1
|
Wang X, He Q, Wang L, Li C, Zhang W, Rong Z, Yin Q, Zhao Y. Acid responsive molybdenum (Mo)-based nanoparticles inhibit the cGAS-STING signaling pathway for sepsis therapy. Biomater Sci 2025. [PMID: 40130269 DOI: 10.1039/d5bm00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sepsis, an inflammatory disease caused by bacterial infection, has become a global public health crisis. Excessive reactive oxygen species (ROS) in sepsis patients act as the primary trigger for activating intracellular immune pathways, ultimately leading to multiple organ dysfunction syndrome. The overexpression of acidic metabolites and ROS, characteristic of the infected microenvironment, significantly impedes sepsis treatment. Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, plays a key role in inflammatory diseases. The detrimental effects of STING in sepsis have been well documented. Here, we developed a pH-responsive nanotherapy platform (DMSNM@C-178/PAA) that combines ROS scavenging with cGAS-STING pathway inhibition for anti-inflammatory therapy. This nanoparticle is selectively released in the infected microenvironment, where reduced molybdenum-based polyoxometalates (Mo-POM) efficiently neutralize toxic ROS in vivo, while C-178 selectively inhibits the cGAS-STING pathway, thereby attenuating the inflammatory response and preventing organ deterioration. In vitro and in vivo studies demonstrate that DMSNM@C-178/PAA treats sepsis by eliminating excess ROS and modulating autoimmune dysfunction via the cGAS-STING pathway, providing a novel therapeutic strategy for sepsis management.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingbin He
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Lining Wang
- Department of Oncology No.1, Rushan People's Hospital, Rushan 264500, Shandong, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wenyu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhonghou Rong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
2
|
Schmoch T, Gallenstein N, Peters V, Bartosova M, Uhle F, Kummer L, Mair A, Krauser U, Feisst M, Nawroth PP, Weigand MA, Schmitt CP, Brenner T. Anserine reduces mortality in experimental sepsis by preventing methylglyoxal-induced capillary leakage. EBioMedicine 2025; 114:105644. [PMID: 40107203 DOI: 10.1016/j.ebiom.2025.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND We previously identified methylglyoxal as a biomarker for early identification and outcome prediction in human sepsis. We hypothesised that methylglyoxal causally impacts disease severity, and the methylglyoxal-scavenging dipeptide anserine can attenuate the detrimental effects of methylglyoxal. METHODS Using a translational approach, secondary analyses of two observational trials were performed to test the initial hypotheses. Afterwards, these results were re-evaluated in different murine models of experimental sepsis in vivo. The detrimental effects of methylglyoxal as well as the underlying mechanisms were further assessed in vitro using transendothelial electrical resistance measurements, fluorescence-activated cell sorting analyses, cytokine assays, gene expression analyses, and enzyme activity assays, as well as immunofluorescence and immunohistochemistry staining. FINDINGS The secondary analyses confirmed methylglyoxal as an independent marker associated with increased mortality within the first 48 h after sepsis onset and high catecholamine and fluid requirements in the first 24 h after sepsis onset. In the sepsis models, methylglyoxal-derived carbonyl stress significantly contributed to the development of capillary leakage by disrupting endothelial barrier-forming proteins. Mechanistically, a pathway involving the receptor of advanced glycation end products and mitogen-activated protein kinase was identified. The methylglyoxal-scavenging dipeptide anserine (β-alanyl-N-methylhistidine) reduced methylglyoxal-induced advanced glycation end-product formation and disruptions of junctional complexes in vitro. Moreover, anserine reduced capillary leakage and mortality in vivo. INTERPRETATION Methylglyoxal causally contributes to capillary leak formation and mortality in experimental sepsis, which can be mitigated by anserine. Therefore, anserine represents an innovative therapeutic option for the treatment of septic shock. FUNDING German Research Foundation (grant number BR 4144/2-1).
Collapse
Affiliation(s)
- Thomas Schmoch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany; Department of Anesthesiology and Intensive Care Medicine, Hôpitaux Robert Schuman - Hôpital Kirchberg, Luxembourg City, Luxembourg.
| | - Nadia Gallenstein
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany.
| | - Verena Peters
- Medical Faculty Heidelberg, Department of Pediatrics I, Center for Paediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Medical Faculty Heidelberg, Department of Pediatrics I, Center for Paediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | - Florian Uhle
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Laura Kummer
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Anian Mair
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Ute Krauser
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Manuel Feisst
- Institute of Medical Biometry, Heidelberg University, Heidelberg, Germany
| | - Peter P Nawroth
- Medical Faculty Heidelberg, Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Markus A Weigand
- Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
| | - Claus Peter Schmitt
- Medical Faculty Heidelberg, Department of Pediatrics I, Center for Paediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Huang X, Cai M, Yan L, Xiao R, Mu Y, Ren Y. Assessment of air pollutant O 3 pulmonary exposure using a bronchus-on-chip model coupling with atmospheric simulation chamber. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137106. [PMID: 39764952 DOI: 10.1016/j.jhazmat.2025.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 03/12/2025]
Abstract
Heavy air pollution is now a serious public health issue. Many studies have shown strong connections between ozone (O3) with the occurrence and development of various respiratory diseases. However, the exact mechanism is still a matter of debate. In this work, we developed a human bronchial epithelial cells (HBECs) chip that differentiates different functional cell groups of ciliated, goblet, and club cells to model the pulmonary bronchial barrier function. Concurrently, we designed an Atmospheric-Biochemical-Chip reactor (ABC-reactor), a system that could simulate different levels of O3 and particle matter. Coupling the HBECs-on-chip model with ABC-reactor, we investigated the effects of O3 at 400 ppbv and 200 ppbv on the pulmonary bronchial barrier. Our results showed that O3 at 400 ppbv severely disrupted the bronchial barrier and upregulated the expression of pro-inflammatory cytokines. However, 200 ppbv of O3 did not cause severe barrier impairment but induced cellular dysfunction, apoptosis, and reduced immune response. These suggest that bronchial trauma does exist at 200 ppbv of O3 but is not easily detected by the body due to the reduced inflammatory response. However, more research is needed to understand if the trauma induced by 200 ppbv of O3 is reversible and the interaction mechanism between O3 and PM2.5.
Collapse
Affiliation(s)
- Xuanming Huang
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Cai
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yan
- Beijing Daxiang Biotech Co., Ltd, Beijing 100191, China
| | - Rongrong Xiao
- Beijing Daxiang Biotech Co., Ltd, Beijing 100191, China
| | - Yujing Mu
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Ren
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Hadjisavva ME, Cooper RL. The Biphasic Effect of Lipopolysaccharide on Membrane Potential. MEMBRANES 2025; 15:74. [PMID: 40137026 PMCID: PMC11943570 DOI: 10.3390/membranes15030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Lipopolysaccharide (LPS) from certain strains of Gram-negative bacteria can induce a rapid (<1 s) hyperpolarization of membrane potential, followed by a gradual depolarization exceeding the initial resting membrane potential. Through overexpression of a Drosophila ORK1 two-pore-domain K+ channel (K2P) in larval muscles and altering the external concentrations of K+ and Na+ ions, it is clear that the hyperpolarization is due to activating K2P channels and the depolarization is due to promoting an inward Na+ leak. When the external Na+ concentration is negligible, the LPS-delayed depolarization is dampened. The hyperpolarization induced by LPS can exceed -100 mV when external K+ and Na+ concentrations are lowered. These results indicate direct action by LPS on ion channels independently of immune responses. Such direct actions may need to be considered when developing clinical treatments for certain forms of bacterial septicemia.
Collapse
Affiliation(s)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA;
| |
Collapse
|
5
|
Li J, Mao K, Meng X, Wang J, Zhao M, Lv Y, Xin Y, Sun H, Zhang Y, Yang YG, Sun T. Injectable hydrogel-assisted local lipopolysaccharide delivery improves immune checkpoint blockade therapy. Acta Biomater 2025; 194:153-168. [PMID: 39827003 DOI: 10.1016/j.actbio.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype. However, the systemic application of LPS is restricted due to its pronounced pro-inflammatory properties, which limit safe dosing in cancer treatment. To address this, thermosensitive hydrogels offer a viable solution by optimizing drug bioavailability and reducing systemic dissemination. In our study, carboxymethyl chitosan (CS) was incorporated into Pluronic F127 to extend the hydrogel's degradation period, facilitating the localized delivery and accumulation of LPS within tumor sites. Peritumoral injection of this hydrogel enhanced the tumor-inhibitory effects of anti-PD-1 antibodies, significantly improving the survival of 4T1 tumor-bearing mice. The GelF127CS-LPS hydrogel also increased the expression of the activation marker on tumor-infiltrating dendritic cells, promoted a higher M1/M2 TAM ratio, and enhanced CD8+ T cell infiltration into tumors-key indicators of T-cell-mediated anti-tumor immunity. Notably, no significant liver or hematological toxicity was observed with GelF127CS-LPS treatment, underscoring its favorable safety profile. These findings demonstrate the potential of GelF127CS-LPS as a TAMs-modulating agent and a promising combinatorial strategy to boost ICB therapy effectiveness. STATEMENT OF SIGNIFICANCE: LPS, a potent TLR4 ligand, can reprogram tumor-associated macrophages (TAMs) toward an M1 phenotype, thereby contributing to tumor inhibition. However, its anti-tumor application is constrained by the contradiction between high-dose toxicity and insufficient efficacy at low doses. To address this issue, we developed a thermosensitive hydrogel encapsulating LPS, GelF127CS-LPS, which allows localized LPS release within the tumor area. This hydrogel reprograms TAMs at a picogram level of LPS to achieve a favorable M1/M2 ratio and promotes the activation of T cell-mediated antitumor immunity without observable toxicity. Consequently, when combined with immune checkpoint blockade (ICB), the hydrogel can inhibit tumor growth and improve overall survival. This study provides an effective method for tumor-targeted therapeutic LPS delivery to enhance the efficacy of ICB.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Mengfei Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yue Lv
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Huating Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
6
|
