1
|
Kalbfleisch TS, Smith ML, Ciosek JL, Li K, Doris PA. Three decades of rat genomics: approaching the finish(ed) line. Physiol Genomics 2024; 56:807-818. [PMID: 39348459 PMCID: PMC11573253 DOI: 10.1152/physiolgenomics.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024] Open
Abstract
The rat, Rattus norvegicus, has provided an important model for investigation of a range of characteristics of biomedical importance. Here we survey the origins of this species, its introduction into laboratory research, and the emergence of genetic and genomic methods that utilize this model organism. Genomic studies have yielded important progress and provided new insight into several biologically important traits. However, some studies have been impeded by the lack of a complete and accurate reference genome for this species. New sequencing and genome assembly methods applied to the rat have resulted in a new reference genome assembly, GRCr8, which is a near telomere-to-telomere assembly of high base-level accuracy that incorporates several elements not captured in prior assemblies. As genome assembly methods continue to advance and production costs become a less significant obstacle, genome assemblies for multiple inbred rat strains are emerging. These assemblies will allow a rat pangenome assembly to be constructed that captures all the genetic variations in strains selected for their utility in research and will overcome reference bias, a limitation associated with reliance on a single reference assembly. By this means, the full utility of this model organism to genomic studies will begin to be revealed.
Collapse
Affiliation(s)
- Theodore S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Melissa L Smith
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Julia L Ciosek
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Kai Li
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Peter A Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Edward J Hollox
- Department of Genetics, Genomics and Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Tong X, Wang Q, Jung W, Chicz TM, Blanc R, Parker LJ, Barouch DH, McNamara RP. Compartment-specific antibody correlates of protection to SARS-CoV-2 Omicron in macaques. iScience 2024; 27:110174. [PMID: 39224511 PMCID: PMC11367469 DOI: 10.1016/j.isci.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.
Collapse
Affiliation(s)
- Xin Tong
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ross Blanc
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Lily J. Parker
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan P. McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Kamada H, Takahashi D, Shimizu M, Uchida M, Watanabe Y, Nakajima F, Miyata S, Satake M. A novel immunocomplex capture fluorescence assay (ICFA) using fluorescent beads and transfected cells for specific identification of human neutrophil antigen (HNA)-1a and -1b antibodies. Transfusion 2024; 64:906-918. [PMID: 38530740 DOI: 10.1111/trf.17813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND To identify specific human neutrophil antigen (HNA) antibodies, assays using neutrophils such as monoclonal antibody-specific immobilization of granulocyte antigens (MAIGA) are recommended. However, these assays are limited by labor-intensive neutrophil preparation and varying antigen expression levels. METHODS We evaluated a newly developed immunocomplex capture fluorescence assay (ICFA) for identifying HNA-1 antibodies and compared it to MAIGA and LABScreen Multi (LABM), which utilizes recombinant HNA-coated Luminex beads. For ICFA, HNA-1a or HNA-1b transfected cells replaced neutrophils. Cells incubated with serum were lysed, and immune complexes were captured using five CD16 monoclonal antibody-conjugated Luminex beads. Nine antisera with known specificity and 26 samples suspected of containing HNA antibodies were analyzed by ICFA and MAIGA using neutrophils or transfected cells (ICFA-N or ICFA-T, and MAIGA-N or MAIGA-T, respectively). RESULTS ICFA-T and MAIGA-N accurately determined the specificity of all antibodies in the nine antiserum samples. The ICFA-T detection limit was 2048-fold for anti-HNA-1a and 256-fold for anti-HNA-1b; the limits of MAIGA-T, MAIGA-N, and LABM were 32-, 4 ~ 64-, and 128-fold for anti-HNA-1a and 64-, 16 ~ 64-, and 32-fold for anti-HNA-1b, respectively. Twelve and 7 of the remaining 26 samples tested negative and positive, respectively, in both ICFA-T and MAIGA-N. Antibody specificity against HNA-1a or HNA-1b determined using ICFA-T agreed with that determined using MAIGA-N and LABM. Another seven samples tested positive in ICFA-T but negative in MAIGA-N. CONCLUSION The novel ICFA is highly sensitive and exhibits specificity similar to MAIGA and LABM for detecting HNA-1 antibodies.
Collapse
Affiliation(s)
- Hiromi Kamada
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Daisuke Takahashi
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Marie Shimizu
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Miyuki Uchida
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yoshihisa Watanabe
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | | | - Shigeki Miyata
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
5
|
Hujoel MLA, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Protein-altering variants at copy number-variable regions influence diverse human phenotypes. Nat Genet 2024; 56:569-578. [PMID: 38548989 PMCID: PMC11018521 DOI: 10.1038/s41588-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/08/2024] [Indexed: 04/09/2024]
Abstract
Copy number variants (CNVs) are among the largest genetic variants, yet CNVs have not been effectively ascertained in most genetic association studies. Here we ascertained protein-altering CNVs from UK Biobank whole-exome sequencing data (n = 468,570) using haplotype-informed methods capable of detecting subexonic CNVs and variation within segmental duplications. Incorporating CNVs into analyses of rare variants predicted to cause gene loss of function (LOF) identified 100 associations of predicted LOF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 conferred one of the strongest protective effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82-0.90)). Protein-coding variation in rapidly evolving gene families within segmental duplications-previously invisible to most analysis methods-generated some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Serinus Biosciences Inc., New York, NY, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
7
|
Hujoel ML, Handsaker RE, Sherman MA, Kamitaki N, Barton AR, Mukamel RE, Terao C, McCarroll SA, Loh PR. Hidden protein-altering variants influence diverse human phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544066. [PMID: 37333244 PMCID: PMC10274781 DOI: 10.1101/2023.06.07.544066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Structural variants (SVs) comprise the largest genetic variants, altering from 50 base pairs to megabases of DNA. However, SVs have not been effectively ascertained in most genetic association studies, leaving a key gap in our understanding of human complex trait genetics. We ascertained protein-altering SVs from UK Biobank whole-exome sequencing data (n=468,570) using haplotype-informed methods capable of detecting sub-exonic SVs and variation within segmental duplications. Incorporating SVs into analyses of rare variants predicted to cause gene loss-of-function (pLoF) identified 100 associations of pLoF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 appeared to confer one of the strongest protective effects of gene LoF on hypertension risk (OR = 0.86 [0.82-0.90]). Protein-coding variation in rapidly-evolving gene families within segmental duplications-previously invisible to most analysis methods-appeared to generate some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype, and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.
