lumbar proprioceptive neurons promoted the recovery of hindlimb stepping ability in a bilateral hemisection SCI mouse model. We further revealed that chemogenetic proprioceptive stimulation led to coordinated activation of proprioception-receptive spinal interneurons and facilitated transmission of supraspinal commands to lumbar motor neurons, without affecting the regrowth of proprioceptive afferents or brain-derived descending axons. Moreover, application of 4-aminopyridine-3-methanol (4-AP-MeOH) that enhances nerve conductance further improved the transmission of supraspinal inputs and motor recovery in proprioception-stimulated mice. Our study demonstrates that proprioception-based combinatorial modality may be a promising strategy to restore the motor function after severe SCI.
Collapse
|
17
|
Fang J, Du J, Xiang X, Shao X, He X, Jiang Y, Liu B, Liang Y, Fang J. SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 2021; 239:983-995. [PMID: 33464388 DOI: 10.1007/s00221-020-05988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.
Collapse
Affiliation(s)
- Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuaner Xiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofeng He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
18
|
Yokoyama H, Hirai T, Nagata T, Enomoto M, Kaburagi H, Leiyo L, Motoyoshi T, Yoshii T, Okawa A, Yokota T. DNA Microarray Analysis of Differential Gene Expression in the Dorsal Root Ganglia of Four Different Neuropathic Pain Mouse Models. J Pain Res 2020; 13:3031-3043. [PMID: 33244261 PMCID: PMC7685567 DOI: 10.2147/jpr.s272952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Pathological stimuli or injury to the peripheral nervous system can trigger neuropathic pain with common clinical features such as allodynia and hypersensitivity. Although various studies have identified molecules or genes related to neuropathic pain, the essential components are still unclear. Therefore, in this study, we investigated the molecular and genetic factors related to neuropathic pain. Methods We extracted candidate genes in the dorsal root ganglion (DRG) from three nerve injury mouse models and a sham-operated model (sciatic nerve ligation and resection, sural nerve resection, spared nerve injury [SNI], and sham) using DNA microarray to elucidate the genes responsible for the neuropathic pain mechanism in the SNI model, which exhibits hypersensitivity in the hindpaw of the preserved sural nerve area. We eliminated as many biases as possible. We then focused on an upregulated endogenous vasopressin receptor and clarified whether it is closely associated with traumatic neuropathic pain using a knockout mouse and drug-mediated suppression of the gene. Results Algorithm analysis of DNA microarray results identified 50 genes significantly upregulated in the DRG of the SNI model. Two independent genes—cyclin-dependent kinase-1 (CDK-1) and arginine vasopressin receptor 1A (V1a)—were subsequently identified as candidate SNI-specific genes in the DRG by quantitative PCR analysis. Administration of V1a agonist to wild-type SNI mice significantly alleviated neuropathic pain. However, V1a knockout mice did not exhibit higher hypersensitivity to mechanical stimulation than wild-type mice. In addition, V1a knockout mice showed similar pain behaviors after SNI to wild-type mice. Conclusion Through the DNA microarray analysis of several neuropathic models, we detected specific genes related to chronic pain. In particular, our results suggest that V1a in the DRG may partially contribute to the mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hiroyuki Yokoyama
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takashi Hirai
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mitsuhiro Enomoto
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hidetoshi Kaburagi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Li Leiyo
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takayuki Motoyoshi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
19