Li Y, Huang X, Qiao Q, Li Y, Han X, Chen C, Chen Y, Guo S, Zhang Y, Gao W, Liu H, Sun T. Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414237. [PMID: 39775885 DOI: 10.1002/adma.202414237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Sepsis is a life-threatening disease caused by a dysregulated immune response to infection, often involving the translocation of Gram-negative bacteria such as Escherichia coli (E. coli) into the bloodstream, triggering a cytokine storm. Despite its severity, no effective drugs currently exist for sepsis treatment. This study explores whether pathogen-derived carbon dots can mitigate their inherent toxicity while leveraging their structural similarity to pathogens to competitively bind pattern recognition receptors, thereby inhibiting sepsis. Based on this concept, E. coli wall-derived carbon dots (E-CDs) are synthesized and shown to reduce inflammatory cytokine production, protect organ function, and improve survival in septic mice. Mechanistic studies reveal that E-CDs competitively bind to lipopolysaccharide-binding protein with lipopolysaccharide, promoting toll-like receptor 4 degradation via the lysosomal pathway and inhibiting nuclear factor kappa-B (NF-κB) activation. Additionally, E-CDs exhibit antioxidant properties, reducing oxidative stress and mitochondrial DNA release, thereby suppressing overactivation of the stimulator of interferon genes pathway. In septic cynomolgus monkeys and patient-derived peripheral blood mononuclear cells, E-CDs alleviate inflammation and oxidative stress. Overall, this study demonstrates that E-CDs can suppress the cytokine storm in sepsis by co-silencing innate immune pathways, suggesting that converting pathogens into carbon dots offers a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Shuang Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yang Zhang
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, 300142, China
| | - Wenqing Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| |
Collapse
|
7
|
Dzhalilova D, Silina M, Kosyreva A, Fokichev N, Makarova O. Morphofunctional changes in the immune system in colitis-associated colorectal cancer in tolerant and susceptible to hypoxia mice. PeerJ 2025; 13:e19024. [PMID: 40028198 PMCID: PMC11869898 DOI: 10.7717/peerj.19024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Background One of the effective strategies for the treatment of tumor diseases, including colitis-associated colorectal cancer (CAC), is immunotherapy. During inflammation, NF-κB is activated, which is connected with the hypoxia-inducible factor-HIF, regulating the immune cells functioning and influences the CAC development. Organisms differ according to their hypoxia resistance and HIF expression. Therefore, the aim of the study was to characterize the thymus, spleen and mesenteric lymph nodes morphofunctional features, as well as changes in the subpopulation composition of peripheral blood cells and mesenteric lymph nodes in tolerant and susceptible to hypoxia C57Bl/6 mice in CAC. Methods Hypoxia tolerance was assessed by gasping time measurement in hypobaric decompression chamber. Based on the outcome, the mice were assigned to three groups characterized as 'tolerant to hypoxia', 'normal', and 'susceptible to hypoxia'. A month after determining hypoxia resistance CAC was modeled by intraperitoneal azoxymethane (AOM) administration and three cycles of dextran sulfate sodium consumption. Mice were sacrificed on the 141st day after the AOM administration, a morphological, morphometric and immunohistochemical study of tumors, morphological and morphometric study of thymus and spleen, and subpopulation composition of peripheral blood cells and mesenteric lymph nodes assessment were carried out. Results Tumors in tolerant and susceptible to hypoxia mice were represented by glandular intraepithelial neoplasia and adenocarcinomas, the area of which was larger in susceptible mice. Immunohistochemical study revealed a more pronounced Ki-67+ staining in tumors of susceptible mice. In CAC, only in tolerant mice, expansion of the thymic cortex was observed relative to the control group, while in susceptible ones, no changes were detected. Only in susceptible to hypoxia mice, spleen germinal centers of lymphoid follicles enlargement were observed. Only in susceptible mice during CAC, in comparison to the control group, the relative and absolute number of B-lymphocytes and relative-cytotoxic T-lymphocytes in blood increased. The relative cytotoxic T-lymphocytes and NK cells number in peripheral blood during CAC was higher in susceptible to hypoxia mice compared to tolerant ones. In susceptible to hypoxia mice, more pronounced changes in the mesenteric lymph nodes subpopulation composition of cells were revealed-only in them the absolute and relative number of B-lymphocytes and NK cells, the absolute number of cytotoxic T-lymphocytes increased, and the relative number of macrophages decreased. Conclusions Morphofunctional differences in the thymus, spleen, mesenteric lymph nodes and blood immune cells reactions indicated the more pronounced immune response to the CAC development in susceptible to hypoxia mice, which should be taken into account in experimental studies.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nikolai Fokichev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
8
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
9
|
Zhu M, Lei Y, Zhang Z, Guo X, Guo J, Wu R, Li X, Tian S, Zhao Y. Renqing Changjue alleviates sepsis-induced acute lung injury by regulating renin-angiotensin system and inhibiting inflammatory response. Immunobiology 2025; 230:152883. [PMID: 40022765 DOI: 10.1016/j.imbio.2025.152883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Sepsis, with high morbidity and mortality, represents a systemic inflammatory response syndrome. A common consequence of sepsis is acute lung injury (ALI). Renqing Changjue (RQCJ), a renowned prescription in traditional Tibetan medicine, is reported to have anti-inflammatory effects. The present study was aimed at exploring whether RQCJ could mitigate sepsis-induced ALI and elucidating its underlying mechanism. The rat model of sepsis-induced ALI was established by intraperitoneal injection of lipopolysaccharide (LPS), and high, medium, and low doses of RQCJ were administered. The results indicated that the intervention of RQCJ improved septic symptoms, mitigated the murine sepsis score and pulmonary edema in LPS-induced septic rats, and decreased inflammatory cytokines in lung tissue such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). Furthermore, RQCJ regulated the balance of renin-angiotensin system by enhancing the enzyme activity of angiotensin converting enzyme 2 (ACE2) while inhibiting ACE, thereby promoting the production of angiotensin 1-7 (Ang1-7). This study highlights the multiple protective effects of RQCJ on sepsis-induced ALI, providing a valuable reference for its further development and offering a novel perspective for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Minxia Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China.
| | - Yaqi Lei
- Affiliated Hospital of Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Zhaojun Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xu Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Jing Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Ruipeng Wu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xiaofeng Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Shibo Tian
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yuanhao Zhao
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| |
Collapse
|
10
|
Mallarpu CS, Chelluri SI, Katragadda TK, Singarapu M, Chelluri LK, Madiraju C. Programmed cell death markers in COVID-19 survivors with and without sepsis. Front Immunol 2025; 16:1535938. [PMID: 40051620 PMCID: PMC11882558 DOI: 10.3389/fimmu.2025.1535938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Sepsis remains a leading cause of mortality, especially in COVID-19 patients, due to delayed diagnosis and limited therapeutic options. While the mechanisms of programmed cell death (PCD) in COVID-19 and sepsis are complex, understanding the molecular markers involved in these processes may aid in assessing disease severity. This study aimed to investigate the roles of PCD markers, inflammatory cytokines, and MHC molecules in distinguishing disease severity in COVID-19 patients with and without sepsis. Methods The study involved adult patients (≥18 years) who survived COVID-19, grouped into four cohorts: COVID-19 with sepsis (C19wSepsis), COVID-19 without sepsis (C19NoSepsis), sepsis alone, and healthy controls. Serum and peripheral blood mononuclear cells (PBMCs) from each cohort were analyzed using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. PCD markers (caspase-3, caspase-1, MLKL, LC3B, p62/SQSTM1), inflammatory cytokines (IL-1-beta, IFN-gamma), and MHC molecules (MHC I-A, MHC II-DRB1) were assessed. Statistical analyses were performed to evaluate differences in marker levels between and within cohorts. Results The analysis identified two distinct molecular signatures associated with disease severity. The first signature, characterized by elevated levels of secreted markers of PCD, IL-1-beta, IFN-gamma, MHC I-A and MHC II-DRB1, was common to the C19wSepsis and C19NoSepsis cohorts. The second signature, which was more prominent in the cellular markers of PCD (caspase-1, caspase-3, MLKL, p62/SQSTM1), was uniquely associated with the C19wSepsis cohort. Conclusion These findings provide insight into the molecular signatures distinguishing immune responses in COVID-19-related sepsis and may serve as valuable biomarkers for assessing disease severity, while guiding therapeutic interventions in critical care settings.
Collapse
Affiliation(s)
- Chandra Shekar Mallarpu
- Department of Transplant Immunology and Stem Cell Lab, Global Medical Education and Research Foundation, Hyderabad, India
| | | | | | - Maneendra Singarapu
- Department of Respiratory and Critical Care Medicine, Gleneagles Hospitals, Hyderabad, India
| | - Lakshmi Kiran Chelluri
- Department of Transplant Immunology and Stem Cell Lab, Global Medical Education and Research Foundation, Hyderabad, India
| | - Charitha Madiraju
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Department of Pharmaceutical Sciences, Marshall B. Ketchum University College of Pharmacy, Fullerton, CA, United States
| |
Collapse
|
11
|
Khan S, Zaki A, Masood M, Khan A, Mohsin M, Verma A, Wilson PC, Ali S, Syed MA. Combating sepsis-induced acute lung injury: PARP1 inhibition mediates oxidative stress mitigation and miR-135a-5p/SMAD5/Nanog axis drives regeneration. Int Immunopharmacol 2025; 148:114166. [PMID: 39884084 DOI: 10.1016/j.intimp.2025.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis. METHOD We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury. RAW264.7 murine macrophages and MLE12 (Mouse Lung Epithelial) cells were stimulated through Lipopolysaccharide (LPS) to induce inflammation. miR-135a-5p mimic Transfection confirmed using one-step Real time quantitative PCR (RT-qPCR). PARP1 inhibition confirmed by western blotting using Poly (ADP-ribose) (PAR) expression. Reactive oxygen Species (ROS) generation measured through Dichlorofluorescein diacetate (DCF-DA) dye using fluorescent microscopy and Nitric Oxide (NO) via spectrophotometry. Bronchoalveolar Lavage Fluid (BALF) cytokine analysis was done using Enzyme-linked immunosorbent assay (ELISA). miRNA mediated signaling, inflammatory markers and cytokines were determined using immunoblotting, RT-qPCR, and immunohistochemistry. miR-135a-5p target validation using dual-luciferase assay. RESULTS Our results demonstrated that PARP1 inhibition significantly reduced oxidative stress (**P < 0.01) and inflammatory markers in sepsis-induced lung injury models. Specifically, we observed decreased protein levels of inducible nitric oxide synthase (iNOS) (***P < 0.001), cyclooxygenase-2 (COX2) (*P < 0.05), phospho-Akt (*P < 0.05), and Tumor necrosis factor-Alpha (TNF-α) (*P < 0.05) mRNA expression. We observed significant reduction in ROS and NO generation in macrophages. Moreover, histopathological evidence suggested improved lung health. Concurrently, miR-135a-5p overexpression decreased the expression of SMAD5 (*P < 0.05) which in turns increased the expression of Nanog and related pluripotency genes in epithelial cells and mice, thus promoting regeneration and repair. CONCLUSION The combination of PARP1 inhibition and miR-135a-5p overexpression showed significant potential as a therapeutic intervention by reducing inflammation alongside stimulating regenerative environment in Sepsis-induced ALI.
