1
|
Li N, Kumar SRP, Cao D, Munoz-Melero M, Arisa S, Brian BA, Greenwood CM, Yamada K, Duan D, Herzog RW. Redundancy in Innate Immune Pathways That Promote CD8 + T-Cell Responses in AAV1 Muscle Gene Transfer. Viruses 2024; 16:1507. [PMID: 39459842 PMCID: PMC11512359 DOI: 10.3390/v16101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.
Collapse
Affiliation(s)
- Ning Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sandeep R. P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Di Cao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Bridget A. Brian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Calista M. Greenwood
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Kentaro Yamada
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA; (N.L.); (D.C.); (M.M.-M.); (S.A.); (B.A.B.); (C.M.G.); (K.Y.)
| |
Collapse
|
2
|
Wagner JT, Müller-Schmucker SM, Wang W, Arnold P, Uhlig N, Issmail L, Eberlein V, Damm D, Roshanbinfar K, Ensser A, Oltmanns F, Peter AS, Temchura V, Schrödel S, Engel FB, Thirion C, Grunwald T, Wuhrer M, Grimm D, Überla K. Influence of AAV vector tropism on long-term expression and Fc-γ receptor binding of an antibody targeting SARS-CoV-2. Commun Biol 2024; 7:865. [PMID: 39009807 PMCID: PMC11250830 DOI: 10.1038/s42003-024-06529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.
Collapse
Affiliation(s)
- Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, University of Heidelberg; BioQuant Center, BQ0030, University of Heidelberg; German Center for Infection Research (DZIF), German Center for Cardiovascular Research (DZHK), partner site, Heidelberg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
3
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
4
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
5
|
Strecker M, Wlotzka K, Strassheimer F, Roller B, Ludmirski G, König S, Röder J, Opitz C, Alekseeva T, Reul J, Sevenich L, Tonn T, Wels W, Steinbach J, Buchholz C, Burger M. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology 2022; 11:2127508. [PMID: 36249274 PMCID: PMC9559045 DOI: 10.1080/2162402x.2022.2127508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GB) is the most common primary brain tumor, which is characterized by low immunogenicity of tumor cells and prevalent immunosuppression in the tumor microenvironment (TME). Targeted local combination immunotherapy is a promising strategy to overcome these obstacles. Here, we evaluated tumor-cell specific delivery of an anti-PD-1 immunoadhesin (aPD-1) via a targeted adeno-associated viral vector (AAV) as well as HER2-specific NK-92/5.28.z (anti-HER2.CAR/NK-92) cells as components for a combination immunotherapy. In co-culture experiments, target-activated anti-HER2.CAR/NK-92 cells modified surrounding tumor cells and bystander immune cells by triggering the release of inflammatory cytokines and upregulation of PD-L1. Tumor cell-specific delivery of aPD-1 was achieved by displaying a HER2-specific designed ankyrin repeat protein (DARPin) on the AAV surface. HER2-AAV mediated gene transfer into GB cells correlated with HER2 expression levels, without inducing anti-viral responses in transduced cells. Furthermore, AAV-transduction did not interfere with anti-HER2.CAR/NK-92 cell-mediated tumor cell lysis. After selective transduction of HER2+ cells, aPD-1 expression was detected at the mRNA and protein level. The aPD-1 immunoadhesin was secreted in a time-dependent manner, bound its target on PD-1-expressing cells and was able to re-activate T cells by efficiently disrupting the PD-1/PD-L1 axis. Moreover, high intratumoral and low systemic aPD-1 concentrations were achieved following local injection of HER2-AAV into orthotopic tumor grafts in vivo. aPD-1 was selectively produced in tumor tissue and could be detected up to 10 days after a single HER2-AAV injection. In subcutaneous GL261-HER2 and Tu2449-HER2 immunocompetent mouse models, administration of the combination therapy significantly prolonged survival, including complete tumor control in several animals in the GL261-HER2 model. In summary, local therapy with aPD-1 encoding HER2-AAVs in combination with anti-HER2.CAR/NK-92 cells may be a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce systemic side effects of immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- M.I. Strecker
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - K. Wlotzka
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - F. Strassheimer
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - B. Roller
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - G. Ludmirski
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - S. König
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - J. Röder
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - C. Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - T. Alekseeva
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J. Reul
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
| | - L. Sevenich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - T. Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - W.S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - J.P. Steinbach
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - C.J. Buchholz
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Paul-Ehrlich-Institut, Molecular Biotechnology and Gene Therapy, Langen, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| | - M.C. Burger
- Senckenberg Institute of Neurooncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Casazza JP, Cale EM, Narpala S, Yamshchikov GV, Coates EE, Hendel CS, Novik L, Holman LA, Widge AT, Apte P, Gordon I, Gaudinski MR, Conan-Cibotti M, Lin BC, Nason MC, Trofymenko O, Telscher S, Plummer SH, Wycuff D, Adams WC, Pandey JP, McDermott A, Roederer M, Sukienik AN, O'Dell S, Gall JG, Flach B, Terry TL, Choe M, Shi W, Chen X, Kaltovich F, Saunders KO, Stein JA, Doria-Rose NA, Schwartz RM, Balazs AB, Baltimore D, Nabel GJ, Koup RA, Graham BS, Ledgerwood JE, Mascola JR. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med 2022; 28:1022-1030. [PMID: 35411076 PMCID: PMC9876739 DOI: 10.1038/s41591-022-01762-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/28/2022] [Indexed: 01/27/2023]
Abstract
Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.
