1
|
Sidharthan V, Sibley CD, Dunne-Dombrink K, Yang M, Zahurancik WJ, Balaratnam S, Wilburn DB, Schneekloth JS, Gopalan V. Use of a small molecule microarray screen to identify inhibitors of the catalytic RNA subunit of Methanobrevibacter smithii RNase P. Nucleic Acids Res 2024:gkae1190. [PMID: 39676671 DOI: 10.1093/nar/gkae1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Despite interest in developing therapeutics that leverage binding pockets in structured RNAs-whose dysregulation leads to diseases-such drug discovery efforts are limited. Here, we have used a small molecule microarray (SMM) screen to find inhibitors of a large ribozyme: the Methanobrevibacter smithii RNase P RNA (Msm RPR, ∼300 nt). The ribonucleoprotein form of RNase P, which catalyzes the 5'-maturation of precursor tRNAs, is a suitable drug target as it is essential, structurally diverse across life domains, and present in low copy. From an SMM screen of 7,300 compounds followed by selectivity profiling, we identified 48 hits that bound specifically to the Msm RPR-the catalytic subunit in Msm (archaeal) RNase P. When we tested these hits in precursor-tRNA cleavage assays, we discovered that the drug-like M1, a diaryl-piperidine, inhibits Msm RPR (KI, 17 ± 1 μM) but not a structurally related archaeal RPR, and binds to Msm RPR with a KD(app) of 8 ± 3 μM. Structure-activity relationship analyses performed with synthesized analogs pinpointed groups in M1 that are important for its ability to inhibit Msm RPR. Overall, the SMM method offers prospects for advancing RNA druggability by identifying new privileged scaffolds/chemotypes that bind large, structured RNAs.
Collapse
Affiliation(s)
- Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kara Dunne-Dombrink
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mo Yang
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Damien B Wilburn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Zhou B, Wan F, Lei KX, Lan P, Wu J, Lei M. Coevolution of RNA and protein subunits in RNase P and RNase MRP, two RNA processing enzymes. J Biol Chem 2024; 300:105729. [PMID: 38336296 PMCID: PMC10966300 DOI: 10.1016/j.jbc.2024.105729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.
Collapse
Affiliation(s)
- Bin Zhou
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Kevin X Lei
- Shanghai High School International Division, Shanghai, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Shanghai, China; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Mao G, Srivastava AS, Wu S, Kosek D, Kirsebom LA. Importance of residue 248 in Escherichia coli RNase P RNA mediated cleavage. Sci Rep 2023; 13:14140. [PMID: 37644068 PMCID: PMC10465520 DOI: 10.1038/s41598-023-41203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
tRNA genes are transcribed as precursors and RNase P generates the matured 5' end of tRNAs. It has been suggested that residue - 1 (the residue immediately 5' of the scissile bond) in the pre-tRNA interacts with the well-conserved bacterial RNase P RNA (RPR) residue A248 (Escherichia coli numbering). The way A248 interacts with residue - 1 is not clear. To gain insight into the role of A248, we analyzed cleavage as a function of A248 substitutions and N-1 nucleobase identity by using pre-tRNA and three model substrates. Our findings are consistent with a model where the structural topology of the active site varies and depends on the identity of the nucleobases at, and in proximity to, the cleavage site and their potential to interact. This leads to positioning of Mg2+ that activates the water that acts as the nucleophile resulting in efficient and correct cleavage. We propose that in addition to be involved in anchoring the substrate the role of A248 is to exclude bulk water from access to the amino acid acceptor stem, thereby preventing non-specific hydrolysis of the pre-tRNA. Finally, base stacking is discussed as a way to protect functionally important base-pairing interactions from non-specific hydrolysis, thereby ensuring high fidelity during RNA processing and the decoding of mRNA.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Abhishek S Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
5
|
Bohn P, Gribling-Burrer AS, Ambi UB, Smyth RP. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat Methods 2023; 20:849-859. [PMID: 37106231 PMCID: PMC10250195 DOI: 10.1038/s41592-023-01862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
Genome-wide measurements of RNA structure can be obtained using reagents that react with unpaired bases, leading to adducts that can be identified by mutational profiling on next-generation sequencing machines. One drawback of these experiments is that short sequencing reads can rarely be mapped to specific transcript isoforms. Consequently, information is acquired as a population average in regions that are shared between transcripts, thus blurring the underlying structural landscape. Here, we present nanopore dimethylsulfate mutational profiling (Nano-DMS-MaP)-a method that exploits long-read sequencing to provide isoform-resolved structural information of highly similar RNA molecules. We demonstrate the value of Nano-DMS-MaP by resolving the complex structural landscape of human immunodeficiency virus-1 transcripts in infected cells. We show that unspliced and spliced transcripts have distinct structures at the packaging site within the common 5' untranslated region, likely explaining why spliced viral RNAs are excluded from viral particles. Thus, Nano-DMS-MaP is a straightforward method to resolve biologically important transcript-specific RNA structures that were previously hidden in short-read ensemble analyses.