Collapse
Affiliation(s)
- Salman Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Almaz Zaki
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Masood
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Aman Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohd Mohsin
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Parker C Wilson
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shakir Ali
- Department of Biochemistry, SCLS, Jamia Hamdard, New Delhi 110062, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Wu J, Baranowski MR, Aleshin AE, Isiorho EA, Lambert LJ, De Backer LJS, Han YN, Das R, Sheffler DJ, Bobkov AA, Lemberikman AM, Keedy DA, Cosford NDP, Tautz L. Fragment Screening Identifies Novel Allosteric Binders and Binding Sites in the VHR ( DUSP3) Phosphatase. ACS OMEGA 2025; 10:4912-4926. [PMID: 39959108 PMCID: PMC11822521 DOI: 10.1021/acsomega.4c10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
The human Vaccinia H1-related phosphatase (VHR; DUSP3) is a critical positive regulator of the innate immune response. Recent studies suggest that inhibiting VHR could be beneficial in treating sepsis and septic shock. VHR belongs to the superfamily of protein tyrosine phosphatases (PTPs), a large class of enzymes that are notoriously difficult to target with small molecules. Fragment-based drug discovery (FBDD) has emerged as an effective strategy for generating potent ligands, even for challenging drug targets. Here, we present a fluorine NMR-based discovery platform for identifying fragments that bind to VHR. This platform encompasses automated library assembly, mixture formation, quantitative material transfer, fluorine NMR screening, and biophysical hit confirmation. We demonstrate that this streamlined, integrated screening workflow produces validated hits with diverse chemical matter and tangible structure-activity relationships (SAR). Crystal structures yielded detailed information on the fragment-protein interactions and provide a basis for future structurally enabled ligand optimization. Notably, we discovered novel ligand binding sites on VHR, distant from the conserved active site, facilitating the generation of selective VHR modulators. This fragment discovery platform can be applied to other PTPs and holds significant potential for identifying potent and selective ligands.
Collapse
Affiliation(s)
- Jiaqian Wu
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Marek R. Baranowski
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Alexander E. Aleshin
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Eta A. Isiorho
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Lester J. Lambert
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Laurent J. S. De Backer
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ye Na Han
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ranajit Das
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Douglas J. Sheffler
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Andrey A. Bobkov
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Alexis M. Lemberikman
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Daniel A. Keedy
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
- Department
of Chemistry and Biochemistry, City College
of New York, New York, New York 10031, United States
- PhD
Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York 10016, United States
| | - Nicholas D. P. Cosford
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Yu XH, Guo XN, Li K, Li JW, Wang K, Wang D, Liu BC. The Role of Wnt5a in Inflammatory Diseases. Immunology 2025; 174:203-212. [PMID: 39668514 DOI: 10.1111/imm.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Wnt5a plays an important role in cell development and maturation and is closely associated with various diseases, such as malignant tumours, metabolic disorders, fibrosis, growth and development. Recent studies have shown that Wnt5a expression and signal transduction are strongly involved in the inflammatory response. This study comprehensively reviewed the latest research progress on the association between Wnt5a and several inflammatory diseases, such as sepsis, asthma, chronic obstructive pulmonary disease, tuberculosis, rheumatoid arthritis, atherosclerosis and psoriasis vulgare. We elucidated the mechanism by which the Wnt5a protein is involved in the pathogenesis of these diseases, providing a basis for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xin-Hua Yu
- Department of Pediatrics, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Ning Guo
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Wei Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaijin Wang
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bi-Cui Liu
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Burgmaier L, Pölt S, Avci-Adali M, Reich J. The impact of LPS mutants on endotoxin masking in different detection systems. Biologicals 2025; 89:101808. [PMID: 39586167 DOI: 10.1016/j.biologicals.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Endotoxin masking poses a potential risk to patient safety by rendering endotoxin undetectable. While research often focuses on international endotoxin standards (RSE), the effects of LPS mutants on Low Endotoxin Recovery (LER) are poorly understood. Our study investigated S. minnesota and E. coli mutants with incomplete O-antigen chains (rough LPS) using Limulus amebocyte lysate (LAL), recombinant Factor C (rFC) and the monocyte activation test (MAT). All tested methods detected the mutants, with variations in activity observed. Measurements over time in a common drug formulation (10 mM sodium citrate and 0.05 % (w/v) polysorbate 20) showed different masking kinetics for the mutants using different methods. We were able to show that LAL and rFC have comparable kinetics, whereas MAT showed improved recovery of masked endotoxin. The study showed that the mutation of LPS have an effect on masking, independent of the assay system. We propose that polysaccharide length affects masking susceptibility, with lower hydrophilic/hydrophobic ratios caused by the shortened polysaccharide chain (rough LPS) reducing masking. In addition, the stronger negative charge of the rough mutants increases cation affinity and is suggested to contribute to the stabilisation of supramolecular structures, making the rough mutants less susceptible to masking than the smooth mutants.
Collapse
Affiliation(s)
- Luisa Burgmaier
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347, Bernried Am Starnberger See, Germany; University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstr. 7/1, 72076, Tuebingen, Germany
| | - Stefan Pölt
- University of Applied Sciences Weihenstephan-Triesdorf, Am Hofgarten 4, 85354, Freising, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstr. 7/1, 72076, Tuebingen, Germany
| | - Johannes Reich
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347, Bernried Am Starnberger See, Germany.
| |
Collapse
|
15
|
Nie K, Kadier A, Jia S, Liu D, Tong N, Tuerxun M, Aisha A, Peng H, Zhuang Y, Chen Y, Jiang J, Sun M, Fang Y, Chen H. Comparative study of transcriptomic alterations in sepsis-induced acute liver injury: Deciphering the role of alternative splicing in mouse models. Int Immunopharmacol 2025; 146:113878. [PMID: 39719759 DOI: 10.1016/j.intimp.2024.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Sepsis represents a critical health crisis often leading to the failure of multiple organs, with the liver playing a pivotal role in controlling inflammation and defending against systemic infections. The exacerbation of liver damage can escalate sepsis severity, underscoring the necessity to delve into the molecular mechanisms underlying sepsis-induced acute liver injury (ALI). The role of alternative splicing (AS), a complex post-transcriptional mechanism, has been occasionally noted in relation to sepsis across different investigations. OBJECTIVE This research aimed to provide an extensive analysis of gene expression and alternative splicing variants in sepsis-induced ALI using mouse models, thus broadening the understanding of gene-level modulations during sepsis and pinpointing potential therapeutic targets. METHODS We employed mouse models of ALI induced via both cecal ligation and puncture (CLP) and lipopolysaccharides (LPS). An extensive evaluation was conducted to identify variances in gene expression and the occurrence of alternative splicing variants within the liver tissues of mice afflicted with sepsis. RESULTS The results of our study revealed significant alterations in the regulation of genes associated with RNA splicing and numerous pathways related to inflammation following exposure to CLP and LPS. We identified a total of 170 genes exhibiting both differential expression and splicing variations within the groups subjected to CLP and LPS interventions. Four key genes were specifically identified and validated, emphasizing their potential as treatment targets for ALI in sepsis. Among them, Nop58 was found to play a dual role in inflammation regulation, with intron retention linked to pro-inflammatory responses, while its full-length splicing variant exhibited anti-inflammatory properties. Furthermore, our data highlighted the potential role of specific splicing factors, such as Rbm3, Plrg1, and Snip1, in sepsis-induced liver abnormalities. CONCLUSION This study offers a comprehensive insight into the role of AS in sepsis-induced ALI, laying the groundwork for future therapeutic interventions. By demonstrating the functional relevance of specific splicing events, such as those involving Nop58, this work underscores the potential of targeting splicing mechanisms as innovative strategies to mitigate sepsis-induced liver injuries.
Collapse
Affiliation(s)
- Ke Nie
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Aimaitijiang Kadier
- Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China
| | - Shaohua Jia
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Dan Liu
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Nana Tong
- Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China
| | - Muzaipaier Tuerxun
- Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China
| | - Aisikaer Aisha
- Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Jinxia Jiang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Mingming Sun
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China.
| | - Yi Fang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China.
| | - Huaguo Chen
- Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China; Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China.
| |
Collapse
|
16
|
Jiang W, Song L, Gong W, Li X, Shi K, Li L, Zhang C, Wang J, Xu X, Wang H, Wu X, Shao J, Yu Y, Yu J, Zheng R. The role of phospholipid transfer protein in sepsis-associated acute kidney injury. Crit Care 2025; 29:33. [PMID: 39833975 PMCID: PMC11745024 DOI: 10.1186/s13054-025-05253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Phospholipid transfer protein (PLTP), a glycoprotein widely expressed in the body, is primarily involved in plasma lipoprotein metabolism. Previous research has demonstrated that PLTP can exert anti-inflammatory effects and improve individual survival in patients with sepsis and endotoxemia by neutralizing LPS and facilitating LPS clearance. However, the role of PLTP in sepsis-associated acute kidney injury (SA-AKI) and the specific mechanism of its protective effects are unclear. This study aimed to assess the potential role of PLTP in SA-AKI. METHODS This is a population-based prospective observational study of patients with sepsis admitted to the intensive care unit. Blood samples were collected on days 1, 3, 5, and 7 after admission to the ICU. Plasma PLTP lipotransfer activity was measured to assess outcomes, including the incidence of SA-AKI and 30-day major adverse kidney events (MAKE 30). The correlation between PLTP lipotransfer activity and SA-AKI and MAKE 30 was evaluated through logistic regression modeling. Receiver operating characteristic curves were used to assess the diagnostic value of PLTP lipotransfer activity for SA-AKI and MAKE 30. The PLTP lipotransfer activity was categorized into high and low groups based on the optimal cut-off values. The differences between the high and low PLTP lipotransfer activity groups in terms of MAKE 30 were evaluated using Kaplan-Meier analysis. The SA-AKI mouse model was established via cecum ligation and puncture (CLP) in the animal experimental phase. The impact of PLTP on renal function was then investigated in wild-type and PLTP ± mice. The wild-type mice were given recombinant human PLTP (25 μg, 200 μL each/dose) via the tail vein at 1-, 7-, and 23-h intervals on the day preceding CLP. The control group received an equal volume of solvent. The 10-day survival and kidney function among the treatment groups were then evaluated. RESULTS A total of 93 patients were enrolled in this clinical trial, of which 52 developed acute kidney injury (AKI). A total of 32 patients died over the course of the 30-day follow-up period, 34 underwent kidney replacement therapy, 37 developed persistent acute kidney injury, and 55 patients met the composite endpoint. The plasma PLTP lipotransfer activity was identified as an independent predictor of SA-AKI (crude OR = 0.96, 95% CI 0.95-0.98, p < 0.001; adjusted OR = 0.92, 95% CI 0.86-0.96, p = 0.001) and MAKE 30 (crude OR = 0.97, 95% CI 0.96-0.98, p < 0.001; adjusted OR = 0.96, 95% CI 0.93-0.98, p = 0.001). The area under the curve (AUC) of plasma PLTP lipotransfer activity within 24 h of ICU admission could predict the occurrence of SA-AKI and MAKE 30 in septic patients (AUC values; 0.87 (95% CI 0.79-0.94) and 0.87 (95% CI 0.80-0.94), respectively). The cumulative incidence of main kidney adverse events was significantly lower in the high group than in the low group (p < 0.001). Compared with the controls, creatinine levels were significantly elevated in the CLP mice, while PLTP lipotransfer activity was significantly decreased at 24 h postoperatively. Moreover, the PTLP ± mice exhibited significantly impaired renal function and markedly elevated plasma levels of inflammatory mediators compared with the wild-type CLP mice. Notably, human recombinant PTLP significantly prolonged 10-day survival, improved renal function, and attenuated mitochondrial structural damage in wild-type CLP mice. CONCLUSIONS These findings indicate that PLTP is a potential therapeutic target in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Lin Song
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Weilei Gong
- Shandong First Medical University and Shandong Academy of Medical Sciences School of Pharmaceutical Sciences and Institute of Materia Medica, Jinan, China
| | - Xianghui Li
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Keran Shi
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Luanluan Li
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Chuanqing Zhang
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jing Wang
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Haixia Wang
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaoyan Wu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jun Shao
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yang Yu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China.
