1
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in Acinetobacter baumannii. mBio 2025; 16:e0322124. [PMID: 39589129 PMCID: PMC11708032 DOI: 10.1128/mbio.03221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii is associated with multidrug-resistant infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We, here, identify proteins that contribute to the fitness of fluoroquinolone-resistant (FQR) strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced lipooligosaccharide (LOS) biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.IMPORTANCEAcinetobacter baumannii is a pathogen that often causes multidrug-resistant infections in healthcare settings, presenting a threat to the efficacy of known therapeutic interventions. Fluoroquinolones such as ciprofloxacin are currently ineffective against a majority of clinical A. baumannii isolates, many of which express pumps that remove this antibiotic class from within the bacterium. Three of these pumps can be found in most clinical isolates, with one of the three often hyperproduced at all times. In this study, we identify proteins that are necessary for the fitness of pump hyperproducers. The identified proteins are necessary to stabilize the outer membrane and allow the cytoplasm to tolerate the accumulation of ions as a consequence of excess pump activity. These results point to strategies for developing therapies that combine known antibiotics with drugs that target proteins important for survival of strains hyper-expressing efflux pumps.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arnold Castaneda
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan C. Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Irianti MI, Malloci G, Ruggerone P, Lodinsky EV, Vincken JP, Pos KM, Araya-Cloutier C. Indole phytochemical camalexin as a promising scaffold for AcrB efflux pump inhibitors against Escherichia coli. Biomed Pharmacother 2025; 182:117779. [PMID: 39731937 DOI: 10.1016/j.biopha.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Escherichia coli is amongst the most frequent causative agent of nosocomial infections and the overexpression of the efflux pump gene acrB plays a major role in its resistance to various antibiotics. In this study, we evaluated two indole phytochemicals, camalexin and brassinin, as potential AcrB efflux pump inhibitors. Among these two phytochemicals, camalexin increased the accumulation of ethidium in acrB proficient E.coli with no membrane permeabilization effect observed, indicating a direct interaction of camalexin with the pump. Camalexin also showed up to 64-fold MIC reduction for drugs in the acrB proficient strain. Brassinin was less effective, showing up to 4-fold MIC reduction for the same drugs. Camalexin did not potentiate drugs in the AcrB inactive strain D407N. Plate dilution assays in E. coli acrB variants further corroborated the effect of camalexin in diminishing pump activity. Blind docking results suggested that camalexin and brassinin may enter mainly via CH3, one of the channels present in AcrB, and camalexin showed a more stable binding mode than brassinin in the distal binding pocket of AcrB. Camalexin, therefore, holds potential as a scaffold for further development as a potent AcrB inhibitor to tackle antimicrobial resistance in the gram-negative bacterium E. coli.
Collapse
Affiliation(s)
- Marina Ika Irianti
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands; Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | | | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main D-60438, Germany.
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands.
| |
Collapse
|
3
|
Makhamadjamonov F, Karolak ME, Smyth L, Ababou A. Insights into substrate recognition and export tunnel preferences in the efflux transporter AcrB. Protein Sci 2025; 34:e5252. [PMID: 39673478 PMCID: PMC11645668 DOI: 10.1002/pro.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In Escherichia coli AcrB is a major multidrug exporter, which confers the bacterium resistance to many antibiotics with diverse structural and chemical proprieties. Studies have identified three possible tunnels (or channels) within AcrB that different substrates use before reaching the distal pocket, from which they are subsequently extruded. Recently, we reported that mutations in the AcrB gate loop may affect the conformational change kinetics involved in substrate export rather than directly affecting molecular interactions with this loop, and we highlighted the distinct export tunnel preferences between erythromycin and doxorubicin. To further understand the gate loop's role in AcrB's export activity and the rationale behind substrate preferences among the three possible export tunnels, namely tunnel-1, -2, and -3, we investigated the structural and functional effects of several single and multiple mutations in the gate loop of AcrB. Our findings indicate that all three tunnels are energetically favorable for the substrates studied, with the majority forming more hydrogen bonds in any tunnel compared to the distal pocket. Moreover, our experimental and computational data revealed that some substrates with high molecular similarity exhibited different export tunnel preferences, as strongly suggested by their MIC values. To explain this unexpected outcome, we propose a generalized explanation that the conformational change kinetics in AcrB is substrate-dependent.
Collapse
Affiliation(s)
| | | | - Lesley Smyth
- School of Medicine and BiosciencesUniversity of West LondonLondonUK
| | - Abdessamad Ababou
- School of Health, Sport and BioscienceUniversity of East LondonLondonUK
- School of Cardiovascular Medicine and Sciences & Randall CentreKing's College LondonLondonUK
| |
Collapse
|
4
|
Zhang Z, Wei M, Jia B, Yuan Y. Recent Advances in Antimicrobial Resistance: Insights from Escherichia coli as a Model Organism. Microorganisms 2024; 13:51. [PMID: 39858819 PMCID: PMC11767524 DOI: 10.3390/microorganisms13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in Escherichia coli is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in E. coli, including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation. Additionally, we highlight strategies to mitigate the spread of AMR, such as dynamic resistance monitoring, innovative therapies like phage therapy and CRISPR-Cas technology, and tighter regulation of antibiotic use in animal production systems. This review provides actionable insights into E. coli resistance mechanisms and identifies promising directions for future antibiotic development and AMR management.