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
20
|
Ablation of TRPV1+ Afferent Terminals by Capsaicin Mediates Long-Lasting Analgesia for Trigeminal Neuropathic Pain. eNeuro 2020; 7:ENEURO.0118-20.2020. [PMID: 32404326 PMCID: PMC7266139 DOI: 10.1523/eneuro.0118-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) is often resistant to current pharmacotherapy, and there is a pressing need to develop more efficacious treatments. Capsaicin is a pungent ingredient of chili peppers and specifically activates transient receptor potential vanilloid subtype 1 (TRPV1), a Ca2+-permeable ion channel. Topical capsaicin invariably induces burning pain. Paradoxically, the transient pain is often followed by prolonged attenuation of the preexisting pathologic pain from the same region. However, the mechanisms underlying capsaicin-induced analgesia are not well understood. Although the reports of the involvement of TRPV1 and TRPV1+ afferents in neuropathic pain are controversial, we recently demonstrated that TRPV1 and TRPV1+ afferents are involved in mechanical hyperalgesia in mice with chronic constriction injury of the infraorbital nerve (ION-CCI). Consistently, chemogenetic inhibition of TRPV1-lineage (TRPV1-LN) afferents attenuated mechanical hyperalgesia and ongoing pain. In mice with ION-CCI, we found that a single focal injection of capsaicin into facial skin led to attenuation of mechanical hyperalgesia over two weeks. Capsaicin treatment also attenuated secondary hyperalgesia in extraterritorial mandibular skin. Furthermore, capsaicin treatment decreased ongoing pain. Longitudinal in vivo two-photon imaging of cutaneous nerve fibers showed that such capsaicin-induced analgesia is correlated with cutaneous nerve terminal density. Furthermore, preventing capsaicin-induced ablation of afferent terminals by co-administration of capsaicin with MDL28170, an inhibitor of calpain, abolished capsaicin-induced analgesia. These results suggest that a single focal injection of capsaicin induces long-lasting analgesia for neuropathic pain via selective ablation of TRPV1+ afferent terminals and that TRPV1+ afferents contribute to the maintenance of TNP.
Collapse
|
21
|
Valdor M, Wagner A, Fischer H, Röhrs V, Schröder W, Bahrenberg G, Welbers A, Fechner H, Kurreck J, Tzschentke TM, Christoph T. RNA interference-mediated silencing of Kv7.2 in rat dorsal root ganglion neurons abolishes the anti-nociceptive effect of a selective channel opener. J Pharmacol Toxicol Methods 2020; 103:106693. [DOI: 10.1016/j.vascn.2020.106693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
|
22
|
Zeng Y, Shi Y, Zhan H, Liu W, Cai G, Zhong H, Wang Y, Chen S, Huang S, Wu W. Reduction of Silent Information Regulator 1 Activates Interleukin-33/ST2 Signaling and Contributes to Neuropathic Pain Induced by Spared Nerve Injury in Rats. Front Mol Neurosci 2020; 13:17. [PMID: 32116550 PMCID: PMC7028692 DOI: 10.3389/fnmol.2020.00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as key factors in inflammatory diseases. Moreover, accumulating evidence has suggested that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory cascade. SIRT1 has been shown to suppress the expression of inflammatory cytokines. However, the effects of SIRT1 on IL-33/ST2 signaling and initiation of the inflammatory cascade via modulation of TNF-α and IL-1β by IL-33 remain unclear. In the present study, we found that the dorsal root ganglion (DRG) IL-33 and ST2 were upregulated in a rat model of spared nerve injury (SNI) and intrathecal injection of either IL-33 or ST2 antibodies alleviated mechanical allodynia and downregulated TNF-α and IL-1β induced by SNI. In addition, activation of SIRT1 decreased enhanced DRG IL-33/ST2 signaling in SNI rats. Artificial inactivation of SIRT1 via intrathecal injection of an SIRT1 antagonist could induce mechanical allodynia and upregulate IL-33 and ST2. These results demonstrated that reduction in SIRT1 could induce upregulation of DRG IL-33 and ST2 and contribute to mechanical allodynia induced by SNI in rats.