Collapse
Affiliation(s)
- Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina V Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia S Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - LaSonji A Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alicia T Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Preeti Apte
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin R Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga Trofymenko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinyi Telscher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Diane Wycuff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William C Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avery N Sukienik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Travis L Terry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Florence Kaltovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Judy A Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Vaxart, Inc., South San Francisco, CA, USA
| | | | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Duggan NN, Weisgrau KL, Magnani DM, Rakasz EG, Desrosiers RC, Martinez-Navio JM. SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. J Virol 2022; 96:e0158221. [PMID: 34730398 PMCID: PMC8791287 DOI: 10.1128/jvi.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Yaseen MM, Abuharfeil NM, Darmani H. The impact of MDSCs on the efficacy of preventive and therapeutic HIV vaccines. Cell Immunol 2021; 369:104440. [PMID: 34560382 DOI: 10.1016/j.cellimm.2021.104440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
In spite of four decades of research on human immunodeficiency virus (HIV), the virus remains a major health problem, affecting tens of millions of people around the world. As such, developing an effective preventive/protective and therapeutic vaccines against HIV are essential to prevent/limit the continuous spread of the virus as well as to control the disease progression and to completely eradicate the virus from HIV infected patients, respectively. There are several factors that have impeded the development of such vaccines, and we need to gain further insight into these factors in order to enhance our knowledge concerning the proper immune activation pathways in the hope of accelerating the development of the highly sought-after vaccine. Recently, new immune cell populations, namely the myeloid-derived suppressor cells (MDSCs), were added to the battle of HIV infection. Indeed, MDSCs seem to play a central role in determining the efficacy of therapeutic and preventive vaccines, especially because vaccines, in general, enhance immune responses, while as a potent immunosuppressor cell population, MDSCs, in turn, subvert and limit the activation of immune responses. Hence, in this work, we sought to address the role of MDSCs in the context of preventive/protective, as well as, therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
9
|
Ding C, Patel D, Ma Y, Mann JFS, Wu J, Gao Y. Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Front Immunol 2021; 12:697683. [PMID: 34354709 PMCID: PMC8329590 DOI: 10.3389/fimmu.2021.697683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1 vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies (bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based on using these bNAbs as an efficacious preventive and/or therapeutic intervention have been applied in clinical. In this review, we summarize the recent development of bNAbs and its application in HIV-1 acquisition prevention as well as discuss the innovative approaches being used to try to convey protection within individuals at risk and being treated for HIV-1 infection.
Collapse
Affiliation(s)
- Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Darshit Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Yunjing Ma
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jianjun Wu
- Department of AIDS Research, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Sherpa C, Rausch JW, Le Grice SFJ. HIV Genetic Diversity - Superpower of a Formidable Virus. Curr HIV Res 2021; 18:69-73. [PMID: 32223727 DOI: 10.2174/1570162x1802200311104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory Center for Cancer Research National Cancer Institute National Institute of Health Frederick, Maryland, 21702, United States
| | - Jason W Rausch
- Basic Research Laboratory Center for Cancer Research National Cancer Institute National Institute of Health Frederick, MD, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory Center for Cancer Research National Cancer Institute National Institute of Health Frederick, MD, 21702, United States
| |
Collapse
|
11
|
Sherpa C, Le Grice SFJ. Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Curr HIV Res 2021; 18:114-131. [PMID: 32039686 DOI: 10.2174/1570162x18666200210121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
12
|
Zhan W, Muhuri M, Tai PWL, Gao G. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens? Front Immunol 2021; 12:673699. [PMID: 34046041 PMCID: PMC8144494 DOI: 10.3389/fimmu.2021.673699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.
Collapse
Affiliation(s)
- Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Kalusche S, Vanshylla K, Kleipass F, Gruell H, Müller B, Zeng Z, Koch K, Stein S, Marcotte H, Klein F, Dietrich U. Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis? Vaccines (Basel) 2020; 8:E758. [PMID: 33322227 PMCID: PMC7768517 DOI: 10.3390/vaccines8040758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
In the absence of an active prophylactic vaccine against HIV-1, passively administered, broadly neutralizing antibodies (bnAbs) identified in some chronically infected persons were shown to prevent HIV-1 infection in animal models. However, passive administration of bnAbs may not be suited to prevent sexual HIV-1 transmission in high-risk cohorts, as a continuous high level of active bnAbs may be difficult to achieve at the primary site of sexual transmission, the human vagina with its acidic pH. Therefore, we used Lactobacillus, a natural commensal in the healthy vaginal microbiome, to express bn nanobodies (VHH) against HIV-1 that we reported previously. After demonstrating that recombinant VHHA6 expressed in E. coli was able to protect humanized mice from mucosal infection by HIV-1Bal, we expressed VHHA6 in a soluble or in a cell-wall-anchored form in Lactobacillus rhamnosus DSM14870. This strain is already clinically applied for treatment of bacterial vaginosis. Both forms of VHHA6 neutralized a set of primary epidemiologically relevant HIV-1 strains in vitro. Furthermore, VHHA6 was still active at an acidic pH. Thus, lactobacilli expressing bn VHH potentially represent an attractive vector for the passive immunization of women in cohorts at high risk of HIV-1 transmission.
Collapse
Affiliation(s)
- Sarah Kalusche
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Franziska Kleipass
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Barbara Müller
- Department of Infectious Diseases, Virology Centre for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Zhu Zeng
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Kathrin Koch
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Stefan Stein
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (K.V.); (F.K.); (H.G.)
| | - Ursula Dietrich
- Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt, Germany; (S.K.); (K.K.); (S.S.)
