1
|
Belur LR, Huber AK, Mantone H, Robertson M, Smith MC, Karlen AD, Kitto KF, Ou L, Whitley CB, Braunlin E, Furcich J, Lund TC, Seelig D, Fairbanks CA, Buss N, Kim KH, McIvor RS. Intrathecal or intravenous AAV9-IDUA/RGX-111 at minimal effective dose prevents cardiac, skeletal and neurologic manifestations of murine MPS I. Mol Ther Methods Clin Dev 2024; 32:101369. [PMID: 39687731 PMCID: PMC11646787 DOI: 10.1016/j.omtm.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare metabolic disorder caused by deficiency of α-L-iduronidase (IDUA), resulting in glycosaminoglycan (GAG) accumulation and multisystemic disease. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy, but these do not address all manifestations of the disease. We infused MPS I mice with an adeno-associated virus 9 (AAV9)-IDUA vector (RGX-111) at doses from 107 to 1010 vector genomes (vg) via intrathecal (IT), intravenous (IV), and intrathecal+intravenous (IT+IV) routes of administration. In mice administered doses ≤109 vg IT or ≤108 vg IV, there was no therapeutic benefit, while in mice administered 109 vg IV, there was a variable increase in IDUA activity with inconclusive neurocognitive and cardiac assessments. However, at the 1010 vg dose, we observed substantial metabolic correction, with restored IDUA levels and normalized tissue GAGs for all treatment groups. Aortic insufficiency was mostly normalized, neurologic deficit was prevented, and microcomputed tomography (micro-CT) analysis showed normalization of skeletal parameters. Histologic analysis showed minimal GAG storage and lysosomal pathology. We thus report a minimal effective dose of 1010 vg (5 × 1011 per kg) RGX-111 for IV and IT routes of administration in MPS I mice, which prevented neurocognitive deficit, cardiac insufficiency, and skeletal manifestations, as a model for genetic therapy of human MPS I.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Avery K. Huber
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Hillary Mantone
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mason Robertson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis MN, USA
| | - Li Ou
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Guibinga GH, Do J, Chu B, Gu Y, Kikkawa R, Li X, Ozsolak F, MacLachlan T. Comparative assessment of the transduction efficiency and safety associated with the delivery of AAV9-GFP vector via lumbar puncture to cynomolgus macaques with and without anti-AAV9 pre-existing antibodies. Mol Ther Methods Clin Dev 2024; 32:101371. [PMID: 39717225 PMCID: PMC11664412 DOI: 10.1016/j.omtm.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024]
Abstract
Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.0 × 1013 vector genomes per mL (vg/mL) dose and examined for 28 days. CNS and peripheral tissues were surveyed for vector genome, mRNA, and protein expression. Histopathology, clinical pathology, and humoral immune response to the viral capsid and transgene were also assessed. In addition, serum and CSF samples were analyzed to examine 276 proteomic markers curated to evaluate neural injury, organ damage, and inflammatory response. This study reveals no noticeable difference in AAV9-mediated gene transfer in the CNS tissues in the two groups; however, differences were observed for endpoints such as liver enzyme activities, histopathology, and levels of protein markers in the serum and CSF. These findings provide a view into vector transduction efficiency and safety following LP-delivered AAV9 to juvenile cynomolgus macaques with and without pre-existing anti-AAV9 antibodies.
Collapse
Affiliation(s)
- Ghiabe H. Guibinga
- Novartis Gene Therapies, San Diego, CA, USA
- Biologics Research Center (BRC), Novartis Biomedical Research, San Diego, CA, USA
| | - Janet Do
- Novartis Gene Therapies, San Diego, CA, USA
| | - Binh Chu
- Novartis Gene Therapies, San Diego, CA, USA
| | - Yin Gu
- Novartis Gene Therapies, San Diego, CA, USA
- Biologics Research Center (BRC), Novartis Biomedical Research, San Diego, CA, USA
| | - Rie Kikkawa
- Preclinical Safety (PCS), Novartis Biomedical Research, East Hanover, NJ, USA
| | - Xiaoguang Li
- Biologics Research Center (BRC), Novartis Biomedical Research, San Diego, CA, USA
| | - Fatih Ozsolak
- Novartis Gene Therapies, San Diego, CA, USA
- Biologics Research Center (BRC), Novartis Biomedical Research, San Diego, CA, USA
| | - Timothy MacLachlan
- Preclinical Safety (PCS), Novartis Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
3
|
Kleinboehl EW, Laoharawee K, Jensen JD, Peterson JJ, Slipek NJ, Wick BJ, Johnson MJ, Webber BR, Moriarity BS. Engineering memory T cells as a platform for long-term enzyme replacement therapy in lysosomal storage disorders. Mol Ther 2024; 32:3865-3878. [PMID: 39367605 PMCID: PMC11573576 DOI: 10.1016/j.ymthe.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Enzymopathy disorders are the result of missing or defective enzymes. Among these enzymopathies, mucopolysaccharidosis type I is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), which ultimately causes toxic buildup of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T (Tm) cells migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm cells as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm cells leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm cells take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS, although only minimal improved cognition was observed. Our study indicates that genetically engineered Tm cells hold great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.