Collapse
Affiliation(s)
- Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhan
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shangjie Chen
- Department of Rehabilitation, Baoan Hospital, Southern Medical University, Shenzhen, China
| | - Shimin Huang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
MZF1 in the Dorsal Root Ganglia Contributes to the Development and Maintenance of Neuropathic Pain via Regulation of TRPV1. Neural Plast 2019; 2019:2782417. [PMID: 31582966 PMCID: PMC6754943 DOI: 10.1155/2019/2782417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/27/2019] [Accepted: 05/19/2019] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that myeloid zinc finger 1 (MZF1) in the dorsal root ganglion (DRG) participates in neuropathic pain induced by chronic-constriction injury (CCI) via regulation of voltage-gated K+ channels (Kv). Emerging evidence indicates that transient receptor potential vanilloid 1 (TRPV1) is involved in the development and maintenance of neuropathic pain. Although it is known that the transcription of TRPV1 is regulated by Kruppel-like zinc-finger transcription factor 7 (Klf7)—and that the structure of TRPV1 is similar to that of Kv—few studies have systematically investigated the relationship between MZF1 and TRPV1 in neuropathic pain. In the present study, we demonstrated that CCI induced an increase in MZF1 and TRPV1 in lumbar-level 4/5 (L4/5) DRGs at 3 days post-CCI and that this increase was persistent until at least 14 days post-CCI. DRG microinjection of rAAV5-MZF1 into the DRGs of naïve rats resulted in a decrease in paw-withdrawal threshold (PWT) and paw-withdrawal latency (PWL) compared with that of the rAAV5-EGFP group, which started at four weeks and lasted until at least eight weeks after microinjection. Additionally, prior microinjection of MZF1 siRNA clearly ameliorated CCI-induced reduction in PWT and PWL at 3 days post-CCI and lasted until at least 7 days post-CCI. Correspondingly, microinjection of MZF1 siRNA subsequent to CCI alleviated the established mechanical allodynia and thermal hyperalgesia induced by CCI, which occurred at 3 days postinjection and lasted until at least 10 days postinjection. Microinjection of rAAV5-MZF1 increased the expression of TRPV1 in DRGs. Microinjection of MZF1 siRNA diminished the CCI-induced increase of TRPV1, but not P2X7R, in DRGs. These findings suggest that MZF1 may contribute to neuropathic pain via regulation of TRPV1 expression in DRGs.
Collapse
|
24
|
Zhang S, Zhao J, Meng Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. Neurol Res 2019; 41:972-979. [PMID: 31296147 DOI: 10.1080/01616412.2019.1639317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangli Zhang
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jun Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| | - Qinggang Meng
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| |
Collapse
|
25
|
Luu W, Bjork J, Salo E, Entenmann N, Jurgenson T, Fisher C, Klein AH. Modulation of SUR1 K ATP Channel Subunit Activity in the Peripheral Nervous System Reduces Mechanical Hyperalgesia after Nerve Injury in Mice. Int J Mol Sci 2019; 20:E2251. [PMID: 31067750 PMCID: PMC6539735 DOI: 10.3390/ijms20092251] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
The ATP-sensitive K+ channel (KATP) is involved in hypersensitivity during chronic pain and is presumed to be a downstream target of mu opioid receptors. Multiple subtypes of KATP channels exist in the peripheral and central nervous system and their activity may be inversely correlated to chronic pain phenotypes in rodents. In this study, we investigated the different KATP channel subunits that could be involved in neuropathic pain in mice. In chronic pain models utilizing spinal nerve ligation, SUR1 and Kir6.2 subunits were found to be significantly downregulated in dorsal root ganglia and the spinal cord. Local or intrathecal administration of SUR1-KATP channel subtype agonists resulted in analgesia after spinal nerve ligation but not SUR2 agonists. In ex-vivo nerve recordings, administration of the SUR1 agonist diazoxide to peripheral nerve terminals decreased mechanically evoked potentials. Genetic knockdown of SUR1 through an associated adenoviral strategy resulted in mechanical hyperalgesia but not thermal hyperalgesia compared to control mice. Behavioral data from neuropathic mice indicate that local reductions in SUR1-subtype KATP channel activity can exacerbate neuropathic pain symptoms. Since neuropathic pain is of major clinical relevance, potassium channels present a target for analgesic therapies, especially since they are expressed in nociceptors and could play an essential role in regulating the excitability of neurons involved in pain-transmission.
Collapse
Affiliation(s)
- Wing Luu
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| | - James Bjork
- Department of Biomedical Sciences, Medical School Duluth, Duluth, MN 55812, USA.
| | - Erin Salo
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| | - Nicole Entenmann
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| | - Taylor Jurgenson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| | - Cole Fisher
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.