| |
Collapse
|
14
|
Jackson CB, Richard AS, Ojha A, Conkright KA, Trimarchi JM, Bailey CC, Alpert MD, Kay MA, Farzan M, Choe H. AAV vectors engineered to target insulin receptor greatly enhance intramuscular gene delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:496-506. [PMID: 33313337 PMCID: PMC7710509 DOI: 10.1016/j.omtm.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Adeno-associated virus (AAV) is one of the most commonly used vectors for gene therapy, and the applications for AAV-delivered therapies are numerous. However, the current state of technology is limited by the low efficiency with which most AAV vectors transduce skeletal muscle tissue. We demonstrate that vector efficiency can be enhanced by modifying the AAV capsid with a peptide that binds a receptor highly expressed in muscle tissue. When an insulin-mimetic peptide, S519, previously characterized for its high affinity to insulin receptor (IR), was inserted into the capsid, the AAV9 transduction efficiency of IR-expressing cell lines as well as differentiated primary human muscle cells was dramatically enhanced. This vector also exhibited efficient transduction of mouse muscle in vivo, resulting in up to 18-fold enhancement over AAV9. Owing to its superior transduction efficiency in skeletal muscle, we named this vector “enhanced AAV9” (eAAV9). We also found that the modification enhanced the transduction efficiency of several other AAV serotypes. Together, these data show that AAV transduction of skeletal muscle can be improved by targeting IR. They also show the broad utility of this modular strategy and suggest that it could also be applied to next-generation vectors that have yet to be engineered.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, 269 Campus Dr. Rm 2105, Stanford, CA 94305, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Wise MC, Xu Z, Tello-Ruiz E, Beck C, Trautz A, Patel A, Elliott ST, Chokkalingam N, Kim S, Kerkau MG, Muthumani K, Jiang J, Fisher PD, Ramos SJ, Smith TR, Mendoza J, Broderick KE, Montefiori DC, Ferrari G, Kulp DW, Humeau LM, Weiner DB. In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity. J Clin Invest 2020; 130:827-837. [PMID: 31697648 DOI: 10.1172/jci132779] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Interventions to prevent HIV-1 infection and alternative tools in HIV cure therapy remain pressing goals. Recently, numerous broadly neutralizing HIV-1 monoclonal antibodies (bNAbs) have been developed that possess the characteristics necessary for potential prophylactic or therapeutic approaches. However, formulation complexities, especially for multiantibody deliveries, long infusion times, and production issues could limit the use of these bNAbs when deployed, globally affecting their potential application. Here, we describe an approach utilizing synthetic DNA-encoded monoclonal antibodies (dmAbs) for direct in vivo production of prespecified neutralizing activity. We designed 16 different bNAbs as dmAb cassettes and studied their activity in small and large animals. Sera from animals administered dmAbs neutralized multiple HIV-1 isolates with activity similar to that of their parental recombinant mAbs. Delivery of multiple dmAbs to a single animal led to increased neutralization breadth. Two dmAbs, PGDM1400 and PGT121, were advanced into nonhuman primates for study. High peak-circulating levels (between 6 and 34 μg/ml) of these dmAbs were measured, and the sera of all animals displayed broad neutralizing activity. The dmAb approach provides an important local delivery platform for the in vivo generation of HIV-1 bNAbs and for other infectious disease antibodies.
Collapse
Affiliation(s)
- Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Aspen Trautz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sarah Tc Elliott
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sophie Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jingjing Jiang
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | - Paul D Fisher
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | | | | | - Janess Mendoza
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Wang X, Zhou P, Wu M, Yang K, Guo J, Wang X, Li J, Fang Z, Wang G, Xing M, Zhou D. Adenovirus delivery of encoded monoclonal antibody protects against different types of influenza virus infection. NPJ Vaccines 2020; 5:57. [PMID: 32665862 PMCID: PMC7347565 DOI: 10.1038/s41541-020-0206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the high mutation and recombination rates of the influenza virus, current clinically licensed influenza vaccines and anti-influenza drugs provide limited protection against the emerging influenza virus epidemic. Therefore, universal influenza vaccines with high efficacy are urgently needed to ensure human safety and health. Passive immunization of influenza broadly neutralizing antibodies may become an ideal option for controlling influenza infection. CR9114 isolated from the peripheral blood mononuclear cells of healthy donors is a broadly neutralizing monoclonal antibody that targets different types of influenza viruses. As the adenovirus vector is one of the most promising delivery vehicles, we employed the chimpanzee adenoviral vector, AdC68, to express CR9114 as a universal anti-influenza vaccine, termed AdC68-CR9114, and evaluated its antibody expression and its broad spectrum of prophylactic and therapeutic effects in animal models. Based on our findings, AdC68-CR9114-infected cell expressed the broadly neutralizing antibody at a high level in vitro and in vivo, exhibited biological functions, and protected mice from different types of influenza virus infection at different time points. The findings from this study shed light on a new strategy for controlling and preventing influenza infection.
Collapse
Affiliation(s)
- Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ping Zhou
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mangteng Wu
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaiyan Yang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingao Guo
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuchen Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Li
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihao Fang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guiqin Wang
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508 China
- Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
17
|
Martinez-Navio JM, Fuchs SP, Mendes DE, Rakasz EG, Gao G, Lifson JD, Desrosiers RC. Long-Term Delivery of an Anti-SIV Monoclonal Antibody With AAV. Front Immunol 2020; 11:449. [PMID: 32256496 PMCID: PMC7089924 DOI: 10.3389/fimmu.2020.00449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term delivery of anti-HIV monoclonal antibodies using adeno-associated virus (AAV) holds promise for the prevention and treatment of HIV infection. We previously reported that after receiving a single administration of AAV vector coding for anti-SIV antibody 5L7, monkey 84-05 achieved high levels of AAV-delivered 5L7 IgG1 in vivo which conferred sterile protection against six successive, escalating dose, intravenous challenges with highly infectious, highly pathogenic SIVmac239, including a final challenge with 10 animal infectious doses (1). Here we report that monkey 84-05 has successfully maintained 240-350 μg/ml of anti-SIV antibody 5L7 for over 6 years. Approximately 2% of the circulating IgG in this monkey is this one monoclonal antibody. This monkey generated little or no anti-drug antibodies (ADA) to the AAV-delivered antibody for the duration of the study. Due to the nature of the high-dose challenge used and in order to rule out a potential low-level infection not detected by regular viral loads, we have used ultrasensitive techniques to detect cell-associated viral DNA and RNA in PBMCs from this animal. In addition, we have tested serum from 84-05 by ELISA against overlapping peptides spanning the whole envelope sequence for SIVmac239 (PepScan) and against recombinant p27 and gp41 proteins. No reactivity has been detected in the ELISAs indicating the absence of naturally arising anti-SIV antibodies; moreover, the ultrasensitive cell-associated viral tests yielded no positive reaction. We conclude that macaque 84-05 was effectively protected and remained uninfected. Our data show that durable, continuous antibody expression can be achieved after one single administration of AAV and support the potential for lifelong protection against HIV from a single vector administration.