Collapse
Affiliation(s)
- Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Uddhav B Ambi
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Faculty of Medicine, Würzburg, Germany.
| |
Collapse
|
6
|
Hansen LN, Kletzien OA, Urquijo M, Schwanz LT, Batey RT. Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions. J Mol Biol 2023; 435:168070. [PMID: 37003469 PMCID: PMC10152882 DOI: 10.1016/j.jmb.2023.168070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
The architecture and folding of complex RNAs is governed by a limited set of highly recurrent structural motifs that form long-range tertiary interactions. One of these motifs is the T-loop, which was first identified in tRNA but is broadly distributed across biological RNAs. While the T-loop has been examined in detail in different biological contexts, the various receptors that it interacts with are not as well defined. In this study, we use a cell-based genetic screen in concert with bioinformatic analysis to examine three different, but related, T-loop receptor motifs found in the flavin mononucleotide (FMN) and cobalamin (Cbl) riboswitches. As a host for different T-loop receptors, we employed the env8 class-II Cbl riboswitch, an RNA that uses two T-loop motifs for both folding and supporting the ligand binding pocket. A set of libraries was created in which select nucleotides that participate in the T-loop/T-loop receptor (TL/TLR) interaction were fully randomized. Library members were screened for their ability to support Cbl-dependent expression of a reporter gene. While T-loops appear to be variable in sequence, we find that the functional sequence space is more restricted in the Cbl riboswitch, suggesting that TL/TLR interactions are context dependent. Our data reveal clear sequence signatures for the different types of receptor motifs that align with phylogenic analysis of these motifs in the FMN and Cbl riboswitches. Finally, our data suggest the functional contribution of various nucleobase-mediated long-range interactions within the riboswitch subclass of TL/TLR interactions that are distinct from those found in other RNAs.
Collapse
Affiliation(s)
- Lisa N Hansen
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Marcus Urquijo
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Logan T Schwanz
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA. https://twitter.com/Lschwanzbio
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
7
|
Wedekind JE. RNA in the loop: Probing T-loop/T-loop receptor interactions as mediators of long-range RNA contacts that influence gene regulation. J Mol Biol 2023; 435:168087. [PMID: 37030650 DOI: 10.1016/j.jmb.2023.168087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Siddika MA, Yamada T, Aoyama R, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Catalytic RNA Oligomers Formed by Co-Oligomerization of a Pair of Bimolecular RNase P Ribozymes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238298. [PMID: 36500390 PMCID: PMC9740620 DOI: 10.3390/molecules27238298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Naturally occurring ribozymes with a modular architecture are promising platforms for construction of RNA nanostructures because modular redesign enables their oligomerization. The resulting RNA nanostructures can exhibit the catalytic function of the parent ribozyme in an assembly dependent manner. In this study, we designed and constructed open-form oligomers of a bimolecular form of an RNase P ribozyme. The ribozyme oligomers were analyzed biochemically and by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Takahiro Yamada
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Risako Aoyama
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kumi Hidaka
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Osaka 564-8680, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Correspondence:
| |
Collapse
|
9
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
10
|
Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. J Biosci Bioeng 2022; 134:195-202. [PMID: 35810135 DOI: 10.1016/j.jbiosc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Naturally occurring ribozymes with defined three-dimensional (3D) structures serve as promising platforms for the design and construction of artificial RNA nanostructures. We constructed a hexameric ribozyme nanostructure by face-to-face dimerization of a pair of triangular ribozyme trimers, unit RNAs of which were derived from the Tetrahymena group I ribozyme. In this study, we have expanded the dimerization strategy to a square-shaped ribozyme tetramer by introducing four pillar units. The resulting box-shaped nanostructures, which contained eight ribozyme units, can be assembled from either four or two components of their unit RNAs.
Collapse
|
11
|
Marszalkowski M, Werner A, Feltens R, Helmecke D, Gößringer M, Westhof E, Hartmann RK. Comparative study on tertiary contacts and folding of RNase P RNAs from a psychrophilic, a mesophilic/radiation-resistant, and a thermophilic bacterium. RNA (NEW YORK, N.Y.) 2021; 27:1204-1219. [PMID: 34266994 PMCID: PMC8457005 DOI: 10.1261/rna.078735.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In most bacterial type A RNase P RNAs (P RNAs), two major loop-helix tertiary contacts (L8-P4 and L18-P8) help to orient the two independently folding S- and C-domains for concerted recognition of precursor tRNA substrates. Here, we analyze the effects of mutations in these tertiary contacts in P RNAs from three different species: (i) the psychrophilic bacterium Pseudoalteromonas translucida (Ptr), (ii) the mesophilic radiation-resistant bacterium Deinococcus radiodurans (Dra), and (iii) the thermophilic bacterium Thermus thermophilus (Tth). We show by UV melting experiments that simultaneous disruption of these two interdomain contacts has a stabilizing effect on all three P RNAs. This can be inferred from reduced RNA unfolding at lower temperatures and a more concerted unfolding at higher temperatures. Thus, when the two domains tightly interact via the tertiary contacts, one domain facilitates structural transitions in the other. P RNA mutants with disrupted interdomain contacts showed severe kinetic defects that were most pronounced upon simultaneous disruption of the L8-P4 and L18-P8 contacts. At 37°C, the mildest effects were observed for the thermostable Tth RNA. A third interdomain contact, L9-P1, makes only a minor contribution to P RNA tertiary folding. Furthermore, D. radiodurans RNase P RNA forms an additional pseudoknot structure between the P9 and P12 of its S-domain. This interaction was found to be particularly crucial for RNase P holoenzyme activity at near-physiological Mg2+ concentrations (2 mM). We further analyzed an exceptionally stable folding trap of the G,C-rich Tth P RNA.