| |
Collapse
|
26
|
Guo SH, Lin JP, Huang LE, Yang Y, Chen CQ, Li NN, Su MY, Zhao X, Zhu SM, Yao YX. Silencing of spinal Trpv1 attenuates neuropathic pain in rats by inhibiting CAMKII expression and ERK2 phosphorylation. Sci Rep 2019; 9:2769. [PMID: 30808963 PMCID: PMC6391380 DOI: 10.1038/s41598-019-39184-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests a potential role of transient receptor potential vanilloid 1 (TRPV1) channels in inflammatory and cancer-related pain. However, the role of TRPV1 in the maintenance of neuropathic pain remains elusive. The current study investigated the effects of transient Trpv1 gene silencing using a small interference RNA (siRNA) on neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. Seven days after CCI, the TRPV1 siRNA was intrathecally administered (5 µg/15 µl, once daily for 2 days). TRPV1 and Ca2+/calmodulin-dependent protein kinase II (CAMKII) expression and extracellular signal-regulated kinase (ERK) phosphorylation in the spinal cord were detected using western blotting. The thresholds to mechanical and thermal stimuli were determined before and after intrathecal TRPV1 siRNA administration. TRPV1 and CAMKII expression and ERK2 phosphorylation in the spinal cord were upregulated after CCI. Intrathecal administration of the TRPV1 siRNA not only attenuated behavioural hyperalgesia but also reduced the expression of TRPV1 and CAMKII, as well as ERK2 phosphorylation. Based on these results, silencing of the TRPV1 gene in the spinal cord attenuates the maintenance of neuropathic pain by inhibiting CAMKII/ERK2 activation and suggests that TRPV1 represents a potential target in pain therapy.
Collapse
Affiliation(s)
- Shao-Hui Guo
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Jia-Piao Lin
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Ling-Er Huang
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yan Yang
- Zhejiang University School of Medicine, Centre for Neuroscience, Hangzhou, 310016, P. R. China
| | - Chao-Qin Chen
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Na-Na Li
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Meng-Yun Su
- Department of Anaesthesia, Shulan (Hangzhou) Hospital, Hangzhou, 310022, P. R. China
| | - Xian Zhao
- Department of Anaesthesia, Shulan (Hangzhou) Hospital, Hangzhou, 310022, P. R. China
| | - Sheng-Mei Zhu
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yong-Xing Yao
- Department of Anaesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China.
| |
Collapse
|
27
|
Detailed Method for Intrathecal Delivery of Gene Therapeutics by Direct Lumbar Puncture in Mice. Methods Mol Biol 2019; 1937:305-312. [PMID: 30706406 DOI: 10.1007/978-1-4939-9065-8_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Delivery of viral vectors directly into the central nervous system (CNS) has emerged as an important tool for the refinement of gene therapy. Intrathecal delivery by direct lumbar puncture in conscious rodents offers a minimally invasive approach that avoids tissue damage and/or destruction. Here we describe delivery of small quantities of viral vector product to the intrathecal space of rodents via direct lumbar puncture aided by a catheter.
Collapse
|
28
|
Xiang H, Liu Z, Wang F, Xu H, Roberts C, Fischer G, Stucky C, Caron D, Pan B, Hogan Q, Yu H. Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain 2018; 13:1744806917717040. [PMID: 28604222 PMCID: PMC5486490 DOI: 10.1177/1744806917717040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade.
Collapse
Affiliation(s)
- Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Fei Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China 712046
| | - Hao Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P. R. China 266000
| | - Christopher Roberts
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cheryl Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Dean Caron
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn Hogan
- 5Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | | |
Collapse
|
29
|
Sheu ML, Chiang CY, Su HL, Chen CJ, Sheehan J, Pan HC. Intrathecal Injection of Dual Zipper Kinase shRNA Alleviating the Neuropathic Pain in a Chronic Constrictive Nerve Injury Model. Int J Mol Sci 2018; 19:2421. [PMID: 30115872 PMCID: PMC6121272 DOI: 10.3390/ijms19082421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/20/2022] Open
Abstract
Dual leucine zipper kinase (DLK) is a member of mitogen-activated protein kinase kinase kinase (MAP3K) family mainly involved in neuronal degeneration. However, the role of DLK signaling in the neuropathic pain has not yet been fully determined. Chronic constrictive injury (CCI) was conducted by four 3-0 chromic gut ligatures loosely ligated around the sciatic nerve. Escalated DLK expression over the dorsal root ganglion was observed from one to four rings of CCI. Remarkable expression of DLK was observed in primary dorsal root ganglion cells culture subjected to electrical stimulation and attenuated by DLK short hairpin RNA (shRNA) treatment. Intrathecal injection of DLK shRNA attenuates the expression of DLK over the dorsal root ganglion and hippocampus neurons and increased the threshold of mechanical allodynia and decreased thermal hyperalgesia. In CatWalk gait analysis, significant decreases of print area, maximum contact maximum intensity, stand phase, single stance, and regular index by CCI were alleviated by the DLK shRNA administration. In conclusion, the expression of DLK was up-regulated in chronic constrictive injury and attenuated by the administration of DLK shRNA, which paralleled the improvement of neurobehavior of neuropathic pain. The modulation of DLK expression is a potential clinic treatment option for neuropathic pain.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40244, Taiwan.