Collapse
Affiliation(s)
- Margaux L.A. Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E. Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A. Sherman
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison R. Barton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ronen E. Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Yang G, Mishra M, Perera MA. Multi-Omics Studies in Historically Excluded Populations: The Road to Equity. Clin Pharmacol Ther 2023; 113:541-556. [PMID: 36495075 PMCID: PMC10323857 DOI: 10.1002/cpt.2818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Over the past few decades, genomewide association studies (GWASs) have identified the specific genetics variants contributing to many complex diseases by testing millions of genetic variations across the human genome against a variety of phenotypes. However, GWASs are limited in their ability to uncover mechanistic insight given that most significant associations are found in non-coding region of the genome. Furthermore, the lack of diversity in studies has stymied the advance of precision medicine for many historically excluded populations. In this review, we summarize most popular multi-omics approaches (genomics, transcriptomics, proteomics, and metabolomics) related to precision medicine and highlight if diverse populations have been included and how their findings have advance biological understanding of disease and drug response. New methods that incorporate local ancestry have been to improve the power of GWASs for admixed populations (such as African Americans and Latinx). Because most signals from GWAS are in the non-coding region, other machine learning and omics approaches have been developed to identify the potential causative single-nucleotide polymorphisms and genes that explain these phenotypes. These include polygenic risk scores, expression quantitative trait locus mapping, and transcriptome-wide association studies. Analogous protein methods, such as proteins quantitative trait locus mapping, proteome-wide association studies, and metabolomic approaches provide insight into the consequences of genetic variation on protein abundance. Whereas, integrated multi-omics studies have improved our understanding of the mechanisms for genetic association, we still lack the datasets and cohorts for historically excluded populations to provide equity in precision medicine and pharmacogenomics.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mrinal Mishra
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Daamen AR, Wang H, Bachali P, Shen N, Kingsmore KM, Robl RD, Grammer AC, Fu SM, Lipsky PE. Molecular mechanisms governing the progression of nephritis in lupus prone mice and human lupus patients. Front Immunol 2023; 14:1147526. [PMID: 36936908 PMCID: PMC10016352 DOI: 10.3389/fimmu.2023.1147526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction Pathologic inflammation is a major driver of kidney damage in lupus nephritis (LN), but the immune mechanisms of disease progression and risk factors for end organ damage are poorly understood. Methods To characterize molecular profiles through the development of LN, we carried out gene expression analysis of microdissected kidneys from lupus-prone NZM2328 mice. We examined male mice and the congenic NZM2328.R27 strain as a means to define mechanisms associated with resistance to chronic nephritis. Gene expression profiles in lupus mice were compared with those in human LN. Results NZM2328 mice exhibited progress from acute to transitional and then to chronic glomerulonephritis (GN). Each stage manifested a unique molecular profile. Neither male mice nor R27 mice progressed past the acute GN stage, with the former exhibiting minimal immune infiltration and the latter enrichment of immunoregulatory gene signatures in conjunction with robust kidney tubule cell profiles indicative of resistance to cellular damage. The gene expression profiles of human LN were similar to those noted in the NZM2328 mouse suggesting comparable stages of LN progression. Conclusions Overall, this work provides a comprehensive examination of the immune processes involved in progression of murine LN and thus contributes to our understanding of the risk factors for end-stage renal disease. In addition, this work presents a foundation for improved classification of LN and illustrates the applicability of murine models to identify the stages of human disease.
Collapse
Affiliation(s)
| | - Hongyang Wang
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Robert D. Robl
- AMPEL BioSolutions LLC, Charlottesville, VA, United States
| | | | - Shu Man Fu
- Center for Immunity, Inflammation, and Regenerative Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | |
Collapse
|
10
|
Zhao D, Sun H, Li H, Li C, Zhou B. A prediction model for the impact of environmental and genetic factors on cardiovascular events: development in a salt substitutes population. J Transl Med 2023; 21:62. [PMID: 36717874 PMCID: PMC9887817 DOI: 10.1186/s12967-023-03899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has evolved into a serious public health issue that demands the use of suitable methods to estimate the risk of the disease. As a result, in a sample of individuals who completed a 3-year low-sodium salt or conventional salt intervention in a hypertensive environment, we constructed a 13-year cardiovascular (CV) event risk prediction model with a 10-year follow-up. METHODS A Cox proportional hazards model was used to build a prediction model based on data from 306 participants who matched the inclusion criteria. Both the discriminating power and the calibration of the prediction models were assessed. The discriminative power of the prediction model was measured using the area under the curve (AUC). Brier scores and calibration plots were used to assess the prediction model's calibration. The model was internally validated using the tenfold cross-validation method. The nomogram served as a tool for visualising the model. RESULTS Among the 306 total individuals, there were 100 cases and 206 control. In the model, there were six predictors including age, smoking, LDL-C (low-density lipoprotein cholesterol), baseline SBP (systolic blood pressure), CVD (cardiovascular history), and CNV (genomic copy number variation) nsv483076. The fitted model has an AUC of 0.788, showing strong model discrimination, and a Brier score of 0.166, indicating that it was well-calibrated. According to the results of internal validation, the prediction model utilised in this study had a good level of repeatability. According to the model integrating the interaction of CNVs and baseline blood pressure, the effect of baseline SBP on CV events may be greater when nsv483076 was normal double copies than when nsv483076 was copy number variation. CONCLUSIONS The efficacy of risk prediction models for CV events that include environmental and genetic components is excellent, and they may be utilised as risk assessment tools for CV events in specific groups to offer a foundation for tailored intervention strategies.
Collapse
Affiliation(s)
- Dan Zhao
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Hao Sun
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning China
| | - Huamin Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Chaoxiu Li
- grid.412636.40000 0004 1757 9485Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning China ,grid.412449.e0000 0000 9678 1884School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Bo Zhou
- Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Villalvazo P, Carriazo S, Rojas-Rivera J, Ramos AM, Ortiz A, Perez-Gomez MV. Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Clin Kidney J 2022; 15:1973-1980. [PMID: 36324999 PMCID: PMC9613427 DOI: 10.1093/ckj/sfac152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.
Collapse
Affiliation(s)
- Priscila Villalvazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Rojas-Rivera
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Can nuclear aquatic environmental DNA be a genetic marker for the accurate estimation of species abundance? Naturwissenschaften 2022; 109:38. [PMID: 35861927 DOI: 10.1007/s00114-022-01808-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022]
Abstract
Environmental DNA (eDNA) analysis is a promising tool for the sensitive and effective monitoring of species distribution and abundance. Traditional eDNA analysis has targeted mitochondrial DNA (mtDNA) fragments due to their abundance in cells; however, the quantification may vary depending on cell type and physiology. Conversely, some recent eDNA studies have targeted multi-copy nuclear DNA (nuDNA) fragments, such as ribosomal RNA genes, in water, and reported a higher detectability and more rapid degradation than mitochondrial eDNA (mt-eDNA). These properties suggest that nuclear eDNA (nu-eDNA) may be useful for the accurate estimation of species abundance relative to mt-eDNA, but which remains unclear. In this study, we compiled previous studies and re-analyzed the relationships between mt- and nu-eDNA concentration and species abundance by comparing the R2 values of the linear regression. We then performed an aquarium experiment using zebrafish (Danio rerio) to compare the relationships across genetic regions, including single-copy nuDNA. We found more accurate relationships between multi-copy nu-eDNA and species abundance than mt-eDNA in these datasets, although the difference was not significant upon weighted-averaging the R2 values. Moreover, we compared the decay rate constants of zebrafish eDNA across genetic regions and found that multi-copy nu-eDNA degraded faster than mt-eDNA under pH 7, implying a quick turnover of multi-copy nu-eDNA in the field. Although further empirical studies of nu-eDNA applications are necessary to support our findings, this study provides the groundwork for improving the estimation accuracy of species abundance via eDNA analysis.