Collapse
Affiliation(s)
- Michal Marszalkowski
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Andreas Werner
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Ralph Feltens
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Dominik Helmecke
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Markus Gößringer
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Eric Westhof
- Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Architecture et Réactivité de l'ARN, F-67084 Strasbourg, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
12
|
Zeng D, Abzhanova A, Brown BP, Reiter NJ. Dissecting Monomer-Dimer Equilibrium of an RNase P Protein Provides Insight Into the Synergistic Flexibility of 5' Leader Pre-tRNA Recognition. Front Mol Biosci 2021; 8:730274. [PMID: 34540901 PMCID: PMC8447495 DOI: 10.3389/fmolb.2021.730274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA processing; however, the RNase P protein is required for catalysis in vivo and interacts with the 5' leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the 5' leader ptRNA binding interface, presenting a challenge in accurately defining the substrate recognition properties. To overcome this, concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima. NMR relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY) experiments were analyzed, identifying a monomeric species through the determination of the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10-10 m2/s, τ c = 5.3 ns) or dimer (1.87 ± 0.40* 10-10 m2/s, τ c = 9.7 ns) protein assemblies at 45°C correlate well with calculated diffusion coefficients derived from the crystallographic P protein structure (PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and chemical shift information enabled us to gain novel insight into the structure of the P protein, highlighting a lack of structural convergence of the N-terminus (residues 1-14) in solution. We propose that the N-terminus of the bacterial P protein is partially disordered and adopts a stable conformation in the presence of RNA. In addition, we have determined the location of the 5' leader RNA in solution and measured the affinity of the 5' leader RNA-P protein interaction. We show that the monomer P protein interacts with RNA at the 5' leader binding cleft that was previously identified using X-ray crystallography. Data support a model where N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate the 5' leader region of ptRNA. Taken together, local structural changes of the P protein and the 5' leader RNA provide a means to obtain optimal substrate alignment and activation of the RNase P holoenzyme.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Benjamin P. Brown
- Chemical and Physical Biology Program, Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Nicholas J. Reiter
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
13
|
Marathe IA, Lai SM, Zahurancik WJ, Poirier MG, Wysocki VH, Gopalan V. Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Res 2021; 49:9444-9458. [PMID: 34387688 PMCID: PMC8450104 DOI: 10.1093/nar/gkab655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.
Collapse
Affiliation(s)
- Ila A Marathe
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Poirier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Affinity and Structural Analysis of the U1A RNA Recognition Motif with Engineered Methionines to Improve Experimental Phasing. CRYSTALS 2021; 11. [PMID: 33777416 PMCID: PMC7996396 DOI: 10.3390/cryst11030273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module. Specifically, the U1-snRNA hairpin II (hpII) single-stranded loop recognized by U1A can be transplanted into an RNA target to promote crystal contacts and to attain phase information via molecular replacement or anomalous diffraction methods using selenomethionine. Herein, we produced the F37M/F77M mutant of U1A to augment the phasing capability of this powerful crystallization module. Selenomethionine-substituted U1A(F37M/F77M) retains high affinity for hpII (K D of 59.7 ± 11.4 nM). The 2.20 Å resolution crystal structure reveals that the mutated sidechains make new S-π interactions in the hydrophobic core and are useful for single-wavelength anomalous diffraction. Crystals were also attained of U1A(F37M/F77M) in complex with a bacterial preQ1-II riboswitch. The F34M/F37M/F77M mutant was introduced similarly into a lab-evolved U1A variant (TBP6.9) that recognizes the internal bulged loop of HIV-1 TAR RNA. We envision that this short RNA sequence can be placed into non-essential duplex regions to promote crystallization and phasing of target RNAs. We show that selenomethionine-substituted TBP6.9(F34M/F37M/F77M) binds a TAR variant wherein the apical loop was replaced with a GNRA tetraloop (K D of 69.8 ± 2.9 nM), laying the groundwork for use of TBP6.9(F34M/F37M/F77M) as a crystallization module. These new tools are available to the research community.
Collapse
|
15
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
16
|
Rivas E. RNA structure prediction using positive and negative evolutionary information. PLoS Comput Biol 2020; 16:e1008387. [PMID: 33125376 PMCID: PMC7657543 DOI: 10.1371/journal.pcbi.1008387] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/11/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Knowing the structure of conserved structural RNAs is important to elucidate their function and mechanism of action. However, predicting a conserved RNA structure remains unreliable, even when using a combination of thermodynamic stability and evolutionary covariation information. Here we present a method to predict a conserved RNA structure that combines the following three features. First, it uses significant covariation due to RNA structure and removes spurious covariation due to phylogeny. Second, it uses negative evolutionary information: basepairs that have variation but no significant covariation are prevented from occurring. Lastly, it uses a battery of probabilistic folding algorithms that incorporate all positive covariation into one structure. The method, named CaCoFold (Cascade variation/covariation Constrained Folding algorithm), predicts a nested structure guided by a maximal subset of positive basepairs, and recursively incorporates all remaining positive basepairs into alternative helices. The alternative helices can be compatible with the nested structure such as pseudoknots, or overlapping such as competing structures, base triplets, or other 3D non-antiparallel interactions. We present evidence that CaCoFold predictions are consistent with structures modeled from crystallography. The availability of deeper comparative sequence alignments and recent advances in statistical analysis of RNA sequence covariation have made it possible to identify a reliable set of conserved base pairs, as well as a reliable set of non-basepairs (positions that vary without covarying). Predicting an overall consensus secondary structure consistent with a set of individual inferred pairs and non-pairs remains a problem. Current RNA structure prediction algorithms that predict nested secondary structures cannot use the full set of inferred covarying pairs, because covariation analysis also identifies important non-nested pairing interactions such as pseudoknots, base triples, and alternative structures. Moreover, although algorithms for incorporating negative constraints exist, negative information from covariation analysis (inferred non-pairs) has not been systematically exploited. Here I introduce an efficient approximate RNA structure prediction algorithm that incorporates all inferred pairs and excludes all non-pairs. Using this, and an improved visualization tool, I show that the method correctly identifies many non-nested structures in agreement with known crystal structures, and improves many curated consensus secondary structure annotations in RNA sequence alignment databases.
