1
|
King BC, Blom AM. Intracellular complement and immunometabolism: The advantages of compartmentalization. Eur J Immunol 2024; 54:e2350813. [PMID: 38757569 DOI: 10.1002/eji.202350813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
The complement system is a proteolytic cascade triggered by pathogen and danger-associated molecular patterns, with resultant outcomes of inflammation, cellular activation, and opsonization of material for removal by phagocytosis. While first discovered as an activity in serum, it is now recognized that complement components play important roles at local and individual cell-intrinsic levels. In particular, apart from the extracellular serum activities of complement, it is now believed that complement also acts intracellularly, as part of a cellular signal transduction cascade that can stimulate cellular survival and activation, and individual immune cell phenotypes, via effects on cellular metabolism. This review will describe what is currently known about how complement functions in intracellular signal transduction, and outline the functional advantages of a compartmentalized and intracellular complement system.
Collapse
Affiliation(s)
- Ben C King
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Sweden
| |
Collapse
|
2
|
Zhong Y, Zheng C, Zhang W, Wu H, Zhang Q, Li D, Ju H, Feng H, Chen Y, Fan Y, Chen W, Wang M, Wang G. Pan-cancer analysis of Sushi domain-containing protein 4 (SUSD4) and validated in colorectal cancer. Aging (Albany NY) 2024; 16:6417-6444. [PMID: 38579174 PMCID: PMC11042942 DOI: 10.18632/aging.205712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Sushi domain-containing protein 4 (SUSD4) is a complement regulatory protein whose primary function is to inhibit the complement system, and it is involved in immune regulation. The role of SUSD4 in cancer progression has largely remained elusive. SUSD4 was studied across a variety of cancer types in this study. According to the results, there is an association between the expression level of SUSD4 and prognosis in multiple types of cancer. Further analysis demonstrated that SUSD4 expression level was related to immune cell infiltration, immune-related genes, tumor heterogeneity, and multiple cancer pathways. Additionally, we validated the function of SUSD4 in colorectal cancer cell lines and found that knockdown of SUSD4 inhibited cell growth and impacted the JAK/STAT pathway. By characterizing drug sensitivity in organoids, we found that the expression of SUSD4 showed a positive correlation trend with IC50 of Selumetinib, YK-4-279, and Piperlongumine. In conclusion, SUSD4 is a valuable prognostic indicator for diverse types of cancer, and it has the potential to be a target for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Chaojing Zheng
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Weiyuan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Hongyu Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qian Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Dechuan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Haixing Ju
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Haiyang Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yinbo Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yongtian Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Weiping Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Meng Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Guiyu Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| |
Collapse
|
3
|
Reinehr S, Wulf J, Theile J, Schulte KK, Peters M, Fuchshofer R, Dick HB, Joachim SC. In a novel autoimmune and high-pressure glaucoma model a complex immune response is induced. Front Immunol 2024; 15:1296178. [PMID: 38515755 PMCID: PMC10955086 DOI: 10.3389/fimmu.2024.1296178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background The neurodegenerative processes leading to glaucoma are complex. In addition to elevated intraocular pressure (IOP), an involvement of immunological mechanisms is most likely. In the new multifactorial glaucoma model, a combination of high IOP and optic nerve antigen (ONA) immunization leads to an enhanced loss of retinal ganglion cells accompanied by a higher number of microglia/macrophages in the inner retina. Here, we aimed to evaluate the immune response in this new model, especially the complement activation and the number of T-cells, for the first time. Further, the microglia/macrophage response was examined in more detail. Methods Six-week-old wildtype (WT+ONA) and βB1-connective tissue growth factor high-pressure mice (CTGF+ONA) were immunized with 1 mg ONA. A wildtype control (WT) and a CTGF group (CTGF) received NaCl instead. Six weeks after immunization, retinae from all four groups were processed for immunohistology, RT-qPCR, and flow cytometry, while serum was used for microarray analyses. Results We noticed elevated numbers of C1q+ cells (classical complement pathway) in CTGF and CTGF+ONA retinae as well as an upregulation of C1qa, C1qb, and C1qc mRNA levels in these groups. While the complement C3 was only increased in CTGF and CTGF+ONA retinae, enhanced numbers of the terminal membrane attack complex were noted in all three glaucoma groups. Flow cytometry and RT-qPCR analyses revealed an enhancement of different microglia/macrophages markers, including CD11b, especially in CTGF and CTGF+ONA retinae. Interestingly, increased retinal mRNA as well as serum levels of the tumor necrosis factor α were found throughout the different glaucoma groups. Lastly, more T-cells could be observed in the ganglion cell layer of the new CTGF+ONA model. Conclusion These results emphasize an involvement of the complement system, microglia/macrophages, and T-cells in glaucomatous disease. Moreover, in the new multifactorial glaucoma model, increased IOP in combination with autoimmune processes seem to enforce an additional T-cell response, leading to a more persistent pathology. Hence, this new model mimics the pathomechanisms occurring in human glaucoma more accurately and could therefore be a helpful tool to find new therapeutic approaches for patients in the future.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Julien Wulf
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Janine Theile
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Kim K. Schulte
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Regensburg, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Tieu V, Sotillo E, Bjelajac JR, Chen C, Malipatlolla M, Guerrero JA, Xu P, Quinn PJ, Fisher C, Klysz D, Mackall CL, Qi LS. A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 2024; 187:1278-1295.e20. [PMID: 38387457 PMCID: PMC10965243 DOI: 10.1016/j.cell.2024.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Victor Tieu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy R Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin A Guerrero
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94080, USA.
| |
Collapse
|
5
|
Biber J, Jabri Y, Glänzer S, Dort A, Hoffelner P, Schmidt CQ, Bludau O, Pauly D, Grosche A. Gliosis-dependent expression of complement factor H truncated variants attenuates retinal neurodegeneration following ischemic injury. J Neuroinflammation 2024; 21:56. [PMID: 38388518 PMCID: PMC10885619 DOI: 10.1186/s12974-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.