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
| |
Collapse
|
17
|
Zheng YC, Qian JW, Li AN, Yuan YN, Ma SL, Chen M. Development and validation of a nomogram to predict the probability of death after surgical evacuation for traumatic intracranial hemorrhage. Sci Rep 2025; 15:2574. [PMID: 39833320 PMCID: PMC11747102 DOI: 10.1038/s41598-025-85743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Here we describe the derivation and validation of a prognostic nomogram for patients with Traumatic Intracranial Hemorrhage (tICH) after surgical evacuation. This is a retrospective study based on 245 patients admitted to the Department of Neurosurgery of Huashan Hospital affiliated to Fudan University, between August 2005, and August 2023. We divided the dataset into primary and validation data by the ratio of 7:3. The LASSO regression model was used for predictor selection. The nomogram was developed using Cox regression models. The predictive performance of the nomogram was assessed by concordance index (C index) and calibration in the primary and validation cohorts. We also used decision curve analysis (DCA) to describe the clinical value. The main outcome was death related to tICH. The nomogram incorporated age, GCS-E, history of hypertension, and cerebellar hematoma, which was selected by the LASSO regression model. The nomogram showed good calibration and discrimination in the primary and validation data, with a 1-year C-index of 0.882 (95% CI, 0.777 to 0.987) and 0.818 (95% CI, 0.669 to 0.968), respectively. Decision curve analysis indicated that the nomogram is clinically useful when the patient or doctor's threshold probability ranges from 10 to 100%. In this study, we found that the tICH-related mortality rate was 11.42% (28/245). In the elderly cohort aged ≥ 65 years, the mortality rate increased to 28.13%(18/64). The nomogram we developed here can be conveniently used to predict the long-term prognosis of patients with tICH after surgical evacuation.Retrospectively registered: KY2024-860.
Collapse
Affiliation(s)
- Yan-Chao Zheng
- Department of Emergency Medicine, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Jing 'an District, Shanghai, China
| | - Jun-Wei Qian
- Department of Emergency Medicine, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Jing 'an District, Shanghai, China
| | - An-Ni Li
- Department of Emergency Medicine, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Jing 'an District, Shanghai, China
| | - Yi-Nuo Yuan
- Department of Emergency Medicine, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Jing 'an District, Shanghai, China
| | - Sen-Lin Ma
- Department of Emergency Medicine, Huashan Hospital, Fudan University, 12 Urumqi Middle Road, Jing 'an District, Shanghai, China
| | - Mingquan Chen
- Dept. of Emergency, Dept. of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Xu T, Song S, Zhu K, Yang Y, Wu C, Wang N, Lu S. Systemic inflammatory response index improves prognostic predictive value in intensive care unit patients with sepsis. Sci Rep 2025; 15:1908. [PMID: 39809872 PMCID: PMC11732978 DOI: 10.1038/s41598-024-81860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Sepsis is a severe infectious disease with high mortality. However, the indicators used to evaluate its severity and prognosis are relatively complicated. The systemic inflammatory response index (SIRI), a new inflammatory indicator, has shown good predictive value in chronic infection, stroke, and cancer. The purpose of this study was to investigate the connection between sepsis and SIRI and evaluate its predictive usefulness. A total of 401 patients with sepsis were included in this study. Multiple linear regression and logistic regression analyses were performed to evaluate the relationship between SIRI and sepsis. The restricted cubic spline (RCS) method was employed to illustrate the dose-response relationship. The area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the prognostic value of SIRI. Multiple linear regression analysis revealed a significant positive correlation between SIRI and both blood cell count and Sequential Organ Failure Assessment (SOFA) score. Additionally, higher SIRI levels were significantly linked to a higher risk of sepsis worsening, according to logistic regression analysis. The RCS curve demonstrated that the risk of poor prognosis rose with increasing SIRI, particularly when SIRI exceeded 6.1. Furthermore, AUC and DCA results showed that SIRI had superior predictive value compared to traditional indicators. A higher SIRI is linked to a worse prognosis and more severe sepsis. SIRI may serve as a novel prognostic indicator in sepsis, though further clinical studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Tuo Xu
- Xinxiang Central Hospital, Xinxiang, Henan, People's Republic of China
- The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
- Nantong University Hospital, Nantong, Jiangsu, People's Republic of China
| | - Shuaiwei Song
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ke Zhu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yin Yang
- The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Chengyu Wu
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Naixue Wang
- Nantong Sixth People's Hospital, Nantong, Jiangsu, People's Republic of China
| | - Shu Lu
- Nantong University Hospital, Nantong, Jiangsu, People's Republic of China.
- Member of the Critical Care Medicine Branch of Jiangsu Physicians Association, Member of the Critical Care Ultrasound Group of Jiangsu Medical Association, Member of the Critical Care Medicine Branch of Nantong Medical Association, Member of Nantong Critical Care Medicine Quality Control Center, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226000, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Shi Z, Jiao Y, Lai Z, Liu J, Yang B, Hu M, Meng J. Evaluation of the protective role of resveratrol on LPS-induced septic intestinal barrier function via TLR4/MyD88/NF-κB signaling pathways. Sci Rep 2025; 15:828. [PMID: 39755761 PMCID: PMC11700184 DOI: 10.1038/s41598-025-85148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear. Thus, this study aims to explore the potential beneficial effects of resveratrol on maintaining intestinal barrier function. Fifteen male Sprague Dawley rats, weighing between 180 g and 220 g, were randomly assigned to one of three groups: the control group (Con), the lipopolysaccharide (LPS) group, and the resveratrol (RSV) group. The resveratrol group received an intravenous administration of resveratrol at a dosage of 8 mg/kg, 10 min prior to lipopolysaccharide treatment. Each group comprised five rats. Various techniques including enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin staining (HE), periodic acid Schiff (PAS) staining, transmission electron microscopy (TEM), Western blot analysis (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) were utilized to assess differences in inflammatory cytokine expression, histopathological changes, apoptosis, tight junction (TJ) protein, and the TLR4/MyD88/NF-кB signaling pathways. Resveratrol exhibited anti-inflammatory effects by decreasing levels of interleukin (IL)-1β, interleukin(IL)-6, and tumor necrosis factor (TNF)-α, while increasing interleukin (IL)-10. Additionally, in rats treated with resveratrol, there was a reduction in the expression of apoptosis-associated proteins Bax and Caspase-3. Resveratrol also significantly increased the expression of intestinal tight junction proteins (TJ), and decreased the levels of intestinal fatty acid binding protein (I-FABP) and D-lactic acid (D-LA). Furthermore, the expression of proteins in the related signaling pathways TLR4, MyD88, and NF-κB was decreased. Resveratrol has been shown to reduce the expression of intestinal apoptotic proteins, enhance the expression of intestinal tight junction proteins, and inhibit the inflammatory response mediated by the TLR4/MyD88/NF-κB signaling pathway, thereby alleviating LPS-induced septic intestinal injury.
Collapse
Affiliation(s)
- Zhongliang Shi
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yanna Jiao
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Zhizhen Lai
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Juan Liu
- Department of Nephrology, Hangzhou Linping Hospital of Traditional Chinese Medicine, #101 Yuncheng Street, Hangzhou, 311106, Zhejiang Province, People's Republic of China
| | - Bo Yang
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Mahong Hu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Jianbiao Meng
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Bolat İ, Bolat M, Kiliçlioğlu M, Yıldırım S, Sağlam YS, Çomaklı S, Gözegir B, Özmen M, Warda M. Differential TLR2 and TLR4 mediated inflammatory and apoptotic responses in asymptomatic and symptomatic Leptospira interrogans infections in canine uterine tissue. Microb Pathog 2025; 198:107186. [PMID: 39615709 DOI: 10.1016/j.micpath.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
Leptospirosis is major zoonotic disease with global implications, affecting both domestic animals and humans. It is caused by Leptospira interrogans (L. interrogans), which can damage multiple organs, including the kidneys, liver, testes, and uterus. Despite this, L. interrogans can also persist asymptomatically in tissues, akin to nonpathogenic strains. The mechanisms driving asymptomatic infections remain poorly understood. This study investigated the role of L. interrogans in asymptomatic infection within the uterine tissue of canines, focusing on the differential expression of Toll-like receptors (TLRs)2 and 4 and their roles in inflammatory and apoptotic pathways. We hypothesized that TLR2 and TLR4 coexpression is crucial for eliciting inflammation and apoptosis, whereas TLR4 alone might be insufficient. Our findings revealed that in symptomatic infections, both TLR2 and TLR4 are coexpressed, leading to markedly elevated levels of the proinflammatory cytokines IL-10, IL-1β, TNF-α, and IL-6. This enhanced inflammatory response is further evidenced by increased CD4 expression, indicating robust T helper cell activation. In contrast, asymptomatic infections are characterized by exclusive TLR4 expression, with inflammatory markers remaining at baseline levels. Additionally, we observed that L. interrogans induces apoptosis in symptomatic animals through TLR2 and TLR4 mediated activation of Caspase 8 and Caspase 3. These findings illustrate that L. interrogans drives both inflammation and apoptosis via the combination of TLR2 and TLR4 actions. When only TLR4 is activated, the immune response is insufficient, resulting in an asymptomatic disease course. This study provides novel insights into the differential roles of TLR receptors in leptospirosis, offering potential directions for targeted therapeutic strategies.