Collapse
Affiliation(s)
- Evan W Kleinboehl
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob D Jensen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph J Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryce J Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Wiseman JP, Scarrott JM, Alves-Cruzeiro J, Saffari A, Böger C, Karyka E, Dawes E, Davies AK, Marchi PM, Graves E, Fernandes F, Yang ZL, Coldicott I, Hirst J, Webster CP, Highley JR, Hackett N, Angyal A, Silva TD, Higginbottom A, Shaw PJ, Ferraiuolo L, Ebrahimi-Fakhari D, Azzouz M. Pre-clinical development of AP4B1 gene replacement therapy for hereditary spastic paraplegia type 47. EMBO Mol Med 2024; 16:2882-2917. [PMID: 39358605 PMCID: PMC11554807 DOI: 10.1038/s44321-024-00148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Spastic paraplegia 47 (SPG47) is a neurological disorder caused by mutations in the adaptor protein complex 4 β1 subunit (AP4B1) gene leading to AP-4 complex deficiency. SPG47 is characterised by progressive spastic paraplegia, global developmental delay, intellectual disability and epilepsy. Gene therapy aimed at restoring functional AP4B1 protein levels is a rational therapeutic strategy to ameliorate the disease phenotype. Here we report that a single delivery of adeno-associated virus serotype 9 expressing hAP4B1 (AAV9/hAP4B1) into the cisterna magna leads to widespread gene transfer and restoration of various hallmarks of disease, including AP-4 cargo (ATG9A) mislocalisation, calbindin-positive spheroids in the deep cerebellar nuclei, anatomical brain defects and motor dysfunction, in an SPG47 mouse model. Furthermore, AAV9/hAP4B1-based gene therapy demonstrated a restoration of plasma neurofilament light (NfL) levels of treated mice. Encouraged by these preclinical proof-of-concept data, we conducted IND-enabling studies, including immunogenicity and GLP non-human primate (NHP) toxicology studies. Importantly, NHP safety and biodistribution study revealed no significant adverse events associated with the therapeutic intervention. These findings provide evidence of both therapeutic efficacy and safety, establishing a robust basis for the pursuit of an IND application for clinical trials targeting SPG47 patients.
Collapse
Affiliation(s)
- Jessica P Wiseman
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Afshin Saffari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cedric Böger
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Dawes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexandra K Davies
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily Graves
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona Fernandes
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
- Sheffield NIHR Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.
- Gene Therapy Innovation & Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
6
|
Bobo TA, Robinson M, Tofade C, Sokolski‐Papkov M, Nichols P, Vorobiov S, Fu H. AAV gene replacement therapy for treating MPS IIIC: Facilitating bystander effects via EV-mRNA cargo. J Extracell Vesicles 2024; 13:e12464. [PMID: 38961538 PMCID: PMC11222166 DOI: 10.1002/jev2.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.
Collapse
Affiliation(s)
- Tierra A. Bobo
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| | | | | | - Marina Sokolski‐Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUSA
| | | | | | - Haiyan Fu
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| |
Collapse
|
7
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
8
|
Stavrou M, Georgiou E, Kleopa KA. Lumbar Intrathecal Injection in Adult and Neonatal Mice. Curr Protoc 2024; 4:e1091. [PMID: 38923413 DOI: 10.1002/cpz1.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This article describes a step-by-step process of lumbar intrathecal injection of Evans blue dye and AAV9-EGFP in adult (2-month-old) and neonatal (postnatal day 10) mice. Intrathecal injection is a clinically translatable technique that has already been extensively applied in humans. In mice, intrathecal injection is considered a challenging procedure that requires a trained and experienced researcher. For both adult and neonatal mice, lumbar intrathecal injection is directed into the L5-L6 intervertebral space. Intrathecally injected material enters the cerebrospinal fluid (CSF) within the intrathecal space from where it can directly access the central nervous system (CNS) parenchyma. Simultaneously, intrathecally injected material exits the CSF with pressure gradient and enters the endoneurial fluid and ultimately the peripheral nerves. While in the CSF, the injectable material also enters the bloodstream and systemic circulation through the arachnoid villi. A successful lumbar intrathecal injection results in adequate biodistribution of the injectable material in the CNS, PNS, and peripheral organs. When correctly applied, this technique is considered as minimally invasive and non-disruptive and can be used for the lumbar delivery of any solute. © 2024 Wiley Periodicals LLC. Basic Protocol 1: C57BL/6 adult and P10 mice lumbar intrathecal injection Basic Protocol 2: Tissue collection and preparation for evaluating Evans blue dye diffusion Basic Protocol 3: Tissue collection and preparation for immunohistochemistry staining Basic Protocol 4: Tissue collection and vector genome copy number analysis.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
9
|
Laoharawee K, Kleinboehl EW, Jensen JD, Peterson JJ, Slipek NJ, Wick BJ, Johnson MJ, Webber BR, Moriarity BS. Engineering Memory T Cells as a platform for Long-Term Enzyme Replacement Therapy in Lysosomal Storage Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590790. [PMID: 38712248 PMCID: PMC11071424 DOI: 10.1101/2024.04.23.590790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T cells (Tm) migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS. Our study indicates that genetically engineered Tm holds great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.
Collapse
|
10
|
Smith MC, Belur LR, Karlen AD, Erlanson O, Furcich J, Lund TC, Seelig D, Kitto KF, Fairbanks CA, Kim KH, Buss N, McIvor RS. Comparative dose effectiveness of intravenous and intrathecal AAV9.CB7.hIDS, RGX-121, in mucopolysaccharidosis type II mice. Mol Ther Methods Clin Dev 2024; 32:101201. [PMID: 38374962 PMCID: PMC10875268 DOI: 10.1016/j.omtm.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.