Collapse
Affiliation(s)
- Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Aaron Dort
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
- Institute of Pharmacy, Biochemical Pharmacy Group, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, University of Marburg, Marburg, Germany.
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Chen Y, Bounds SE, Ma X, Karmoker JR, Liu Y, Ma JX, Cai J. Interleukin-17-mediated protective cytokine signaling against degeneration of the retinal pigment epithelium. Proc Natl Acad Sci U S A 2023; 120:e2311647120. [PMID: 38085785 PMCID: PMC10742376 DOI: 10.1073/pnas.2311647120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal γδ T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to characterize the profiles of immune cells in mouse choroid. We found that γδ T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6. This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal γδ T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Sarah E. Bounds
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - James Regun Karmoker
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
7
|
Meyer BJ, Kunz N, Seki S, Higgins R, Ghosh A, Hupfer R, Baldrich A, Hirsiger JR, Jauch AJ, Burgener AV, Lötscher J, Aschwanden M, Dickenmann M, Stegert M, Berger CT, Daikeler T, Heijnen I, Navarini AA, Rudin C, Yamamoto H, Kemper C, Hess C, Recher M. Immunologic and Genetic Contributors to CD46-Dependent Immune Dysregulation. J Clin Immunol 2023; 43:1840-1856. [PMID: 37477760 PMCID: PMC10661731 DOI: 10.1007/s10875-023-01547-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.
Collapse
Affiliation(s)
- Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Natalia Kunz
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Adhideb Ghosh
- Dermatology, University Hospital Basel, Basel, Switzerland
- Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anne-Valérie Burgener
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jonas Lötscher
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Markus Aschwanden
- Department of Angiology, University Hospital Basel, Basel, Switzerland
| | - Michael Dickenmann
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Mihaela Stegert
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Thomas Daikeler
- Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Christoph Rudin
- University Children's Hospital, University of Basel, Basel, Switzerland
| | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Claudia Kemper
- Complement and Inflammation Research Section, CIRS, DIR, NHLBI, NIH, Bethesda, USA
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
- University Center for Immunology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
11
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
12
|
Jiang Q, Wang Q, Tan S, Cai J, Ye X, Su G, Yang P. Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet's Uveitis. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37093132 PMCID: PMC10148662 DOI: 10.1167/iovs.64.4.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the potential role of plasma-derived exosomal microRNAs (miRNAs) in the development of regulatory T cell (Treg)/T helper 17 (Th17) cell imbalances in Behçet's uveitis (BU). Methods The exosome treatment was conducted to evaluate the effects of plasma exosomes from patients with active BU and healthy controls on the Treg/Th17 cell balance. miRNA sequencing analysis of plasma exosomes was conducted to identify differentially expressed miRNAs between patients with active BU and healthy controls. miRTarBase analysis and dual-luciferase reporter assays were conducted to identify the target genes of miR-19b-3p. CD4+T cells were transfected with miR-19b-3p mimic or inhibitor to evaluate its regulation of the Treg/Th17 cell balance. The Treg/Th17 cell balance in CD4+T cells was evaluated by flow cytometry and enzyme-linked immunosorbent assay. Results Exosomes from patients with active BU promoted Th17 cell differentiation and inhibited Treg cell differentiation. MiRNA sequencing analysis revealed 177 upregulated and 274 downregulated miRNAs in plasma exosomes of patients with active BU. Among them, miR-19b-3p was significantly elevated, and its target genes were identified as being involved in T-cell differentiation. miR-19b-3p overexpression downregulated CD46 expression and the Treg/Th17 cell ratio in CD4+T cells from healthy controls, whereas miR-19b-3p inhibition reversed these regulatory effects and restored the Treg/Th17 cell balance of CD4+T cells from patients with active BU. Conclusions Plasma-derived exosomes from patients with active BU showed a markedly differential miRNA expression in comparison to healthy controls. Highly expressed miRNA-19b-3p could induce a Treg/Th17 cell imbalance, probably by downregulating CD46 expression.
Collapse
Affiliation(s)
- Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jinyu Cai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
14
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
15
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
16
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Nogueira RA, Lira MGS, Licá ICL, Frazão GCCG, Dos Santos VAF, Filho ACCM, Rodrigues JGM, Miranda GS, Carvalho RC, Nascimento FRF. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives. Mol Biochem Parasitol 2022; 252:111531. [PMID: 36375598 DOI: 10.1016/j.molbiopara.2022.111531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.
Collapse
Affiliation(s)
- Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Education, Federal Institute of Education, Science and Technology of Maranhão, Zé Doca, MA, Brazil
| | - Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - Vitor Augusto Ferreira Dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Silva Miranda
- Department of Education, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, MA, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
18
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Lupus nephritis with corticosteroid responsiveness: molecular changes of CD46-mediated type 1 regulatory T cells. Pediatr Res 2022; 92:1099-1107. [PMID: 34952938 DOI: 10.1038/s41390-021-01882-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The engagement of the complement regulatory proteins CD46 and CD3 in human CD4+ T cells induces the type 1 regulatory T cells (Tr1) and interleukin-10 (IL-10) secretion. This study aimed to elucidate the molecular changes of Tr1 cells through CD46 cytoplasmic Cyt1 tail in lupus nephritis (LN) respond to intravenous methylprednisolone (ivMP) therapy. METHODS We enrolled 40 pediatric patients with LN and 30 healthy controls. Clinical characteristics and peripheral blood mononuclear cells were collected before and 3 days after the administration of ivMP. Kidney specimens were taken from five LN and five minimal-change nephrotic syndrome patients. RESULTS We found that defective CD46-mediated T-helper type 1 contraction (IL-10 switching) is present in active LN patients. The ivMP therapy enhanced LN remission, restored the production of IL-10, increased the CD46-Cyt1/Cyt2 ratio, AKT, and cAMP-responsive element-binding protein phosphorylation, and induced migration with the expression of chemokine receptor molecules CCR4, CCR6, and CCR7 of CD3/CD46-activated Tr1 cells. CONCLUSIONS Pharmacologic interventions that alter the patterns of CD46-Cyt1/Cyt2 expression and the secretion of IL-10 by CD3/CD46-activated Tr1 cells can be used in patients with active LN. IMPACT In patients with LN, ivMP was associated with increased IL-10 production and increased CD46-Cyt1/Cyt2 ratio and AKT phosphorylation by Tr1 cells, with enhanced potential to migration in response to CCL17. These results suggest that expression levels of CD46 isoforms Cyt1 and Cyt2 in CD4 + CD46 + Tr1 cells differ in patients with active LN but can be corrected by corticosteroid treatment. Enhancing the expression of functional CD4 + CD46 + Tr1 cells may be a useful therapeutic approach for LN.