Collapse
Affiliation(s)
| | | | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.); (M.W.); (Y.Y.)
| | | |
Collapse
|
5
|
Ouyang Z, He W, Wu D, An H, Duan L, Jiao M, He X, Yu Q, Zhang J, Qin Q, Wang R, Zheng F, Hwang PM, Hua X, Zhu L, Wen Y. Cryo-EM structure and complementary drug efflux activity of the Acinetobacter baumannii multidrug efflux pump AdeG. Structure 2024:S0969-2126(24)00544-6. [PMID: 39798571 DOI: 10.1016/j.str.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Multidrug-resistant Acinetobacter baumannii has emerged as one of the most antibiotic-resistant bacterial pathogens associated with nosocomial infection, with its resistance highly depending on multiple multidrug efflux pumps. Here, we report the cryoelectron microscopy (cryo-EM) structure of Acinetobacter drug efflux G (AdeG), the inner membrane component of one of three important resistance-nodulation-cell division (RND) pump family members in A. baumannii, which is involved in drug resistance to chloramphenicol, trimethoprim, ciprofloxacin, and clindamycin. We systematically compare the structures and substrate binding specificities of AdeG, AdeB, and AdeJ multidrug efflux pumps via molecular docking, revealing potential determinants for drug binding. Knockout experiments demonstrate a functional complementarity between AdeABC, AdeFGH, and AdeIJK. Our study provides a structural understanding of A. baumannii multidrug efflux pump AdeG and reveals complementary drug efflux activity between AdeG and other RND efflux pumps, which may promote further rational drug discovery efforts targeting multidrug efflux pumps.
Collapse
Affiliation(s)
- Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hao An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lei Duan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Jiao
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruochen Wang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2R3, Canada
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
6
|
Lazarova M, Eicher T, Börnsen C, Zeng H, Athar M, Okada U, Yamashita E, Spannaus IM, Borgosch M, Cha HJ, Vargiu AV, Murakami S, Diederichs K, Frangakis AS, Pos KM. Conformational plasticity across phylogenetic clusters of RND multidrug efflux pumps and its impact on substrate specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624703. [PMID: 39605333 PMCID: PMC11601597 DOI: 10.1101/2024.11.22.624703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic efflux plays a key role for the multidrug resistance in Gram-negative bacteria 1-3 . Multidrug efflux pumps of the resistance nodulation and cell division (RND) superfamily function as part of cell envelope spanning systems and provide resistance to diverse antibiotics 4,5. Here, we identify two phylogenetic clusters of RND proteins with conserved binding pocket residues. Based on the characterisation of one representative of each cluster, K. pneumoniae OqxB and E. coli AcrB, we show that the transfer of a single conserved residue between both clusters alters the resistance against a panel of structurally unrelated drugs. The substitution is not only associated with changes in the binding pocket architecture, but also alters the equilibrium between the conformational states of the transport cycle. We show that AcrB and OqxB adopt fundamentally different apo states that suggest different mechanisms of initial substrate binding and might determine the differences between the substrate preferences of both pumps. The observed conformational heterogeneity between different RND clusters is suggested to be phylogenetically conserved and might play a role for the diversification of the resistance phenotype between homologous RND multidrug efflux pumps.
Collapse
|
7
|
Li Y, Wilhelm MJ, Wu T, Hu XH, Ruiz ON, Dai HL. Quantifying bacterial efflux within subcellular domains of Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0144724. [PMID: 39475289 DOI: 10.1128/aem.01447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Molecular efflux is a mechanism through which bacteria actively expel undesirable substances. This is a crucial line of defense against toxic chemicals in harsh environments. Understanding how efflux works is critical for designing antimicrobial strategies. Though much is already known about efflux proteins, important details about the mechanisms of efflux (e.g., importance of specific subcellular domains and ejection rates) have yet to be experimentally quantified. Herein, we use the nonlinear optical technique, second harmonic light scattering, to simultaneously measure the efflux rates from the periplasm and cytosol of a Gram-negative bacterium. The influence of efflux on the uptake kinetics of a mild antimicrobial, malachite green (MG), by Pseudomonas aeruginosa was quantified. It is observed that efflux primarily occurs from the periplasm and is two orders of magnitude faster than from the cytosol. Efflux pumps activate to maintain MG concentrations in the periplasm below 1 µM, while efflux from the cytosol maintains MG concentration below 0.1 µM. Efflux pumps are shown to saturate when exogenous MG concentrations are greater than 25 µM, while the cytosol efflux function saturates at >15 µM. Finally, efflux pumps can simultaneously eject different compounds, as proven by experiments with both MG and hexane, a known effluxable compound.IMPORTANCEMolecular efflux pumps are a crucial defense mechanism that protects bacteria from an otherwise unchecked influx of toxic molecules present in the extracellular environment. The efflux functions constitute a significant hindrance to antimicrobial efficacy. While much is now known regarding the structure of these channels, knowledge of the influence of efflux in individual subcellular domains and the associated ejection rates is still lacking. Using the nonlinear optical technique, second-harmonic light scattering, we have measured the threshold concentrations for pump activation, saturation concentrations, and efflux rates from both the periplasm and cytosol in living Gram-negative bacteria. The quantified efflux data in the different subcellular compartments not only provide a clear mechanistic understanding but also are critical for developing antimicrobial strategies.