Collapse
|
13
|
Delpire B, Van Loon E, Naesens M. The Role of Fc Gamma Receptors in Antibody-Mediated Rejection of Kidney Transplants. Transpl Int 2022; 35:10465. [PMID: 35935272 PMCID: PMC9346079 DOI: 10.3389/ti.2022.10465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
For the past decades, complement activation and complement-mediated destruction of allograft cells were considered to play a central role in anti-HLA antibody-mediated rejection (AMR) of kidney transplants. However, also complement-independent mechanisms are relevant in the downstream immune activation induced by donor-specific antibodies, such as Fc-gamma receptor (FcγR)-mediated direct cellular activation. This article reviews the literature regarding FcγR involvement in AMR, and the potential contribution of FcγR gene polymorphisms to the risk for antibody mediated rejection of kidney transplants. There is large heterogeneity between the studies, both in the definition of the clinical phenotypes and in the technical aspects. The study populations were generally quite small, except for two larger study cohorts, which obviates drawing firm conclusions regarding the associations between AMR and specific FcγR polymorphisms. Although FcγR are central in the pathophysiology of AMR, it remains difficult to identify genetic risk factors for AMR in the recipient’s genome, independent of clinical risk factors, independent of the donor-recipient genetic mismatch, and in the presence of powerful immunosuppressive agents. There is a need for larger, multi-center studies with standardised methods and endpoints to identify potentially relevant FcγR gene polymorphisms that represent an increased risk for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Boris Delpire
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- University Hospitals Leuven, Leuven, Belgium
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Maarten Naesens,
| |
Collapse
|
14
|
de Jong TV, Chen H, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Hudson EA, Sumlut MH, Smith ML, Kalbfleisch TS, Doris PA. mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiol Genomics 2022; 54:251-260. [PMID: 35543507 PMCID: PMC9236863 DOI: 10.1152/physiolgenomics.00017.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat genomic tools have been slower to emerge than for those of humans and mice and have remained less thorough and comprehensive. The arrival of a new and improved rat reference genome, mRatBN7.2, in late 2020 is a welcome event. This assembly, like predecessor rat reference assemblies, is derived from an inbred Brown Norway rat. In this "user" survey we hope to provide other users of this assembly some insight into its characteristics and some assessment of its improvements as well as a few caveats that arise from the unique aspects of this assembly. mRatBN7.2 was generated by the Wellcome Sanger Institute as part of the large Vertebrate Genomes Project. This rat assembly has now joined human, mouse, chicken, and zebrafish in the National Center for Biotechnology Information (NCBI)'s Genome Reference Consortium, which provides ongoing curation of the assembly. Here we examine the technical procedures by which the assembly was created and assess how this assembly constitutes an improvement over its predecessor. We also indicate the technical limitations affecting the assembly, providing illustrations of how these limitations arise and the impact that results for this reference assembly.
Collapse
Affiliation(s)
- Tristan V. de Jong
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wesley A. Brashear
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Andrew E. Hillhouse
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Yaming Zhu
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Isha S. Dhande
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Elizabeth A. Hudson
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Mary H. Sumlut
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Melissa L. Smith
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Theodore S. Kalbfleisch
- 5Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Peter A. Doris
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| |
Collapse
|
15
|
Jiang SH, Mercan S, Papa I, Moldovan M, Walters GD, Koina M, Fadia M, Stanley M, Lea-Henry T, Cook A, Ellyard J, McMorran B, Sundaram M, Thomson R, Canete PF, Hoy W, Hutton H, Srivastava M, McKeon K, de la Rúa Figueroa I, Cervera R, Faria R, D’Alfonso S, Gatto M, Athanasopoulos V, Field M, Mathews J, Cho E, Andrews TD, Kitching AR, Cook MC, Riquelme MA, Bahlo M, Vinuesa CG. Deletions in VANGL1 are a risk factor for antibody-mediated kidney disease. Cell Rep Med 2021; 2:100475. [PMID: 35028616 PMCID: PMC8714939 DOI: 10.1016/j.xcrm.2021.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We identify an intronic deletion in VANGL1 that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.1,2 We identify a large deletion in intron 7 of Van Gogh Like 1 (VANGL1), which associates with nephritis in SLE patients. The same deletion occurs at increased frequency in an indigenous population (Tiwi Islanders) with 10-fold higher rates of kidney disease compared with non-indigenous populations. Vangl1 hemizygosity in mice results in spontaneous IgA and IgG deposition within the glomerular mesangium in the absence of autoimmune nephritis. Serum transfer into B cell-deficient Vangl1+/- mice results in mesangial IgG deposition indicating that Ig deposits occur in a kidney-intrinsic fashion in the absence of Vangl1. These results suggest that Vangl1 acts in the kidney to prevent Ig deposits and its deficiency may trigger nephritis in individuals with SLE.
Collapse
Affiliation(s)
- Simon H. Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Sevcan Mercan
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Department of Bioengineering, Kafkas University, Kars 36100, Turkey
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Max Moldovan
- Centre for Population Health Research, University of South Australia, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney 2109, Australia
| | - Giles D. Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Mark Koina
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Mitali Fadia
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Tom Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Brendan McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Madhivanan Sundaram
- Department of Renal Medicine, Royal Darwin Hospital, Northern Territory 0811, Australia
| | - Russell Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta 2150, NSW, Australia
| | - Pablo F. Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane 4029, QLD, Australia
| | - Holly Hutton
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona 08036, Spain
| | - Raquel Faria
- Unidade de Imunologia Clinica, Centro Hospitalar Unisersitario do Porto, Porto 4099-001, Portugal
| | | | - Mariele Gatto
- Department of Rheumatology, University of Padova, Italy
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Matthew Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4870, QLD, Australia
| | - John Mathews
- School of Population and Global Health, University of Melbourne, Melbourne 3053, Australia
| | - Eun Cho
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Thomas D. Andrews
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
- Departments Nephrology and Paediatric Nephrology. Monash Health, Melbourne 3168, Australia
| | - Matthew C. Cook
- Department of Immunology, The Canberra Hospital, Canberra 2605, Australia
| | - Marta Alarcon Riquelme
- Department of Medical Genomics, GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010 VIC, Australia
| | - Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai 200001, China
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
16
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
17
|
Chen S, Xie ZX, Yuan YJ. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution. FEMS Yeast Res 2021; 20:5809967. [PMID: 32188997 DOI: 10.1093/femsyr/foaa012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variations (SVs) promote the evolution of Saccharomyces cerevisiae, and play an important role in phenotypic diversities. Yeast genomic structures can be remodeled by design and bottom-up synthesis. The synthesis of yeast genome creates novel copy number variations (CNVs) and SVs and develops new strategies to discover gene functions. Further, an inducible evolution system SCRaMbLE, consisted of 3,932 loxPsym sites, was incorporated on synthetic yeast genome. SCRaMbLE enables genomic rearrangements at will and rapidly generates chromosomal number variations, and massive SVs under customized conditions. The impacts of genetic variations on phenotypes can be revealed by genome analysis and chromosome restructuring. Yeast genome synthesis and SCRaMbLE provide a new research paradigm to explore the genotypic mechanisms of phenotype diversities, and can be used to improve biological traits and optimize industrial chassis.