Collapse
Affiliation(s)
- İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Metin Kiliçlioğlu
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Murat Özmen
- Molecular Diagnostics and Research Laboratory, Ministry of Agriculture and Forestry, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Rauw WM, Baumgard LH, Dekkers JCM. Review: Feed efficiency and metabolic flexibility in livestock. Animal 2025; 19:101376. [PMID: 39673819 DOI: 10.1016/j.animal.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Improving the conversion of feed into product has been a key focus of genetic improvement in all livestock species. Livestock feed efficiency is the amount of product produced per unit of feed intake. Feed efficiency also depends on processes that are not directly related to economically important phenotypes, which can be considered 'waste' from a production point of view but are vital maintenance-related functions that are closely associated with environmental flexibility and adaptation. Resource allocation theory suggests that an animal's resource budget is narrowed when production efficiency is improved through an increase in productive output, along with a decrease in feed intake (capacity) and body reserves (improved leanness). The resulting trade-offs between productivity and vital functions may render the animal less capable of responding to unexpected challenges, potentially leading to negative side effects that are not directly related to economically important phenotypes. However, selection for feed efficiency may not narrow the metabolic space and result in trade-offs if the increase in feed efficiency is the result of increased metabolic flexibility in fuel substrate choice (carbohydrates, lipids, and/or proteins) and other energy-saving strategies. This review evaluates the relationship between metabolic flexibility and feed efficiency during anabolism (growth), fasting, immune activation, general stress, and heat stress, with a focus on pig production. We start with a brief overview of energy processes and substrate metabolism of carbohydrates, lipids, and protein. During muscle metabolism, the type of fuel used depends on fibre type characteristics of the muscle. Selection for improved meat production has resulted in pigs with a greater abundance of fast-twitch fibres with lower energy expenditure and higher metabolic efficiency. Metabolic flexibility for adaptation to disease, and response to regular stress implies that a more reactive immune response and reduced fear response results in higher feed efficiency. The examples presented in this review show that selection for improved feed efficiency does not necessarily narrow the metabolic space and result in trade-offs between productivity and vital functions because of energy-sparing mechanisms.
Collapse
Affiliation(s)
- W M Rauw
- INIA-CSIC, Department of Animal Breeding and Genetics, Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - L H Baumgard
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | - J C M Dekkers
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| |
Collapse
|
22
|
Hao D, Xue JY, Wang Q, Guo L, Li XA. The Role of Scavenger Receptor BI in Sepsis. Int J Mol Sci 2024; 25:13441. [PMID: 39769206 PMCID: PMC11677381 DOI: 10.3390/ijms252413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from a dysregulated host response to infection. Currently, there is no effective therapy for sepsis due to an incomplete understanding of its pathogenesis. Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that plays a key role in HDL metabolism by modulating the selective uptake of cholesteryl ester from HDL. Recent studies, including those from our laboratory, indicate that SR-BI protects against sepsis through multiple mechanisms: (1) preventing nitric oxide-induced cytotoxicity; (2) promoting hepatic lipopolysaccharide (LPS) clearance and regulating cholesterol metabolism in the liver; (3) inhibiting LPS-induced inflammatory signaling in macrophages; and (4) mediating the uptake of cholesterol from HDL for inducible glucocorticoid (iGC) synthesis in the adrenal gland, which controls systemic inflammatory response. In this article, we review the roles of SR-BI in sepsis.
Collapse
Affiliation(s)
- Dan Hao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jian-Yao Xue
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qian Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ling Guo
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
23
|
Bolduan V, Palzer KA, Ries F, Busch N, Pautz A, Bros M. KSRP Deficiency Attenuates the Course of Pulmonary Aspergillosis and Is Associated with the Elevated Pathogen-Killing Activity of Innate Myeloid Immune Cells. Cells 2024; 13:2040. [PMID: 39768132 PMCID: PMC11674352 DOI: 10.3390/cells13242040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The mRNA-binding protein KSRP (KH-type splicing regulatory protein) is known to modulate immune cell functions post-transcriptionally, e.g., by reducing the mRNA stability of cytokines. It is known that KSRP binds the AU-rich motifs (ARE) that are often located in the 3'-untranslated part of mRNA species, encoding dynamically regulated proteins as, for example, cytokines. Innate myeloid immune cells, such as polymorphonuclear neutrophils (PMNs) and macrophages (MACs), eliminate pathogens by multiple mechanisms, including phagocytosis and the secretion of chemo- and cytokines. Here, we investigated the role of KSRP in the phenotype and functions of both innate immune cell types in the mouse model of invasive pulmonary aspergillosis (IPA). Here, KSRP-/- mice showed lower levels of Aspergillus fumigatus conidia (AFC) and an increase in the frequencies of PMNs and MACs in the lungs. Our results showed that PMNs and MACs from KSRP-/- mice exhibited an enhanced phagocytic uptake of AFC, accompanied by increased ROS production in PMNs upon stimulation. A comparison of RNA sequencing data revealed that 64 genes related to inflammatory and immune responses were shared between PMNs and MACs. The majority of genes upregulated in PMNs were involved in metabolic processes, cell cycles, and DNA repair. Similarly, KSRP-deficient PMNs displayed reduced levels of apoptosis. In conclusion, our results indicate that KSRP serves as a critical negative regulator of PMN and MAC anti-pathogen activity.
Collapse
Affiliation(s)
- Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Frederic Ries
- Department of Hematology and Medical Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Nora Busch
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
24
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Yu PH, Cheng YH, Chung SD, Chien CT. 1, 6-dilauroyl-D-fructofuranose ameliorates lipopolysaccharide-induced septic acute kidney injury via inhibiting caspase 1 mediated pyroptosis formation in rat. J Chin Med Assoc 2024; 87:1078-1089. [PMID: 39632381 DOI: 10.1097/jcma.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory state associated with acute kidney injury (AKI) and high mortality. However, sepsis-induced AKI cannot be effectively prevented or treated using current antimicrobial therapies and supportive measures. We explored the therapeutic effect of newly developed fructose esters on sepsis-induced AKI (S-AKI). METHODS We used the surface plasmon resonance technique and ultrasensitive chemiluminescence analyzer to characterize the lipopolysaccharide (LPS)/endotoxin binding activity and antioxidant capability of fructose esters. We assessed the extent of fructose ester gastrointestinal digestion using rat intestinal acetone powder. We examined the therapeutic effect of fructose esters on LPS-induced S-AKI by evaluating the blood and renal reactive oxygen species (ROS) amounts, caspase 1 mediated pyroptosis, inflammation, microcirculation, and renal dysfunction. RESULTS Our data showed that the fructose esters are not easily hydrolyzed by the rat intestinal acetone powder, suggesting their high stability in the gastrointestinal tract. 1,6-dilauroyl-D-fructofuranose (FDL) dose-dependently scavenged H2O2 and displayed a higher binding affinity to LPS compared to sialic acid and fructose did. LPS significantly enhanced caspase 1 mediated pyroptosis and increased leukocyte infiltration, blood and renal ROS amount, and blood urea nitrogen (BUN) and creatinine level, whereas FDL significantly depressed these LPS-enhanced parameters. In addition, the increased plasma inflammatory cytokines levels using LPS could be reduced by intravenous fructose ester FDL treatment. CONCLUSION Our data suggest that FDL, with its antioxidant activity against H2O2, can neutralize LPS toxicity using a high binding affinity, and attenuate S-AKI by inhibiting caspase 1 mediated pyroptosis, thereby ameliorating renal oxidative stress and dysfunction.
Collapse
Affiliation(s)
- Ping-Hsun Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Department of Emergency Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan, ROC
| | - Yu-Hsuan Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Nursing and Healthcare Administration, College of Healthcare & Management, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
- General Education Center, Asia Eastern University of Science and Technology, New Taipei City, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
26
|
Zhou J, Ye Y, Chen Z, Liu Y, Wu B, Huang H. Upregulation of Peripheral Blood NLRP3 and IL-18 in Patients With Acute Kidney Injury in Sepsis and Its Clinical Significance. Immun Inflamm Dis 2024; 12:e70113. [PMID: 39692606 PMCID: PMC11653721 DOI: 10.1002/iid3.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is a common complication that can lead to renal failure in patients, significantly affecting the prognosis and survival of patients. OBJECTIVE In this study, we aimed to evaluate the predictive value of NOD-like receptor protein 3 (NLRP3) and interleukin 18 (IL-18) in peripheral blood mononuclear cells (PBMCs) of SA patients for the occurrence of SA-AKI. MATERIAL AND METHODS We screened AKI-related data sets using the Gene Expression Omnibus (GEO) database and identified differentially expressed genes (DEGs) associated with AKI. KEGG and GO analysis were used to identify enriched molecular functions and pathways. The study included 62 SA patients admitted to the Department of Intensive Care Medicine of our hospital from February 2021 to June 2022, including 34 non-AKI cases and 28 AKI cases, and 25 healthy volunteers were used as the control group. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of NLRP3 and IL-18 in PBMCs of the subjects. RESULTS Bioinformatics analysis and experimental validation showed that the expression levels of NLRP3 and IL-18 were significantly upregulated in SA-AKI patients. In addition, the expressions of NLRP3 and IL-18 were positively correlated with APACHE II scores. ROC curve analysis revealed that NLRP3 and IL-18 have the potential to diagnose SA-AKI. CONCLUSION This study provides preliminary evidence for NLRP3 and IL-18 as potential diagnostic biomarkers for SA-AKI.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| | - Yibin Ye
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| | - Zhipeng Chen
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
- Department of cerebrovascular Intervention Intensive Care UnitZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| | - Yong Liu
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| | - Baozheng Wu
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| | - Haiping Huang
- Department of Critical Care MedicineZhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhouFujianChina
| |
Collapse
|
27
|
Wang Z, Ye R, Xu Z, Zhang S, Liu C, Zhu K, Wang P, Huang J. Protective Effect of IgY Embedded in W/O/W Emulsion on LPS Enteritis-Induced Colonic Injury in Mice. Nutrients 2024; 16:3361. [PMID: 39408328 PMCID: PMC11479051 DOI: 10.3390/nu16193361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Chicken yolk immunoglobulin (IgY), an immunologically active component, is used as an alternative to antibiotics for the treatment of enteritis. In this study, IgY was embedded in a W/O/W emulsion to overcome the digestive barrier and to investigate the protective effect of IgY against LPS-induced enteritis in mice. Four different hydrophilic emulsifiers (T80, PC, SC, and WPI) were selected to prepare separate W/O/W emulsions for encapsulating IgY. The results showed that the IgY-embedded double emulsion in the WPI group was the most effective. IgY embedded in the W/O/W emulsion could reduce the damage of LPS to the mouse intestine and prevent LPS-induced intestinal mucosal damage in mice. It increased the number of cup cells, promoted the expression of Muc2, and increased the mRNA expression levels of KLF3, TFF3, Itln1, and Ang4 (p < 0.05). It also enhanced the antioxidant capacity of the colon tissue, reduced the level of inflammatory factors in the colon tissue, and protected the integrity of the colon tissue. Stable embedding of IgY could be achieved using the W/O/W emulsion. In addition, the IgY-embedded W/O/W emulsion can be used as a dietary supplement to protect against LPS-induced enteritis in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Zijian Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (Z.X.); (S.Z.); (C.L.); (K.Z.)