Collapse
Affiliation(s)
- Yujie Li
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael J Wilhelm
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Tong Wu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Xiao-Hua Hu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Oscar N Ruiz
- Biomaterials Branch, Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Hai-Lung Dai
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
9
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of Determinants that Allow Maintenance of High-Level Fluoroquinolone Resistance in Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560562. [PMID: 38645180 PMCID: PMC11030222 DOI: 10.1101/2023.10.03.560562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acinetobacter baumannii is associated with multidrug resistant (MDR) infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We here identify proteins that contribute to the fitness of FQR strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced LOS biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | | - Jinna Bai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, MA 02135, USA
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
10
|
Dey S, Rathod S, Gumphalwad K, Yadav N, Choudhari P, Rajakumara E, Dhavale R, Mahuli D. Exploring α, β-unsaturated carbonyl compounds against bacterial efflux pumps via computational approach. J Biomol Struct Dyn 2024; 42:8427-8440. [PMID: 37565744 DOI: 10.1080/07391102.2023.2246568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Antibiotic resistance has become a pressing global health crisis, with bacterial infections increasingly difficult to treat due to the emergence of multidrug resistance. This study aims to identify potential chalcone molecules that interact with two key multidrug efflux pumps, AcrB and EmrD, of Escherichia coli, using advanced computational tools. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity), drug-likeness prediction, molecular docking, and molecular dynamics simulation analyses were conducted on a ligand library comprising 100 chalcone compounds against AcrB (PDB: 4DX5) and EmrD (PDB: 2GFP). The results demonstrated that Elastichalcone A (PubChem CID 102103730) exhibited a remarkable binding affinity of -9.9 kcal/mol against AcrB, while 4'-methoxy-4-hydroxychalcone (PubChem CID 5927890) displayed a binding affinity of -9.8 kcal/mol against EmrD. Both ligands satisfied drug-likeness rules and possessed favorable pharmacokinetic profiles. Molecular dynamics simulation of the AcrB-Elastichalcone A complex remained stable over 100 ns, with minimal fluctuations in root-mean-square deviation and root-mean-square fluctuation. The screened ligand library demonstrated good drug-likeness and pharmacokinetic properties. Moreover, the MM/PB(GB)SA calculation indicated the tight binding and thermodynamic stability of the simulated protein-ligand complexes. Overall, this study highlights the potential of chalcones as promising candidates for targeting multidrug efflux pumps, offering a potential strategy to overcome antibiotic resistance. Further exploration and optimization of these compounds may lead to the development of effective therapeutics against multidrug-resistant bacterial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sreenath Dey
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kondba Gumphalwad
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Nikhil Yadav
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Rakesh Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Deepak Mahuli
- Department of Pharmacology, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| |
Collapse
|
11
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Mahmutović-Dizdarević I, Mesic A, Jerković-Mujkić A, Žujo B, Avdić M, Hukić M, Omeragić E, Osmanović A, Špirtović-Halilović S, Ahmetovski S, Mujkanović S, Pramenković E, Salihović M. Biological potential, chemical profiling, and molecular docking study of Morus alba L. extracts. Fitoterapia 2024; 177:106114. [PMID: 38971331 DOI: 10.1016/j.fitote.2024.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 μg/ml in Enterococcus faecalis to 500 μg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 μg/ml to 1000 μg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 μg/ml, 1 μg/ml, 2 μg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 μg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.
Collapse
Affiliation(s)
- Irma Mahmutović-Dizdarević
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Aner Mesic
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anesa Jerković-Mujkić
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Žujo
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Monia Avdić
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina; Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirsada Hukić
- Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Institute for Biomedical Diagnostics and Research Nalaz, Čekaluša 69, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragić
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sarah Ahmetovski
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Samra Mujkanović
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Emina Pramenković
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
| | - Mirsada Salihović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
13
|
Cioccolo S, Barritt JD, Pollock N, Hall Z, Babuta J, Sridhar P, Just A, Morgner N, Dafforn T, Gould I, Byrne B. The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs. RSC Chem Biol 2024; 5:901-913. [PMID: 39211474 PMCID: PMC11352979 DOI: 10.1039/d4cb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.
Collapse
Affiliation(s)
- Sara Cioccolo
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| | - Naomi Pollock
- School of Biosciences, University of Birmingham Birmingham UK
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London London UK
| | - Julia Babuta
- Division of Systems Medicine, Imperial College London London UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham Birmingham UK
| | - Alicia Just
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Tim Dafforn
- School of Biosciences, University of Birmingham Birmingham UK
| | - Ian Gould
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| |
Collapse
|
14
|
Singh D, Kumar D, Gayen A, Chandra M. Role of AcrAB-TolC and Its Components in Influx-Efflux Dynamics of QAC Drugs in Escherichia coli Revealed Using SHG Spectroscopy. J Phys Chem Lett 2024:7832-7839. [PMID: 39052610 DOI: 10.1021/acs.jpclett.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multidrug efflux pumps, especially those belonging to the class of resistance-nodulation-division (RND), are the key contributors to the rapidly growing multidrug resistance in Gram-negative bacteria. Understanding the role of efflux pumps in real-time drug transport dynamics across the complex dual-cell membrane envelope of Gram-negative bacteria is thus crucial for developing efficient antibiotics against them. Here, we employ second harmonic generation-based nonlinear spectroscopy to study the role of the tripartite efflux pump and its individual components. We systematically investigate the effect of periplasmic adaptor protein AcrA, inner membrane transporter protein AcrB, and outer membrane channel TolC on the overall drug transport in live Acr-type Escherichia coli and its mutant strain cells. Our results reveal that when one of its components is missing, the tripartite AcrAB-TolC efflux pump machinery in Escherichia coli can effectively function as a bipartite system, a fact that has never been demonstrated in live Gram-negative bacteria.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