Collapse
Affiliation(s)
- Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Erlanson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN 55455, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolyn A. Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Nick Buss
- REGENXBIO Inc., Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Rosenberg JB, Fung EK, Dyke JP, De BP, Lou H, Kelly JM, Reejhsinghani L, Ricart Arbona RJ, Sondhi D, Kaminsky SM, Cartier N, Hinderer C, Hordeaux J, Wilson JM, Ballon DJ, Crystal RG. Positron Emission Tomography Quantitative Assessment of Off-Target Whole-Body Biodistribution of I-124-Labeled Adeno-Associated Virus Capsids Administered to Cerebral Spinal Fluid. Hum Gene Ther 2023; 34:1095-1106. [PMID: 37624734 PMCID: PMC10659018 DOI: 10.1089/hum.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Collapse
Affiliation(s)
| | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P. Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | | | | - James M. Kelly
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Layla Reejhsinghani
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | | | | | - Nathalie Cartier
- Neurogencell INSERM U1127 Paris Brain Institute, Paris Sorbonne University, Paris, France; and
| | - Christian Hinderer
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliette Hordeaux
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas J. Ballon
- Department of Genetic Medicine
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
12
|
Costa-Verdera H, Unzu C, Valeri E, Adriouch S, González Aseguinolaza G, Mingozzi F, Kajaste-Rudnitski A. Understanding and Tackling Immune Responses to Adeno-Associated Viral Vectors. Hum Gene Ther 2023; 34:836-852. [PMID: 37672519 DOI: 10.1089/hum.2023.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Carmen Unzu
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie University, Rouen, France
| | - Gloria González Aseguinolaza
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics S.L., Pamplona, Spain; and
| | | | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
13
|
De BP, Rosenberg JB, Selvan N, Wilson I, Yusufzai N, Greco A, Kaminsky SM, Heier LA, Ricart Arbona RJ, Miranda IC, Monette S, Nair A, Khanna R, Crystal RG, Sondhi D. Assessment of Safety and Biodistribution of AAVrh.10hCLN2 Following Intracisternal Administration in Nonhuman Primates for the Treatment of CLN2 Batten Disease. Hum Gene Ther 2023; 34:905-916. [PMID: 37624739 PMCID: PMC10517331 DOI: 10.1089/hum.2023.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/10/2023] [Indexed: 08/27/2023] Open
Abstract
CLN2 disease is a fatal, childhood autosomal recessive disorder caused by mutations in ceroid lipofuscinosis type 2 (CLN2) gene, encoding tripeptidyl peptidase 1 (TPP-1). Loss of TPP-1 activity leads to accumulation of storage material in lysosomes and resultant neuronal cell death with neurodegeneration. Genotype/phenotype comparisons suggest that the phenotype should be ameliorated with increase of TPP-1 levels to 5-10% of normal with wide central nervous system (CNS) distribution. Our previous clinical study showed that intraparenchymal (IPC) administration of AAVrh.10hCLN2, an adeno-associated vector serotype rh.10 encoding human CLN2, slowed, but did not stop disease progression, suggesting that this may be insufficient to distribute the therapy throughout the CNS (Sondhi 2020). In this study, we assessed whether the less invasive intracisternal delivery route would be safe and provide a wider distribution of TPP-1. A study was conducted in nonhuman primates (NHPs) with intracisternal delivery to cerebrospinal fluid (CSF) of AAVrh.10hCLN2 (5 × 1013 genome copies) or phosphate buffered saline (PBS). No abnormal behavior was noted. CNS magnetic resonance imaging and clinical chemistry data were all unremarkable. Histopathology of major organs had no abnormal finding attributable to the intervention or the vector, except that in one out of two animals treated with AAVrh.10hCLN2, dorsal root ganglia showed mild-to-moderate mononuclear cell infiltrates and neuronal degeneration. In contrast to our previous NHP study (Sondhi 2012) with IPC administration where TPP-1 activity was >2 × above controls in 30% of treated brains, in the two intracisternal treated NHPs, the TPP-1 activity was >2 × above controls in 50% and 41% of treated brains, and 52% and 84% of brain had >1,000 vector genomes/μg DNA, compared to 0% in the two PBS NHP. CSF TPP1 levels in treated animals were 43-62% of normal human levels. Collectively, these data indicate that AAVrh.10hCLN2 delivered by intracisternal route is safe and widely distributes TPP-1 in brain and CSF at levels that are potentially therapeutic. Clinical Trial Registration: NCT02893826, NCT04669535, NCT04273269, NCT03580083, NCT04408625, NCT04127578, and NCT04792944.
Collapse
Affiliation(s)
- Bishnu P. De
- Department of Genetic Medicine, New York, New York, USA
| | | | | | | | | | | | | | - Linda A. Heier
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, USA
| | - Anju Nair
- LEXEO Therapeutics, New York, New York, USA
| | | | | | - Dolan Sondhi
- Department of Genetic Medicine, New York, New York, USA
| |
Collapse
|
14
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Mullagulova A, Shaimardanova A, Solovyeva V, Mukhamedshina Y, Chulpanova D, Kostennikov A, Issa S, Rizvanov A. Safety and Efficacy of Intravenous and Intrathecal Delivery of AAV9-Mediated ARSA in Minipigs. Int J Mol Sci 2023; 24:ijms24119204. [PMID: 37298156 DOI: 10.3390/ijms24119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a hereditary neurodegenerative disease characterized by demyelination and motor and cognitive impairments due to deficiencies of the lysosomal enzyme arylsulfatase A (ARSA) or the saposin B activator protein (SapB). Current treatments are limited; however, gene therapy using adeno-associated virus (AAV) vectors for ARSA delivery has shown promising results. The main challenges for MLD gene therapy include optimizing the AAV dosage, selecting the most effective serotype, and determining the best route of administration for ARSA delivery into the central nervous system. This study aims to evaluate the safety and efficacy of AAV serotype 9 encoding ARSA (AAV9-ARSA) gene therapy when administered intravenously or intrathecally in minipigs, a large animal model with anatomical and physiological similarities to humans. By comparing these two administration methods, this study contributes to the understanding of how to improve the effectiveness of MLD gene therapy and offers valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Aysilu Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alisa Shaimardanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Daria Chulpanova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza Issa
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Su J, Jin X, She K, Liu Y, Song L, Zhao Q, Xiao J, Li R, Deng H, Lu F, Yang Y. In vivo adenine base editing corrects newborn murine model of Hurler syndrome. MOLECULAR BIOMEDICINE 2023; 4:6. [PMID: 36813914 PMCID: PMC9947215 DOI: 10.1186/s43556-023-00120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a severe disease caused by loss-of-function mutation variants in the α-L-iduronidase (Idua) gene. In vivo genome editing represents a promising strategy to correct Idua mutations, and has the potential to permanently restore IDUA function over the lifespan of patients. Here, we used adenine base editing to directly convert A > G (TAG>TGG) in a newborn murine model harboring the Idua-W392X mutation, which recapitulates the human condition and is analogous to the highly prevalent human W402X mutation. We engineered a split-intein dual-adeno-associated virus 9 (AAV9) adenine base editor to circumvent the package size limit of AAV vectors. Intravenous injection of the AAV9-base editor system into MPS IH newborn mice led to sustained enzyme expression sufficient for correction of metabolic disease (GAGs substrate accumulation) and prevention of neurobehavioral deficits. We observed a reversion of the W392X mutation in 22.46 ± 6.74% of hepatocytes, 11.18 ± 5.25% of heart and 0.34 ± 0.12% of brain, along with decreased GAGs storage in peripheral organs (liver, spleen, lung and kidney). Collectively, these data showed the promise of a base editing approach to precisely correct a common genetic cause of MPS I in vivo and could be broadly applicable to the treatment of a wide array of monogenic diseases.