| |
Collapse
|
28
|
Rodríguez-Negrete EV, Gálvez-Martínez M, Sánchez-Reyes K, Fajardo-Felix CF, Pérez-Reséndiz KE, Madrigal-Santillán EO, Morales-González Á, Morales-González JA. Liver Cirrhosis: The Immunocompromised State. J Clin Med 2024; 13:5582. [PMID: 39337069 PMCID: PMC11432654 DOI: 10.3390/jcm13185582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic inflammation and immunodeficiency are important components of cirrhosis-associated immune dysfunction (CAID), the severity of which is dynamic, progressive, and associated with the greater deterioration of liver function. Two inflammation phenotypes have been described: low-grade and high-grade systemic inflammation. Both of these phenotypes are related to liver cirrhosis function; thus, high-grade inflammation is correlated with the severity of hepatic insufficiency, bacterial translocation, and organic insufficiency, with which the risk of infections increases and the prognosis worsens. Bacterial translocation (BT) plays a relevant role in persistent systemic inflammation in patients with cirrhosis, and the prophylactic employment of antibiotics is useful for reducing events of infection and mortality.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Marisol Gálvez-Martínez
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Carlos Fernando Fajardo-Felix
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Karla Erika Pérez-Reséndiz
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional "A. López Mateos", Ciudad de México 07738, Mexico
| | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
29
|
Xu Y, Qu X, Liang M, Huang D, Jin M, Sun L, Chen X, Liu F, Qiu Z. Focus on the role of calcium signaling in ferroptosis: a potential therapeutic strategy for sepsis-induced acute lung injury. Front Med (Lausanne) 2024; 11:1457882. [PMID: 39355841 PMCID: PMC11442327 DOI: 10.3389/fmed.2024.1457882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
By engaging in redox processes, ferroptosis plays a crucial role in sepsis-induced acute lung injury (ALI). Although iron stimulates calcium signaling through the stimulation of redox-sensitive calcium pathways, the function of calcium signals in the physiological process of ferroptosis in septic ALI remains unidentified. Iron homeostasis disequilibrium in ferroptosis is frequently accompanied by aberrant calcium signaling. Intracellular calcium overflow can be a symptom of dysregulation of the cellular redox state, which is characterized by iron overload during the early phase of ferroptosis. This can lead to disruptions in calcium homeostasis and calcium signaling. The mechanisms controlling iron homeostasis and ferroptosis are reviewed here, along with their significance in sepsis-induced acute lung injury, and the potential role of calcium signaling in these processes is clarified. We propose that the development of septic acute lung injury is a combined process involving the bidirectional interaction between iron homeostasis and calcium signaling. Our goal is to raise awareness about the pathophysiology of sepsis-induced acute lung injury and investigate the relationship between these mechanisms and ferroptosis. We also aimed to develop calcium-antagonistic therapies that target ferroptosis in septic ALI and improve the quality of survival for patients suffering from acute lung injury.
Collapse
Affiliation(s)
- Yifei Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintian Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minyan Jin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianhai Chen
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fen Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhanjun Qiu
- Department of Respiratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Xia C, Wen H, Zheng L, Ni Y, Bi H, Wang H, Xu J, Zhou ZZ. Discovery of 7-alkoxybenzofurans as PDE4 inhibitors with hepatoprotective activity in D-GalN/LPS-induced hepatic sepsis. Eur J Med Chem 2024; 275:116576. [PMID: 38861808 DOI: 10.1016/j.ejmech.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Sepsis can quickly result in fatality for critically ill individuals, while liver damage can expedite the progression of sepsis, necessitating the exploration of new strategies for treating hepatic sepsis. PDE4 has been identified as a potential target for the treatment of liver damage. The scaffold hopping of lead compounds FCPR16 and Z19153 led to the discovery of a novel 7-methoxybenzofuran PDE4 inhibitor 4e, demonstrating better PDE4B (IC50 = 10.0 nM) and PDE4D (IC50 = 15.2 nM) inhibitor activity as a potential anti-hepatic sepsis drug in this study. Compared with FCPR16 and Z19153, 4e displayed improved oral bioavailability (F = 66 %) and longer half-life (t1/2 = 2.0 h) in SD rats, which means it can be more easily administered and has a longer-lasting effect. In the D-GalN/LPS-induced liver injury model, 4e exhibited excellent hepatoprotective activity against hepatic sepsis by decreasing ALT and AST levels and inflammatory infiltrating areas.
Collapse
Affiliation(s)
- Chuang Xia
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yujie Ni
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huichang Bi
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
31
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
32
|
Okunlola AO, Ajao TO, Sabi M, Kolawole OD, Eweka OA, Karim A, Adebayo TE. Catastrophic Antiphospholipid Syndrome: A Review of Current Evidence and Future Management Practices. Cureus 2024; 16:e69730. [PMID: 39429267 PMCID: PMC11490264 DOI: 10.7759/cureus.69730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by blood clots and pregnancy complications due to antiphospholipid antibodies. Catastrophic APS (CAPS), a severe variant, leads to multiorgan failure and is often fatal. Pathogenesis involves antiphospholipid antibodies, particularly anti-beta-2-glycoprotein I (aβ2GPI), which trigger endothelial cell (EC) activation, cytokine release, and a prothrombotic state. Infections, surgeries, and other triggers can precipitate CAPS, leading to widespread microthromboses and systemic inflammatory responses. CAPS predominantly affects younger patients and those with systemic lupus erythematosus (SLE), with a high mortality rate, though recent treatment advances have improved survival. Diagnosing CAPS involves identifying clinical manifestations, including rapid organ involvement and small vessel occlusions, confirmed by histopathology and high antiphospholipid antibody levels. The CAPS registry data indicate that commonly affected organs include kidneys, lungs, central nervous system, and the heart, with a high prevalence of lupus anticoagulant and anticardiolipin antibodies (aCL). Current management strategies focus on therapeutic anticoagulation, immunosuppressive therapies like corticosteroids, and adjunct treatments such as plasmapheresis and intravenous immunoglobulin (IVIG). Early use of glucocorticoids and combination therapy has significantly improved outcomes. In life-threatening cases, especially with microangiopathy, experts recommend performing plasma exchange (PE). Patients with associated autoimmune conditions or refractory cases may receive cyclophosphamide (CY) and rituximab while considering PE for treatment. Maintenance of anticoagulation with an appropriate international normalized ratio (INR) is crucial to prevent recurrence. This article reviews the pathogenesis and epidemiology of CAPS. It also examines the current management strategies, and discusses the challenges and controversies associated with these strategies. It hereafter offers recommendations for future management and outlines directions for further research.
Collapse
Affiliation(s)
| | - Temitope O Ajao
- General and Acute Medicine, United Lincolnshire Hospitals NHS Trust, Lincolnshire, GBR
| | - Mwila Sabi
- Anaesthetics and ICU, United Lincolnshire Hospitals NHS Trust, Lincolnshire, GBR
| | | | - Osasere A Eweka
- Family Medicine, United Lincolnshire Hospitals NHS Trust, Lincolnshire, GBR
| | - Abbas Karim
- Emergency Medicine, United Lincolnshire Hospitals NHS Trust, Lincolnshire, GBR
| | | |
Collapse
|
33
|
Atif M, Alsrhani A, Naz F, Ullah S, Abdalla AE, Ullah MI, Mazhari BBZ, Eltayeb LB, Hamad I, Ejaz H. Adenosine A2AR in viral immune evasion and therapy: unveiling new avenues for treating COVID-19 and AIDS. Mol Biol Rep 2024; 51:894. [PMID: 39115571 DOI: 10.1007/s11033-024-09839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 02/06/2025]
Abstract
Adenosine is a neuro- and immunomodulator that functions via G protein-coupled cell surface receptors. Several microbes, including viruses, use the adenosine signaling pathway to escape from host defense systems. Since the recent research developments in its role in health and disease, adenosine and its signaling pathway have attracted attention for targeting to treat many diseases. The therapeutic role of adenosine has been extensively studied for neurological, cardiovascular, and inflammatory disorders and bacterial pathophysiology, but published data on the role of adenosine in viral infections are lacking. Therefore, the purpose of this review article was to explain in detail the therapeutic role of adenosine signaling against viral infections, particularly COVID-19 and HIV. Several therapeutic approaches targeting A2AR-mediated pathways are in development and have shown encouraging results in decreasing the intensity of inflammatory reaction. The hypoxia-adenosinergic mechanism provides protection from inflammation-mediated tissue injury during COVID-19. A2AR expression increased remarkably in CD39 + and CD8 + T cells harvested from HIV patients in comparison to healthy subjects. A combined in vitro treatment performed by blocking PD-1 and CD39/adenosine signaling produced a synergistic outcome in restoring the CD8 + T cells funstion in HIV patients. We suggest that A2AR is an ideal target for pharmacological interventions against viral infections because it reduces inflammation, prevents disease progression, and ultimately improves patient survival.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Farrah Naz
- Northwestern Polytechnical University, Xian, 710060, China
| | - Sajjad Ullah
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Qurayyat, 75911, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, 11942, Saudi Arabia
| | - Ismail Hamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
34
|
Wang Y, Deng H, Xiao L, Pan Y. Escherichia coli Nissle 1917 Protects against Sepsis-Induced Intestinal Damage by Regulating the SCFA/GPRs Signaling Pathway. Microorganisms 2024; 12:1622. [PMID: 39203464 PMCID: PMC11356217 DOI: 10.3390/microorganisms12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
This study explores whether Escherichia coli Nissle 1917 (EcN) can preserve the integrity of the intestinal barrier by modulating the metabolism pathway of short-chain fatty acids (SCFAs) in a C57BL/6J mouse model of lipopolysaccharide (LPS)-induced acute enteritis and a model of a Caco-2 monolayer. The study involved establishing a septic shock model in mice through lipopolysaccharide (LPS) injection. Clinical scores and intestinal permeability were meticulously documented. Immunofluorescence was utilized to localize the tight junction proteins. A quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the expression of G protein-coupled receptors (GPRs) signaling. Additionally, the supplement of acetate and butyrate with Caco-2 monolayers to elucidate the potential of EcN in augmenting the intestinal barrier primarily via the modulation of SCFAs and qRT-PCR was performed to detect the expression of tight junction proteins and the activation of the GPRs protein signaling pathway. EcN mitigated the clinical symptoms and reduced intestinal permeability in the colon of LPS-induced mice. It also enhanced the production of SCFAs in the gut and upregulated the expression of SCFA receptor proteins GPR41 and GPR43 in the colon tissue. Our findings reveal that EcN activates the SCFA/GPRs pathway, thereby preserving intestinal barrier function and alleviating inflammation in a mouse sepsis model.