Collapse
Affiliation(s)
- José M. Martinez-Navio
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sebastian P. Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Desiree E. Mendes
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ronald C. Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
18
|
Fuchs SP, Martinez-Navio JM, Rakasz EG, Gao G, Desrosiers RC. Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:94-102. [PMID: 31890736 PMCID: PMC6923507 DOI: 10.1016/j.omtm.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022]
Abstract
A number of publications have described the use of adeno-associated virus (AAV) for the delivery of anti-HIV and anti-simian immunodeficiency virus (SIV) monoclonal antibodies (mAbs) to rhesus monkeys. Anti-drug antibodies (ADAs) have been frequently observed, and long-term AAV-mediated delivery has been inconsistent. Here, we investigated different AAV vector strategies and delivery schemes to rhesus monkeys using the rhesus monkey mAb 4L6. We compared 4L6 immunoglobulin G1 (IgG1) delivery using the AAV1 versus the AAV8 serotype with a cytomegalovirus (CMV) promoter and the use of a muscle-specific versus a liver-specific promoter. Long-term expression levels of 4L6 IgG1 following AAV8-mediated gene transfer were comparable to those following AAV1-mediated gene transfer. AAV1-mediated gene transfer, using a muscle-specific promoter, showed robust ADAs and transiently low 4L6 IgG1 levels that ultimately declined to below detectable levels. Intravenous AAV8-mediated gene transfer, using a liver-specific promoter, also resulted in low levels of delivered 4L6 IgG1, but those low levels were maintained in the absence of any detectable ADAs. Booster injections using AAV1-CMV allowed for increased 4L6 IgG1 serum levels in animals that were primed with AAV8 but not with AAV1. Our results suggest that liver-directed expression may help to limit ADAs and that re-administration of AAV of a different serotype can result in successful long-term delivery of an immunogenic antibody.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - José M Martinez-Navio
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald C Desrosiers
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
19
|
van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, Mkhize NN, Lambson BE, Kgagudi PD, Crowther C, Abdool Karim SS, Balazs AB, Weinberg MS, Ely A, Arbuthnot PB, Morris L. AAV-Mediated Expression of Broadly Neutralizing and Vaccine-like Antibodies Targeting the HIV-1 Envelope V2 Region. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:100-112. [PMID: 31334303 PMCID: PMC6616373 DOI: 10.1016/j.omtm.2019.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
HIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable. To overcome these obstacles, adeno-associated virus (AAV) vectors were used to provide long-term expression of antibodies targeting the V2 region of the HIV-1 envelope protein, including the potent CAP256-VRC26.25 bNAb, as well as non-neutralizing CAP228 antibodies that resemble those elicited by vaccination. AAVs mediated effective antibody expression in cell culture and immunocompetent mice. Mean concentrations of human immunoglobulin G (IgG) in mouse sera increased rapidly following a single AAV injection, reaching 8–60 μg/mL for CAP256 antibodies and 44–220 μg/mL for CAP228 antibodies over 24 weeks, but antibody concentrations varied for individual mice. Secreted antibodies collected from serum retained the expected binding and neutralizing activity. The vectors generated here are, therefore, suitable for the delivery of V2-targeting HIV antibodies, and they could be used in a vectored immunoprophylaxis (VIP) approach to sustain the level of antibody expression required to prevent HIV infection.
Collapse
Affiliation(s)
- Fiona T van den Berg
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel A Makoah
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stuart A Ali
- HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan A Scott
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo E Mapengo
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Lorraine Z Mutsvunguma
- HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Prudence D Kgagudi
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Carol Crowther
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.,Department of Epidemiology, Columbia University, New York, NY, USA
| | | | - Marc S Weinberg
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick B Arbuthnot
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Hematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Small RNAs to treat human immunodeficiency virus type 1 infection by gene therapy. Curr Opin Virol 2019; 38:10-20. [PMID: 31112858 DOI: 10.1016/j.coviro.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Current drug therapies for human immunodeficiency virus type 1 (HIV) infection are effective in preventing progression to acquired immune deficiency syndrome but do not eliminate the infection and are associated with unwanted side effects. A potential alternative is to modify the genome of patient cells via gene therapy to confer HIV resistance to these cells. Small RNAs are the largest and most diverse group of anti-HIV genes that have been developed for engineering HIV resistant cells. In this review, we summarize progress on the three major classes of anti-HIV RNAs including short hairpin RNAs that use the RNA interference pathway, RNA decoys and aptamers that bind specifically to a protein or RNA as well as ribozymes that mediate cleavage of specific targets. We also review methods used for the delivery of these genes into the genome of patient cells and provide some perspectives on the future of small RNAs in HIV therapy.
Collapse
|
21
|
Caskey M. Delivery of anti-HIV bNAbs by viral vectors. LANCET HIV 2019; 6:e207-e208. [DOI: 10.1016/s2352-3018(19)30041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 11/25/2022]
|
22
|
Martinez-Navio JM, Fuchs SP, Pantry SN, Lauer WA, Duggan NN, Keele BF, Rakasz EG, Gao G, Lifson JD, Desrosiers RC. Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity 2019; 50:567-575.e5. [PMID: 30850342 PMCID: PMC6457122 DOI: 10.1016/j.immuni.2019.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 02/08/2019] [Indexed: 01/03/2023]
Abstract
Long-term delivery of anti-HIV monoclonal antibodies (mAbs) using adeno-associated virus (AAV) vectors holds promise for the prevention and treatment of HIV infection. We describe a therapy trial in which four rhesus monkeys were infected with SHIV-AD8 for 86 weeks before receiving the AAV-encoded mAbs 3BNC117, 10-1074, and 10E8. Although anti-drug antibody (ADA) responses restricted mAb delivery, one monkey successfully maintained 50-150 μg/mL of 3BNC117 and 10-1074 for over 2 years. Delivery of these two mAbs to this monkey resulted in an abrupt decline in plasma viremia, which remained undetectable for 38 successive measurements over 3 years. We generated two more examples of virologic suppression using AAV delivery of a cocktail of four mAbs in a 12-monkey study. Our results provide proof of concept for AAV-delivered mAbs to produce a "functional cure." However, they also serve as a warning that ADAs may be a problem for practical application of this approach in humans.