Collapse
Affiliation(s)
- Elena Rivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- * E-mail:
| |
Collapse
|
17
|
Perederina A, Li D, Lee H, Bator C, Berezin I, Hafenstein SL, Krasilnikov AS. Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Nat Commun 2020; 11:3474. [PMID: 32651392 PMCID: PMC7351766 DOI: 10.1038/s41467-020-17308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Di Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Carol Bator
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA.,Department of Medicine, Pennsylvania State University, Hershey, 17033, PA, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA. .,Center for RNA Biology, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
18
|
Lan P, Zhou B, Tan M, Li S, Cao M, Wu J, Lei M. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science 2020; 369:656-663. [PMID: 32586950 DOI: 10.1126/science.abc0149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Ribonuclease (RNase) MRP is a conserved eukaryotic ribonucleoprotein complex that plays essential roles in precursor ribosomal RNA (pre-rRNA) processing and cell cycle regulation. In contrast to RNase P, which selectively cleaves transfer RNA-like substrates, it has remained a mystery how RNase MRP recognizes its diverse substrates. To address this question, we determined cryo-electron microscopy structures of Saccharomyces cerevisiae RNase MRP alone and in complex with a fragment of pre-rRNA. These structures and the results of biochemical studies reveal that coevolution of both protein and RNA subunits has transformed RNase MRP into a distinct ribonuclease that processes single-stranded RNAs by recognizing a short, loosely defined consensus sequence. This broad substrate specificity suggests that RNase MRP may have myriad yet unrecognized substrates that could play important roles in various cellular contexts.
Collapse
Affiliation(s)
- Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Bin Zhou
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Rahman MS, Matsumura S, Ikawa Y. Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions. Biochem Biophys Res Commun 2020; 523:342-347. [DOI: 10.1016/j.bbrc.2019.12.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
20
|
Abstract
The ribosome and RNase P are cellular ribonucleoprotein complexes that perform peptide bond synthesis and phosphodiester bond cleavage, respectively. Both are ancient biological assemblies that were already present in the last universal common ancestor of all life. The large subunit rRNA in the ribosome and the RNA subunit of RNase P are the ribozyme components required for catalysis. Here, we explore the idea that these two large ribozymes may have begun their evolutionary odyssey as an assemblage of RNA "fragments" smaller than the contemporary full-length versions and that they transitioned through distinct stages along a pathway that may also be relevant for the evolution of other non-coding RNAs.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
21
|
Nozawa Y, Hagihara M, Rahman MS, Matsumura S, Ikawa Y. Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains. BIOLOGY 2019; 8:biology8030065. [PMID: 31480450 PMCID: PMC6783828 DOI: 10.3390/biology8030065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
The modular structural domains of multidomain RNA enzymes can often be dissected into separate domain RNAs and their noncovalent assembly can often reconstitute active enzymes. These properties are important to understand their basic characteristics and are useful for their application to RNA-based nanostructures. Bimolecular forms of bacterial RNase P ribozymes consisting of S-domain and C-domain RNAs are attractive as platforms for catalytic RNA nanostructures, but their S-domain/C-domain assembly was not optimized for this purpose. Through analysis and engineering of bimolecular forms of the two bacterial RNase P ribozymes, we constructed a chimeric ribozyme with improved catalytic ability and S-domain/C-domain assembly and developed a pair of bimolecular RNase P ribozymes the assembly of which was considerably orthogonal to each other.
Collapse
Affiliation(s)
- Yuri Nozawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Megumi Hagihara
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
22
|
Madrigal-Carrillo EA, Díaz-Tufinio CA, Santamaría-Suárez HA, Arciniega M, Torres-Larios A. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Res 2019; 47:6425-6438. [PMID: 30997498 PMCID: PMC6614837 DOI: 10.1093/nar/gkz285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.
Collapse
Affiliation(s)
- Ezequiel-Alejandro Madrigal-Carrillo
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos-Alejandro Díaz-Tufinio
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City, Mexico
| | - Hugo-Aníbal Santamaría-Suárez
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Torres-Larios
- Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Wan F, Wang Q, Tan J, Tan M, Chen J, Shi S, Lan P, Wu J, Lei M. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Nat Commun 2019; 10:2617. [PMID: 31197137 PMCID: PMC6565675 DOI: 10.1038/s41467-019-10496-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential ribozyme responsible for tRNA 5′ maturation. Here we report the cryo-EM structures of Methanocaldococcus jannaschii (Mja) RNase P holoenzyme alone and in complex with a tRNA substrate at resolutions of 4.6 Å and 4.3 Å, respectively. The structures reveal that the subunits of MjaRNase P are strung together to organize the holoenzyme in a dimeric conformation required for efficient catalysis. The structures also show that archaeal RNase P is a functional chimera of bacterial and eukaryal RNase Ps that possesses bacterial-like two RNA-based anchors and a eukaryal-like protein-aided stabilization mechanism. The 3′-RCCA sequence of tRNA, which is a key recognition element for bacterial RNase P, is dispensable for tRNA recognition by MjaRNase P. The overall organization of MjaRNase P, particularly within the active site, is similar to those of bacterial and eukaryal RNase Ps, suggesting a universal catalytic mechanism for all RNase Ps. Ribonulease P is a conserved ribozyme present in all kingdoms of life that is involved in the 5′ maturation step of tRNAs. Here the authors determine the structure of an archaeal RNase P holoenzyme that reveals how archaeal RNase P recognizes its tRNA substrate and suggest a conserved catalytic mechanism amongst RNase Ps despite structural variability.