Collapse
Affiliation(s)
- Jing Su
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Xiu Jin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Kaiqin She
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Li Song
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Qinyu Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Jianlu Xiao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Ruiting Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Hongxin Deng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041 Sichuan China
| | - Fang Lu
- grid.13291.380000 0001 0807 1581Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Podetz-Pedersen KM, Laoharawee K, Singh S, Nguyen TT, Smith MC, Temme A, Kozarsky K, McIvor RS, Belur LR. Neurologic Recovery in MPS I and MPS II Mice by AAV9-Mediated Gene Transfer to the CNS After the Development of Cognitive Dysfunction. Hum Gene Ther 2023; 34:8-18. [PMID: 36541357 PMCID: PMC10024071 DOI: 10.1089/hum.2022.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.
Collapse
Affiliation(s)
- Kelly M. Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kanut Laoharawee
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sajya Singh
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tam T. Nguyen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miles C. Smith
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexa Temme
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lalitha R. Belur
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Hocquemiller M, Giersch L, Mei X, Gross AL, Randle AN, Gray-Edwards HL, Hudson JA, Todeasa S, Stoica L, Martin DR, Sena-Esteves M, Aiach K, Laufer R. AAVrh10 vector corrects pathology in animal models of GM1 gangliosidosis and achieves widespread distribution in the CNS of nonhuman primates. Mol Ther Methods Clin Dev 2022; 27:281-292. [PMID: 36320411 PMCID: PMC9594110 DOI: 10.1016/j.omtm.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
GM1 gangliosidosis is a rare, inherited neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes the lysosomal hydrolase acid β-galactosidase (β-gal). β-gal deficiency leads to toxic accumulation of GM1 ganglioside, predominantly in the central nervous system (CNS), resulting in progressive neurodegeneration. LYS-GM101 is an AAVrh.10-based gene therapy vector carrying the human GLB1 cDNA. The efficacy of intra-cerebrospinal fluid injection of LYS-GM101 analogs was demonstrated in GM1 mouse and cat models with widespread diffusion of β-gal and correction of GM1 ganglioside accumulation in the CNS without observable adverse effects. Clinical dose selection was performed, based on a good-laboratory-practice study, in nonhuman primates (NHPs) using the clinical LYS-GM101 vector. A broadly distributed increase of β-gal activity was observed in NHP brain 3 months after intra-cisterna magna injection of LYS-GM101 at 1.0 × 1012 vg/mL CSF and 4.0 × 1012 vg/mL CSF, with 20% and 60% increases compared with vehicle-treated animals, respectively. Histopathologic examination revealed asymptomatic adverse changes in the sensory pathways of the spinal cord and dorsal root ganglia in both sexes and at both doses. Taken as a whole, these pre-clinical data support the initiation of a clinical study with LYS-GM101 for the treatment of GM1 gangliosidosis.
Collapse
Affiliation(s)
- Michaël Hocquemiller
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France,Corresponding author Michaël Hocquemiller, Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France.
| | - Laura Giersch
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Xin Mei
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Amanda L. Gross
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Ashley N. Randle
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Heather L. Gray-Edwards
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Judith A. Hudson
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Sophia Todeasa
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lorelei Stoica
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Douglas R. Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA,Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Aiach
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France,Corresponding author Ralph Laufer, Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France.
| |
Collapse
|
19
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
20
|
De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, Rubio-Haro R, Hunt M, Yaksh TL. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. FRONTIERS IN PAIN RESEARCH 2022; 3:900566. [PMID: 35782225 PMCID: PMC9246706 DOI: 10.3389/fpain.2022.900566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in our understanding of the biology of spinal systems in organizing and defining the content of exteroceptive information upon which higher centers define the state of the organism and its role in the regulation of somatic and automatic output, defining the motor response of the organism, along with the unique biology and spatial organization of this space, have resulted in an increased focus on therapeutics targeted at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are well-established as an effective therapeutic approach to patients with chronic non-malignant or malignant pain and as a tool for management of patients with severe spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The risk to benefit ratio of IDD makes it a useful interventional approach. While not without risks, this approach has a significant therapeutic safety margin when employed using drugs with a validated safety profile and by skilled practioners. The present review addresses current advances in our understanding of the biology and dynamics of the intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues of safety and rational implementation of its therapy, with a particular emphasis upon the management of pain.
Collapse
Affiliation(s)
- Jose De Andres
- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
- Anesthesia Critical Care and Pain Management Department, Valencia, Spain
- *Correspondence: Jose De Andres
| | - Salim Hayek
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christophe Perruchoud
- Pain Center and Department of Anesthesia, La Tour Hospital, Geneva, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melinda M. Lawrence
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Miguel Angel Reina
- Department of Anesthesiology, Montepríncipe University Hospital, Madrid, Spain
- CEU-San-Pablo University School of Medicine, Madrid, Spain
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
- Facultad de Ciencias de la Salud Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Ruben Rubio-Haro
- Anesthesia and Pain Management Department, Provincial Hospital, Castellon, Spain
- Multidisciplinary Pain Clinic, Vithas Virgen del Consuelo Hospital, Valencia, Spain
| | - Mathew Hunt
- Department of Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Jin X, Su J, Zhao Q, Li R, Xiao J, Zhong X, Song L, Liu Y, She K, Deng H, Wei Y, Yang Y. Liver-directed gene therapy corrects neurologic disease in a murine model of mucopolysaccharidosis type I-Hurler. Mol Ther Methods Clin Dev 2022; 25:370-381. [PMID: 35573046 PMCID: PMC9065053 DOI: 10.1016/j.omtm.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Mucopolysaccharidosis type I-Hurler (MPS I-H) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the α-L-iduronidase (IDUA) gene. Current treatments are ineffective for treating central nervous system (CNS) manifestations because lysosomal enzymes do not effectively cross the blood-brain barrier (BBB). To enable BBB transport of the enzyme, we engineered a modified IDUA protein by adding a brain-targeting peptide from melanotransferrin. We demonstrated that fusion of melanotransferrin peptide (MTfp) at the N terminus of human IDUA (hIDUA) was enzymatically active and could efficiently cross the BBB in vitro. Then, liver-directed gene therapy using the adeno-associated virus 8 (AAV8) vector, which encoded the modified hIDUA cDNA driven by a liver-specific expression cassette was evaluated in an adult MPS I-H mouse model. The results showed that intravenous (i.v.) infusion of AAV8 resulted in sustained supraphysiological levels of IDUA activity and normalized glycosaminoglycan (GAG) accumulation in peripheral tissues. Addition of MTfp to the hIDUA N terminus allowed efficient BBB transcytosis and IDUA activity restoration in the brain, resulting in significant improvements in brain pathology and neurobehavioral deficits. Our results provide a novel strategy to develop minimally invasive therapies for treatment of MPS I-H and other neurodegenerative LSDs.