Collapse
|
20
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
21
|
Ghorbaninezhad F, Masoumi J, Bakhshivand M, Baghbanzadeh A, Mokhtarzadeh A, Kazemi T, Aghebati-Maleki L, Shotorbani SS, Jafarlou M, Brunetti O, Santarpia M, Baradaran B, Silvestris N. CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T cell responses in vitro. Front Immunol 2022; 13:931316. [PMID: 35979362 PMCID: PMC9376327 DOI: 10.3389/fimmu.2022.931316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has increased interest among anti-cancer immunotherapies. Nevertheless, the immunosuppressive mechanisms in the tumor milieu, e.g., inhibitory immune checkpoint molecules, have been implicated in diminishing the efficacy of DC-mediated anti-tumoral immune responses. Therefore, the main challenge is to overcome inhibitory immune checkpoint molecules and provoke efficient T-cell responses to antigens specifically expressed by cancerous cells. Among the inhibitory immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression on DCs diminishes their maturation and antigen presentation capability. Accordingly, we hypothesized that the expression of CTLA-4 on DCs inhibits the T cell-mediated anti-tumoral responses generated following the presentation of tumor antigens by DCs to T lymphocytes. In this study, we loaded colorectal cancer (CRC) cell lysate on DCs and inhibited the expression of CTLA-4 by small interfering RNA (siRNA) in them to investigate the DCs’ functional and phenotypical features, and T-cell mediated responses following DC/T cell co-culture. Our results demonstrated that blockade of CTLA-4 could promote stimulatory properties of DCs. In addition, CTLA-4 silenced CRC cell lysate-loaded DCs compared to the DCs without CTLA-4 silencing resulted in augmented T cell proliferation and cytokine production, i.e., IFN-γ and IL-4. Taken together, our findings suggest CTLA-4 silenced CRC cell lysate-loaded DCs as a promising therapeutic approach however further studies are needed before this strategy can be used in clinical practice.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| |
Collapse
|
22
|
Chopra D, Arens RA, Amornpairoj W, Lowes MA, Tomic-Canic M, Strbo N, Lev-Tov H, Pastar I. Innate immunity and microbial dysbiosis in hidradenitis suppurativa - vicious cycle of chronic inflammation. Front Immunol 2022; 13:960488. [PMID: 35967376 PMCID: PMC9368759 DOI: 10.3389/fimmu.2022.960488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS.
Collapse
Affiliation(s)
- Divya Chopra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rachel A. Arens
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Watcharee Amornpairoj
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Curr Opin Hematol 2022; 29:218-224. [PMID: 35787550 DOI: 10.1097/moh.0000000000000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.
Collapse
|
24
|
Krishnarajah S, Becher B. T H Cells and Cytokines in Encephalitogenic Disorders. Front Immunol 2022; 13:822919. [PMID: 35320935 PMCID: PMC8934849 DOI: 10.3389/fimmu.2022.822919] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The invasion of immune cells into the central nervous system (CNS) is a hallmark of the process we call neuroinflammation. Diseases such as encephalitides or multiple sclerosis (MS) are characterised by the dramatic influx of T lymphocytes and monocytes. The communication between inflammatory infiltrates and CNS resident cells is primarily mediated through cytokines. Over the years, numerous cytokine networks have been assessed to better understand the development of immunopathology in neuroinflammation. In MS for instance, many studies have shown that CD4+ T cells infiltrate the CNS and subsequently lead to immunopathology. Inflammatory CD4+ T cells, such as TH1, TH17, GM-CSF-producing helper T cells are big players in chronic neuroinflammation. Conversely, encephalitogenic or meningeal regulatory T cells (TREGs) and TH2 cells have been shown to drive a decrease in inflammatory functions in microglial cells and thus promote a neuroprotective microenvironment. Recent studies report overlapping as well as differential roles of these cells in tissue inflammation. Taken together, this suggests a more complex relationship between effector T cell subsets in neuroinflammation than has hitherto been established. In this overview, we review the interplay between helper T cell subsets infiltrating the CNS and how they actively contribute to neuroinflammation and degeneration. Importantly, in this context, we will especially focus on the current knowledge regarding the contribution of various helper cell subsets to neuroinflammation by referring to their helper T cell profile in the context of their target cell.
Collapse
|
25
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
26
|
Szadai L, Velasquez E, Szeitz B, de Almeida NP, Domont G, Betancourt LH, Gil J, Marko-Varga M, Oskolas H, Jánosi ÁJ, Boyano-Adánez MDC, Kemény L, Baldetorp B, Malm J, Horvatovich P, Szász AM, Németh IB, Marko-Varga G. Deep Proteomic Analysis on Biobanked Paraffine-Archived Melanoma with Prognostic/Predictive Biomarker Read-Out. Cancers (Basel) 2021; 13:6105. [PMID: 34885218 PMCID: PMC8657028 DOI: 10.3390/cancers13236105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.