Collapse
Affiliation(s)
- Futang Wan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Jing Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Shaohua Shi
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Pengfei Lan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200125, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
24
|
Wamhoff EC, Banal JL, Bricker WP, Shepherd TR, Parsons MF, Veneziano R, Stone MB, Jun H, Wang X, Bathe M. Programming Structured DNA Assemblies to Probe Biophysical Processes. Annu Rev Biophys 2019; 48:395-419. [PMID: 31084582 PMCID: PMC7035826 DOI: 10.1146/annurev-biophys-052118-115259] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1-100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Molly F Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Rémi Veneziano
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew B Stone
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Hyungmin Jun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
25
|
Li W, Liu Y, Wang Y, Li R, Trang P, Tang W, Yang Z, Wang Y, Sun X, Xing X, Lu S, Liu F. Engineered RNase P Ribozymes Effectively Inhibit the Infection of Murine Cytomegalovirus in Animals. Am J Cancer Res 2018; 8:5634-5644. [PMID: 30555569 PMCID: PMC6276291 DOI: 10.7150/thno.27776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.
Collapse
|
26
|
Wu J, Niu S, Tan M, Huang C, Li M, Song Y, Wang Q, Chen J, Shi S, Lan P, Lei M. Cryo-EM Structure of the Human Ribonuclease P Holoenzyme. Cell 2018; 175:1393-1404.e11. [PMID: 30454648 DOI: 10.1016/j.cell.2018.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Ribonuclease (RNase) P is a ubiquitous ribozyme that cleaves the 5' leader from precursor tRNAs. Here, we report cryo-electron microscopy structures of the human nuclear RNase P alone and in complex with tRNAVal. Human RNase P is a large ribonucleoprotein complex that contains 10 protein components and one catalytic RNA. The protein components form an interlocked clamp that stabilizes the RNA in a conformation optimal for substrate binding. Human RNase P recognizes the tRNA using a double-anchor mechanism through both protein-RNA and RNA-RNA interactions. Structural comparison of the apo and tRNA-bound human RNase P reveals that binding of tRNA induces a local conformational change in the catalytic center, transforming the ribozyme into an active state. Our results also provide an evolutionary model depicting how auxiliary RNA elements in bacterial RNase P, essential for substrate binding, and catalysis, were replaced by the much more complex and multifunctional protein components in higher organisms.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuangshuang Niu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ming Tan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenhui Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mingyue Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Song
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qianmin Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China; Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
27
|
Davies-Sala C, Jani S, Zorreguieta A, Tolmasky ME. Identification of the Acinetobacter baumannii Ribonuclease P Catalytic Subunit: Cleavage of a Target mRNA in the Presence of an External Guide Sequence. Front Microbiol 2018; 9:2408. [PMID: 30349524 PMCID: PMC6186949 DOI: 10.3389/fmicb.2018.02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022] Open
Abstract
The bacterial ribonuclease P or RNase P holoenzyme is usually composed of a catalytic RNA subunit, M1, and a cofactor protein, C5. This enzyme was first identified for its role in maturation of tRNAs by endonucleolytic cleavage of the pre-tRNA. The RNase P endonucleolytic activity is characterized by having structural but not sequence substrate requirements. This property led to development of EGS technology, which consists of utilizing a short antisense oligonucleotide that when forming a duplex with a target RNA induces its cleavage by RNase P. This technology is being explored for designing therapies that interfere with expression of genes, in the case of bacterial infections EGS technology could be applied to target essential, virulence, or antibiotic resistant genes. Acinetobacter baumannii is a problematic pathogen that is commonly resistant to multiple antibiotics, and EGS technology could be utilized to design alternative therapies. To better understand the A. baumannii RNase P we first identified and characterized the catalytic subunit. We identified a gene coding for an RNA species, M1Ab, with the expected features of the RNase P M1 subunit. A recombinant clone coding for M1Ab complemented the M1 thermosensitive mutant Escherichia coli BL21(DE3) T7A49, which upon transformation was able to grow at the non-permissive temperature. M1Ab showed in vitro catalytic activity in combination with the C5 protein cofactor from E. coli as well as with that from A. baumannii, which was identified, cloned and partially purified. M1Ab was also able to cleave a target mRNA in the presence of an EGS with efficiency comparable to that of the E. coli M1, suggesting that EGS technology could be a viable option for designing therapeutic alternatives to treat multiresistant A. baumannii infections.