Collapse
Affiliation(s)
- Si Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ze-Xiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, People's Republic of China
| |
Collapse
|
18
|
Qiu Y, Ding R, Zhuang Z, Wu J, Yang M, Zhou S, Ye Y, Geng Q, Xu Z, Huang S, Cai G, Wu Z, Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics 2021; 22:332. [PMID: 33964879 PMCID: PMC8106131 DOI: 10.1186/s12864-021-07654-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Background In the process of pig breeding, the average daily gain (ADG), days to 100 kg (AGE), and backfat thickness (BFT) are directly related to growth rate and fatness. However, the genetic mechanisms involved are not well understood. Copy number variation (CNV), an important source of genetic diversity, can affect a variety of complex traits and diseases and has gradually been thrust into the limelight. In this study, we reported the genome-wide CNVs of Duroc pigs using SNP genotyping data from 6627 animals. We also performed a copy number variation region (CNVR)-based genome-wide association studies (GWAS) for growth and fatness traits in two Duroc populations. Results Our study identified 953 nonredundant CNVRs in U.S. and Canadian Duroc pigs, covering 246.89 Mb (~ 10.90%) of the pig autosomal genome. Of these, 802 CNVRs were in U.S. Duroc pigs with 499 CNVRs were in Canadian Duroc pigs, indicating 348 CNVRs were shared by the two populations. Experimentally, 77.8% of nine randomly selected CNVRs were validated through quantitative PCR (qPCR). We also identified 35 CNVRs with significant association with growth and fatness traits using CNVR-based GWAS. Ten of these CNVRs were associated with both ADG and AGE traits in U.S. Duroc pigs. Notably, four CNVRs showed significant associations with ADG, AGE, and BFT, indicating that these CNVRs may play a pleiotropic role in regulating pig growth and fat deposition. In Canadian Duroc pigs, nine CNVRs were significantly associated with both ADG and AGE traits. Further bioinformatic analysis identified a subset of potential candidate genes, including PDGFA, GPER1, PNPLA2 and BSCL2. Conclusions The present study provides a necessary supplement to the CNV map of the Duroc genome through large-scale population genotyping. In addition, the CNVR-based GWAS results provide a meaningful way to elucidate the genetic mechanisms underlying complex traits. The identified CNVRs can be used as molecular markers for genetic improvement in the molecular-guided breeding of modern commercial pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07654-7.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ming Yang
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, Guangdong, 527400, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
19
|
Zhong Q, Lu M, Yuan W, Cui Y, Ouyang H, Fan Y, Wang Z, Wu C, Qiao J, Hang J. Eight-lncRNA signature of cervical cancer were identified by integrating DNA methylation, copy number variation and transcriptome data. J Transl Med 2021; 19:58. [PMID: 33557879 PMCID: PMC8045209 DOI: 10.1186/s12967-021-02705-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) suggests genetic changes in malignant tumors. Abnormal expressions of long non-coding RNAs (lncRNAs) resulted from genomic and epigenetic abnormalities play a driving role in tumorigenesis of cervical cancer. However, the role of lncRNAs-related CNV in cervical cancer remained largely unclear. METHODS The data of messenger RNAs (mRNAs), DNA methylation, and DNA copy number were collected from 292 cervical cancer specimens. The prognosis-related subtypes of cervical cancer were determined by multi-omics integration analysis, and protein-coding genes (PCGs) and lncRNAs with subtype-specific expressions were identified. The CNV pattern of the subtype-specific lncRNAs was analyzed to identify the subtype-specific lncRNAs. A prognostic risk model based on lncRNAs was established by least absolute shrinkage and selection operator (LASSO). RESULTS Multi-omics integration analysis identified three molecular subtypes incorporating 617 differentially expressed lncRNAs and 1395 differentially expressed PCGs. The 617 lncRNAs were found to intersect with disease-related lncRNAs. Functional enrichment showed that 617 lncRNAs were mainly involved in tumor metabolism, immunity and other pathways, such as p53 and cAMP signaling pathways, which are closely related to the development of cervical cancer. Finally, according to CNV pattern consistent with differential expression analysis, we established a lncRNAs-based signature consisted of 8 lncRNAs, namely, RUSC1-AS1, LINC01990, LINC01411, LINC02099, H19, LINC00452, ADPGK-AS1, C1QTNF1-AS1. The interaction of the 8 lncRNAs showed a significantly poor prognosis of cervical cancer patients, which has also been verified in an independent dataset. CONCLUSION Our study expanded the network of CNVs and improved the understanding on the regulatory network of lncRNAs in cervical cancer, providing novel biomarkers for the prognosis management of cervical cancer patients.
Collapse
Affiliation(s)
- Qihang Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, HaiDian District, No. 38 XueYuan Road, Beijing, 100191, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, HaiDian District, No. 49 North HuaYuan Road, Beijing, 100191, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, HaiDian District, No. 49 North HuaYuan Road, Beijing, 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100091, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China
| | - Yueyi Cui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, HaiDian District, No. 49 North HuaYuan Road, Beijing, 100191, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100091, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, HaiDian District, No. 38 XueYuan Road, Beijing, 100191, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, HaiDian District, No. 49 North HuaYuan Road, Beijing, 100191, China. .,National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, HaiDian District, No. 49 North HuaYuan Road, Beijing, 100191, China. .,National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
20
|
Li C, Wendlandt EB, Darbro B, Xu H, Thomas GS, Tricot G, Chen F, Shaughnessy JD, Zhan F. Genetic Analysis of Multiple Myeloma Identifies Cytogenetic Alterations Implicated in Disease Complexity and Progression. Cancers (Basel) 2021; 13:cancers13030517. [PMID: 33572851 PMCID: PMC7866300 DOI: 10.3390/cancers13030517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease characterized by genomic chaos making it difficult to distinguish driver from passenger mutations. In this study, we integrated data from whole genome gene expression profiling (GEP) microarrays and CytoScan HD high-resolution genomic arrays to integrate GEP with copy number variations (CNV) to more precisely define molecular alterations in MM important for disease initiation, progression and poor clinical outcome. We utilized gene expression arrays from 351 MM samples and CytoScan HD arrays from 97 MM samples to identify eight CNV events that represent possible MM drivers. By integrating GEP and CNV data we divided the MM into eight unique subgroups and demonstrated that patients within one of the eight distinct subgroups exhibited common and unique protein network signatures that can be utilized to identify new therapeutic interventions based on pathway dysregulation. Data also point to the central role of 1q gains and the upregulated expression of ANP32E, DTL, IFI16, UBE2Q1, and UBE2T as potential drivers of MM aggressiveness. The data presented here utilized a novel approach to identify potential driver CNV events in MM, the creation of an improved definition of the molecular basis of MM and the identification of potential new points of therapeutic intervention.
Collapse
Affiliation(s)
- Can Li
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Erik B. Wendlandt
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Benjamin Darbro
- Cytogenetics and Molecular Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Hongwei Xu
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Gregory S. Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Guido Tricot
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - John D. Shaughnessy
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Correspondence:
| |
Collapse
|
21
|
Morales E, Galindo M, Trujillo H, Praga M. Update on Lupus Nephritis: Looking for a New Vision. Nephron Clin Pract 2020; 145:1-13. [PMID: 33147587 DOI: 10.1159/000511268] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Lupus nephritis (LN) is one of the most common manifestations of systemic lupus erythematosus (SLE), affecting approximately 40% of patients with lupus. It represents a major risk factor for morbidity and mortality, and 10% of patients with LN will develop end-stage kidney disease (ESKD). Therefore, there are a number of areas for improvement in the field of LN such as the search for new clinical biomarkers with a more accurate correlation with lupus activity and the redefinition of the histological classification into different subgroups in order to guide a personalized treatment. Although the role of protocol repeat kidney biopsies in LN is controversial, recent publications suggest that repeat histological assessment can be useful in guiding therapeutic decisions that may yield toward precision medicine. In the last decade, LN therapy has remained largely unchanged, with a probability of achieving complete or partial remission not exceeding 60-70%. Thus, optimization of old treatment strategies and search for new agents are urgently needed in order to improve outcomes such as mortality or development of ESKD. Future trials should focus in addressing unanswered issues such as the appropriate dose and duration of immunosuppressive treatment, timing of steroid withdrawal, and drug toxicity. In addition, data are still lacking regarding pregnancy and kidney transplantation in LN and knowledge about these important areas is essential for the management of a subset of patients with SLE. In summary, several major gaps are still present in the therapeutic approach and follow-up of patients with LN. The development of new clinical trial designs will be crucial in the search to improve long-term outcomes.