Collapse
Affiliation(s)
- José M Martinez-Navio
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Shara N Pantry
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - William A Lauer
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Natasha N Duggan
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA.
| |
Collapse
|
23
|
Gardner MR, Fetzer I, Kattenhorn LM, Davis-Gardner ME, Zhou AS, Alfant B, Weber JA, Kondur HR, Martinez-Navio JM, Fuchs SP, Desrosiers RC, Gao G, Lifson JD, Farzan M. Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Mol Ther 2019; 27:650-660. [PMID: 30704961 PMCID: PMC6403482 DOI: 10.1016/j.ymthe.2019.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) delivery of potent and broadly neutralizing antibodies (bNAbs is a promising approach for the prevention of HIV-1 infection. The immunoglobulin G (IgG)1 subtype is usually selected for this application, because it efficiently mediates antibody effector functions and has a somewhat longer half-life. However, the use of IgG1-Fc has been associated with the generation of anti-drug antibodies (ADAs) that correlate with loss of antibody expression. In contrast, we have shown that expression of the antibody-like molecule eCD4-Ig bearing a rhesus IgG2-Fc domain showed reduced immunogenicity and completely protected rhesus macaques from simian-HIV (SHIV)-AD8 challenges. To directly compare the performance of the IgG1-Fc and the IgG2-Fc domains in a prophylactic setting, we compared AAV1 expression of rhesus IgG1 and IgG2 forms of four anti-HIV bNAbs: 3BNC117, NIH45-46, 10-1074, and PGT121. Interestingly, IgG2-isotyped bNAbs elicited significantly lower ADA than their IgG1 counterparts. We also observed significant protection from two SHIV-AD8 challenges in macaques expressing IgG2-isotyped bNAbs, but not from those expressing IgG1. Our data suggest that monoclonal antibodies isotyped with IgG2-Fc domains are less immunogenic than their IgG1 counterparts, and they highlight ADAs as a key barrier to the use of AAV1-expressed bNAbs.
Collapse
Affiliation(s)
- Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Ina Fetzer
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lisa M Kattenhorn
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA
| | - Meredith E Davis-Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Amber S Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Barnett Alfant
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jesse A Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hema R Kondur
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jose M Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian P Fuchs
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ronald C Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guangping Gao
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
24
|
Giacomelli A, de Rose S, Rusconi S. Clinical pharmacology in HIV cure research - what impact have we seen? Expert Rev Clin Pharmacol 2019; 12:17-29. [PMID: 30570410 DOI: 10.1080/17512433.2019.1561272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Combined antiretroviral therapy (cART) has transformed an inexorably fatal disease into a chronic pathology, shifting the focus of research from the control of viral replication to the possibility of HIV cure. Areas covered: The present review assesses the principal pharmacological strategies that have been tested for an HIV cure starting from the in vitro proof of concept and the potential rationale of their in vivo applicability. We evaluated the possible pharmacological procedures employed during the early-stage HIV infection and the possibility of cART-free remission. We then analyzed the shock and kill approach from the single compounds in vitro mechanism of action, to the in vivo application of single or combined actions. Finally, we briefly considered the novel immunological branch through the discovery and development of broadly neutralizing antibodies in regard to the current and future in vivo therapeutic strategies aiming to verify the clinical applicability of these compounds. Expert opinion: Despite an incredible effort in HIV research cure, the likelihood of completely eradicating HIV is unreachable within our current knowledge. A better understanding of the mechanism of viral latency and the full characterization of HIV reservoir are crucial for the discovery of new therapeutic targets and novel pharmacological entities.
Collapse
Affiliation(s)
- Andrea Giacomelli
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Sonia de Rose
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| | - Stefano Rusconi
- a Infectious Diseases Unit, DIBIC Luigi Sacco , University of Milan , Milan , Italy
| |
Collapse
|
25
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
26
|
Carrillo J, Clotet B, Blanco J. Antibodies and Antibody Derivatives: New Partners in HIV Eradication Strategies. Front Immunol 2018; 9:2429. [PMID: 30405624 PMCID: PMC6205993 DOI: 10.3389/fimmu.2018.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Promptly after primoinfection, HIV generates a pool of infected cells carrying transcriptionally silent integrated proviral DNA, the HIV-1 reservoir. These cells are not cleared by combined antiretroviral therapy (cART), and persist lifelong in treated HIV-infected individuals. Defining clinical strategies to eradicate the HIV reservoir and cure HIV-infected individuals is a major research field that requires a deep understanding of the mechanisms of seeding, maintenance and destruction of latently infected cells. Although CTL responses have been classically associated with the control of HIV replication, and hence with the size of HIV reservoir, broadly neutralizing antibodies (bNAbs) have emerged as new players in HIV cure strategies. Several reasons support this potential role: (i) over the last years a number of bNAbs with high potency and ability to cope with the extreme variability of HIV have been identified; (ii) antibodies not only block HIV replication but mediate effector functions that may contribute to the removal of infected cells and to boost immune responses against HIV; (iii) a series of new technologies have allowed for the in vitro design of improved antibodies with increased antiviral and effector functions. Recent studies in non-human primate models and in HIV-infected individuals have shown that treatment with recombinant bNAbs isolated from HIV-infected individuals is safe and may have a beneficial effect both on the seeding of the HIV reservoir and on the inhibition of HIV replication. These promising data and the development of antibody technology have paved the way for treating HIV infection with engineered monoclonal antibodies with high potency of neutralization, wide coverage of HIV diversity, extended plasma half-life in vivo and improved effector functions. The exciting effects of these newly designed antibodies in vivo, either alone or in combination with other cure strategies (latency reversing agents or therapeutic vaccines), open a new hope in HIV eradication.
Collapse
Affiliation(s)
- Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
27
|
Robinson HL. HIV/AIDS Vaccines: 2018. Clin Pharmacol Ther 2018; 104:1062-1073. [PMID: 30099743 PMCID: PMC6282490 DOI: 10.1002/cpt.1208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) has infected 76 million people and killed an estimated 35 million. During its 40-year history, remarkable progress has been made on antiretroviral drugs. Progress toward a vaccine has also been made, although this has yet to deliver a licensed product. In 2007, I wrote a review, HIV AIDS Vaccines: 2007. This review, HIV AIDS Vaccines: 2018, focuses on the progress in the past 11 years. I begin with key challenges for the development of an AIDS vaccine and the lessons learned from the six completed efficacy trials, only one of which has met with some success.