Collapse
Affiliation(s)
| | | | | | - Yisheng Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing 100034, China; (Y.W.); (H.D.); (L.X.)
| |
Collapse
|
35
|
Wang D, Wang K, Liu Q, Liu M, Zhang G, Feng K, Wang K, Ding X, Zhu H, Yang S, Liu Y, Li T, Gong P, Wang M, Wang PG, Jin H, Zhao W, Yu F. A Novel Drug Candidate for Sepsis Targeting Heparanase by Inhibiting Cytokine Storm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403337. [PMID: 38810101 PMCID: PMC11304236 DOI: 10.1002/advs.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 05/31/2024]
Abstract
Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Qiutong Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Mingyang Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Guoqiang Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Xianwei Ding
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Haomiao Zhu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Song Yang
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Yonghui Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Tiehai Li
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicalChinese Academy of SciencesShanghai201203China
| | - Peng Gong
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesWuhan430071China
| | - Manli Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesWuhan430071China
| | - Peng George Wang
- School of MedicineSouthern University of Science and TechnologyShenzhen518000China
| | - Hongzhen Jin
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Molecular Drug Research and KLMDASR of TianjinNankai UniversityTongyan Road, Haihe Education ParkTianjin300350China
| | - Fan Yu
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| |
Collapse
|
36
|
Zhuang K, Shu X, Meng W, Zhang D. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr 2024; 63:1605-1621. [PMID: 38512357 DOI: 10.1007/s00394-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weihong Meng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
- National Coarse Cereals Engineering Research Center, Daqing, China.
| |
Collapse
|
37
|
Kim TH, Kang J, Jang H, Joo H, Lee GY, Kim H, Cho U, Bang H, Jang J, Han S, Kim DY, Lee CM, Kang CK, Choe PG, Kim NJ, Oh MD, Kim TS, Kim I, Park WB, Kwon S. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 2024; 632:893-902. [PMID: 39048820 DOI: 10.1038/s41586-024-07725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Treatment assessment and patient outcome for sepsis depend predominantly on the timely administration of appropriate antibiotics1-3. However, the clinical protocols used to stratify and select patient-specific optimal therapy are extremely slow4. In particular, the major hurdle in performing rapid antimicrobial susceptibility testing (AST) remains in the lengthy blood culture procedure, which has long been considered unavoidable due to the limited number of pathogens present in the patient's blood. Here we describe an ultra-rapid AST method that bypasses the need for traditional blood culture, thereby demonstrating potential to reduce the turnaround time of reporting drug susceptibility profiles by more than 40-60 h compared with hospital AST workflows. Introducing a synthetic beta-2-glycoprotein I peptide, a broad range of microbial pathogens are selectively recovered from whole blood, subjected to species identification or instantly proliferated and phenotypically evaluated for various drug conditions using a low-inoculum AST chip. The platform was clinically evaluated by the enrolment of 190 hospitalized patients suspected of having infection, achieving 100% match in species identification. Among the eight positive cases, six clinical isolates were retrospectively tested for AST showing an overall categorical agreement of 94.90% with an average theoretical turnaround time of 13 ± 2.53 h starting from initial blood processing.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Bio-MAX Institute, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Korea
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyelyn Joo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Gi Yoon Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hamin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | | | | | | | | | | | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- QuantaMatrix Inc., Seoul, Korea.
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Korea.
| |
Collapse
|
38
|
Teng J, Zhao Y, Li YB, Xue LY, Zhai YX, Liu JR, Wang H, Ji XS. LECT2 mediates antibacterial immune response induced by Nocardia seriolae infection in the northern snakehead. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109708. [PMID: 38908810 DOI: 10.1016/j.fsi.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.
Collapse
Affiliation(s)
- Jian Teng
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yu Bao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yi Xiang Zhai
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jian Ru Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Hui Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China.
| |
Collapse
|
39
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
41
|
Fink A, Ben Hur D, Wani NA, Cohen H, Segev-Zarko LA, Arnusch CJ, Shai Y. Development of Nontoxic Peptides for Lipopolysaccharide Neutralization and Sepsis Treatment. ACS Pharmacol Transl Sci 2024; 7:1795-1806. [PMID: 38898940 PMCID: PMC11184611 DOI: 10.1021/acsptsci.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
Host defense peptides (HDPs), also named antimicrobial peptides (AMPs), are increasingly being recognized for serving multiple functions in protecting the host from infection and disease. Previous studies have shown that various HDPs can also neutralize lipopolysaccharide (LPS, endotoxin), as well as lipoteichoic acid (LTA), inducing macrophage activation. However, antimicrobial activity is usually accompanied by systemic toxicity which makes it difficult to use HDPs as antiendotoxin agents. Here we report that key parameters can uncouple these two functions yielding nontoxic peptides with potent LPS and LTA neutralization activities in vitro and in animal models. The data reveal that peptide length, the number, and the placement of positive charges are important parameters involved in LPS neutralization. Crucially, the peptide exhibited a separation between its membrane-disrupting and antimicrobial properties, effectively decoupling them from its ability to neutralize LPS. This essential distinction prevented systemic toxicity and led to the peptide's complete rescue of mice suffering from severe septic shock in two distinct models. Strong binding to LPS, changes in structure, and oligomerization state upon LPS binding were important factors that determined the activity of the peptides. In the face of the increasing threat of septic shock worldwide, it is crucial to grasp how we can neutralize harmful substances like LPS. This knowledge is vital for creating nontoxic treatments for sepsis.
Collapse
Affiliation(s)
- Avner Fink
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
- MilliporeSigma
Life Science, Kiryat
Hamada 13, 9777613 Jerusalem, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Hadar Cohen
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Li-Av Segev-Zarko
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Christopher J. Arnusch
- Department
of Desalination and Water Treatment, Zuckerberg Institute for Water
Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
| | - Yechiel Shai
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
Gao B, Chen R, Zhao H, Zhang H, Wang X, Liu D. Estimated plasma volume status as a simple and accessible predictor of 28-day mortality in septic shock: insights from a retrospective study of the MIMIC-IV database. Front Med (Lausanne) 2024; 11:1416396. [PMID: 38903828 PMCID: PMC11187084 DOI: 10.3389/fmed.2024.1416396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Assessing volume status in septic shock patients is crucial for tailored fluid resuscitation. Estimated plasma volume status (ePVS) has emerged as a simple and effective tool for evaluating patient volume status. However, the prognostic value of ePVS in septic shock patients remains underexplored. Methods The study cohort consisted of septic shock patients admitted to the ICU, sourced from the MIMIC-IV database. Patients were categorized into two groups based on 28-day survival outcomes, and their baseline characteristics were compared. According to the ePVS (6.52 dL/g) with a hazard ratio of 1 in the restricted cubic spline (RCS) analysis, patients were further divided into high and low ePVS groups. A multivariable Cox regression model was utilized to evaluate the association between ePVS and 28-day mortality rate. The Kaplan-Meier survival curve was plotted, and all-cause mortality was compared between the high and low groups using the log-rank test. Results A total of 7,607 septic shock patients were included in the study, among whom 2,144 (28.2%) died within 28 days. A J-shaped relationship was observed between ePVS at ICU admission and 28-day mortality, with an increase in mortality risk noted when ePVS exceeded 6.52 dL/g. The high ePVS group exhibited notably higher mortality rates compared to the low ePVS group (28-day mortality: 26.2% vs. 30.2%; 90-day mortality: 35% vs. 42.3%). After adjustment for confounding factors, ePVS greater than 6.52 dL/g independently correlated with an increased risk of 28-day mortality (HR: 1.20, 95% CI: 1.10-1.31, p < 0.001) and 90-day mortality (HR: 1.25, 95% CI: 1.15-1.35, p < 0.001). Kaplan-Meier curves demonstrated a heightened risk of mortality associated with ePVS values exceeding 6.52 dL/g. Conclusion A J-shaped association was observed between ePVS and 28-day mortality in septic shock patients, with higher ePVS levels associated with increased risk of mortality.
Collapse
Affiliation(s)
- Beijun Gao
- Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Rongping Chen
- Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Hua Zhao
- Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Hongmin Zhang
- Department of Health Care, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
43
|
Ziegler AC, Haider RS, Hoffmann C, Gräler MH. S1PR3 agonism and S1P lyase inhibition rescue mice in the severe state of experimental sepsis. Biomed Pharmacother 2024; 174:116575. [PMID: 38599060 DOI: 10.1016/j.biopha.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany
| | - Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, UK
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07740, Germany.
| |
Collapse
|
44
|
Girardis M, Coloretti I, Antonelli M, Berlot G, Busani S, Cortegiani A, De Pascale G, De Rosa FG, De Rosa S, Donadello K, Donati A, Forfori F, Giannella M, Grasselli G, Montrucchio G, Oliva A, Pasero D, Piazza O, Romagnoli S, Tascini C, Viaggi B, Tumbarello M, Viale P. Adjunctive immunotherapeutic agents in patients with sepsis and septic shock: a multidisciplinary consensus of 23. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:28. [PMID: 38689337 PMCID: PMC11059820 DOI: 10.1186/s44158-024-00165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND In the last decades, several adjunctive treatments have been proposed to reduce mortality in septic shock patients. Unfortunately, mortality due to sepsis and septic shock remains elevated and NO trials evaluating adjunctive therapies were able to demonstrate any clear benefit. In light of the lack of evidence and conflicting results from previous studies, in this multidisciplinary consensus, the authors considered the rational, recent investigations and potential clinical benefits of targeted adjunctive therapies. METHODS A panel of multidisciplinary experts defined clinical phenotypes, treatments and outcomes of greater interest in the field of adjunctive therapies for sepsis and septic shock. After an extensive systematic literature review, the appropriateness of each treatment for each clinical phenotype was determined using the modified RAND/UCLA appropriateness method. RESULTS The consensus identified two distinct clinical phenotypes: patients with overwhelming shock and patients with immune paralysis. Six different adjunctive treatments were considered the most frequently used and promising: (i) corticosteroids, (ii) blood purification, (iii) immunoglobulins, (iv) granulocyte/monocyte colony-stimulating factor and (v) specific immune therapy (i.e. interferon-gamma, IL7 and AntiPD1). Agreement was achieved in 70% of the 25 clinical questions. CONCLUSIONS Although clinical evidence is lacking, adjunctive therapies are often employed in the treatment of sepsis. To address this gap in knowledge, a panel of national experts has provided a structured consensus on the appropriate use of these treatments in clinical practice.