Collapse
Affiliation(s)
- Enrique Morales
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain, .,Research Institute of University Hospital "12 de Octubre" (imas12), Madrid, Spain,
| | - Maria Galindo
- Research Institute of University Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Rheumatology, University Hospital "12 de Octubre", Madrid, Spain
| | - Hernando Trujillo
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain.,Research Institute of University Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, University Hospital "12 de Octubre", Madrid, Spain.,Research Institute of University Hospital "12 de Octubre" (imas12), Madrid, Spain.,Department of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
22
|
Turner-Stokes T, Garcia Diaz A, Pinheiro D, Prendecki M, McAdoo SP, Roufosse C, Cook HT, Pusey CD, Woollard KJ. Live Imaging of Monocyte Subsets in Immune Complex-Mediated Glomerulonephritis Reveals Distinct Phenotypes and Effector Functions. J Am Soc Nephrol 2020; 31:2523-2542. [PMID: 32868399 DOI: 10.1681/asn.2019121326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Immune complexes within glomerular capillary walls cause crescentic GN (CrGN). Monocytes and macrophages are important in mediating CrGN, but little work has been done to phenotype the subpopulations involved and determine their respective contributions to glomerular inflammation. METHODS Live glomerular imaging using confocal microscopy monitored intravascular monocyte subset behavior during nephrotoxic nephritis (NTN) in a novel WKY-hCD68-GFP monocyte/macrophage reporter rat strain. Flow cytometry and qPCR further analyzed ex vivo the glomerular leukocyte infiltrate during NTN. RESULTS Non-classical monocytes surveyed the glomerular endothelium via lymphocyte function-associated antigen 1 (LFA-1) in the steady state. During NTN, non-classical monocytes were recruited first, but subsequent recruitment and retention of classical monocytes was associated with glomerular damage. Monocytes recruited to the glomerular vasculature did not undergo transendothelial migration. This finding suggests that inflammation in immune complex-mediated CrGN is predominantly intravascular, driven by dynamic interactions between intravascular blood monocytes and the endothelium. Glomerular endothelium and non-classical monocytes overexpressed a distinct chemokine axis, which may orchestrate inflammatory myeloid cell recruitment and expression of damage mediators. Reduced classical monocyte recruitment in Lewis rats during NTN confirmed a role for CD16 in mediating glomerular damage. CONCLUSIONS Monocyte subsets with distinct phenotypes and effector functions may be important in driving inflammation in experimental CrGN resulting from immune complexes formed within the glomerular capillary wall. LFA-1-dependent endothelial surveillance by non-classical monocytes may detect immune complexes through CD16, orchestrating the inflammatory response through intravascular retention of classical monocytes, which results in glomerular damage and proteinuria.
Collapse
Affiliation(s)
| | - Ana Garcia Diaz
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Damilola Pinheiro
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| |
Collapse
|
23
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, O'Brien-Simpson NM, Darby IB. Peripheral neutrophil phenotypes during management of periodontitis. J Periodontal Res 2020; 56:58-68. [PMID: 32803891 DOI: 10.1111/jre.12793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils are emerging as a key player in periodontal pathogenesis. The surface expression of cellular markers enables functional phenotyping of neutrophils which have distinct roles in disease states. This study aimed to evaluate the effect of periodontal management on neutrophil phenotypes in peripheral blood in periodontitis patients over one year. MATERIALS AND METHODS Peripheral blood and the periodontal parameters, mean probing depth and percentage of sites with bleeding on probing (%BOP), were collected from 40 healthy controls and 54 periodontitis patients at baseline and 3-, 6- and 12- months post-treatment. Flow cytometry was used to identify CD11b+ , CD16b+ , CD62L- and CD66b+ expression on neutrophils, neutrophil maturation stages as promyelocytes (CD11b- CD16b- ), metamyelocytes (CD11b+ CD16b- ) and mature neutrophils (CD11b+ CD16b+ ), and suppressive neutrophil phenotype as bands (CD16dim CD62Lbright ), normal neutrophils (CD16bright CD62Lbright ) and suppressive neutrophils (CD16bright CD62Ldim ). RESULTS CD62L- expression decreased with treatment. No differences were observed in neutrophil maturation stages in health or disease upon treatment. Suppressive and normal neutrophils showed a reciprocal relationship, where suppressive neutrophils decreased with treatment and normal neutrophils increased with treatment. In addition, %BOP was associated with suppressive neutrophils. CONCLUSION This study demonstrates that management of periodontitis significantly modifies distinct neutrophil phenotypes in peripheral blood. Suppressive neutrophils may play a role in the pathogenesis of periodontitis. However, their exact role is unclear and requires further investigation.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | | | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
24
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
25
|
Transient and chronic childhood immune thrombocytopenia are distinctly affected by Fc-γ receptor polymorphisms. Blood Adv 2020; 3:2003-2012. [PMID: 31270082 DOI: 10.1182/bloodadvances.2019000068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
In childhood immune thrombocytopenia (ITP), anti-platelet autoantibodies mediate platelet clearance through Fc-γ receptor (FcγR)-bearing phagocytes. In 75% to 90% of patients, the disease has a transient, self-limiting character. Here we characterized how polymorphisms of FcγR genes affect disease susceptibility, response to intravenous immunoglobulin (IVIg) treatment, and long-term recovery from childhood ITP. Genotyping of the FCGR2/3 locus was performed in 180 children with newly diagnosed ITP, 22 children with chronic ITP, and 180 healthy control children by multiplex ligation-dependent probe amplification. Children with newly diagnosed ITP were randomly assigned to a single administration of IVIg or observation, and followed for 1 year (Treatment With or Without IVIg for Kids With ITP [TIKI] trial). We defined transient ITP as a complete recovery (≥100 × 109/L) 3 months after diagnosis, including both self-limiting disease/IVIg responders and chronic ITP as absence of a complete recovery at 12 months. ITP susceptibility, as well as spontaneous recovery and response to IVIg, was associated with the genetic variants FCGR2C*ORF and FCGR2A*27W and the FCGR2B promoter variant 2B.4. These variants were overrepresented in patients with transient (N = 131), but not chronic (N = 43), disease. The presence of FCGR2C*ORF predisposed to transient ITP with an odds ratio of 4.7 (95% confidence interval, 1.9-14.3). Chronic ITP was associated with a deletion of FCGR2C/FCGR3B (copy number region 1) with an odds ratio of 6.2 (95% confidence interval, 1.8-24.7). Taken together, susceptibility to transient and chronic ITP is distinctly affected by polymorphic variants of FCGR2/3 genes. Our data suggest that genotyping of the FCGR2/3 locus may be useful for prognosis and guidance of treatment decisions in newly diagnosed childhood ITP.