| | - Chien-Yi Chiang
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
| | - Hong-Lin Su
- Department Life Sciences, Agriculture Biotechnology Center, National Chung Hsing University, Taichung 40244, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22901, USA.
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40754, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11257, Taiwan.
| |
Collapse
|
30
|
Abdallah K, Nadeau F, Bergeron F, Blouin S, Blais V, Bradbury KM, Lavoie CL, Parent JL, Gendron L. Adeno-associated virus 2/9 delivery of Cre recombinase in mouse primary afferents. Sci Rep 2018; 8:7321. [PMID: 29743652 PMCID: PMC5943452 DOI: 10.1038/s41598-018-25626-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Genetically-modified animal models have significantly increased our understanding of the complex central nervous system circuits. Among these models, inducible transgenic mice whose specific gene expression can be modulated through a Cre recombinase/LoxP system are useful to study the role of specific peptides and proteins in a given population of cells. In the present study, we describe an efficient approach to selectively deliver a Cre-GFP to dorsal root ganglia (DRG) neurons. First, mice of different ages were injected in both hindpaws with a recombinant adeno-associated virus (rAAV2/9-CBA-Cre-GFP). Using this route of injection in mice at 5 days of age, we report that approximately 20% of all DRG neurons express GFP, 6 to 8 weeks after the infection. The level of infection was reduced by 50% when the virus was administered at 2 weeks of age. Additionally, the virus-mediated delivery of the Cre-GFP was also investigated via the intrathecal route. When injected intrathecally, the rAAV2/9-CBA-Cre-GFP virus infected a much higher proportion of DRG neurons than the intraplantar injection, with up to 51.6% of infected lumbar DRG neurons. Noteworthy, both routes of injection predominantly transduced DRG neurons over spinal and brain neurons.
Collapse
Affiliation(s)
- Khaled Abdallah
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Francis Nadeau
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Francis Bergeron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Sylvie Blouin
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Véronique Blais
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Kelly M Bradbury
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Bishop's University, Sherbrooke, Québec, Canada
| | - Christine L Lavoie
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada. .,Centre de recherche du CHUS, Sherbrooke, Québec, Canada. .,Quebec Pain Research Network, Sherbrooke, Québec, Canada.
| |
Collapse
|
31
|
Vuillemenot BR, Korte S, Wright TL, Adams EL, Boyd RB, Butt MT. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic. Toxicol Sci 2018; 152:3-9. [PMID: 27354708 DOI: 10.1093/toxsci/kfw072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics.
Collapse
Affiliation(s)
| | - Sven Korte
- Covance Laboratories GmbH, Münster, Germany
| | | | - Eric L Adams
- Northern Biomedical Research, Muskegon, Michigan
| | | | | |
Collapse
|
32
|
Hardcastle N, Boulis NM, Federici T. AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther 2017; 18:293-307. [PMID: 29249183 DOI: 10.1080/14712598.2018.1416089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Adeno-associated viral (AAV) vector-mediated gene delivery to the spinal cord has finally entered the pathway towards regulatory approval. Phase 1 clinical trials using AAV gene therapy for pediatric disorders - spinal muscular atrophy (SMA) and giant axonal neuropathy (GAN) - are now underway. AREAS COVERED This review addresses the latest progress in the field of AAV gene delivery to the spinal cord, particularly focusing on the most prominent AAV serotypes and delivery methodologies to the spinal cord. Candidate diseases and scaling up experiments in large animals are also discussed. EXPERT OPINION Intravenous (IV) and intrathecal (IT) deliveries seem to undoubtedly be the preferred routes of administration for diffuse spinal cord delivery of therapeutic AAV vectors that can cross the blood-brain barrier (BBB) and correct inherited genetic disorders. Conversely, intraparenchymal delivery is still an undervalued but very viable approach for segmental therapy in afflictions such as ALS or Pompe Disease as a means to prevent respiratory dysfunction.