15
|
Rathod S, Dey S, Pawar S, Dhavale R, Choudhari P, Rajakumara E, Mahuli D, Bhagwat D, Tamboli Y, Sankpal P, Mali S, More H. Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study. J Biomol Struct Dyn 2024; 42:5178-5196. [PMID: 37340697 DOI: 10.1080/07391102.2023.2225099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
The cases of bacterial multidrug resistance are increasing every year and becoming a serious concern for human health. Multidrug efflux pumps are key players in the formation of antibiotic resistance, which transfer out a broad spectrum of drugs from the cell and convey resistance to the host. Efflux pumps have significantly reduced the efficacy of the previously available antibiotic armory, thereby increasing the frequency of therapeutic failures. In gram-negative bacteria, the AcrAB-TolC efflux pump is the principal transporter of the substrate and plays a major role in the formation of antibiotic resistance. In the current work, advanced computer-aided drug discovery approaches were utilized to find hit molecules from the library of biogenic chalcones against the bacterial AcrB efflux pump. The results of the performed computational studies via molecular docking, drug-likeness prediction, pharmacokinetic profiling, pharmacophore mapping, density functional theory, and molecular dynamics simulation study provided ZINC000004695648, ZINC000014762506, ZINC000014762510, ZINC000095099506, and ZINC000085510993 as stable hit molecules against the AcrB efflux pumps. Identified hits could successfully act against AcrB efflux pumps after optimization as lead molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Sreenath Dey
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Swaranjali Pawar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Rakesh Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Deepak Mahuli
- Department of Pharmacology, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Durgacharan Bhagwat
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Poournima Sankpal
- Department of Pharmaceutical Chemistry, Ashokrao Mane College of Pharmacy, Kolhapur, MS, India
| | - Sachin Mali
- Department of Pharmaceutics, Y. D. Mane College of Pharmacy, Kagal, MS, India Kolhapur
| | - Harinath More
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, MS, India
| |
Collapse
|
16
|
Klenotic PA, Yu EW. Structural analysis of resistance-nodulation cell division transporters. Microbiol Mol Biol Rev 2024; 88:e0019823. [PMID: 38551344 PMCID: PMC11332337 DOI: 10.1128/mmbr.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYInfectious bacteria have both intrinsic and acquired mechanisms to combat harmful biocides that enter the cell. Through adaptive pressures, many of these pathogens have become resistant to many, if not all, of the current antibiotics used today to treat these often deadly infections. One prominent mechanism is the upregulation of efflux systems, especially the resistance-nodulation-cell division class of exporters. These tripartite systems consist of an inner membrane transporter coupled with a periplasmic adaptor protein and an outer membrane channel to efficiently transport a diverse array of substrates from inside the cell to the extracellular space. Detailed mechanistic insight into how these inner membrane transporters recognize and shuttle their substrates can ultimately inform both new antibiotic and efflux pump inhibitor design. This review examines the structural basis of substrate recognition of these pumps and the molecular mechanisms underlying multidrug extrusion, which in turn mediate antimicrobial resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Wang M, Zhao J, Liu Y, Huang S, Zhao C, Jiang Z, Gu Y, Xiao J, Wu Y, Ying R, Zhang J, Tian W. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133788. [PMID: 38367443 DOI: 10.1016/j.jhazmat.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Jian Xiao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| |
Collapse
|
18
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Giorgini G, Di Gregorio A, Mangiaterra G, Cedraro N, Minnelli C, Sabbatini G, Mobbili G, Simoni S, Vignaroli C, Galeazzi R. Inhibition of polymorphic MexXY-OprM efflux system in Pseudomonas aeruginosa clinical isolates by Berberine derivatives. ChemMedChem 2024; 19:e202300568. [PMID: 38214500 DOI: 10.1002/cmdc.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The MexXY-OprM multidrug efflux pump (EP) in aminoglycosides resistant Pseudomonas aeruginosa is one of the major resistance mechanisms, which is often overexpressed in strains isolated from pulmonary chronic disease such as cystic fibrosis.[1-3] In this research, we focused on the design of potential efflux pumps inhibitors, targeting MexY, the inner membrane component, in an allosteric site. Berberine[4] has been considered as lead molecule since we previously demonstrated its effectiveness in targeting MexY in laboratory reference strains.[5,6] Since this protein is often present in polymorphic variants in clinical strains, we sequenced and modeled all the mutated forms and we synthesized and evaluated by computational techniques, some berberine derivatives carrying an aromatic functionalization in its 13-C ring position. These compounds were tested in vitro against clinical P. aeruginosa strains for antimicrobial and antibiofilm activity. In conclusion, the results demonstrated the importance of the aromatic moiety functionalization in exerting the EP inhibitory activity in synergy with the aminoglycoside tobramycin. More, we found that aminoacidic composition of MexY in different strains must be considered for predicting potential binding site and affects the different activity of berberine derivatives. Finally, the antibiofilm effect of these new EPIs is promising, particularly for o-CH3-berberine derivative.
Collapse
Affiliation(s)
- Giorgia Giorgini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alessandra Di Gregorio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Giulia Sabbatini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
20
|
Chowdhury AR, Mukherjee D, Chatterjee R, Chakravortty D. Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay. Mol Microbiol 2024; 121:213-229. [PMID: 38071466 DOI: 10.1111/mmi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
21
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Abstract
In a recent study by Inga V. Leus, Sean R. Roberts, Anhthu Trinh, Edward W. Yu, and Helen I. Zgurskaya (J Bacteriol, 2023, https://doi.org/10.1128/jb.00217-23), it was found that the clinically relevant resistance-nodulation-cell division (RND)-type AdeABC antibiotic efflux pump from Acinetobacter baumannii exhibits close communication between its antibiotic binding sites. Alterations in one of them can have far-reaching impacts on the drug translocation pathway. These insights could reshape our understanding of RND-type efflux pump mechanisms.