Collapse
|
26
|
Lin X, Huang H, Chen P. Retrospective analysis of the clinical features of 172 patients with BCR-ABL1-negative chronic myeloproliferative neoplasms. Mol Cytogenet 2020; 13:8. [PMID: 32095159 PMCID: PMC7027207 DOI: 10.1186/s13039-020-0471-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background To explore the clinical features of the patients with BCR-ABL1-negative chronic myeloproliferative neoplasms (MPNs) in our hospital and to reveal the unique features of BCR-ABL1-negative MPNs patients in our center. Methods Retrospective analysis of routine karyotype analysis results, driver gene mutations and other related clinical parameters of 172 patients with newly diagnosed BCR-ABL1-negative MPNs who were admitted to our hospital between October 2013 and June 2018. Results (1) The rate of karyotypic abnormalities were 25, 6.3 and 2.9% in primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) patients, respectively. (2) The mutation rate of JAK2-V617F was 62.5%, and that of the CALR, MPL and EZH2 genes was 4.2% in PMF. The mutation rates of JAK2-V617F and JAK2-12exon were 91.3 and 1.3% in PV, respectively. The mutation rates of JAK2-V617F and CALR were 69.1 and 11.8% in ET, respectively. (3) Patients with JAK2-V617F mutation than with the wild-type gene were more often female in PMF (P = 0.027); had higher peripheral blood white blood cell (WBC) counts (P = 0.006), platelet (PLT) count (P = 0.001) and splenomegaly (P < 0.05) in PV; and had higher WBC (P = 0.001), hemoglobin concentrations (P = 0.001), lower PLT (P = 0.037), splenomegaly and endogenous coagulopathy (P < 0.05) in ET. (4) Among the PV and ET patients, those with thrombus were older than those in the nonthrombotic group. Conclusion PMF patients have more chromosomal abnormalities than PV and ET patients, and the effect of driver mutations on the clinical features of patients with MPNs differs among the three subtypes.
Collapse
Affiliation(s)
- Xiaolan Lin
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350000, Xinquan Rd, Fuzhou, Fujian China
| | - Huifang Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350000, Xinquan Rd, Fuzhou, Fujian China
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 350000, Xinquan Rd, Fuzhou, Fujian China
| |
Collapse
|
27
|
McAdoo SP, Prendecki M, Tanna A, Bhatt T, Bhangal G, McDaid J, Masuda ES, Cook HT, Tam FWK, Pusey CD. Spleen tyrosine kinase inhibition is an effective treatment for established vasculitis in a pre-clinical model. Kidney Int 2020; 97:1196-1207. [PMID: 32305129 PMCID: PMC7242903 DOI: 10.1016/j.kint.2019.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a group of life-threatening multi-system diseases characterized by necrotising inflammation of small blood vessels and crescentic glomerulonephritis. ANCA are thought to play a direct pathogenic role. Previous studies have shown that spleen tyrosine kinase (SYK) is phosphorylated during ANCA-induced neutrophil activation in vitro. However, the role of SYK in vivo is unknown. Here, we studied its role in the pathogenesis of experimental autoimmune vasculitis, a pre-clinical model of myeloperoxidase-ANCA-induced pauci-immune systemic vasculitis in the Wistar Kyoto rat. Up-regulation of SYK expression in inflamed renal and pulmonary tissue during early autoimmune vasculitis was confirmed by immunohistochemical and transcript analysis. R406, the active metabolite of fostamatinib, a small molecule kinase inhibitor with high selectivity for SYK, inhibited ANCA-induced pro-inflammatory responses in rat leucocytes in vitro. In an in vivo study, treatment with fostamatinib for 14 days after disease onset resulted in rapid resolution of urinary abnormalities, significantly improved renal and pulmonary pathology, and preserved renal function. Short-term exposure to fostamatinib did not significantly affect circulating myeloperoxidase-ANCA levels, suggesting inhibition of ANCA-induced inflammatory mechanisms in vivo. Finally, SYK expression was demonstrated within inflammatory glomerular lesions in ANCA-associated glomerulonephritis in patients, particularly within CD68+ve monocytes/macrophages. Thus, our data indicate that SYK inhibition warrants clinical investigation in the treatment of AAV.
Collapse
Affiliation(s)
- Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK.
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Anisha Tanna
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Tejal Bhatt
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Gurjeet Bhangal
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - John McDaid
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | | | - H Terence Cook
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| |
Collapse
|
28
|
Glessner JT, Li J, Desai A, Palmer M, Kim D, Lucas AM, Chang X, Connolly JJ, Almoguera B, Harley JB, Jarvik GP, Ritchie MD, Sleiman PM, Roden DM, Crosslin D, Hakonarson H. CNV Association of Diverse Clinical Phenotypes from eMERGE reveals novel disease biology underlying cardiovascular disease. Int J Cardiol 2020; 298:107-113. [DOI: 10.1016/j.ijcard.2019.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|
29
|
Abstract
Current understanding of the mechanisms underlying renal disease in humans is incomplete. Consequently, our ability to prevent the occurrence of renal disease or treat established kidney disease is limited. Investigating kidney disease directly in humans poses objective difficulties, which has led investigators to seek experimental animal models that simulate renal disease in humans. Animal models have thus become a tool of major importance in the study of renal physiology and have been crucial in shedding light on the complex mechanisms involved in kidney function and in our current understanding of the pathophysiology of renal disease. Among animal models, the rat has been the preferred and most commonly used species for the investigation of renal disease. This chapter reviews what has been achieved over the years, using the rat as a tool for the investigation of renal disease in humans, focusing on the contribution of rat genetics and genomics to the elucidation of the mechanisms underlying the pathophysiology of the major types of renal disease, including primary and secondary renal diseases.
Collapse
|
30
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Jiang J, Messner S, Kelm J, van Herwijnen M, Jennen D, Kleinjans J, de Kok T. Human 3D multicellular microtissues: An upgraded model for the in vitro mechanistic investigation of inflammation-associated drug toxicity. Toxicol Lett 2019; 312:34-44. [DOI: 10.1016/j.toxlet.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
|
32
|
Terao C, Ota M, Iwasaki T, Shiokawa M, Kawaguchi S, Kuriyama K, Kawaguchi T, Kodama Y, Yamaguchi I, Uchida K, Higasa K, Yamamoto M, Kubota K, Yazumi S, Hirano K, Masaki Y, Maguchi H, Origuchi T, Matsui S, Nakazawa T, Shiomi H, Kamisawa T, Hasebe O, Iwasaki E, Inui K, Tanaka Y, Ohshima KI, Akamizu T, Nakamura S, Nakamura S, Saeki T, Umehara H, Shimosegawa T, Mizuno N, Kawano M, Azumi A, Takahashi H, Mimori T, Kamatani Y, Okazaki K, Chiba T, Kawa S, Matsuda F. IgG4-related disease in the Japanese population: a genome-wide association study. THE LANCET. RHEUMATOLOGY 2019; 1:e14-e22. [PMID: 38229354 DOI: 10.1016/s2665-9913(19)30006-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND IgG4-related disease is a newly recognised immunopathological entity that includes autoimmune pancreatitis, IgG4-related sialadenitis, and IgG4-related kidney disease. To understand the genetic landscape of IgG4-related disease, we did a genome-wide association study. METHODS We did a genome-wide association study of Japanese individuals, initially screening 857 patients with IgG4-related disease at 50 Japanese research institutions and DNA samples from 2082 healthy control participants from the Nagahama Prospective Genome Cohort for the Comprehensive Human Bioscience. From Oct 27, 2008, to July 22, 2014, we enrolled 835 patients and used data from 1789 healthy participants. Only patients with confirmed diagnosis of IgG4-related disease according to the international diagnostic criteria were included. Genotyping was done with the Infinium HumanOmni5Exome, HumanOmni2.5Exome, or HumanOmni2.5 Illumina arrays, and genomic distributions were compared between case and control samples for 958 440 single nucleotide polymorphisms. The HLA region was extensively analysed using imputation of HLA alleles and aminoacid residues. Fine mapping of the FCGR2B region was also done. Associations between clinical manifestations of disease and the genetic variations identified in these two genes were examined. FINDINGS We identified the HLA-DRB1 (p=1·1×10-11) and FCGR2B (p=2·0×10-8) regions as susceptibility loci for IgG4-related disease. We also identified crucial aminoacid residues in the β domain of the peptide-binding groove of HLA-DRB1, in which the seventh aminoacid residue showed the strongest association signal with IgG4-related disease (p=1·7×10-14), as has been reported with other autoimmune diseases. rs1340976 in FCGR2B showed an association with increased FCGR2B expression (p=2·7×10-10) and was in weak linkage disequilibrium with rs1050501, a missense variant of FCGR2B previously associated with systemic lupus erythematosus. Furthermore, rs1340976 was associated with the number of swollen organs at diagnosis (p=0·011) and IgG4 concentration at diagnosis (p=0·035). INTERPRETATION Two susceptibility loci for IgG4-related disease were identified. Both FCGR2B and HLA loci might have important roles in IgG4-related disease development. Common molecular mechanisms might underlie IgG4-related disease and other immune-related disorders FUNDING: The Japanese Ministry of Health, Labour, and Welfare, the Japanese Agency of Medical Research and Development, and Kyoto University Grant for Top Global University Japan Project.