Collapse
Affiliation(s)
- Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Erika Velasquez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Beáta Szeitz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
| | - Natália Pinto de Almeida
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Gilberto Domont
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Lazaro Hiram Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Matilda Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Ágnes Judit Jánosi
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Maria del Carmen Boyano-Adánez
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcala de Henares, 28801 Alcalá de Henares, Madrid, Spain;
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
- HCEMM-USZ Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Bo Baldetorp
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - A. Marcell Szász
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
27
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Yarmoska SK, Alawieh AM, Tomlinson S, Hoang KB. Modulation of the Complement System by Neoplastic Disease of the Central Nervous System. Front Immunol 2021; 12:689435. [PMID: 34671342 PMCID: PMC8521155 DOI: 10.3389/fimmu.2021.689435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.
Collapse
Affiliation(s)
- Steven K. Yarmoska
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Kimberly B. Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia 2021; 23:743-753. [PMID: 34225099 PMCID: PMC8259224 DOI: 10.1016/j.neo.2021.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic and aggressive subtype of breast cancer and cases presenting with lymph node involvement have worse outcomes. This study aimed to determine the regions of copy number variation (CNV) associated with lymph node metastasis in TNBC patients. CNV analyses were performed in a study cohort of 23 invasive ductal carcinomas (IDCs), 12 lymph node metastases (LNmets), and 7 normal adjacent tissues (NATs); as well as in an independent cohort containing 70 TNBC IDCs and the same 7 NATs. CNV-associated genes were analyzed using GO-enrichment and Pathway analysis. The prognostic role for genes showing CNV-based changes in messenger RNA expression was determined using the Kaplan-Meier plotter database. For the IDCs, there were a number of variations that were common in both the study and independent cohorts in the amplified regions of 1q, 8q, 19 (p and q), 2p, 5p and the deleted regions in 8p followed by 5q, and 19p. The most frequently amplified regions in the LNmets of the study cohort were 4q28.3, 2p, 3q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 6p22.1 and the most frequently deleted regions were in 1p36.23, 4q21.1 and 5q. A total of 686 (441 amplified and 245 deleted) genes were associated with LNmets. The LNmet-associated genes were highly enriched for “regulation of complement activation,” “regulation of protein activation cascade,” “regulation of humoral immune response,” “oxytocin signalling pathway,” and “TRAIL binding” pathways. Moreover, 6/686 LNmet-associated genes showed CNV-based changes in their mRNA expression of which, high expression of ASPM and KIF14 was significantly associated with worse relapse-free survival. This study has identified several CNV regions in TNBC that could play a major role in metastasis to the lymph node.
Collapse
Affiliation(s)
- Mamta Pariyar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrea Johns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
30
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
32
|
Sayitoglu EC, Freeborn RA, Roncarolo MG. The Yin and Yang of Type 1 Regulatory T Cells: From Discovery to Clinical Application. Front Immunol 2021; 12:693105. [PMID: 34177953 PMCID: PMC8222711 DOI: 10.3389/fimmu.2021.693105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells are essential players of peripheral tolerance and suppression of inflammatory immune responses. Type 1 regulatory T (Tr1) cells are FoxP3- regulatory T cells induced in the periphery under tolerogenic conditions. Tr1 cells are identified as LAG3+CD49b+ mature CD4+ T cells that promote peripheral tolerance through secretion of IL-10 and TGF-β in addition to exerting perforin- and granzyme B-mediated cytotoxicity against myeloid cells. After the initial challenges of isolation were overcome by surface marker identification, ex vivo expansion of antigen-specific Tr1 cells in the presence of tolerogenic dendritic cells (DCs) and IL-10 paved the way for their use in clinical trials. With one Tr1-enriched cell therapy product already in a Phase I clinical trial in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), Tr1 cell therapy demonstrates promising results so far in terms of efficacy and safety. In the current review, we identify developments in phenotypic and molecular characterization of Tr1 cells and discuss the potential of engineered Tr1-like cells for clinical applications of Tr1 cell therapies. More than 3 decades after their initial discovery, Tr1 cell therapy is now being used to prevent graft versus host disease (GvHD) in allo-HSCT and will be an alternative to immunosuppression to promote graft tolerance in solid organ transplantation in the near future.
Collapse
Affiliation(s)
- Ece Canan Sayitoglu
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Robert Arthur Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States.,Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
The complement system in primary Sjögren's syndrome: the expression of certain cascade and regulatory proteins in labial salivary glands - observational study. Reumatologia 2020; 58:357-366. [PMID: 33456078 PMCID: PMC7792541 DOI: 10.5114/reum.2020.102000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction The complement cascade and regulatory proteins are involved in the pathogenesis of the Sjögren's syndrome and other autoimmune diseases. The complement activation via the alternative pathway was recognized as a major pathogenic mechanism in autoimmune conditions. The aim of this study was to assess expression of complement cascade components and regulatory proteins in minor salivary glands in patients with primary Sjögren's syndrome (pSS). Materials and methods The expression of C1q and C5b-9 - membrane attack complex and regulatory proteins such as: membrane cofactor protein (MCP), decay-accelerating factor (DAF) and protectin were examined using immunochemistry method in specimens from biopsy of minor salivary glands in pSS patients. The biopsy material was obtained from 20 pSS patients, 5 patients with non-specific sialadenitis and from 5 patients with suspicion of dryness syndrome without sialadenitis confirmation. Results None of the examined samples showed the expression of C1q or the effector C5b-9. Membrane cofactor protein expression was lower in pSS group than in both non-specific sialadenitis and noninflamed salivary glands. The inflammatory cells in pSS samples partially expressed MCP. There were differences in the sites and intensity of membrane protectin expression exclusively on the luminal surfaces in pSS; on the luminal and, partially, antiluminal surface in non-specific inflammation, and on the entire cell surface in unaffected salivary glands. There were no DAF expression in salivary gland tissue in biopsy specimens in all studied subjects. Conclusions The study demonstrated the absence of complement-cascade proteins (C1q, MAC) in the salivary glands of pSS patients, which may indicated a lack of local complement activation via the classical pathway and the observed gland tissue damage being due to a mechanism other than MAC-induced cytolysis. The differences in the expression of complement regulatory proteins between pSS, non-specific sialadenitis, and normal salivary glands may indicate that alternative functions of these regulatory proteins may be of greater significance in pSS. Low MCP expression in pSS in comparison with non-specific sialadenitis and normal salivary glands, may suggest altered modulation of cell-mediated immunity in pSS. The differences in the location and intensity of protectin (CD59) expression indicates a possibility of reducing the proinflammatory effect of protectin in pSS.