Collapse
|
28
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
29
|
Possas C, Antunes AMDS, Lins Mendes FM, Veloso V, Martins RM, Homma A. HIV cure: global overview of bNAbs' patents and related scientific publications. Expert Opin Ther Pat 2018; 28:551-560. [PMID: 29962249 DOI: 10.1080/13543776.2018.1495708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION This article provides a global overview of patent deposits for broadly neutralizing antibodies (bNAbs), which have emerged as a key strategy for HIV cure and future HIV vaccines. Scientific and technological barriers to the discovery of an effective HIV vaccine in the last 40 years have raised concerns on the potential for relevant advances in this area. Nevertheless, recent breakthrough studies have identified novel immune pathways for new innovative HIV vaccine and HIV cure strategies. AREAS COVERED In our patent study, we have identified in a global scale, in the last decade, a sharp increase in the number of bNAbs' patent deposits related to HIV prevention and treatment strategies, reaching 90 bNAbs in 2017, protected by 184 different patent deposits. Refining our patent search to the different stages of bNAbs' development has also allowed us to identify 12 of them already at clinical stage of research (VRC01, 10E8, 3BNC117, 10-1074, 2G12, 2F5, KD-247, 4E10, PG9, PGDM1400, PGT121, and VRC07). We describe these recent breakthroughs and discuss the prospects and limitations of these novel strategies. EXPERT OPINION Our results indicate the intellectual property outcomes of a scientific revolution in this field, expressing innovative modifications in antibodies to increase their potency and half-life, which have resulted in extremely potent antibodies that could provide novel preventive and therapeutic HIV strategies.
Collapse
Affiliation(s)
- Cristina Possas
- a Bio-Manguinhos , Oswaldo Cruz Foundation (FIOCRUZ) , Rio de Janeiro , Brazil
| | - Adelaide Maria de Souza Antunes
- b School of Chemistry , Federal University of Rio de Janeiro (EQ/UFRJ) , Rio de Janeiro , Brazil.,c c-academy, National Institute of Industrial Property (INPI) , Rio de Janeiro , Brazil
| | - Flavia Maria Lins Mendes
- b School of Chemistry , Federal University of Rio de Janeiro (EQ/UFRJ) , Rio de Janeiro , Brazil
| | - Valdiléa Veloso
- d Evandro Chagas National Institute of Infectology (INI/FIOCRUZ), Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | - Akira Homma
- a Bio-Manguinhos , Oswaldo Cruz Foundation (FIOCRUZ) , Rio de Janeiro , Brazil
| |
Collapse
|
30
|
Saag MS, Benson CA, Gandhi RT, Hoy JF, Landovitz RJ, Mugavero MJ, Sax PE, Smith DM, Thompson MA, Buchbinder SP, Del Rio C, Eron JJ, Fätkenheuer G, Günthard HF, Molina JM, Jacobsen DM, Volberding PA. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2018 Recommendations of the International Antiviral Society-USA Panel. JAMA 2018; 320:379-396. [PMID: 30043070 PMCID: PMC6415748 DOI: 10.1001/jama.2018.8431] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Importance Antiretroviral therapy (ART) is the cornerstone of prevention and management of HIV infection. Objective To evaluate new data and treatments and incorporate this information into updated recommendations for initiating therapy, monitoring individuals starting therapy, changing regimens, and preventing HIV infection for individuals at risk. Evidence Review New evidence collected since the International Antiviral Society-USA 2016 recommendations via monthly PubMed and EMBASE literature searches up to April 2018; data presented at peer-reviewed scientific conferences. A volunteer panel of experts in HIV research and patient care considered these data and updated previous recommendations. Findings ART is recommended for virtually all HIV-infected individuals, as soon as possible after HIV diagnosis. Immediate initiation (eg, rapid start), if clinically appropriate, requires adequate staffing, specialized services, and careful selection of medical therapy. An integrase strand transfer inhibitor (InSTI) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) is generally recommended for initial therapy, with unique patient circumstances (eg, concomitant diseases and conditions, potential for pregnancy, cost) guiding the treatment choice. CD4 cell count, HIV RNA level, genotype, and other laboratory tests for general health and co-infections are recommended at specified points before and during ART. If a regimen switch is indicated, treatment history, tolerability, adherence, and drug resistance history should first be assessed; 2 or 3 active drugs are recommended for a new regimen. HIV testing is recommended at least once for anyone who has ever been sexually active and more often for individuals at ongoing risk for infection. Preexposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and appropriate monitoring is recommended for individuals at risk for HIV. Conclusions and Relevance Advances in HIV prevention and treatment with antiretroviral drugs continue to improve clinical management and outcomes for individuals at risk for and living with HIV.
Collapse
Affiliation(s)
| | | | - Rajesh T Gandhi
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer F Hoy
- The Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | - Paul E Sax
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Susan P Buchbinder
- San Francisco Department of Public Health and University of California San Francisco
| | - Carlos Del Rio
- Emory University Rollins School of Public Health and School of Medicine, Atlanta, Georgia
| | - Joseph J Eron
- University of North Carolina at Chapel Hill School of Medicine
| | - Gerd Fätkenheuer
- University Hospital of Cologne, Department I of Internal Medicine, Cologne, Germany, and German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Huldrych F Günthard
- University Hospital Zurich and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
31
|
Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines (Basel) 2018; 6:vaccines6030035. [PMID: 29949942 PMCID: PMC6161145 DOI: 10.3390/vaccines6030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is a major target for vaccines. HA initiates the internalization of the virus into the host cell by binding to host sialic acid receptors; therefore, inhibition of HA can significantly prevent influenza virus infection. However, the high diversity of HA permits the influenza virus to escape from host immunity. Moreover, the vaccine efficacy is poor in some high-risk populations (e.g., elderly or immunocompromised patients). Passive immunization with anti-HA monoclonal antibodies (mAbs) is an attractive therapy; however, this method has high production costs and requires repeated inoculations. To address these issues, several methods for long-term expression of mAb against influenza virus have been developed. Here, we provide an overview of methods using plasmid and viral adeno-associated virus (AAV) vectors that have been modified for higher expression of neutralizing antibodies in the host. We also examine two methods of injection, electro-transfer and hydrodynamic injection. Our results show that antibody gene transfer is effective against influenza virus infection even in immunocompromised mice, and antibody expression was detected in the serum and upper respiratory tract. We also demonstrate this method to be effective following influenza virus infection. Finally, we discuss the perspective of passive immunization with antibody gene transfer for future clinical trials.