Collapse
Affiliation(s)
- Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Ota
- Department of Internal Medicine 2, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Takeshi Iwasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Rheumatology and Clinical Immunology, Kyoto University, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University, Kyoto, Japan
| | - Shuji Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University, Kyoto, Japan
| | - Izumi Yamaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology Kansai Medical University, Hirakata, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kensuke Kubota
- Department of Endoscopy, Yokohama City University Hospital, Yokohama, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Osaka, Japan
| | - Kenji Hirano
- Department of Gastroenterology, Tokyo Takanawa Hospital, Tokyo, Japan
| | - Yasufumi Masaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroyuki Maguchi
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Tomoki Origuchi
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoko Matsui
- Center for Health Care and Human Sciences, University of Toyama, Toyama, Japan
| | - Takahiro Nakazawa
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hideyuki Shiomi
- Department of Gastroenterology, Kobe University Hospital, Kobe, Japan
| | - Terumi Kamisawa
- Department of Internal Medicine, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Osamu Hasebe
- Department of Gastroenterology, Nagano Municipal Hospital, Tomitake, Japan
| | - Eisuke Iwasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Inui
- Department of Gastroenterology, Second Teaching Hospital, Fujita Health University, Toyoake, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koh-Ichi Ohshima
- Department of Ophthalmology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Takashi Akamizu
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Hisanori Umehara
- Division of Rheumatology and Immunology, Nagahama City Hospital, Nagahama, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Atsushi Azumi
- Department of Ophthalmology, Kobe Kaisei Hospital, Kobe, Japan
| | - Hiroki Takahashi
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University, Kyoto, Japan
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology Kansai Medical University, Hirakata, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University, Kyoto, Japan
| | - Shigeyuki Kawa
- Center for Health Safety and Environmental Management, Shinshu University, Matsumoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Liu H, Gu X, Wang G, Huang Y, Ju S, Huang J, Wang X. Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer. Aging (Albany NY) 2019; 11:6089-6108. [PMID: 31442207 PMCID: PMC6738420 DOI: 10.18632/aging.102168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Copy number variations (CNVs) are crucial genetic change elements in malignancies, and lncRNAs deregulation induced by genomic and epigenomic aberrations plays key driving role in tumorigenesis, including colorectal cancer (CRC). However, effects of CNVs associated with lncRNAs in CRC is largely unknown. Here, we perform integrative analysis considering messenger RNA expression levels, DNA methylation and DNA copy numbers from 289 cases of CRC specimens. There are five prognostic subtypes of CRC determined by multi-omics integration, and differentially expressed lncRNAs (DE-lncRNAs) are acquired among five subtypes and normal cases. Finally, CNVs pattern matched with DE-lncRNAs reveals a signature including 10 lncRNAs (LOC101927604, LOC105377267, CASC15, LINC-PINT, CLDN10-AS1, C14orf132, LMF1, LINC00675, CCDC144NL-AS1, LOC284454), conspicuously contributing to poor prognosis in CRC, which can be validated in another independent dataset. Together, our research is interested in copy number changes relevant with lncRNAs, not only expending the spectrum of CNVs, but also perfecting the regulation network of lncRNAs in CRC. The main purpose is to provide novel biomarkers for prognostic managements of CRC patients.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyu Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guihua Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Huang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
Catalytically Impaired TYK2 Variants are Protective Against Childhood- and Adult-Onset Systemic Lupus Erythematosus in Mexicans. Sci Rep 2019; 9:12165. [PMID: 31434951 PMCID: PMC6704113 DOI: 10.1038/s41598-019-48451-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/06/2019] [Indexed: 01/30/2023] Open
Abstract
Type I interferon (IFN-I) pathway plays a central role in the systemic lupus erythematosus (SLE) pathogenesis. Recent data suggest that SLE is associated with variants in IFN-I genes, such as tyrosine kinase 2 (TYK2), which is crucial in anti-viral immunity. Here, five TYK2 single nucleotide polymorphisms (SNPs) were genotyped in 368 childhood-onset SLE Mexican patients and 516 sex-matched healthy controls. Allele frequencies were also estimated in four indigenous groups. SLE protection was associated with TYK2 risk infection variants affecting residually its catalytic domain, rs12720356 (OR = 0.308; p = 0.041) and rs34536443 (OR = 0.370; p = 0.034), but not with rs2304256, rs12720270, and rs280500. This association was replicated in a 506 adult-onset SLE patients sample (OR = 0.250; p = 0.005, and OR = 0.277; p = 0.008, respectively). The minor alleles of both associated SNPs had a lower frequency in Mestizos than in Spaniards and were absent or rare in indigenous, suggesting that the presence of these alleles in the Mexican Mestizo population was derived from the Spaniards. For the first time, we report genetic variants with a protective effect in childhood- and adult-onset SLE Mexican population. Our results suggest that the frequency of IFN-I alleles associated with SLE, may have been shaped in populations exposed to infectious diseases for long periods, and this could be an explanation why Native American ancestry is associated with a higher SLE prevalence and an earlier onset.
Collapse
|
35
|
Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1595-1611. [PMID: 30688400 PMCID: PMC6662113 DOI: 10.1111/pbi.13086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Collapse
Affiliation(s)
- Gunvant B. Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Jinrong Wan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Li Song
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Adrian O. Stec
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Sondus S. Kahil
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - J. Hollis Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Stupar
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
36
|
Lejeune J, Brachet G, Watier H. Evolutionary Story of the Low/Medium-Affinity IgG Fc Receptor Gene Cluster. Front Immunol 2019; 10:1297. [PMID: 31244843 PMCID: PMC6563257 DOI: 10.3389/fimmu.2019.01297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 11/28/2022] Open
Abstract
Low/intermediate affinity Fc-gamma receptors (FcγR) are crucial for the recognition of immune complexes and IgG-sensitized microorganisms by phagocytic and cytotoxic effector cells. In all mammalian species studied so far, their genes are clustered in a single locus. However, this locus differs between humans and mice, both in the number of genes and the structure/function of the encoded receptors. We show that murine fcgr3 evolved through several steps into FCGR2A, its ortholog, which is specific to primates. One of these steps was the insertion of a retroviral element bringing a new intracellular exon comprising a non-canonical ITAM motif. We also show that the fcgr3-hspa6-fcgr4-fcgr2b module in mammals that has evolved in a FCGR2A-HSPA6-FCGR4-FCGR2B module in primates, was subsequently duplicated in apes through a Non-Allelic Homologous Recombination (NAHR), giving birth to FCGR2C, a hybrid gene between FCGR2B and FCGR2A. The FCGR4 duplication, which occurred simultaneously, eventually resulted in the emergence of FCGR3B, while FCGR3A remained the true FCGR4 ortholog. FCGR2C and FCGR3B, markers of this NAHR, are present in gorillas and chimpanzees, whereas they are absent in orangutans and more distant primates, such as gibbons and macaques. These data need to be taken into account when testing IgG-based therapies in animal species.