Collapse
|
35
|
Killick J, Hay J, Morandi E, Vermeren S, Kari S, Angles T, Williams A, Damoiseaux J, Astier AL. Vitamin D/CD46 Crosstalk in Human T Cells in Multiple Sclerosis. Front Immunol 2020; 11:598727. [PMID: 33329593 PMCID: PMC7732696 DOI: 10.3389/fimmu.2020.598727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), in which T-cell migration into the CNS is key for pathogenesis. Patients with MS exhibit impaired regulatory T cell populations, and both Foxp3+ Tregs and type I regulatory T cells (Tr1) are dysfunctional. MS is a multifactorial disease and vitamin D deficiency is associated with disease. Herein, we examined the impact of 1,25(OH)2D3 on CD4+ T cells coactivated by either CD28 to induce polyclonal activation or by the complement regulator CD46 to promote Tr1 differentiation. Addition of 1,25(OH)2D3 led to a differential expression of adhesion molecules on CD28- and CD46-costimulated T cells isolated from both healthy donors or from patients with MS. 1,25(OH)2D3 favored Tr1 motility though a Vitamin D-CD46 crosstalk highlighted by increased VDR expression as well as increased CYP24A1 and miR-9 in CD46-costimulated T cells. Furthermore, analysis of CD46 expression on T cells from a cohort of patients with MS supplemented by vitamin D showed a negative correlation with the levels of circulating vitamin D. Moreover, t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis allowed the visualization and identification of clusters increased by vitamin D supplementation, but not by placebo, that exhibited similar adhesion phenotype to what was observed in vitro. Overall, our data show a crosstalk between vitamin D and CD46 that allows a preferential effect of Vitamin D on Tr1 cells, providing novel key insights into the role of an important modifiable environmental factor in MS.
Collapse
Affiliation(s)
- Justin Killick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanne Hay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Morandi
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Saniya Kari
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Thibault Angles
- Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| | - Anna Williams
- Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre de Physiopathologie Toulouse-Purpan (CPTP), INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| |
Collapse
|
36
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
37
|
Ahmed A, Vyakarnam A. Emerging patterns of regulatory T cell function in tuberculosis. Clin Exp Immunol 2020; 202:273-287. [PMID: 32639588 PMCID: PMC7670141 DOI: 10.1111/cei.13488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 causes of mortality worldwide from a single infectious agent and has significant implications for global health. A major hurdle in the development of effective TB vaccines and therapies is the absence of defined immune‐correlates of protection. In this context, the role of regulatory T cells (Treg), which are essential for maintaining immune homeostasis, is even less understood. This review aims to address this knowledge gap by providing an overview of the emerging patterns of Treg function in TB. Increasing evidence from studies, both in animal models of infection and TB patients, points to the fact the role of Tregs in TB is dependent on disease stage. While Tregs might expand and delay the appearance of protective responses in the early stages of infection, their role in the chronic phase perhaps is to counter‐regulate excessive inflammation. New data highlight that this important homeostatic role of Tregs in the chronic phase of TB may be compromised by the expansion of activated human leucocyte antigen D‐related (HLA‐DR)+CD4+ suppression‐resistant effector T cells. This review provides a comprehensive and critical analysis of the key features of Treg cells in TB; highlights the importance of a balanced immune response as being important in TB and discusses the importance of probing not just Treg frequency but also qualitative aspects of Treg function as part of a comprehensive search for novel TB treatments.
Collapse
Affiliation(s)
- A Ahmed
- Laboratory of Immunology of HIV-TB Co-infection, Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc), Bangalore, India
| | - A Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Center for Infectious Disease Research (CIDR), Indian Institute of Science (IISc), Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London (KCL), London, UK
| |
Collapse
|
38
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
39
|
Clauder AK, Kordowski A, Bartsch YC, Köhl G, Lilienthal GM, Almeida LN, Lindemann T, Petry J, Rau CN, Gramalla-Schmitz A, Dühring L, Elbracht C, Kenno S, Tillmann J, Wuhrer M, Ludwig RJ, Ibrahim SM, Bieber K, Köhl J, Ehlers M, Manz RA. IgG Fc N-Glycosylation Translates MHCII Haplotype into Autoimmune Skin Disease. J Invest Dermatol 2020; 141:285-294. [PMID: 32653301 DOI: 10.1016/j.jid.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.