Collapse
Affiliation(s)
- Carol Davies-Sala
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Saumya Jani
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
28
|
Ha L, Colquhoun J, Noinaj N, Das C, Dunman PM, Flaherty DP. Crystal structure of the ribonuclease-P-protein subunit from Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 2018; 74:632-637. [PMID: 30279314 PMCID: PMC6168776 DOI: 10.1107/s2053230x18011512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus ribonuclease-P-protein subunit (RnpA) is a promising antimicrobial target that is a key protein component for two essential cellular processes, RNA degradation and transfer-RNA (tRNA) maturation. The first crystal structure of RnpA from the pathogenic bacterial species, S. aureus, is reported at 2.0 Å resolution. The structure presented maintains key similarities with previously reported RnpA structures from bacteria and archaea, including the highly conserved RNR-box region and aromatic residues in the precursor-tRNA 5'-leader-binding domain. This structure will be instrumental in the pursuit of structure-based designed inhibitors targeting RnpA-mediated RNA processing as a novel therapeutic approach for treating S. aureus infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Catalytic Domain
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/enzymology
- Substrate Specificity
Collapse
Affiliation(s)
- Lisha Ha
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer Colquhoun
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
Singh A, Batra JK. Insight into the functional role of unique determinants in RNA component of RNase P of Mycobacterium tuberculosis. Int J Biol Macromol 2018; 119:937-944. [PMID: 30086331 DOI: 10.1016/j.ijbiomac.2018.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
RNase P, an essential ribonucleoprotein enzyme is involved in processing 5' end of pre-tRNA molecules. All bacterial RNase P holoenzymes, including that of Mycobacterim tuberculosis, an important human pathogen contain a catalytically active RNA subunit and a protein subunit. However, the mycobacterial RNA is larger than typical bacterial RNase P RNAs. It contains the essential core structure and many unique features in the peripheral elements. In the current study, an extensive mutational analysis was performed to analyze the function of the unique features in P12, P15.A, P18 and P19 helices in the mycobacterial RNase P RNA. The study demonstrates that P12 interacts with monovalent and divalent ions and is important for the function of mycobacterial holoenzyme. The helices, P15.A and P18 appear to interact with ammonium and magnesium ions, respectively. P19 is involved in the thermostability of the RNA component as well as interaction with ammonium ions. A homology model of M. tuberculosis RNase P RNA indicates many new inter- and intra-helical interactions. The significance of the unique interactions paves way towards understanding the differential functioning of M. tuberculosis RNase P RNA, for exploring specific inhibition of the same in the pathogen to contain infection.
Collapse
Affiliation(s)
- Alla Singh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
30
|
Zeng D, Brown BP, Voehler MW, Cai S, Reiter NJ. NMR resonance assignments of RNase P protein from Thermotoga maritima. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:183-187. [PMID: 29450823 PMCID: PMC5871579 DOI: 10.1007/s12104-018-9806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Ribonuclase P (RNase P) is an essential metallo-endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing and exists as an RNA-based enzyme in bacteria, archaea, and eukaryotes. In bacteria, a large catalytic RNA and a small protein component assemble to recognize and accurately cleave ptRNA and tRNA-like molecular scaffolds. Substrate recognition of ptRNA by bacterial RNase P requires RNA-RNA shape complementarity, intermolecular base pairing, and a dynamic protein-ptRNA binding interface. To gain insight into the binding specificity and dynamics of the bacterial protein-ptRNA interface, we report the backbone and side chain 1H, 13C, and 15N resonance assignments of the hyperthermophilic Thermatoga maritima RNase P protein in solution at 318 K. Our data confirm the formation of a stable RNA recognition motif (RRM) with intrinsic heterogeneity at both the N- and C-terminus of the protein, consistent with available structural information. Comprehensive resonance assignments of the bacterial RNase P protein serve as an important first step in understanding how coupled RNA binding and protein-RNA conformational changes give rise to ribonucleoprotein function.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, WI, USA
| | - Benjamin P Brown
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Markus W Voehler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Sheng Cai
- Department of Chemistry, Marquette University, Milwaukee, WI, USA
| | | |
Collapse
|
31
|
Sun X, Chen W, He L, Sheng J, Liu Y, Vu GP, Yang Z, Li W, Trang P, Wang Y, Hai R, Zhu H, Lu S, Liu F. Inhibition of human cytomegalovirus immediate early gene expression and growth by a novel RNase P ribozyme variant. PLoS One 2017; 12:e0186791. [PMID: 29059242 PMCID: PMC5653336 DOI: 10.1371/journal.pone.0186791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98–99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.
Collapse
Affiliation(s)
- Xu Sun
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weijie Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lingling He
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Yujun Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Zhu Yang
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yu Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| | - Fenyong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
32
|
Lai LB, Tanimoto A, Lai SM, Chen WY, Marathe IA, Westhof E, Wysocki VH, Gopalan V. A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 2017; 45:7432-7440. [PMID: 28525600 PMCID: PMC5499556 DOI: 10.1093/nar/gkx388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 01/18/2023] Open
Abstract
RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear. As part of an integrated approach, we used native mass spectrometry to assess the number of L7Ae copies that bound the RPR and site-specific hydroxyl radical-mediated footprinting to localize the K-turns. Mutagenesis of each of the putative K-turns singly or in combination decreased the number of bound L7Ae copies, and either eliminated or changed the L7Ae footprint on the mutant RPRs. In addition, our results support an unprecedented ‘double K-turn’ module in type A and type M archaeal RPR variants.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Yi Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Westhof
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, UPR9002, F-67084, Strasbourg, France
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
Affiliation(s)
- Makoto Kimura
- a Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| |
Collapse
|
34
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
35
|
Martin WJ, Reiter NJ. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Biochemistry 2016; 56:3-13. [PMID: 27935277 DOI: 10.1021/acs.biochem.6b01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over billions of years of evolution, nature has embraced proteins as the major workhorse molecules of the cell. However, nearly every aspect of metabolism is dependent upon how structured RNAs interact with proteins, ligands, and other nucleic acids. Key processes, including telomere maintenance, RNA processing, and protein synthesis, require large RNAs that assemble into elaborate three-dimensional shapes. These RNAs can (i) act as flexible scaffolds for protein subunits, (ii) participate directly in substrate recognition, and (iii) serve as catalytic components. Here, we juxtapose the near atomic level interactions of three ribonucleoprotein complexes: ribonuclease P (involved in 5' pre-tRNA processing), the spliceosome (responsible for pre-mRNA splicing), and telomerase (an RNA-directed DNA polymerase that extends the ends of chromosomes). The focus of this perspective is profiling the structural and dynamic roles of RNAs at the core of these enzymes, highlighting how large RNAs contribute to molecular recognition and catalysis.