Collapse
Affiliation(s)
- Xiu Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Qinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Jianlu Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Xiaomei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Kaiqin She
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan, China
- Corresponding author Yang Yang, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041, China.
| |
Collapse
|
22
|
Consiglieri G, Bernardo ME, Brunetti-Pierri N, Aiuti A. Ex Vivo and In Vivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematol Oncol Clin North Am 2022; 36:865-878. [DOI: 10.1016/j.hoc.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, Buza EL, Chichester J, Dyer C, Bagel J, Vite CH, Bradbury AM, Wilson JM. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum Gene Ther 2022; 33:499-517. [PMID: 35333110 PMCID: PMC9142772 DOI: 10.1089/hum.2021.245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianne A Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlong Jian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristofer Michalson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas W Mitchell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Flotte TR, Cataltepe O, Puri A, Batista AR, Moser R, McKenna-Yasek D, Douthwright C, Gernoux G, Blackwood M, Mueller C, Tai PWL, Jiang X, Bateman S, Spanakis SG, Parzych J, Keeler AM, Abayazeed A, Rohatgi S, Gibson L, Finberg R, Barton BA, Vardar Z, Shazeeb MS, Gounis M, Tifft CJ, Eichler FS, Brown RH, Martin DR, Gray-Edwards HL, Sena-Esteves M. AAV gene therapy for Tay-Sachs disease. Nat Med 2022; 28:251-259. [PMID: 35145305 PMCID: PMC10786171 DOI: 10.1038/s41591-021-01664-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.
Collapse
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| | - Oguz Cataltepe
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurosurgery, UMass Chan Medical School, Worcester, MA, USA
| | - Ajit Puri
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Ana Rita Batista
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Richard Moser
- Department of Neurosurgery, UMass Chan Medical School, Worcester, MA, USA
| | | | | | - Gwladys Gernoux
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Meghan Blackwood
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Christian Mueller
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Xuntian Jiang
- Department of Medicine and Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Scot Bateman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
| | - Spiro G Spanakis
- Departments of Anesthesiology and Perioperative Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Julia Parzych
- Departments of Anesthesiology and Perioperative Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Aly Abayazeed
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Saurabh Rohatgi
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Laura Gibson
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Department of Internal Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Robert Finberg
- Department of Internal Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Bruce A Barton
- Population and Quantitative Health Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Zeynep Vardar
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | | | - Matthew Gounis
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Cynthia J Tifft
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert H Brown
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci 2022; 9:965089. [PMID: 36172050 PMCID: PMC9511407 DOI: 10.3389/fmolb.2022.965089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Mucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies. Enzyme replacement therapy (ERT) is efficacious in treating somatic symptoms but its effect is limited for neurological functions. Haematopoietic stem cell transplant (HSCT) has the potential to cross the BBB through monocyte trafficking, however delivered enzyme doses limit its use almost exclusively to MPSI Hurler. Gene therapy is an emerging therapeutic strategy for the treatment of MPS disease. In this review, we will discuss the various vectors that are being utilised for gene therapy in MPS as well as some of the most recent gene-editing approaches undergoing pre-clinical and clinical development.
Collapse
|
26
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
27
|
Fischell JM, Fishman PS. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front Neurosci 2021; 15:747726. [PMID: 34630029 PMCID: PMC8497810 DOI: 10.3389/fnins.2021.747726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major advancements in gene therapy technologies, there are no approved gene therapies for diseases which predominantly effect the brain. Adeno-associated virus (AAV) vectors have emerged as the most effective delivery vector for gene therapy owing to their simplicity, wide spread transduction and low immunogenicity. Unfortunately, the blood-brain barrier (BBB) makes IV delivery of AAVs, to the brain highly inefficient. At IV doses capable of widespread expression in the brain, there is a significant risk of severe immune-mediated toxicity. Direct intracerebral injection of vectors is being attempted. However, this method is invasive, and only provides localized delivery for diseases known to afflict the brain globally. More advanced methods for AAV delivery will likely be required for safe and effective gene therapy to the brain. Each step in AAV delivery, including delivery route, BBB transduction, cellular tropism and transgene expression provide opportunities for innovative solutions to optimize delivery efficiency. Intra-arterial delivery with mannitol, focused ultrasound, optimized AAV capsid evolution with machine learning algorithms, synthetic promotors are all examples of advanced strategies which have been developed in pre-clinical models, yet none are being investigated in clinical trials. This manuscript seeks to review these technological advancements, and others, to improve AAV delivery to the brain, and to propose novel strategies to build upon this research. Ultimately, it is hoped that the optimization of AAV delivery will allow for the human translation of many gene therapies for neurodegenerative and other neurologic diseases.
Collapse
Affiliation(s)
- Jonathan M Fischell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Hurt SC, Dickson PI, Curiel DT. Mucopolysaccharidoses type I gene therapy. J Inherit Metab Dis 2021; 44:1088-1098. [PMID: 34189746 PMCID: PMC8525653 DOI: 10.1002/jimd.12414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.