Collapse
Affiliation(s)
- Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christina N Rau
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Lara Dühring
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Claudia Elbracht
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
40
|
Martínez-Aguilar L, Pérez-Ramírez C, Maldonado-Montoro MDM, Carrasco-Campos MI, Membrive-Jiménez C, Martínez-Martínez F, García-Collado C, Calleja-Hernández MÁ, Ramírez-Tortosa MC, Jiménez-Morales A. Effect of genetic polymorphisms on therapeutic response in multiple sclerosis relapsing-remitting patients treated with interferon-beta. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 785:108322. [PMID: 32800273 DOI: 10.1016/j.mrrev.2020.108322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
Treatment with interferon beta (IFNβ) is one of the first-line treatments for multiple sclerosis. In clinical practice, however, many patients present suboptimal response to IFNβ, with the proportion of non-responders ranging from 20 to 50%. This variable response can be affected by genetic factors, such as polymorphisms in the genes involved in the disease state, pharmacodynamics, metabolism or in the action mechanism of IFNβ, which can affect the efficacy of this drug. This review assesses the impact of pharmacogenetics studies on response to IFNβ treatment among patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The results suggest that the detection of polymorphisms in several genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3, MxA, PELI3 and ZNF697) could be used in the future as predictive markers of response to IFNβ treatment in patients diagnosed with RRMS. However, few studies have been carried out and they have been performed on small sample sizes, which makes it difficult to generalize the role of these genes in IFNβ treatment. Studies on large sample sizes with longer term follow-up are therefore required to confirm these results.
Collapse
Affiliation(s)
- Laura Martínez-Aguilar
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Cristina Pérez-Ramírez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen Macarena, Dr. Fedriani, 3, 41009 Sevilla, Spain.
| | | | - María Isabel Carrasco-Campos
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Cristina Membrive-Jiménez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Fernando Martínez-Martínez
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Carlos García-Collado
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | | | - María Carmen Ramírez-Tortosa
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n 18071 Granada, Spain.
| | - Alberto Jiménez-Morales
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| |
Collapse
|
41
|
Gomez-Lopez N, Arenas-Hernandez M, Romero R, Miller D, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Hassan SS, Hsu CD, Tse H, Sanchez-Torres C, Done B, Tarca AL. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep 2020; 32:107874. [PMID: 32640239 PMCID: PMC7396155 DOI: 10.1016/j.celrep.2020.107874] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) have been exhaustively investigated during early pregnancy; however, their role later in gestation is poorly understood. Herein, we report that functional Tregs are reduced at the maternal-fetal interface in a subset of women with idiopathic preterm labor/birth, which is accompanied by a concomitant increase in Tc17 cells. In mice, depletion of functional Tregs during late gestation induces preterm birth and adverse neonatal outcomes, which are rescued by the adoptive transfer of such cells. Treg depletion does not alter obstetrical parameters in the mother, yet it increases susceptibility to endotoxin-induced preterm birth. The mechanisms whereby depletion of Tregs induces adverse perinatal outcomes involve tissue-specific immune responses and mild systemic maternal inflammation, together with dysregulation of developmental and cellular processes in the placenta, in the absence of intra-amniotic inflammation. These findings provide mechanistic evidence supporting a role for Tregs in the pathophysiology of idiopathic preterm labor/birth and adverse neonatal outcomes.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; Detroit Medical Center, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Harley Tse
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City 07360, Mexico
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| |
Collapse
|
42
|
Chiarini M, Capra R, Serana F, Bertoli D, Sottini A, Giustini V, Scarpazza C, Rovaris M, Torri Clerici V, Ferraro D, Galgani S, Solaro C, Conti MZ, Visconti A, Imberti L. Simultaneous quantification of natural and inducible regulatory T-cell subsets during interferon-β therapy of multiple sclerosis patients. J Transl Med 2020; 18:169. [PMID: 32299447 PMCID: PMC7161224 DOI: 10.1186/s12967-020-02329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background The mechanisms underlying the therapeutic activity of interferon-β in multiple sclerosis are still not completely understood. In the present study, we evaluated the short and long-term effects of interferon-β treatment on different subsets of regulatory T cells in relapsing–remitting multiple sclerosis patients biologically responsive to treatment because of mixovirus resistance protein A inducibility. Methods In this prospective longitudinal study, subsets of natural regulatory T cells (naïve, central memory and effector memory) and inducible regulatory T cells (Tr1), as well as in vitro-induced regulatory T cells (Tr1-like cells), were simultaneously quantified by flow cytometry in samples prepared from 148 therapy-naïve multiple sclerosis patients obtained before and after 6, 12, 18, and 24 months of interferon-β-1a treatment. mRNA for interleukin-10 and Tr1-related genes (CD18, CD49b, and CD46, together with Cyt-1 and Cyt-2 CD46-associated isoforms) were quantified in Tr1-like cells. Results Despite profound inter-individual variations in the modulation of all regulatory T-cell subsets, the percentage of natural regulatory T cells increased after 6, 12, and 24 months of interferon-β treatment. This increase was characterized by the expansion of central and effector memory regulatory T-cell subsets. The percentage of Tr1 significantly enhanced at 12 months of therapy and continued to be high at the subsequent evaluation points. Patients experiencing relapses displayed a higher percentage of naïve regulatory T cells and a lower percentage of central memory regulatory T cells and of Tr1 before starting interferon-β therapy. In addition, an increase over time of central memory and of Tr1 was observed only in patients with stable disease. However, in vitro-induced Tr1-like cells, prepared from patients treated for 24 months, produced less amount of interleukin-10 mRNA compared with pre-treatment Tr1-like cells. Conclusion Interferon-β induces the expansion of T regulatory subsets endowed with a high suppressive activity, especially in clinically stable patients. The overall concurrent modulation of natural and inducible regulatory T-cell subsets might explain the therapeutic effects of interferon-β in multiple sclerosis patients.