Collapse
|
32
|
Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology 2018; 112:63-74. [DOI: 10.1016/j.theriogenology.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
|
33
|
Ringel O, Vieillard V, Debré P, Eichler J, Büning H, Dietrich U. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Viruses 2018; 10:v10040197. [PMID: 29662026 PMCID: PMC5923491 DOI: 10.3390/v10040197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Although effective antibody-based vaccines have been developed against multiple viruses, such approaches have so far failed for the human immunodeficiency virus type 1 (HIV-1). Despite the success of anti-retroviral therapy (ART) that has turned HIV-1 infection into a chronic disease and has reduced the number of new infections worldwide, a vaccine against HIV-1 is still urgently needed. We discuss here the major reasons for the failure of “classical” vaccine approaches, which are mostly due to the biological properties of the virus itself. HIV-1 has developed multiple mechanisms of immune escape, which also account for vaccine failure. So far, no vaccine candidate has been able to induce broadly neutralizing antibodies (bnAbs) against primary patient viruses from different clades. However, such antibodies were identified in a subset of patients during chronic infection and were shown to protect from infection in animal models and to reduce viremia in first clinical trials. Their detailed characterization has guided structure-based reverse vaccinology approaches to design better HIV-1 envelope (Env) immunogens. Furthermore, conserved Env epitopes have been identified, which are promising candidates in view of clinical applications. Together with new vector-based technologies, considerable progress has been achieved in recent years towards the development of an effective antibody-based HIV-1 vaccine.
Collapse
Affiliation(s)
- Oliver Ringel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany.
| | - Vincent Vieillard
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, 75013 Paris, France.
| | - Patrice Debré
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, 75013 Paris, France.
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, 91058 Erlangen, Germany.
| | - Hildegard Büning
- Laboratory for Infection Biology & Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany.
| |
Collapse
|
34
|
Highlights from the 8th International Workshop on HIV Persistence during Therapy, 12–15 December 2017, Miami, FL, USA. J Virus Erad 2018. [DOI: 10.1016/s2055-6640(20)30258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Psomas CK, Lafeuillade A, Margolis D, Salzwedel K, Stevenson M, Chomont N, Poli G, Routy JP. Highlights from the 8 th International Workshop on HIV Persistence during Therapy, 12-15 December 2017, Miami, FL, USA. J Virus Erad 2018; 4:132-142. [PMID: 29682308 PMCID: PMC5892681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Over 4 days, more than 500 scientists involved in HIV persistence research shared their new unpublished data and designed future perspectives towards ART-free HIV remission. This 8th International Workshop on HIV Persistence followed the format of past conferences but further focused on encouraging participation of young investigators, especially through submission of oral and poster presentations. The topic of the workshop was HIV persistence. Consequently, issues of HIV reservoirs and HIV cure were also addressed. In this article, we report the discussions as closely as possible; however, all the workshop abstracts can be found online at www.viruseradication.com.
Collapse
Affiliation(s)
| | | | | | - Karl Salzwedel
- National Institute of Allergy and Infectious Diseases,
Bethesda,
USA
| | | | | | - Guido Poli
- San Raffaele Scientific Institute,
Milano,
Italy
| | | |
Collapse
|
36
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2438] [Impact Index Per Article: 406.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Abstract
As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
Collapse
|
38
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
39
|
Imran M, Waheed Y, Ghazal A, Ullah S, Safi SZ, Jamal M, Ali M, Atif M, Imran M, Ullah F. Modern biotechnology-based therapeutic approaches against HIV infection. Biomed Rep 2017; 7:504-507. [PMID: 29250325 PMCID: PMC5727756 DOI: 10.3892/br.2017.1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
The causative agent of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus (HIV). Since its discovery before 30 years, a number of drugs known as highly active antiretroviral therapy have been developed to suppress the life cycle of the virus at different stages. With the current therapeutic approaches, ending AIDS means providing treatment to 35 million individuals living with HIV for the rest of their lives or until a cure is developed. Additionally, therapy is associated with various other challenges such as potential of drug resistance, toxicity and presence of latent viral reservoir. Therefore, it is imperative to search for treatments and to identify new therapeutic approaches against HIV infection to avoid daily intake of drugs. The aim of the current review was to summarize different therapeutic strategies against HIV infection, including stem cell therapy, RNA interference, CRISPR/Cas9 pathways, antibodies, intrabodies and nanotechnology. Silencing RNA against chemokine receptor 5 and other HIV RNAs have been tested and found to elicit homology-based, post-transcriptional silencing. The CRISPR/Cas9 is a gene editing technology that produces a double-stranded nick in the virus DNA, which is repaired by the host machinery either by non-homology end joining mechanism or via homology recombination leading to insertion, deletion mutation which further leads to frame shift mutation and non-functional products. Intrabodies are intracellular-expressed antibodies that are directed towards the targets inside the cell unlike the naturally expressed antibodies which target outside the cell. Different nanotechnology-based therapeutic approaches are also in progress against HIV. HIV eradication is not feasible without deploying a cure or vaccine alongside the treatment.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Yasir Waheed
- Foundation University Medical College, Foundation University, Islamabad 44000, Pakistan
| | - Ayesha Ghazal
- Department of Microbiology, University of Health Sciences, Lahore 54600, Pakistan
| | - Sajjad Ullah
- Department of Medical Laboratory Sciences, Imperial College of Business Studies, Lahore 53720, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, University of Management Technology, Lahore 54600, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka, Saudi Arabia
| | - Muhammad Imran
- Department of Diet and Nutrition, Imperial College of Business Studies, Lahore 54600, Pakistan
- Correspondence to: Dr Muhammad Imran, Department of Microbiology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan, E-mail:
| | - Farman Ullah
- Department of Physiology, Shaheed Zulfiqar Ali Bhutto Medical university Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
40
|
Hua CK, Ackerman ME. Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Front Immunol 2017; 8:1655. [PMID: 29234320 PMCID: PMC5712301 DOI: 10.3389/fimmu.2017.01655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs' ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell-cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or "cure" in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy.