Collapse
Affiliation(s)
- Nathan Hardcastle
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Nicholas M Boulis
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| | - Thais Federici
- a Department of Neurosurgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
33
|
Valdor M, Wagner A, Röhrs V, Berg J, Fechner H, Schröder W, Tzschentke TM, Bahrenberg G, Christoph T, Kurreck J. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 2017; 14:1744806917749669. [PMID: 29212407 PMCID: PMC5805000 DOI: 10.1177/1744806917749669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Collapse
Affiliation(s)
- Markus Valdor
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Anke Wagner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Johanna Berg
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Wolfgang Schröder
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Thomas M Tzschentke
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | | | - Thomas Christoph
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Jens Kurreck
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| |
Collapse
|
34
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
In vivo dynamics of AAV-mediated gene delivery to sensory neurons of the trigeminal ganglia. Sci Rep 2017; 7:927. [PMID: 28424485 PMCID: PMC5430444 DOI: 10.1038/s41598-017-01004-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
The ability to genetically manipulate trigeminal ganglion (TG) neurons would be useful in the study of the craniofacial nervous system and latent alphaherpesvirus infections. We investigated adeno-associated virus (AAV) vectors for gene delivery to the TG after intradermal whiskerpad delivery in mice. We demonstrated that AAV vectors of serotypes 1, 7, 8, and 9 trafficked from the whiskerpad into TG neurons and expressed transgenes within cell bodies and axons of sensory neurons in all three branches of the TG. Gene expression was highest with AAV1, and steadily increased over time up to day 28. Both constitutive and neuronal-specific promoters were able to drive transgene expression in TG neurons. Levels of vector genomes in the TG increased with input dose, and multiple transgenes could be co-delivered to TG neurons by separate AAV vectors. In conclusion, AAV1 vectors are suitable for gene delivery to TG sensory neurons following intradermal whiskerpad injection.
Collapse
|
36
|
(S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain 2017; 157:1448-1463. [PMID: 26967696 DOI: 10.1097/j.pain.0000000000000555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic pain affects the life of millions of people. Current treatments have deleterious side effects. We have advanced a strategy for targeting protein interactions which regulate the N-type voltage-gated calcium (CaV2.2) channel as an alternative to direct channel block. Peptides uncoupling CaV2.2 interactions with the axonal collapsin response mediator protein 2 (CRMP2) were antinociceptive without effects on memory, depression, and reward/addiction. A search for small molecules that could recapitulate uncoupling of the CaV2.2-CRMP2 interaction identified (S)-lacosamide [(S)-LCM], the inactive enantiomer of the Food and Drug Administration-approved antiepileptic drug (R)-lacosamide [(R)-LCM, Vimpat]. We show that (S)-LCM, but not (R)-LCM, inhibits CRMP2 phosphorylation by cyclin dependent kinase 5, a step necessary for driving CaV2.2 activity, in sensory neurons. (S)-lacosamide inhibited depolarization-induced Ca influx with a low micromolar IC50. Voltage-clamp electrophysiology experiments demonstrated a commensurate reduction in Ca currents in sensory neurons after an acute application of (S)-LCM. Using constellation pharmacology, a recently described high content phenotypic screening platform for functional fingerprinting of neurons that uses subtype-selective pharmacological agents to elucidate cell-specific combinations (constellations) of key signaling proteins that define specific cell types, we investigated if (S)-LCM preferentially acts on certain types of neurons. (S)-lacosamide decreased the dorsal root ganglion neurons responding to mustard oil, and increased the number of cells responding to menthol. Finally, (S)-LCM reversed thermal hypersensitivity and mechanical allodynia in a model of postoperative pain, and 2 models of neuropathic pain. Thus, using (S)-LCM to inhibit CRMP2 phosphorylation is a novel and efficient strategy to treat pain, which works by targeting specific sensory neuron populations.