Collapse
Affiliation(s)
- Marco Chiarini
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy.,Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy
| | - Federico Serana
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili, Brescia, Italy.,Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Bertoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Viviana Giustini
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Cristina Scarpazza
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy.,Department of General Psychology, University of Padua, Padova, Italy
| | | | | | - Diana Ferraro
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Claudio Solaro
- Department of Rehabilitation, CRRF Mons Luigi Novarese Moncrivello, Vercelli, Italy
| | | | | | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), ASST Spedali Civili, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | | |
Collapse
|
43
|
Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 2020; 3:100039. [PMID: 32743522 PMCID: PMC7388381 DOI: 10.1016/j.jtauto.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged to be an autoimmune disease affecting the neuronal myelin structure of the CNS. Autoantigens recognized as the target of this autoimmune process are: myelin basal protein, anti-proteolipid protein, antimyelin-associated glycoprotein and antimyelin-based oligodendrocytic basic protein. Ample evidence supports the idea of a dysregulation of immunological tolerance towards self-antigens of neuronal myelin structure triggered by one or more viral or bacterial microbial agents in predisposed HLA gene subjects. Genetic predisposition to MS has been highlighted by numerous studies associating the disease to specific HLA haplotypes. Moreover, a wide range of evidence supports the fact that MS may be consequence of one or more viral or bacterial infections such as measles virus, EBV, HHV6, HZV, Chlamydia pneumoniae, Helicobacter Pylori, and other microbial agents. Microbiota elements also seems to have a role on the determinism of the disease as a pathogenic or protective factor. The autoimmune pathogenetic process could arise when a molecular mimicry between a foreign microbial antigen and an auto-antigen occurs in an HLA gene subject competent for that particular antigen. The antigen-presenting cells in this case would induce the activation of a specific Th clone causing a cross-reaction between a foreign antigen and an autoantigen resulting in an autoimmune response. A multifactorial ethiopathogenetic model based on immunomediation is a reliable hypothesis for multiple sclerosis. Evidence found in the scientific literature makes it possible to reconstruct this etiopathogenetic hypothesis for MS. HLA gene predisposition, correlation with infections, molecular mimicry and other immunological data are reported.
Collapse
Affiliation(s)
- Salvatore Cavallo
- Expert Doctor in Non-Conventional Medicine, Professor and Member of the Board of the MMS, MMS (Medicina di Modulazione Dei Sistemi) Roma, Salvatore Cavallo Via G.B. Pergolesi, 28, 75100, Matera, Italy
| |
Collapse
|
44
|
Kitcharoensakkul M, Bacharier LB, Yin-Declue H, Boomer JS, Sajol G, Leung MK, Wilson B, Schechtman KB, Atkinson JP, Green JM, Castro M. Impaired tumor necrosis factor-α secretion by CD4 T cells during respiratory syncytial virus bronchiolitis associated with recurrent wheeze. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:30-39. [PMID: 31901157 PMCID: PMC7016853 DOI: 10.1002/iid3.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Infants with severe respiratory syncytial virus (RSV) bronchiolitis have an increased risk of recurrent wheezing and asthma. We aimed to evaluate the relationships between regulatory T cell (Treg) percentage and cytokine production of in vitro-stimulated CD4+ T cells during acute bronchiolitis and the development of recurrent wheezing in the first 3 years of life. METHODS We obtained peripheral blood from 166 infants hospitalized with their first episode of RSV-confirmed bronchiolitis. Granzyme B (GZB) expression, and interleukin-10, interferon-γ, tumor necrosis factor-α (TNF-α), IL-4, and IL-5 production by in vitro anti-CD3/CD28- and anti-CD3/CD46-activated CD4+ T cells, and percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells were measured by flow cytometry. Wheezing was assessed every 6 months. Recurrent wheezing was defined as three or more episodes following the initial RSV bronchiolitis. RESULTS Sixty-seven percent (n = 111) of children had wheezing after their initial RSV infection, with 30% having recurrent wheezing. The percentage of peripheral Treg (CD4+CD25hi Foxp3hi ) cells was not significantly different between the wheezing groups. Decreased TNF-α production from anti-CD3/CD28- and anti-CD3/CD46- activated CD4+ T cells was observed in the recurrent wheezers, compared with nonwheezers (p = .048 and .03, respectively). There were no significant differences in the GZB+ CD4+ T cells and production of other inflammatory cytokines between these groups. CONCLUSIONS We demonstrated lower TNF-α production by in vitro stimulated CD4+ T cells during severe RSV bronchiolitis in children that subsequently developed recurrent wheezing, compared with children with no subsequent wheeze. These findings support the role of CD4+ T cell immunity in the development of subsequent wheezing in these children.
Collapse
Affiliation(s)
- Maleewan Kitcharoensakkul
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Leonard B Bacharier
- The Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Huiqing Yin-Declue
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan S Boomer
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Geneline Sajol
- The Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marilyn K Leung
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brad Wilson
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth B Schechtman
- The Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - John P Atkinson
- The Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mario Castro
- The Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
45
|
|
46
|
Molecular Patterns Discriminate Accommodation and Subclinical Antibody-mediated Rejection in Kidney Transplantation. Transplantation 2019; 103:909-917. [PMID: 30801516 DOI: 10.1097/tp.0000000000002604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Accommodation in ABO-incompatible (ABOi) transplantation and subclinical antibody-mediated rejection in HLA-incompatible (HLAi) transplantation share several morphological similarities. Because the clinical long-term outcomes differ, we hypothesized different molecular processes involved in ABOi transplantation and subclinical antibody-mediated rejection. METHODS Using Illumina Human HT-12 v4 Expression BeadChips, the whole transcriptome was evaluated based on 3-month protocol C4d+ biopsies in otherwise stable ABOi and HLAi kidney grafts, as well as in C4d-negative HLA-compatible grafts exhibiting normal histological findings. Top differently regulated genes were further validated using real-time quantitative polymerase chain reaction in another patient cohort and complement regulatory proteins by immunohistochemistry. RESULTS In the case of genes involved in immune response-related biological processes, ABOi and HLAi cohorts had similar transcriptomic profiles to C4d-negative controls. The majority of deregulated genes in the ABOi and HLAi groups consisted of metallothioneins and epithelial transporter genes. Increased expression of epithelial transporters (SLC4A1, SLC4A9, SLC17A3, SLC12A3, and SLC30A2) and class 1 metallothioneins (MT1F, MT1G, and MT1X) in HLAi transplantation was validated by real-time quantitative polymerase chain reaction. In comparison to controls, both incompatible cohorts were characterized by the upregulation of intrarenal complement regulatory genes. CD46 and CD59 transcripts were increased in the ABOi cohort, whereas CD46 solely in HLAi group, and CD59 protein expression was similar in both incompatible groups. CONCLUSIONS Several epithelial transporters and metallothioneins discriminate subclinical antibody-mediated rejection in HLAi transplantation from accommodation in ABOi transplantation, which suggest different involved downstream mechanisms and increased risk of injury in HLAi settings. Metallothioneins with their antioxidative properties may help to attenuate the inflammation response induced by donor-specific anti-HLA antibody binding.