Collapse
Affiliation(s)
- Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
23
|
Roy RK, Patra N. Probing the pH Sensitivity of OprM: Insights into Metastable States and Semi-Open Conformation. J Phys Chem B 2024; 128:622-634. [PMID: 38047375 DOI: 10.1021/acs.jpcb.3c05384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Efflux pumps are specialized transport proteins that play a key role in the bacterial defense against a wide spectrum of antibiotics. Hence, understanding the biophysical mechanism associated with this complex system of drug expulsion becomes crucial. This work deals with some vital aspects of the outer membrane factor (OMF) of MexAB-OprM. After being passed through MexB and MexA, efflux substrates have to go through OprM for their final judgment. Thus, it is very important to understand the periplasmic pore opening mechanism and the associated biophysical changes during this process. Our study captures a detailed analysis of the pore opening mechanism involving OprM. With powerful molecular dynamics (MD) techniques such as well-tempered metadynamics, the presence of metastable states in between open and closed states was confirmed. Also, upon mutating R376, the energy barrier for the conversion of the close to open conformation decreases, indicating an important role played by the residue. Further, constant pH MD was performed to capture the effect of pH in both conformations. OprM exhibits distinct conformational states at pH values greater than 5.5 and lower than 5.5, suggesting its pH-responsive characteristics. Overall, our study elucidates a crucial undertaking toward discovering potential inhibitors for MexAB-OprM efflux pumps.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
24
|
Rathod S, Dey S, Choudhari P, Mahuli D, Rochlani S, Dhavale R, Chaudhari S, Tamboli Y, Kilbile J, Rajakumara E. High-throughput computational screening for identification of potential hits against bacterial Acriflavine resistance protein B (AcrB) efflux pump. J Biomol Struct Dyn 2024:1-17. [PMID: 38264919 DOI: 10.1080/07391102.2024.2302936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Antibiotic resistance is a pressing global health challenge, driven in part by the remarkable efflux capabilities of efflux pump in AcrB (Acriflavine Resistance Protein B) protein in Gram-negative bacteria. In this study, a multi-approached computational screening strategy encompassing molecular docking, In silico absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis, druglikeness assessment, molecular dynamics simulations and density functional theory studies was employed to identify novel hits capable of acting against AcrB-mediated antibiotic resistance. Ligand library was acquired from the COCONUT database. Performed computational analyses unveiled four promising hit molecules (CNP0298667, CNP0399927, CNP0321542 and CNP0269513). Notably, CNP0298667 exhibited the highest negative binding affinity of -11.5 kcal/mol, indicating a possibility of strong potential to disrupt AcrB function. Importantly, all four hits met stringent druglikeness criteria and demonstrated favorable in silico ADMET profiles, underscoring their potential for further development. MD simulations over 100 ns revealed that the CNP0321542-4DX5 and CNP0269513-4DX5 complexes formed robust and stable interactions with the AcrB efflux pump. The identified hits represent a promising starting point for the design and optimization of novel therapeutics aimed at combating AcrB-mediated antibiotic resistance in Gram-negative bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sreenath Dey
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Sangareddy, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Deepak Mahuli
- Department of Pharmacology, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sneha Rochlani
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Rakesh Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Progressive Education Society's Modern College of Pharmacy, Nigdi, India
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Jaydeo Kilbile
- University Department of Basic and Applied Sciences (Chemistry), MGM University, Aurangabad, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Sangareddy, India
| |
Collapse
|
25
|
Dai JS, Xu J, Shen HJ, Chen NP, Zhu BQ, Xue ZJ, Chen HH, Ding ZS, Ding R, Qian CD. The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump. Microbiol Spectr 2024; 12:e0323723. [PMID: 38038452 PMCID: PMC10783092 DOI: 10.1128/spectrum.03237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.
Collapse
Affiliation(s)
- Jian-Sheng Dai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Jie Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Jie Xue
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Han Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chao-Dong Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Chauhan SS, Gupta A, Srivastava A, Parthasarathi R. Discovering targeted inhibitors for Escherichia coli efflux pump fusion proteins using computational and structure-guided approaches. J Comput Chem 2024; 45:13-24. [PMID: 37656428 DOI: 10.1002/jcc.27215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Multidrug resistance pathogens causing infections and illness remain largely untreated clinically. Efflux pumps are one of the primary processes through which bacteria develop resistance by transferring antibiotics from the interior of their cells to the outside environment. Inhibiting these pumps by developing efficient derivatives appears to be a promising strategy for restoring antibiotic potency. This investigation explores literature-reported inhibitors of E. coli efflux pump fusion proteins AcrB-AcrA and identify potential chemical derivatives of these inhibitors to overcome the limitations. Using computational and structure-guided approaches, a study was conducted with the selected inhibitors (AcrA:25-AcrB:59) obtained by data mining and their derivatives (AcrA:857-AcrB:3891) to identify their inhibitory effect on efflux pump using virtual screening, molecular docking and density functional theory (DFT) calculations. The finding indicates that Compound 2 (ZINC000072136376) has shown better binding and a significant inhibitory effect on AcrA, while Compound 3 (ZINC000072266819) has shown stronger binding and substantial inhibition effect on both non-mutant and mutated AcrB subunits. The identified derivatives could exhibit a better inhibitor and provide a potential approach for restoring the actions of resistant antibiotics.