Collapse
Affiliation(s)
- William J Martin
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
36
|
Walczyk D, Willkomm DK, Hartmann RK. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. RNA (NEW YORK, N.Y.) 2016; 22:1699-1709. [PMID: 27604960 PMCID: PMC5066622 DOI: 10.1261/rna.057422.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Ribonuclease P is the ubiquitous endonuclease that generates the mature 5'-ends of precursor tRNAs. In bacteria, the enzyme is composed of a catalytic RNA (∼400 nucleotides) and a small essential protein subunit (∼13 kDa). Most bacterial RNase P RNAs (P RNAs) belong to the architectural type A; type B RNase P RNA is confined to the low-G+C Gram-positive bacteria. Here we demonstrate that the L5.1-L15.1 intradomain contact in the catalytic domain of the prototypic type B RNase P RNA of Bacillus subtilis is crucial for adopting a compact functional conformation: Disruption of the L5.1-L15.1 contact by antisense oligonucleotides or mutation reduced P RNA-alone and holoenzyme activity by one to two orders of magnitude in vitro, largely retarded gel mobility of the RNA and further affected the structure of regions P7/P8/P10.1, P15 and L15.2, and abolished the ability of B. subtilis P RNA to complement a P RNA-deficient Escherichia coli strain. We also provide mutational evidence that an L9-P1 tertiary contact, as found in some Mycoplasma type B RNAs, is not formed in canonical type B RNAs as represented by B. subtilis P RNA. We finally explored the P5.1 and P15 stem-loop structures as targets for LNA-modified antisense oligonucleotides. Oligonucleotides targeting P15, but not those directed against P5.1, were found to efficiently anneal to P RNA and to inhibit activity (IC50 of ∼2 nM) when incubated with preassembled B. subtilis RNase P holoenzymes.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Dagmar K Willkomm
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein Campus Lübeck, D-23538 Lübeck, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
37
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
38
|
Zhang J, Ferré-DAmaré AR. Trying on tRNA for Size: RNase P and the T-box Riboswitch as Molecular Rulers. Biomolecules 2016; 6:biom6020018. [PMID: 27043647 PMCID: PMC4919913 DOI: 10.3390/biom6020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/27/2022] Open
Abstract
Length determination is a fundamental problem in biology and chemistry. Numerous proteins measure distances on linear biopolymers to exert effects with remarkable spatial precision. Recently, ruler-like devices made of noncoding RNAs have been structurally and biochemically characterized. Two prominent examples are the RNase P ribozyme and the T-box riboswitch. Both act as molecular calipers. The two RNAs clamp onto the elbow of tRNA (or pre-tRNA) and make distance measurements orthogonal to each other. Here, we compare and contrast the molecular ruler characteristics of these RNAs. RNase P appears pre-configured to measure a fixed distance on pre-tRNA to ensure the fidelity of its maturation. RNase P is a multiple-turnover ribozyme, and its rigid structure efficiently selects pre-tRNAs, cleaves, and releases them. In contrast, the T-box is flexible and segmented, an architecture that adapts to the intrinsically flexible tRNA. The tripartite T-box inspects the overall shape, anticodon sequence, and aminoacylation status of an incoming tRNA while it folds co-transcriptionally, leading to a singular, conditional genetic switching event. The elucidation of the structures and mechanisms of action of these two RNA molecular rulers may augur the discovery of new RNA measuring devices in noncoding and viral transcriptomes, and inform the design of artificial RNA rulers.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA.
| | - Adrian R Ferré-DAmaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Harris ME. Theme and Variation in tRNA 5′ End Processing Enzymes: Comparative Analysis of Protein versus Ribonucleoprotein RNase P. J Mol Biol 2016; 428:5-9. [DOI: 10.1016/j.jmb.2015.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Zhao C, Rajashankar KR, Marcia M, Pyle AM. Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nat Chem Biol 2015; 11:967-72. [PMID: 26502156 PMCID: PMC4651773 DOI: 10.1038/nchembio.1949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Dept. of Chemistry and Chemical Biology, Cornell University Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
| | - Marco Marcia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
42
|
Baba N, Elmetwaly S, Kim N, Schlick T. Predicting Large RNA-Like Topologies by a Knowledge-Based Clustering Approach. J Mol Biol 2015; 428:811-821. [PMID: 26478223 DOI: 10.1016/j.jmb.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022]
Abstract
An analysis and expansion of our resource for classifying, predicting, and designing RNA structures, RAG (RNA-As-Graphs), is presented, with the goal of understanding features of RNA-like and non-RNA-like motifs and exploiting this information for RNA design. RAG was first reported in 2004 for cataloging RNA secondary structure motifs using graph representations. In 2011, the RAG resource was updated with the increased availability of RNA structures and was improved by utilities for analyzing RNA structures, including substructuring and search tools. We also classified RNA structures as graphs up to 10 vertices (~200 nucleotides) into three classes: existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree graphs and evaluate the newly founded RNAs since 2011, which also support our refined predictions of RNA-like motifs. We expand the RAG resource for large tree graphs up to 13 vertices (~260 nucleotides), thereby cataloging more than 10 times as many secondary structures. We apply clustering algorithms based on features of RNA secondary structures translated from known tertiary structures to suggest which hypothetical large RNA motifs can be considered "RNA-like". The results by the PAM (Partitioning Around Medoids) approach, in particular, reveal good accuracy, with small error for the largest cases. The RAG update here up to 13 vertices offers a useful graph-based tool for exploring RNA motifs and suggesting large RNA motifs for design.