Collapse
Affiliation(s)
- Sarah C. Hurt
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Patricia I. Dickson
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
30
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
31
|
Belur LR, Romero M, Lee J, Podetz-Pedersen KM, Nan Z, Riedl MS, Vulchanova L, Kitto KF, Fairbanks CA, Kozarsky KF, Orchard PJ, Frey WH, Low WC, McIvor RS. Comparative Effectiveness of Intracerebroventricular, Intrathecal, and Intranasal Routes of AAV9 Vector Administration for Genetic Therapy of Neurologic Disease in Murine Mucopolysaccharidosis Type I. Front Mol Neurosci 2021; 14:618360. [PMID: 34040503 PMCID: PMC8141728 DOI: 10.3389/fnmol.2021.618360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Megan Romero
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Junggu Lee
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kelly M. Podetz-Pedersen
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Zhenhong Nan
- Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Maureen S. Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | | | - Paul J. Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - William H. Frey
- HealthPartners Neurosciences, Regions Hospital, St. Paul, MN, United States
| | - Walter C. Low
- Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
32
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
33
|
Uddin MS, Khan ZA, Sumsuzzman DM, Perveen A, Ashraf GM. Challenges of Gene Therapy for Neurodegenerative Disorders. Curr Gene Ther 2021; 21:3-10. [PMID: 33153421 DOI: 10.2174/1566523220999201105150442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Singh M, Singh SP, Yadav D, Agarwal M, Agarwal S, Agarwal V, Swargiary G, Srivastava S, Tyagi S, Kaur R, Mani S. Targeted Delivery for Neurodegenerative Disorders Using Gene Therapy Vectors: Gene Next Therapeutic Goals. Curr Gene Ther 2021; 21:23-42. [PMID: 32811395 DOI: 10.2174/1566523220999200817164907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
The technique of gene therapy, ever since its advent nearly fifty years ago, has been utilized by scientists as a potential treatment option for various disorders. This review discusses some of the major neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's Disease (PD), Motor neuron diseases (MND), Spinal Muscular Atrophy (SMA), Huntington's Disease (HD), Multiple Sclerosis (MS), etc. and their underlying genetic mechanisms along with the role that gene therapy can play in combating them. The pathogenesis and the molecular mechanisms specifying the altered gene expression of each of these NDDs have also been discussed in elaboration. The use of gene therapy vectors can prove to be an effective tool in the field of curative modern medicine for the generations to come. Therefore, consistent efforts and progressive research towards its implementation can provide us with powerful treatment options for disease conditions that have so far been considered as incurable.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P, India
| | - Surinder P Singh
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Geeta Swargiary
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sahil Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Sakshi Tyagi
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Ramneek Kaur
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
35
|
Bobo TA, Samowitz PN, Robinson MI, Fu H. Targeting the Root Cause of Mucopolysaccharidosis IIIA with a New scAAV9 Gene Replacement Vector. Mol Ther Methods Clin Dev 2020; 19:474-485. [PMID: 33313335 PMCID: PMC7704409 DOI: 10.1016/j.omtm.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
No treatment is available to address the unmet needs of mucopolysaccharidosis (MPS) IIIA patients. Targeting the root cause, we developed a new self-complementary adeno-associated virus 9 (scAAV9) vector to deliver the human N-sulfoglucosamine sulfohydrolase (hSGSH) gene driven by a miniature cytomegalovirus (mCMV) promoter. In pre-clinical studies, the vector was tested at varying doses by a single intravenous (i.v.) infusion into MPS IIIA mice at different ages. The vector treatments resulted in rapid and long-term expression of functional recombinant SGSH (rSGSH) enzyme and elimination of lysosomal storage pathology throughout the CNS and periphery in all tested animals. Importantly, MPS IIIA mice treated with the vector at up to 6 months of age showed significantly improved behavior performance in a hidden task in the Morris water maze, as well as extended lifespan, with most of the animals surviving within the normal range, indicating that the vector treatment can prevent and reverse MPS IIIA disease progression. Notably, 2.5 × 1012 vector genomes (vg)/kg was functionally effective. Furthermore, the vector treatment did not lead to detectable systemic toxicity or adverse events in MPS IIIA mice. These data demonstrate the development of a safe and effective new gene therapy product for treating MPS IIIA, which further support the extended clinical relevance of platform recombinant AAV9 (rAAV9 gene delivery for treating broad neurogenetic diseases.