Collapse
Affiliation(s)
- Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Gupta
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aashna Srivastava
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Ong A, O’Brian MR. The Bradyrhizobium japonicum exporter ExsFGH is involved in efflux of ferric xenosiderophores from the periplasm. PLoS One 2024; 19:e0296306. [PMID: 38166112 PMCID: PMC10760861 DOI: 10.1371/journal.pone.0296306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
The gram-negative bacterium Bradyrhizobium japonicum can take up structurally dissimilar ferric siderophores from the environment (xenosiderophores) to meet its nutritional iron requirements. Siderophore-bound iron transported into the periplasm is reduced to the ferrous form by FsrB, dissociated from the siderophore and the free ion is then transported into the cytoplasm by the ferrous iron transporter FeoAB. Here, we identified the RND family exporter genes exsFG and exsH in a selection for secondary site suppressor mutants that restore growth of an fsrB mutant on the siderophores ferrichrome or ferrioxamine. The low level of radiolabel accumulation from 55Fe-labeled ferrichrome or ferrioxamine observed in the fsrB mutant was restored to wild type levels in the fsrB exsG mutant. Moreover, the exsG mutant accumulated more radiolabel from the 55Fe-labeled siderophores than the wild type, but radiolabel accumulation from inorganic 55Fe was similar in the two strains. Thus, ExsFGH exports siderophore-bound iron, but not inorganic iron. The rescued fsrB exsG mutant required feoB for growth, indicating that ExsFGH acts on those siderophores in the periplasm. The exsG mutant was more sensitive to the siderophore antibiotic albomycin than the wild type, whereas the fsrB mutant was more resistant. This suggests ExsFGH normally exports ferrated albomycin. B. japonicum is naturally resistant to many antibiotics. The exsG strain was very sensitive to tetracycline, but not to six other antibiotics tested. We conclude that ExsFGH is a broad substrate exporter that is needed to maintain siderophore homeostasis in the periplasm.
Collapse
Affiliation(s)
- Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York, United States of America
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
28
|
Yu Z, Shi X, Wang Z. Structures and Efflux Mechanisms of the AcrAB-TolC Pump. Subcell Biochem 2024; 104:1-16. [PMID: 38963480 DOI: 10.1007/978-3-031-58843-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.
Collapse
Affiliation(s)
- Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Salas-Orozco MF, Lorenzo-Leal AC, de Alba Montero I, Marín NP, Santana MAC, Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102715. [PMID: 37907198 DOI: 10.1016/j.nano.2023.102715] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.
Collapse
Affiliation(s)
- Marco Felipe Salas-Orozco
- Facultad de Estomatología, Doctorado en Ciencias Odontológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Nuria Patiño Marín
- Facultad de Estomatología, Laboratorio de Investigación Clinica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Miguel Angel Casillas Santana
- Maestría en Estomatología con Opcion Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Johnson TS, Bourdine AA, Deber CM. Hydrophobic moment drives penetration of bacterial membranes by transmembrane peptides. J Biol Chem 2023; 299:105266. [PMID: 37734555 PMCID: PMC10585379 DOI: 10.1016/j.jbc.2023.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
With antimicrobial resistance (AMR) remaining a persistent and growing threat to human health worldwide, membrane-active peptides are gaining traction as an alternative strategy to overcome the issue. Membrane-embedded multi-drug resistant (MDR) efflux pumps are a prime target for membrane-active peptides, as they are a well-established contributor to clinically relevant AMR infections. Here, we describe a series of transmembrane peptides (TMs) to target the oligomerization motif of the AcrB component of the AcrAB-TolC MDR efflux pump from Escherichia coli. These peptides contain an N-terminal acetyl-A-(Sar)3 (sarcosine; N-methylglycine) tag and a C-terminal lysine tag-a design strategy our lab has utilized to improve the solubility and specificity of targeting for TMs previously. While these peptides have proven useful in preventing AcrB-mediated substrate efflux, the mechanisms by which these peptides associate with and penetrate the bacterial membrane remained unknown. In this study, we have shown peptide hydrophobic moment (μH)-the measure of concentrated hydrophobicity on one face of a lipopathic α-helix-drives bacterial membrane permeabilization and depolarization, likely through lateral-phase separation of negatively-charged POPG lipids and the disruption of lipid packing. Our results show peptide μH is an important consideration when designing membrane-active peptides and may be the determining factor in whether a TM will function in a permeabilizing or non-permeabilizing manner when embedded in the bacterial membrane.
Collapse
Affiliation(s)
- Tyler S Johnson
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Aleksandra A Bourdine
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Maldonado J, Czarnecka B, Harmon DE, Ruiz C. The multidrug efflux pump regulator AcrR directly represses motility in Escherichia coli. mSphere 2023; 8:e0043023. [PMID: 37787551 PMCID: PMC10597343 DOI: 10.1128/msphere.00430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility in Escherichia coli and other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump in E. coli and other Enterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility in E. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility in E. coli by directly repressing transcription of the flhDC operon, but not the other flagellum genes/operons tested. flhDC encodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to the flhDC promoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed in E. coli strains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility in E. coli to maintain homeostasis and escape hazards. IMPORTANCE Efflux and motility play a major role in bacterial growth, colonization, and survival. In Escherichia coli, the transcriptional repressor AcrR is known to directly repress efflux and was later found to also repress flagellum biosynthesis and motility by Kim et al. (J Microbiol Biotechnol 26:1824-1828, 2016, doi: 10.4014/jmb.1607.07058). However, it remained unknown whether AcrR represses flagellum biosynthesis and motility directly and through which target genes, or indirectly because of altering the amount of efflux. This study reveals that AcrR represses flagellum biosynthesis and motility by directly repressing the expression of the flhDC master regulator of flagellum biosynthesis and motility genes, but not the other flagellum genes tested. We also show that the antimicrobial, efflux pump substrate, and AcrR ligand ethidium bromide regulates motility via AcrR. Overall, these findings support a novel model of direct co-regulation of efflux and motility mediated by AcrR in response to stress in E. coli.