Collapse
|
37
|
Long H, Liao L, Zhou Y, Shan D, Gao M, Huang R, Yang X, Lai W. A novel technique of delivering viral vectors to trigeminal ganglia in rats. Eur J Oral Sci 2017; 125:1-7. [PMID: 28067416 DOI: 10.1111/eos.12326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Long
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Lina Liao
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yang Zhou
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Di Shan
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Meiya Gao
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Renhuan Huang
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Yang
- Department of Stomatology; Shanghai Tenth People's Hospital; Tongji University School of Medicine; Shanghai China
| | - Wenli Lai
- Department of Orthodontics; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
38
|
HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem J 2016; 473:2717-36. [DOI: 10.1042/bcj20160287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Nociception — the ability to detect painful stimuli — is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a ‘pacemaker for pain’, in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.
Collapse
|
39
|
Aubert M, Madden EA, Loprieno M, DeSilva Feelixge HS, Stensland L, Huang ML, Greninger AL, Roychoudhury P, Niyonzima N, Nguyen T, Magaret A, Galleto R, Stone D, Jerome KR. In vivo disruption of latent HSV by designer endonuclease therapy. JCI Insight 2016; 1. [PMID: 27642635 DOI: 10.1172/jci.insight.88468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent disease. Here, we report the ability of HSV-specific endonucleases to induce mutations of essential HSV genes both in cultured neurons and in latently infected mice. In neurons, viral genomes are susceptible to endonuclease-mediated mutagenesis, regardless of the time of treatment after HSV infection, suggesting that both HSV lytic and latent forms can be targeted. Mutagenesis frequency after endonuclease exposure can be increased nearly 2-fold by treatment with a histone deacetylase (HDAC) inhibitor. Using a mouse model of latent HSV infection, we demonstrate that a targeted endonuclease can be delivered to viral latency sites via an adeno-associated virus (AAV) vector, where it is able to induce mutation of latent HSV genomes. These data provide the first proof-of-principle to our knowledge for the use of a targeted endonuclease as an antiviral agent to treat an established latent viral infection in vivo.
Collapse
Affiliation(s)
- Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily A Madden
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Laurence Stensland
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thuy Nguyen
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Amalia Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
41
|
Pleticha J, Maus TP, Beutler AS. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents. Mayo Clin Proc 2016; 91:522-33. [PMID: 27046525 DOI: 10.1016/j.mayocp.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Collapse
Affiliation(s)
- Josef Pleticha
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Andreas S Beutler
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
42
|
Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation. Neural Plast 2016; 2016:5954890. [PMID: 26885404 PMCID: PMC4738952 DOI: 10.1155/2016/5954890] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/20/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022] Open
Abstract
TRPV1 is well known as a sensor ion channel that transduces a potentially harmful environment into electrical depolarization of the peripheral terminal of the nociceptive primary afferents. Although TRPV1 is also expressed in central regions of the nervous system, its roles in the area remain unclear. A series of recent reports on the spinal cord synapses have provided evidence that TRPV1 plays an important role in synaptic transmission in the pain pathway. Particularly, in pathologic pain states, TRPV1 in the central terminal of sensory neurons and interneurons is suggested to commonly contribute to pain exacerbation. These observations may lead to insights regarding novel synaptic mechanisms revealing veiled roles of spinal cord TRPV1 and may offer another opportunity to modulate pathological pain by controlling TRPV1. In this review, we introduce historical perspectives of this view and details of the recent promising results. We also focus on extended issues and unsolved problems to fully understand the role of TRPV1 in pathological pain. Together with recent findings, further efforts for fine analysis of TRPV1's plastic roles in pain synapses at different levels in the central nervous system will promote a better understanding of pathologic pain mechanisms and assist in developing novel analgesic strategies.