Collapse
|
47
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine and functions as a negative regulator of immune responses to microbial antigens. IL-10 is particularly important in maintaining the intestinal microbe-immune homeostasis. Loss of IL-10 promotes the development of inflammatory bowel disease (IBD) as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions more generally to prevent excessive inflammation during the course of infection. Although IL-10 can be produced by virtually all cells of the innate and adaptive immune system, T cells constitute a non-redundant source for IL-10 in many cases. The various roles of T cell-derived IL-10 will be discussed in this review. Given that IL-10 is at the center of maintaining the delicate balance between effective immunity and tissue protection, it is not surprising that IL-10 expression is highly dynamic and tightly regulated. We summarize the environmental signals and molecular pathways that regulate IL-10 expression. While numerous studies have provided us with a deep understanding of IL-10 biology, the majority of findings have been made in murine models, prompting us to highlight gaps in our knowledge about T cell-derived IL-10 in the human system.
Collapse
|
48
|
Cepika AM, Sato Y, Liu JMH, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol 2019; 142:1679-1695. [PMID: 30527062 DOI: 10.1016/j.jaci.2018.10.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Monogenic diseases of the immune system, also known as inborn errors of immunity, are caused by single-gene mutations resulting in immune deficiency and dysregulation. More than 350 diseases have been described to date, and the number is rapidly expanding, with increasing availability of next-generation sequencing facilitating the diagnosis. The spectrum of immune dysregulation is wide, encompassing deficiencies in humoral, cellular, innate, and adaptive immunity; phagocytosis; and the complement system, which lead to autoinflammation and autoimmunity. Multiorgan autoimmunity is a dominant symptom when genetic mutations lead to defects in molecules essential for the development, survival, and/or function of regulatory T (Treg) cells. Studies of "Tregopathies" are providing critical mechanistic information on Treg cell biology, the role of Treg cell-associated molecules, and regulation of peripheral tolerance in human subjects. The pathogenic immune networks underlying these diseases need to be dissected to apply and develop immunomodulatory treatments and design curative treatments using cell and gene therapy. Here we review the pathogenetic mechanisms, clinical presentation, diagnosis, and current and future treatments of major known Tregopathies caused by mutations in FOXP3, CD25, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), LPS-responsive and beige-like anchor protein (LRBA), and BTB domain and CNC homolog 2 (BACH2) and gain-of-function mutations in signal transducer and activator of transcription 3 (STAT3). We also discuss deficiencies in genes encoding STAT5b and IL-10 or IL-10 receptor as potential Tregopathies.
Collapse
Affiliation(s)
- Alma-Martina Cepika
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Yohei Sato
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Jeffrey Mao-Hwa Liu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Molly Javier Uyeda
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| |
Collapse
|
49
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
50
|
Zhu X, Wang Y, Jiang Q, Jiang H, Lu J, Wang Y, Kong Y, Chang Y, Xu L, Peng J, Hou M, Huang X, Zhang X. All- trans retinoic acid protects mesenchymal stem cells from immune thrombocytopenia by regulating the complement-interleukin-1β loop. Haematologica 2019; 104:1661-1675. [PMID: 30679324 PMCID: PMC6669169 DOI: 10.3324/haematol.2018.204446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Enhanced peripheral complement activation has long been considered as one of the major pathogenic elements of immune thrombocytopenia. A dysfunctional bone marrow microenvironment, especially with regards to mesenchymal stem cells, has been observed in patients with immune thrombocytopenia. However, the potential role of the complement system in the dysfunctional bone marrow microenvironment remains poorly understood. In this study, bone marrow samples from patients with immune thrombocytopenia were divided into two groups based on whether or not complement components were deposited on the surfaces of their mesenchymal stem cells. The mesenchymal cells from the group with complement deposition were less numerous, dysfunctional, had a reduced capacity to proliferate, and showed increased apoptosis as well as abnormal secretion of interleukin-1β and C-X-C motif chemokine ligand 12. In vitro treatment with all-trans retinoic acid increased the number and improved the function of the complement-positive bone marrow mesenchymal stem cells by upregulating DNA hypermethylation of the interleukin-1β promoter. In vivo studies showed that all-trans retinoic acid could rescue the impaired mesenchymal stem cells to support the thrombopoietic niche in both patients with immune thrombocytopenia and a murine model of this disease. Taken together, these results indicate that impairment of mesenchymal stem cells, mediated by the complement-interleukin-1β loop, plays a role in the pathogenesis of immune thrombocytopenia. All-trans retinoic acid represents a promising therapeutic approach in patients with immune thrombocytopenia through its effect of repairing mesenchymal stem cell impairment.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yazhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing
| |
Collapse
|