Collapse
Affiliation(s)
- Naoto Baba
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shereef Elmetwaly
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Namhee Kim
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China.
| |
Collapse
|
43
|
Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. RNA (NEW YORK, N.Y.) 2015; 21:1591-605. [PMID: 26135751 PMCID: PMC4536320 DOI: 10.1261/rna.049007.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 05/06/2023]
Abstract
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
44
|
Sala CD, Soler-Bistué A, Bonomo R, Zorreguieta A, Tolmasky ME. External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 2015; 1354:98-110. [PMID: 25866265 PMCID: PMC4600001 DOI: 10.1111/nyas.12755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/14/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.
Collapse
Affiliation(s)
- Carol Davies Sala
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Alfonso Soler-Bistué
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Robert Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine,
Cleveland, Ohio
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| |
Collapse
|
45
|
Hamasaki M, Hazeyama K, Iwasaki F, Ueda T, Nakashima T, Kakuta Y, Kimura M. Functional implication of archaeal homologues of human RNase P protein pair Pop5 and Rpp30. J Biochem 2015; 159:31-40. [PMID: 26152732 DOI: 10.1093/jb/mvv067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
PhoPop5 and PhoRpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [PhoRpp30-(PhoPop5)2-PhoRpp30], which plays a crucial role in the activation of RNase P RNA (PhopRNA). Here, we examined the functional implication of PhoPop5 and PhoRpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in PhopRNA. In contrast, PhoPop5 had markedly reduced affinity to SL3, whereas PhoRpp30 had little affinity to SL3. SPR studies of PhoPop5 mutants further revealed that the C-terminal helix (α4) in PhoPop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that PhoRpp30 exists as a monomer, whereas PhoPop5 is an oligomer in solution, suggesting that PhoRpp30 assists PhoPop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of PhoPop5. These results, together with available data, allow us to generate a structural and mechanistic model for the PhopRNA activation by PhoPop5 and PhoRpp30, in which the two C-terminal helices (α4) of PhoPop5 in the tetramer whose formation is assisted by PhoRpp30 act as binding elements and bridge SL3 and SL16 in PhopRNA.
Collapse
Affiliation(s)
- Masato Hamasaki
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Kohsuke Hazeyama
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Fumihiko Iwasaki
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
46
|
Zhang J, Ferré-D'Amaré AR. Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure 2015; 22:1363-1371. [PMID: 25185828 DOI: 10.1016/j.str.2014.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/11/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Compared to globular proteins, RNAs with complex 3D folds are characterized by poorly differentiated molecular surfaces dominated by backbone phosphates, sparse tertiary contacts stabilizing global architecture, and conformational flexibility. The resulting generally poor order of crystals of large RNAs and their complexes frequently hampers crystallographic structure determination. We describe and rationalize a postcrystallization treatment strategy that exploits the importance of solvation and counterions for RNA folding. Replacement of Li(+) and Mg(2+) needed for growth of crystals of a tRNA-riboswitch-protein complex with Sr(2+), coupled with dehydration, dramatically improved the resolution limit (8.5-3.2 Å) and data quality, enabling structure determination. The soft Sr(2+) ion forms numerous stabilizing intermolecular contacts. Comparison of pre- and posttreatment structures reveals how RNA assemblies redistribute as quasi-rigid bodies to yield improved crystal packing. Cation exchange complements previously reported postcrystallization dehydration of protein crystals and represents a potentially general strategy for improving crystals of large RNAs.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
47
|
Shepherd J, Ibba M. Bacterial transfer RNAs. FEMS Microbiol Rev 2015; 39:280-300. [PMID: 25796611 DOI: 10.1093/femsre/fuv004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
48
|
Evolution of the RNase P RNA structural domain in Leptospira spp. Res Microbiol 2014; 165:813-25. [PMID: 25463388 DOI: 10.1016/j.resmic.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 11/22/2022]
Abstract
We have employed the RNase P RNA (RPR) gene, which is present as single copy in chromosome I of Leptospira spp. to investigate the phylogeny of structural domains present in the RNA subunit of the tRNA processing enzyme, RNase P. RPR gene sequences of 150 strains derived from NCBI database along with sequences determined from 8 reference strains were examined to fathom strain specific structural differences present in leptospiral RPR. Sequence variations in the RPR gene impacted on the configuration of loops, stems and bulges found in the RPR highlighting species and strain specific structural motifs. In vitro transcribed leptospiral RPR ribozymes are demonstrated to process pre-tRNA into mature tRNA in consonance with the positioning of Leptospira in the taxonomic domain of bacteria. RPR sequence datasets used to construct a phylogenetic tree exemplified the segregation of strains into their respective lineages with a (re)speciation of strain SH 9 to Leptospira borgpetersenii, strains Fiocruz LV 3954 and Fiocruz LV 4135 to Leptospira santarosai, strain CBC 613 to Leptospira kirschneri and strain HAI 1536 to Leptospira noguchii. Furthermore, it allowed characterization of an isolate P2653, presumptively characterized as either serovar Hebdomadis, Kremastos or Longnan to Leptospira weilii, serovar Longnan.
Collapse
|
49
|
Saito Y, Takeda J, Adachi K, Nobe Y, Kobayashi J, Hirota K, Oliveira DV, Taoka M, Isobe T. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway. PLoS One 2014; 9:e112488. [PMID: 25401760 PMCID: PMC4234475 DOI: 10.1371/journal.pone.0112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/17/2014] [Indexed: 01/07/2023] Open
Abstract
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Jun Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Kousuke Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Douglas V. Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Lai SM, Lai LB, Foster MP, Gopalan V. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA. Nucleic Acids Res 2014; 42:13328-38. [PMID: 25361963 PMCID: PMC4245976 DOI: 10.1093/nar/gku994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis.
Collapse
Affiliation(s)
- Stella M Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|