Collapse
|
43
|
Enomoto M, Hirai T, Kaburagi H, Yokota T. Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA. Methods Mol Biol 2016; 1364:277-90. [PMID: 26472458 DOI: 10.1007/978-1-4939-3112-5_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood-brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Mitsuhiro Enomoto
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Hyperbaric Medical Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Takashi Hirai
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,School of Dentistry, Oral Biology, Oral Biology and Medicine, University of California Los Angeles, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA, 90095-1668, USA.
| | - Hidetoshi Kaburagi
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
44
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Snowball A, Schorge S. Changing channels in pain and epilepsy: Exploiting ion channel gene therapy for disorders of neuronal hyperexcitability. FEBS Lett 2015; 589:1620-34. [PMID: 25979170 DOI: 10.1016/j.febslet.2015.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
Abstract
Chronic pain and epilepsy together affect hundreds of millions of people worldwide. While traditional pharmacotherapy provides essential relief to the majority of patients, a large proportion remains resistant, and surgical intervention is only possible for a select few. As both disorders are characterised by neuronal hyperexcitability, manipulating the expression of the most direct modulators of excitability - ion channels - represents an attractive common treatment strategy. A number of viral gene therapy approaches have been explored to achieve this. These range from the up- or down-regulation of channels that control excitability endogenously, to the delivery of exogenous channels that permit manipulation of excitability via optical or chemical means. In this review we highlight the key experimental successes of each approach and discuss the challenges facing their clinical translation.
Collapse
Affiliation(s)
- Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
46
|
Making sense of pain: are pluripotent stem cell-derived sensory neurons a new tool for studying pain mechanisms? Mol Ther 2015; 22:1403-1405. [PMID: 25082088 DOI: 10.1038/mt.2014.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS, Elde RP, Fairbanks CA, Vulchanova L. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 2014; 8:42. [PMID: 24959122 PMCID: PMC4051274 DOI: 10.3389/fnana.2014.00042] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/16/2014] [Indexed: 01/06/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9)-mediated gene transfer has been reported in central nervous system (CNS) and peripheral tissues. The current study compared the pattern of expression of Green Fluorescent Protein (GFP) across the mouse CNS and selected peripheral tissues after intrathecal (i.t.) or intravenous (i.v.) delivery of equivalent doses of single-stranded AAV9 vector. After i.t. delivery, GFP immunoreactivity (-ir) was observed in spinal neurons, primary afferent fibers and corresponding primary sensory neurons at all spinal levels. Robust transduction was seen in small and large dorsal root ganglion (DRG) neurons as well as trigeminal and vagal primary afferent neurons. Transduction efficiency in sensory ganglia was substantially lower in i.v. treated mice. In brain, i.v. delivery yielded GFP-immunoreactivity (-ir) primarily in spinal trigeminal tract, pituitary, and scattered isolated neurons and astrocytes. In contrast, after i.t. delivery, GFP-ir was widespread throughout CNS, with greater intensity and more abundant neuropil-like staining at 6 weeks compared to 3 weeks. Brain regions with prominent GFP-ir included cranial nerve nuclei, ventral pons, cerebellar cortex, hippocampus, pituitary, choroid plexus, and selected nuclei of midbrain, thalamus and hypothalamus. In cortex, GFP-ir was associated with blood vessels, and was seen in both neurons and astrocytes. In the periphery, GFP-ir in colon and ileum was present in the enteric nervous system in both i.v. and i.t. treated mice. Liver and adrenal cortex, but not adrenal medulla, also showed abundant GFP-ir after both routes of delivery. In summary, i.t. delivery yielded higher transduction efficiency in sensory neurons and the CNS. The observation of comparable gene transfer to peripheral tissues using the two routes indicates that a component of i.t. delivered vector is redistributed from the subarachnoid space to the systemic circulation.
Collapse
Affiliation(s)
- Daniel J Schuster
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Jaclyn A Dykstra
- Department of Veterinary and Biomedical Sciences, University of Minnesota Saint Paul, MN, USA
| | - Maureen S Riedl
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Kelley F Kitto
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Lalitha R Belur
- Departments of Genetics Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - R Scott McIvor
- Departments of Genetics Cell Biology and Development, University of Minnesota Minneapolis, MN, USA
| | - Robert P Elde
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Departments of Pharmaceutics, University of Minnesota Minneapolis, MN, USA
| | - Lucy Vulchanova
- Departments of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|