Collapse
Affiliation(s)
- Tierra A. Bobo
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Preston N. Samowitz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Robinson
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Fu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
37
|
Hinderer C, Nosratbakhsh B, Katz N, Wilson JM. A Single Injection of an Optimized Adeno-Associated Viral Vector into Cerebrospinal Fluid Corrects Neurological Disease in a Murine Model of GM1 Gangliosidosis. Hum Gene Ther 2020; 31:1169-1177. [PMID: 33045869 PMCID: PMC7698982 DOI: 10.1089/hum.2018.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GM1 gangliosidosis is a rare neurodegenerative lysosomal storage disease caused by loss-of-function mutations in the gene encoding beta-galactosidase (β-gal). There are no approved treatments for GM1 gangliosidosis. Previous studies in animal models have demonstrated that adeno-associated viral (AAV) vector-mediated gene transfer to the brain can restore β-gal expression and prevent the onset of neurological signs. We developed an optimized AAV vector expressing human β-gal and evaluated the efficacy of a single intracerebroventricular injection of this vector into the cerebrospinal fluid (CSF) of a murine disease model. The AAV vector administration into the CSF increased β-gal activity in the brain, reduced neuronal lysosomal storage lesions, prevented the onset of neurological signs and gait abnormalities, and increased survival. These findings demonstrate the potential therapeutic activity of this vector and support its subsequent development for the treatment of GM1 gangliosidosis.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brenden Nosratbakhsh
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Hinderer C, Miller R, Dyer C, Johansson J, Bell P, Buza E, Wilson JM. Adeno-associated virus serotype 1-based gene therapy for FTD caused by GRN mutations. Ann Clin Transl Neurol 2020; 7:1843-1853. [PMID: 32937039 PMCID: PMC7545603 DOI: 10.1002/acn3.51165] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Dominant loss‐of‐function mutations in the gene encoding the lysosomal protein, progranulin, cause 5‐10% of frontotemporal dementia cases. As progranulin undergoes secretion and endocytosis, a small number of progranulin‐expressing cells can potentially supply the protein to the entire central nervous system. Thus, gene therapy is a promising treatment approach. Methods We evaluated adeno‐associated viral vector administration into the cerebrospinal fluid as a minimally invasive approach to deliver the granulin gene to the central nervous system in a murine disease model and nonhuman primates. Results In progranulin‐deficient mice, vector delivery into the lateral cerebral ventricles increased progranulin levels in the cerebrospinal fluid and normalized histological and biochemical markers of progranulin deficiency. A single vector injection into the cisterna magna of nonhuman primates achieved CSF progranulin concentrations up to 40‐fold higher than those of normal human subjects and exceeded CSF progranulin levels of successfully treated mice. Animals treated with an adeno‐associated virus serotype 1 vector exhibited progranulin expression fivefold higher than those treated with an AAV5 vector or the AAV9 variant, AAVhu68, apparently due to remarkably efficient transduction of ependymal cells. Progranulin expression mediated by adeno‐associated viral vectors was well tolerated in nonhuman primates with no evidence of dose‐limiting toxicity, even at vector doses that induced supraphysiologic progranulin expression. Interpretation These findings support the development of AAV1‐based gene therapy for frontotemporal dementia caused by progranulin deficiency.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rod Miller
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julia Johansson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Buza
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Belur LR, Podetz-Pedersen KM, Tran TA, Mesick JA, Singh NM, Riedl M, Vulchanova L, Kozarsky KF, McIvor RS. Intravenous delivery for treatment of mucopolysaccharidosis type I: A comparison of AAV serotypes 9 and rh10. Mol Genet Metab Rep 2020; 24:100604. [PMID: 32461912 PMCID: PMC7242863 DOI: 10.1016/j.ymgmr.2020.100604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/25/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of alpha-L-iduronidase (IDUA), resulting in accumulation of heparan and dermatan sulfate glycosaminoglycans (GAGs). Individuals with the most severe form of the disease (Hurler syndrome) suffer from neurodegeneration, intellectual disability, and death by age 10. Current treatments for this disease include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). However, these treatments do not address CNS manifestations of the disease. In this study we compared the ability of intravenously administered AAV serotypes 9 and rh10 (AAV9 and AAVrh10) for delivery and expression of the IDUA gene in the CNS. Adult C57BL/6 MPS I mice were infused intravenously with either AAV9 or AAVrh10 vector encoding the human IDUA gene. Treated animals demonstrated supraphysiological levels and widespread restoration of IDUA enzyme activity in the plasma and all organs including the CNS. High levels of IDUA enzyme activity were observed in the plasma, brain and spinal cord ranging from 10 to 100-fold higher than heterozygote controls, while levels in peripheral organs were also high, ranging from 1000 to 10,000-fold higher than control animals. In general, levels of IDUA expression were slightly higher in peripheral organs for AAVrh10 administered animals although these differences were not significant except for the lung. Levels of IDUA expression between AAV 9 and rh10 were roughly equivalent in the brain. Urinary and tissue GAGs were significantly reduced starting at 3 weeks after vector infusion, with restoration of normal GAG levels by the end of the study in animals treated with either AAV9 or rh10. These results demonstrate that non-invasive intravenous AAV9 or AAVrh10-mediated IDUA gene therapy is a potentially effective treatment for both systemic and CNS manifestations of MPS I, with implications for the treatment of other metabolic and neurological diseases as well.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Kelly M. Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Thuy An Tran
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Joshua A. Mesick
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Nathaniel M. Singh
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Maureen Riedl
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Karen F. Kozarsky
- REGENXBIO Inc., 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
41
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
42
|
Adachi K, Dissen GA, Lomniczi A, Xie Q, Ojeda SR, Nakai H. Adeno-associated virus-binding antibodies detected in cats living in the Northeastern United States lack neutralizing activity. Sci Rep 2020; 10:10073. [PMID: 32572045 PMCID: PMC7308316 DOI: 10.1038/s41598-020-66596-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Cats are a critical pre-clinical model for studying adeno-associated virus (AAV) vector-mediated gene therapies. A recent study has described the high prevalence of anti-AAV neutralizing antibodies among domestic cats in Switzerland. However, our knowledge of pre-existing humoral immunity against various AAV serotypes in cats is still limited. Here, we show that, although antibodies binding known AAV serotypes (AAV1 to AAV11) are prevalent in cats living in the Northeastern United States, these antibodies do not necessarily neutralize AAV infectivity. We analyzed sera from 35 client-owned, 20 feral, and 30 specific pathogen-free (SPF) cats for pre-existing AAV-binding antibodies against the 11 serotypes. Antibody prevalence was 7 to 90% with an overall median of 50%. The AAV-binding antibodies showed broad reactivities with other serotypes. Of 44 selected antibodies binding AAV2, AAV6 or AAV9, none exhibited appreciable neutralizing activities. Instead, AAV6 or AAV9-binding antibodies showed a transduction-enhancing effect. AAV6-binding antibodies were highly prevalent in SPF cats (83%), but this was primarily due to cross-reactivity with preventive vaccine-induced anti-feline panleukopenia virus antibodies. These results indicate that prevalent pre-existing immunity in cats is not necessarily inhibitory to AAV and highlight a substantial difference in the nature of AAV-binding antibodies in cats living in geographically different regions.