Collapse
Affiliation(s)
- Jessica Maldonado
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Barbara Czarnecka
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Dana E. Harmon
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, California, USA
| |
Collapse
|
32
|
Zheng M, Lupoli TJ. Counteracting antibiotic resistance enzymes and efflux pumps. Curr Opin Microbiol 2023; 75:102334. [PMID: 37329679 DOI: 10.1016/j.mib.2023.102334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pathogens are constantly evolving new resistance mechanisms against antibiotics; hence, strategies to potentiate existing antibiotics or combat mechanisms of resistance using adjuvants are always in demand. Recently, inhibitors have been identified that counteract enzymatic modification of the drugs isoniazid and rifampin, which have implications in the study of multi-drug-resistant mycobacteria. A wealth of structural studies on efflux pumps from diverse bacteria has also fueled the design of new small-molecule and peptide-based agents to prevent the active transport of antibiotics. We envision that these findings will inspire microbiologists to apply existing adjuvants to clinically relevant resistant strains, or to use described platforms to discover novel antibiotic adjuvant scaffolds.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
33
|
Zhang Z, Lizer N, Wu Z, Morgan CE, Yan Y, Zhang Q, Yu EW. Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance. Microbiol Spectr 2023; 11:e0119723. [PMID: 37289051 PMCID: PMC10434076 DOI: 10.1128/spectrum.01197-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Campylobacter jejuni is a bacterium that is commonly present in the intestinal tracts of animals. It is also a major foodborne pathogen that causes gastroenteritis in humans. The most predominant and clinically important multidrug efflux system in C. jejuni is the CmeABC (Campylobacter multidrug efflux) pump, a tripartite system that includes an inner membrane transporter (CmeB), a periplasmic fusion protein (CmeA), and an outer membrane channel protein (CmeC). This efflux protein machinery mediates resistance to a number of structurally diverse antimicrobial agents. A recently identified CmeB variant, termed resistance enhancing CmeB (RE-CmeB), can increase its multidrug efflux pump activity, likely by influencing antimicrobial recognition and extrusion. Here, we report structures of RE-CmeB in its apo form as well as in the presence of four different drugs by using single-particle cryo-electron microscopy (cryo-EM). Coupled with mutagenesis and functional studies, this structural information allows us to identify critical amino acids that are important for drug resistance. We also report that RE-CmeB utilizes a somewhat unique subset of residues to bind different drugs, thereby optimizing its ability to accommodate different compounds with distinct scaffolds. These findings provide insights into the structure-function relationship of this newly emerged antibiotic efflux transporter variant in Campylobacter. IMPORTANCE Campylobacter jejuni has emerged as one of the most problematic and highly antibiotic-resistant pathogens, worldwide. The Centers for Disease Control and Prevention have designated antibiotic-resistant C. jejuni as a serious antibiotic resistance threat in the United States. We recently identified a C. jejuni resistance enhancing CmeB (RE-CmeB) variant that can increase its multidrug efflux pump activity and confers an exceedingly high-level of resistance to fluoroquinolones. Here, we report the cryo-EM structures of this prevalent and clinically important C. jejuni RE-CmeB multidrug efflux pump in both the absence and presence of four antibiotics. These structures allow us to understand the action mechanism for multidrug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nicholas Lizer
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
35
|
Kato T, Okada U, Hung LW, Yamashita E, Kim HB, Kim CY, Terwilliger TC, Schweizer HP, Murakami S. Crystal structures of multidrug efflux transporters from Burkholderia pseudomallei suggest details of transport mechanism. Proc Natl Acad Sci U S A 2023; 120:e2215072120. [PMID: 37428905 PMCID: PMC10629574 DOI: 10.1073/pnas.2215072120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
BpeB and BpeF are multidrug efflux transporters from Burkholderia pseudomallei that enable multidrug resistance. Here, we report the crystal structures of BpeB and BpeF at 2.94 Å and 3.0 Å resolution, respectively. BpeB was found as an asymmetric trimer, consistent with the widely-accepted functional rotation mechanism for this type of transporter. One of the monomers has a distinct structure that we interpret as an intermediate along this functional cycle. Additionally, a detergent molecule bound in a previously undescribed binding site provides insights into substrate translocation through the pathway. BpeF shares structural similarities with the crystal structure of OqxB from Klebsiella pneumoniae, where both are symmetric trimers composed of three "binding"-state monomers. The structures of BpeB and BpeF further our understanding of the functional mechanisms of transporters belonging to the HAE1-RND superfamily.