Collapse
Affiliation(s)
- Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico Di Modena, University of Modena and Reggio Emilia, Modena, Italy.
| | - Irene Coloretti
- Anesthesia and Intensive Care Medicine, Policlinico Di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Antonelli
- Dipartimento Di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche E Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Scienze Dell'Emergenza, Anestesiologiche E Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Berlot
- Anesthesia and Intensive Care, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Stefano Busani
- Anesthesia and Intensive Care Medicine, Policlinico Di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Gennaro De Pascale
- Dipartimento Di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche E Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Scienze Dell'Emergenza, Anestesiologiche E Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Silvia De Rosa
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | - Katia Donadello
- Department of Surgery, Dentistry, Ginaecology and Paediatrics, University of Verona, and Anesthesia and Intensive Care Unit B, University Hospital Integrated Trust of Verona, Verona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care, Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | - Francesco Forfori
- Anesthesia and Intensive Care, Anesthesia and Resuscitation Department, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgia Montrucchio
- Department of Surgical Sciences, Departement of Anesthesia, Resuscitation and Emergency Torino, University of Turin, Turin, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Pasero
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ornella Piazza
- University Hospital "San Giovanni Di Dio E Ruggi d'Aragona", Salerno, Italy
| | - Stefano Romagnoli
- Department of Health Science, Department of Anesthesia and Intensive Care, University of Florence, Careggi University Hospital, Florence, Italy
| | - Carlo Tascini
- Department of Medicine (DAME), Infectious Diseases Clinic, University of Udine, Udine, Italy
| | - Bruno Viaggi
- Anesthesia and Intensive Care, Careggi University Hospital, Florence, Italy
| | - Mario Tumbarello
- Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Li F, Qu H, Li Y, Liu J, Fu H. Establishment and assessment of mortality risk prediction model in patients with sepsis based on early-stage peripheral lymphocyte subsets. Aging (Albany NY) 2024; 16:7460-7473. [PMID: 38669099 PMCID: PMC11087126 DOI: 10.18632/aging.205772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
This study is aimed to explore the value of lymphocyte subsets in evaluating the severity and prognosis of sepsis. The counts of lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and NK cells significantly decreased between day 1 and day 3 in both the survivor and the non-survivor groups. The peripheral lymphocyte subsets (PLS) at day 1 were not significantly different between the survivor and the non-survivor groups. However, at day 3, the counts of lymphocytes, CD3+ T cells, CD4+ T cells, and NK cells were remarkably lower in the non-survivor group. No significant differences in CD8+ T cells, or CD19+ B cells were observed. The PLS index was independently and significantly associated with the 28-day mortality risk in septic patients (OR: 3.08, 95% CI: 1.18-9.67). Based on these clinical parameters and the PLS index, we developed a nomograph for evaluating the individual mortality risk in sepsis. The area under the curve of prediction with the PLS index was significantly higher than that from the model with only clinical parameters (0.912 vs. 0.817). Our study suggests that the decline of PLS occurred in the early stage of sepsis. The new novel PLS index can be an independent predictor of 28-day mortality in septic patients. The prediction model based on clinical parameters and the PLS index has relatively high predicting ability.
Collapse
Affiliation(s)
- Fuzhu Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Hongtao Qu
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Yimin Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Jie Liu
- Department of Emergency, Shenzhen United Family Hospital, Shenzhen, Guangdong 518048, China
| | - Hongyun Fu
- The Affiliated Nanhua Hospital, Department of Docimasiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China
| |
Collapse
|
46
|
Hao C, Hao R, Zhao H, Zhang Y, Sheng M, An Y. Identification and validation of sepsis subphenotypes using time-series data. Heliyon 2024; 10:e28520. [PMID: 38689952 PMCID: PMC11059505 DOI: 10.1016/j.heliyon.2024.e28520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Purpose The recognition of sepsis as a heterogeneous syndrome necessitates identifying distinct subphenotypes to select targeted treatment. Methods Patients with sepsis from the MIMIC-IV database (2008-2019) were randomly divided into a development cohort (80%) and an internal validation cohort (20%). Patients with sepsis from the ICU database of Peking University People's Hospital (2008-2022) were included in the external validation cohort. Time-series k-means clustering analysis and dynamic time warping was performed to develop and validate sepsis subphenotypes by analyzing the trends of 21 vital signs and laboratory indicators within 24 h after sepsis onset. Inflammatory biomarkers were compared in the ICU database of Peking University People's Hospital, whereas treatment heterogeneity was compared in the MIMIC-IV database. Findings Three sub-phenotypes were identified in the development cohort. Type A patients (N = 2525, 47%) exhibited stable vital signs and fair organ function, type B (N = 1552, 29%) was exhibited an obvious inflammatory response and stable organ function, and type C (N = 1251, 24%) exhibited severely impaired organ function with a deteriorating tendency. Type C demonstrated the highest mortality rate (33%) and levels of inflammatory biomarkers, followed by type B (24%), whereas type A exhibited the lowest mortality rate (11%) and levels of inflammatory biomarkers. These subphenotypes were confirmed in both the internal and external cohorts, demonstrating similar features and comparable mortality rates. In type C patients, survivors had significantly lower fluid intake within 24 h after sepsis onset (median 2891 mL, interquartile range (IQR) 1530-5470 mL) than that in non-survivors (median 4342 mL, IQR 2189-7305 mL). For types B and C, survivors showed a higher proportion of indwelling central venous catheters (p < 0.05). Conclusion Three novel phenotypes of patients with sepsis were identified and validated using time-series data, revealing significant heterogeneity in inflammatory biomarkers, treatments, and consistency across cohorts.
Collapse
Affiliation(s)
- Chenxiao Hao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Rui Hao
- School of Computer Science, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yong Zhang
- BNRist, DCST, RIIT, Tsinghua University, Beijing, 100084, China
| | - Ming Sheng
- BNRist, DCST, RIIT, Tsinghua University, Beijing, 100084, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
47
|
Kawata K, Hatano S, Baba A, Imabayashi K, Baba Y. Bruton's tyrosine kinase inhibition limits endotoxic shock by suppressing IL-6 production by marginal zone B cells in mice. Front Immunol 2024; 15:1388947. [PMID: 38638439 PMCID: PMC11024364 DOI: 10.3389/fimmu.2024.1388947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Wu HT, Lin XX, Yang XL, Ding Y, Wang JL, Liu CL, Yu WZ. Kaempferol attenuates inflammation in lipopolysaccharide-induced gallbladder epithelial cells by inhibiting the MAPK/NF-κB signaling pathway. Chem Biol Drug Des 2024; 103:e14519. [PMID: 38570708 DOI: 10.1111/cbdd.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Kaempferol (KPR), a flavonoid compound found in various plants and foods, has garnered attention for its anti-inflammatory, antioxidant, and anticancer properties. In preliminary studies, KPR can modulate several signaling pathways involved in inflammation, making it a candidate for treating cholecystitis. This study aimed to explore the effects and mechanisms of KPR on lipopolysaccharide (LPS)-induced human gallbladder epithelial cells (HGBECs). To assess the impact of KPR on HGBECs, the HGBECs were divided into control, KPR, LPS, LPS + KPR, and LPS + UDCA groups. Cell viability and cytotoxicity were evaluated by MTT assay and lactate dehydrogenase (LDH) assay, respectively, and concentrations of KPR (10-200 μM) were tested. LPS-induced inflammatory responses in HGBECs were to create an in vitro model of cholecystitis. The key inflammatory markers (IL-1β, IL-6, and TNF-α) levels were quantified using ELISA, The modulation of the MAPK/NF-κB signaling pathway was measured by western blot using specific antibodies against pathway components (p-IκBα, IκBα, p-p65, p65, p-JNK, JNK, p-ERK, ERK, p-p38, and p38). The cell viability and LDH levels in HGBECs were not significantly affected by 50 μM KPR, thus it was selected as the optimal KPR intervention concentration. KPR increased the viability of LPS-induced HGBECs. Additionally, KPR inhibited the inflammatory factors level (IL-1β, IL-6, and TNF-α) and protein expression (iNOS and COX-2) in LPS-induced HGBECs. Furthermore, KPR reversed LPS-induced elevation of p-IκBα/IκBα, p-p65/p65, p-JNK/JNK, p-ERK/ERK, and p-p38/p38 ratios. KPR attenuates the LPS-induced inflammatory response in HGBECs, possibly by inhibiting MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Hai-Tao Wu
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Xin-Xing Lin
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Xiao-Lei Yang
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Yong Ding
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Jia-Liang Wang
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Chen-Lu Liu
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Wei-Zhou Yu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
49
|
Kingsley MK, Rao GK, Bhat BV. Effectiveness of Narciclasine in Suppressing the Inflammatory Response in Sepsis: Molecular Docking and In Silico Studies. Bioinform Biol Insights 2024; 18:11779322241233436. [PMID: 38495740 PMCID: PMC10943728 DOI: 10.1177/11779322241233436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Narciclasine is an alkaloid belonging to the Amaryllidaceae family which has been reported to have many beneficial properties. Especially its anticancer properties have been widely reported. Here, we have focused on its potential use in suppressing the inflammatory response in sepsis using in silico methods. Lipopolysaccharide (LPS) is an endotoxin which is present in the outer membrane of gram-negative bacteria and is a crucial player in the pathogenesis of gram-negative sepsis. Activation of toll-like receptor 4 (TLR4) signaling by LPS is an important event in the pathogenesis of gram-negative sepsis. This initiates a downstream signaling pathway comprising of several adaptor proteins such as toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase (IRAK)-1, IRAK-4, interferon regulatory factor 3 (IRF-3), tumor necrosis factor receptor-associated factor 6 (TRAF-6) leading to nuclear factor kappa B (NF-κβ) activation resulting in elevated production of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. S100 calcium binding proteins A8/A9 (S100A8/A9) have been found to be an agonist of TLR4, and it amplifies the inflammatory response in sepsis. Molecular docking studies of narciclasine with target proteins associated with the LPS-TLR4 pathway showed that it has good binding affinity and stable interactions with the targets studied. Molecular dynamics (MD) simulation studies over 100 ns showed that most of the ligand-target complexes were stable. The structures of all the targets except TRAF-6 were retrieved from the Protein Data Bank (PDB) database. Homology modeling was done to predict the 3-dimensional structure of TRAF-6. MD simulation of narciclasine-TRAF-6 complex showed that the structure is stable. Metapocket was used for active site prediction in the target proteins. Toxicity analysis by admetSAR revealed that narciclasine was readily biodegradable and exhibited minimum toxicity. These results indicate that narciclasine has effective anti-inflammatory properties which could be useful in suppressing the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Department of Pulmonary Medicine, Christian Medical College, Vellore, India
| | - Gurugubelli Krishna Rao
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Ballambattu Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Aarupadai Veedu Medical College & Hospital, Vinayaka Mission Research Foundation-DU, Puducherry, India
| |
Collapse
|
50
|
Bai Y, Morita K, Kokaji T, Hatano A, Ohno S, Egami R, Pan Y, Li D, Yugi K, Uematsu S, Inoue H, Inaba Y, Suzuki Y, Matsumoto M, Takahashi M, Izumi Y, Bamba T, Hirayama A, Soga T, Kuroda S. Trans-omic analysis reveals opposite metabolic dysregulation between feeding and fasting in liver associated with obesity. iScience 2024; 27:109121. [PMID: 38524370 PMCID: PMC10960062 DOI: 10.1016/j.isci.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/03/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.
Collapse
Affiliation(s)
- Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuyuki Yugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masatomo Takahashi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|