Collapse
Affiliation(s)
- Casey K. Hua
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
41
|
Magnani DM, Ricciardi MJ, Bailey VK, Gutman MJ, Pedreño-Lopez N, Silveira CGT, Maxwell HS, Domingues A, Gonzalez-Nieto L, Su Q, Newman RM, Pack M, Martins MA, Martinez-Navio JM, Fuchs SP, Rakasz EG, Allen TM, Whitehead SS, Burton DR, Gao G, Desrosiers RC, Kallas EG, Watkins DI. Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Mol Ther 2017; 25:2323-2331. [PMID: 28750738 PMCID: PMC5628771 DOI: 10.1016/j.ymthe.2017.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022] Open
Abstract
Development of vaccines against mosquito-borne Flaviviruses is complicated by the occurrence of antibody-dependent enhancement (ADE), which can increase disease severity. Long-term delivery of neutralizing antibodies (nAbs) has the potential to effectively block infection and represents an alternative to vaccination. The risk of ADE may be avoided by using prophylactic nAbs harboring amino acid mutations L234A and L235A (LALA) in the immunoglobulin G (IgG) constant region. Here, we used recombinant adeno-associated viruses (rAAVs) to deliver the anti-dengue virus 3 (DENV3) nAb P3D05. While the administration of rAAV-P3D05-rhesus immunoglobulin G1 (rhIgG1)-LALA to rhesus macaques engendered DENV3-neutralizing activity in serum, it did not prevent infection. The emergence of viremia following DENV3 challenge was delayed by 3-6 days in the rAAV-treated group, and replicating virus contained the envelope mutation K64R. This neutralization-resistant variant was also confirmed by virus outgrowth experiments in vitro. By delivering P3D05 with unmutated Fc sequences, we further demonstrated that DENV3 also evaded wild-type nAb prophylaxis, and serum viral loads appeared to be higher in the presence of low levels of unmutated P3D05-rhIgG1. Our study shows that a vectored approach for long-term delivery of nAbs with the LALA mutations is promising, but prophylaxis using a single nAb is likely insufficient at preventing DENV infection and replication.
Collapse
Affiliation(s)
- Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 246903, Brazil
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Qin Su
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Melissa Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guangping Gao
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 246903, Brazil
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Herzog RW, Cooper M, Perrin GQ, Biswas M, Martino AT, Morel L, Terhorst C, Hoffman BE. Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer. Cell Immunol 2017; 342:103682. [PMID: 28888664 DOI: 10.1016/j.cellimm.2017.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
Abstract
Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| | - Mario Cooper
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - George Q Perrin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Ashley T Martino
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Investigation, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, BIDMC, Harvard Medical School, Boston, MA, United States
| | - Brad E Hoffman
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
43
|
Silver ZA, Watkins DI. The role of MHC class I gene products in SIV infection of macaques. Immunogenetics 2017; 69:511-519. [PMID: 28695289 PMCID: PMC5537376 DOI: 10.1007/s00251-017-0997-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Human immunodeficiency virus (HIV) remains among the most significant public health threats worldwide. Despite three decades of research following the discovery of HIV, a preventive vaccine remains elusive. The study of HIV elite controllers has been crucial to elaborate the genetic and immunologic determinants that underlie control of HIV replication. Coordinated studies of elite control in humans have, however, been limited by variability among infecting viral strains, host genotype, and the uncertainty of the timing and route of infection. In this review, we discuss the role of nonhuman primate (NHP) models for the elucidation of the immunologic correlates that underlie control of AIDS virus replication. We discuss the importance of major histocompatibility complex class I (MHC-I) alleles in activating CD8+ T-cell populations that promote control of both HIV and simian immunodeficiency virus (SIV) replication. Provocatively, we make the argument that T-cell subsets recognizing the HIV/SIV viral infectivity factor (Vif) protein may be crucial for control of viral replication. We hope that this review demonstrates how an in-depth understanding of the MHC-I gene products associated with elite control of HIV/SIV, and the epitopes that they present, can provide researchers with a glimpse into the protective immune responses that underlie AIDS nonprogression.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
44
|
Bischof GF, Shin YC, Fuchs SP, Martinez-Navio JM, Lauer WA, Rakasz EG, Desrosiers RC. Use of a gamma-2 herpesvirus as a vector to deliver antibodies to rhesus monkeys. Gene Ther 2017; 24:487-492. [PMID: 28660888 DOI: 10.1038/gt.2017.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022]
Abstract
The gamma-2 herpesvirus of rhesus monkeys, rhesus monkey rhadinovirus (RRV), persists principally in B cells of its host. We constructed recombinant strains of RRV expressing the rhesus monkey-derived anti-SIV monoclonal antibodies 4L6 and 5L7 and compared the RRV-mediated in vivo delivery of these antibodies in rhesus monkeys with previous studies that utilized intramuscular delivery with an adeno-associated virus (AAV) vector. Recombinant RRV-4L6 and RRV-5L7 were both shown to stably produce the antibodies in persistently infected B-cell lines in culture. Two RRV-negative rhesus monkeys were experimentally infected with recombinant RRV-4L6 and two with recombinant RRV-5L7. Following infection, the appearance of the delivered antibody was readily detected in all four animals. However, the levels of the delivered antibody were considerably lower than what has been typically observed following intramuscular AAV delivery. Furthermore, three of the four monkeys had an antibody response to the delivered antibody as had been observed previously with intramuscular AAV delivery of these same antibodies. We conclude that this recombinant herpesvirus has no inherent advantage over AAV for delivery of potentially therapeutic monoclonal antibodies in a rhesus monkey model.
Collapse
Affiliation(s)
- G F Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Y C Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - S P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - J M Martinez-Navio
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - W A Lauer
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - E G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - R C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
45
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Abstract
After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed.
Collapse
Affiliation(s)
- Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther 2017; 25:1168-1186. [PMID: 28366764 PMCID: PMC5417847 DOI: 10.1016/j.ymthe.2017.03.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023] Open
Abstract
CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Dependovirus/genetics
- Dependovirus/metabolism
- Disease Models, Animal
- Endonucleases/genetics
- Endonucleases/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Genome, Viral
- HIV Infections/pathology
- HIV Infections/therapy
- HIV Infections/virology
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Mice
- Mice, Transgenic
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Proviruses/genetics
- Proviruses/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/enzymology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Chaoran Yin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Ting Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiying Qu
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yonggang Zhang
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Raj Putatunda
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Xiao
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Science, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Shen Dai
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xuebin Qin
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and the Comprehensive NeuroAIDS Center, Temple University Lewis Katz School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|