Collapse
Affiliation(s)
- Takaaki Kato
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Ui Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Li-Wei Hung
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Osaka565-0871, Japan
| | - Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545
| | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM87545
- New Mexico Consortium, Los Alamos, NM87544
| | - Herbert P. Schweizer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ86011
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ86011
| | - Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| |
Collapse
|
36
|
Trinh TKH, Cabezas AJ, Joshi S, Catalano C, Siddique AB, Qiu W, Deshmukh S, des Georges A, Guo Y. pH-tunable membrane-active polymers, NCMNP2a- x, and their potential membrane protein applications. Chem Sci 2023; 14:7310-7326. [PMID: 37416719 PMCID: PMC10321531 DOI: 10.1039/d3sc01890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Andres Jorge Cabezas
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
| | - Soumil Joshi
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Abu Bakkar Siddique
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
- Department of Chemistry & Biochemistry, City College of New York New York New York 10017 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
37
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
39
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
40
|
Cao K, Wang Y, Bai X, Wang J, Zhang L, Tang Y, Thuku RC, Hou W, Mo G, Chen F, Jin L. Comparison of Fecal Antimicrobial Resistance Genes in Captive and Wild Asian Elephants. Antibiotics (Basel) 2023; 12:859. [PMID: 37237762 PMCID: PMC10215966 DOI: 10.3390/antibiotics12050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants.
Collapse
Affiliation(s)
- Kaixun Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yepeng Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuewei Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jishan Wang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Liting Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Yongjing Tang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Fei Chen
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
41
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
42
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
43
|
Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity. mBio 2023; 14:e0338322. [PMID: 36625574 PMCID: PMC9973356 DOI: 10.1128/mbio.03383-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Escherichia coli acriflavine resistance protein D (AcrD) is an efflux pump that belongs to the resistance-nodulation-cell division (RND) superfamily. Its primary function is to provide resistance to aminoglycoside-based drugs by actively extruding these noxious compounds out of E. coli cells. AcrD can also mediate resistance to a limited range of other amphiphilic agents, including bile acids, novobiocin, and fusidic acids. As there is no structural information available for any aminoglycoside-specific RND pump, here we describe cryo-electron microscopy (cryo-EM) structures of AcrD in the absence and presence of bound gentamicin. These structures provide new information about the RND superfamily of efflux pumps, specifically, that three negatively charged residues central to the aminoglycoside-binding site are located within the ceiling of the central cavity of the AcrD trimer. Thus, it is likely that AcrD is capable of picking up aminoglycosides via this central cavity. Through the combination of cryo-EM structural determination, mutagenesis analysis, and molecular simulation, we show that charged residues are critically important for this pump to shuttle drugs directly from the central cavity to the funnel of the AcrD trimer for extrusion. IMPORTANCE Here, we report cryo-EM structures of the AcrD aminoglycoside efflux pump in the absence and presence of bound gentamicin, posing the possibility that this pump is capable of capturing aminoglycosides from the central cavity of the AcrD trimer. The results indicate that AcrD utilizes charged residues to bind and export drugs, mediating resistance to these antibiotics.
Collapse
|
44
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
45
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
46
|
Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. MEMBRANES 2022; 12:1264. [PMID: 36557171 PMCID: PMC9783932 DOI: 10.3390/membranes12121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.
Collapse
Affiliation(s)
- Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lachlan J. Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesus E. Salcedo-Sora
- GeneMill, Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
47
|
Iwasawa J, Maeda T, Shibai A, Kotani H, Kawada M, Furusawa C. Analysis of the evolution of resistance to multiple antibiotics enables prediction of the Escherichia coli phenotype-based fitness landscape. PLoS Biol 2022; 20:e3001920. [PMID: 36512529 PMCID: PMC9746992 DOI: 10.1371/journal.pbio.3001920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The fitness landscape represents the complex relationship between genotype or phenotype and fitness under a given environment, the structure of which allows the explanation and prediction of evolutionary trajectories. Although previous studies have constructed fitness landscapes by comprehensively studying the mutations in specific genes, the high dimensionality of genotypic changes prevents us from developing a fitness landscape capable of predicting evolution for the whole cell. Herein, we address this problem by inferring the phenotype-based fitness landscape for antibiotic resistance evolution by quantifying the multidimensional phenotypic changes, i.e., time-series data of resistance for eight different drugs. We show that different peaks of the landscape correspond to different drug resistance mechanisms, thus supporting the validity of the inferred phenotype-fitness landscape. We further discuss how inferred phenotype-fitness landscapes could contribute to the prediction and control of evolution. This approach bridges the gap between phenotypic/genotypic changes and fitness while contributing to a better understanding of drug resistance evolution.
Collapse
Affiliation(s)
- Junichiro Iwasawa
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Tomoya Maeda
- Graduate School of Agriculture Research, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsushi Shibai
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hazuki Kotani
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Masako Kawada
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Chikara Furusawa
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
- Universal Biology Institute, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
48
|
Catte A, K. Ramaswamy V, Vargiu AV, Malloci G, Bosin A, Ruggerone P. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling. Front Pharmacol 2022; 13:1021916. [PMID: 36438787 PMCID: PMC9691783 DOI: 10.3389/fphar.2022.1021916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common “recognition topology” characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.
Collapse
|
49
|
Okada U, Murakami S. Structural and functional characteristics of the tripartite ABC transporter. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36409601 DOI: 10.1099/mic.0.001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest protein superfamilies and are found in all living organisms. These transporters use the energy from ATP binding and hydrolysis to transport various substrates. In this review, we focus on the structural and functional aspects of ABC transporters, with special emphasis on type VII ABC transporters, a newly defined class possessing characteristic structures. A notable feature of type VII ABC transporters is that they assemble into tripartite complexes that span both the inner and outer membranes of Gram-negative bacteria. One of the original type VII ABC transporters, which possesses all characteristic features of this class, is the macrolide efflux transporter MacB. Recent structural analyses of MacB and homologue proteins revealed the unique mechanisms of substrate translocation by type VII ABC transporters.
Collapse
Affiliation(s)
- Ui Okada
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
50
|
Khan Z, Elahi A, Bukhari DA, Rehman A. Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|