Collapse
Affiliation(s)
- Kei Adachi
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America.,Molecular Virology Core, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Qing Xie
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America
| | - Hiroyuki Nakai
- Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University School of Medicine, Portland, Oregon, 97239, USA. .,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, 97006, United States of America.
| |
Collapse
|
43
|
Marcó S, Haurigot V, Bosch F. In Vivo Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Hum Gene Ther 2020; 30:1211-1221. [PMID: 31482754 DOI: 10.1089/hum.2019.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
44
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10020119. [PMID: 32098339 PMCID: PMC7071492 DOI: 10.3390/brainsci10020119] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, adeno-associated virus (AAV)-mediated gene therapies have attracted clinical interest for treating neurodegenerative diseases including spinal muscular atrophy (SMA), Canavan disease (CD), Parkinson’s disease (PD), and Friedreich’s ataxia (FA). The influx of clinical findings led to the first approved gene therapy for neurodegenerative disorders in 2019 and highlighted new safety concerns for patients. Large doses of systemically administered AAV stimulate host immune responses, resulting in anti-capsid and anti-transgene immunity with implications for transgene expression, treatment longevity, and patient safety. Delivering lower doses directly to the central nervous system (CNS) is a promising alternative, resulting in higher transgene expression with decreased immune responses. However, neuroinflammatory responses after CNS-targeted delivery of AAV are a critical concern. Reported signs of AAV-associated neuroinflammation in preclinical studies include dorsal root ganglion (DRG) and spinal cord pathology with mononuclear cell infiltration. In this review, we discuss ways to manage neuroinflammation, including choice of AAV capsid serotypes, CNS-targeting routes of delivery, genetic modifications to the vector and/or transgene, and adding immunosuppressive strategies to clinical protocols. As additional gene therapies for neurodegenerative diseases enter clinics, tracking biomarkers of neuroinflammation will be important for understanding the impact immune reactions can have on treatment safety and efficacy.
Collapse
|
46
|
Affiliation(s)
- Luisa Natalia Pimentel Vera
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
| | - Guilherme Baldo
- Centro de Pesquisa Experimental, Centro De Terapia Gênica- Hospital De Clínicas De Porto Alegre, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Programa De Pós-Graduação Em Genética E Biologia Molecular-UFRGS, Porto Alegre, Brazil
| |
Collapse
|
47
|
Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, Beard H, Trim PJ, Winner LK, Lau AA, Snel MF, Gomila C, Ausseil J, Mei X, Giersch L, Plavsic M, Laufer R. AAVrh10 Vector Corrects Disease Pathology in MPS IIIA Mice and Achieves Widespread Distribution of SGSH in Large Animal Brains. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:174-187. [PMID: 31909089 PMCID: PMC6940615 DOI: 10.1016/j.omtm.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.
Collapse
Affiliation(s)
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Meghan L Douglass
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sarah J Tamang
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Barbara M King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul J Trim
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Adeline A Lau
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Cathy Gomila
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie, 80054 Amiens, France
| | - Jérôme Ausseil
- Unité INSERM U1043, Centre de Physiopathologie Toulouse Purpan (CPTP), Université Paul Sabatier, 31024 Toulouse, France
| | - Xin Mei
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Laura Giersch
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Mark Plavsic
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
48
|
Abstract
Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000-25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood-brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.
Collapse
|
49
|
Hordeaux J, Hinderer C, Buza EL, Louboutin JP, Jahan T, Bell P, Chichester JA, Tarantal AF, Wilson JM. Safe and Sustained Expression of Human Iduronidase After Intrathecal Administration of Adeno-Associated Virus Serotype 9 in Infant Rhesus Monkeys. Hum Gene Ther 2019; 30:957-966. [PMID: 31017018 DOI: 10.1089/hum.2019.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many neuropathic diseases cause early, irreversible neurologic deterioration, which warrants therapeutic intervention during the first months of life. In the case of mucopolysaccharidosis type I, a recessive lysosomal storage disorder that results from a deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), one of the most promising treatment approaches is to restore enzyme expression through gene therapy. Specifically, administering pantropic adeno-associated virus (AAV) encoding IDUA into the cerebrospinal fluid (CSF) via suboccipital administration has demonstrated remarkable efficacy in large animals. Preclinical safety studies conducted in adult nonhuman primates supported a positive risk-benefit profile of the procedure while highlighting potential subclinical toxicity to primary sensory neurons located in the dorsal root ganglia (DRG). This study investigated the long-term performance of intrathecal cervical AAV serotype 9 gene transfer of human IDUA administered to 1-month-old rhesus monkeys (N = 4) with half of the animals tolerized to the human transgene at birth via systemic administration of an AAV serotype 8 vector expressing human IDUA from the liver. Sustained expression of the transgene for almost 4 years is reported in all animals. Transduced cells were primarily pyramidal neurons in the cortex and hippocampus, Purkinje cells in the cerebellum, lower motor neurons, and DRG neurons. Both tolerized and non-tolerized animals were robust and maintained transgene expression as measured by immunohistochemical analysis of brain tissue. However, the presence of antibodies in the non-tolerized animals led to a loss of measurable levels of secreted enzyme in the CSF. These results support the safety and efficiency of treating neonatal rhesus monkeys with AAV serotype 9 gene therapy delivered into the CSF.
Collapse
Affiliation(s)
- Juliette Hordeaux
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christian Hinderer
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth L Buza
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jean-Pierre Louboutin
- 2Section of Anatomy, Department of Basic Medical Sciences, University of West Indies, Kingston, Jamaica
| | - Tahsin Jahan
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Peter Bell
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica A Chichester
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alice F Tarantal
- 3Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, California
| | - James M Wilson
- 1Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Jimenez J, Sakthivel M, Nischal KK, Fedorchak MV. Drug delivery systems and novel formulations to improve treatment of rare corneal disease. Drug Discov Today 2019; 24:1564-1574. [PMID: 30872110 DOI: 10.1016/j.drudis.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
As the field of ocular drug delivery grows so does the potential for novel drug discovery or reformulation in lesser-known diseases of the eye. In particular, rare corneal diseases are an interesting area of research because drug delivery is limited to the outermost tissue of the eye. This review will highlight the opportunities and challenges of drug reformulation and alternative treatment approaches for rare corneal diseases. The barriers to effective drug delivery and proposed solutions in development will be discussed along with an overview of corneal rare disease resources, their current treatments and ophthalmic drug delivery systems that could benefit such cases. The regulatory considerations for effective translation of orphan-designated products will also be discussed.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meera Sakthivel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanwal K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|