Collapse
Affiliation(s)
| | - Guillaume Brachet
- EA 7501 GICC Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| | - Hervé Watier
- EA 7501 GICC Université de Tours, Tours, France.,CHRU de Tours, Tours, France
| |
Collapse
|
37
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
38
|
Suga H, Oka T, Sugaya M, Sato Y, Ishii T, Nishida H, Ishikawa S, Fukayama M, Sato S. Keratinocyte Proline-Rich Protein Deficiency in Atopic Dermatitis Leads to Barrier Disruption. J Invest Dermatol 2019; 139:1867-1875.e7. [PMID: 30905808 DOI: 10.1016/j.jid.2019.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Atopic dermatitis is a common inflammatory skin disease caused by the interaction of genetic and environmental factors. By allelic copy number analysis at missense single-nucleotide polymorphisms on 26 genes with copy number variation, we identified a significant association between atopic dermatitis and human KPRP. Human KPRP expression, which was localized to the upper granular layer of epidermis, was significantly decreased in atopic dermatitis compared with normal skin. KPRP was histologically colocalized with loricrin and was mainly detected in cytoskeleton fractions of human keratinocytes. To further investigate the role of KPRP in skin, Kprp-knockout mice were generated. Heterozygous knockout (Kprp+/-) mice exhibited reduced KPRP expression to level a similar to that of human AD lesional skin. Kprp+/- mice showed abnormal desmosome structure and detachment of lower layers of the stratum corneum. Percutaneous inflammation by topical application of croton oil or oxazolone was enhanced, and epicutaneous immunization with ovalbumin induced a high level of IgE in Kprp+/- mice. Our study, started from allelic copy number analysis in human AD, identified the importance of KPRP, the decrease of which leads to barrier dysfunction.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Case-Control Studies
- Croton Oil/immunology
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/genetics
- DNA Copy Number Variations
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Desmosomes/pathology
- Desmosomes/ultrastructure
- Disease Models, Animal
- Epidermis/drug effects
- Epidermis/immunology
- Epidermis/pathology
- Humans
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Keratinocytes/drug effects
- Keratinocytes/immunology
- Keratinocytes/pathology
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Oxazolone/immunology
- Proteins/genetics
- Proteins/metabolism
- Water Loss, Insensible/genetics
Collapse
Affiliation(s)
- Hiraku Suga
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, International University of Health and Welfare, Chiba, Japan.
| | - Yasunari Sato
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Tsuyoshi Ishii
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Hiroyuki Nishida
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Shumpei Ishikawa
- Department of Pathology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Identification of function and potential pathogenic mechanisms of SLE risk genes in dendritic cells. RECENT FINDINGS Functional studies of individual SLE risk factors in dendritic cells were performed, and functional alterations of some risk genes in dendritic cells were observed. Recent studies confirmed the pathogenic function of known risk genes. These findings postulate novel pathogenic mechanisms made by dendritic cells. SLE is a complex disease and its etiology is not clearly understood. Dendritic cells are innate immune cells and critical for determining immune activation and immune tolerance. Genetic studies identified several new candidate genes which predispose to development of autoimmune diseases, but the mechanism of those genes has not been identified. This report updates functional implications or pathways in dendritic cells which are putatively important for the development or propagation of SLE based on genetic and functional studies performed in both human and animal models.
Collapse
Affiliation(s)
- Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Disease, Department of Molecular Medicine, The Feinstein Institute for Medical Research, School of Medicine at Northwell-Hofstra University, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
40
|
Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood 2019; 133:1395-1405. [PMID: 30655272 DOI: 10.1182/blood-2018-07-864538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
We have identified a rare healthy FcγRIIIB (CD16B)-null donor completely lacking FCGR3B RNA and protein expression and dissected the role of the different neutrophil Fcγ receptors in the response to therapeutic anti-CD20 monoclonal antibodies. We observed that polymorphonuclear neutrophils (PMNs) from FcγRIIIB wild-type (WT) individuals or the null donor were more effectively activated by chronic lymphocytic leukemia (CLL) B-cell targets opsonized with glycoengineered anti-CD20 antibodies compared with fully core-fucosylated anti-CD20 antibodies, suggesting the presence and role of FcγRIIIA (CD16A) on PMNs. Indeed, we demonstrated by reverse-transcription polymerase chain reaction, flow cytometry, and western blot analysis that PMNs from FcγRIIIB WT donors and the null individual express low levels of FcγRIIIA on their surfaces. FcγRIIIA is a functional and activating molecule on these cells, because anti-CD16 F(ab')2 antibodies alone were able to activate highly purified PMNs from the FcγRIIIB-null donor. Use of blocking anti-CD16 and anti-CD32 antibodies showed that FcγRIIIA is also a major mediator of phagocytosis of CD20-opsonized beads by FcγRIIIB WT and null PMNs. In contrast, trogocytosis of antibody-opsonized CLL B cells by PMNs was mediated primarily by FcγRIIIB in WT PMNs and by FcγRIIA in null PMNs. We conclude that FcγRIIIA is an important player in PMN functions, whereas FcγRIIIB is dispensable for activation and phagocytosis. We discuss the clinical implications of these findings.
Collapse
|
41
|
Abstract
The first and only published version of the rat reference genome sequence was RGSC3.1, accomplished by the Rat Genome Sequencing Project Consortium. Here we present the history of the community effort in the correction of sequence errors and filling missing gaps in the process of refining and providing researchers with a high-quality rat reference sequence. The genome assembly improvements, addition of different evidence resources over time, such as RNA-Seq data, and software development methodologies had a positive impact on the gene model annotations. Over the years we observed a great increase in the numbers of genes, protein coding sequences, predicted transcripts and transcript features. Before the sequencing of the rat genome was possible, first biochemical and next genomic markers like RAPD, AFLP, RFLP, and SSLP were fundamental in research studies involving cross-breeding between different rat strains, in finding the level of polymorphism, linkage mapping, and phylogeny. Linkage maps provide information on recombination rates, give insight into intra- and interspecies gene rearrangements, and help to identify Mendelian loci and Quantitative Trait Loci (QTL). In the 1990s many reports were published on the construction of rat linkage maps that incorporated increasing numbers of markers and facilitated the localization of disease loci. Current genetic monitoring and linkage mapping relies on single nucleotide polymorphisms (SNPs). The Rat Genome Database collects information on genetic variation from the worldwide community of rat researchers and provides tools for searching and retrieving these data. As of today we show details about almost 605 million variants coming from many studies in our Variant Visualizer tool.
Collapse
|
42
|
Vijay A, Garg I, Ashraf MZ. Perspective: DNA Copy Number Variations in Cardiovascular Diseases. Epigenet Insights 2018; 11:2516865718818839. [PMID: 30560231 PMCID: PMC6291864 DOI: 10.1177/2516865718818839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Human genome contains many variations, often called mutations, which are difficult to detect and have remained a challenge for years. A substantial part of the genome encompasses repeats and when such repeats are in the coding region they may lead to change in the gene expression profile followed by pathological conditions. Structural variants are alterations which change one or more sequence feature in the chromosome such as change in the copy number, rearrangements, and translocations of a sequence and can be balanced or unbalanced. Copy number variants (CNVs) may increase or decrease the copies of a given region and have a pivotal role in the onset of many diseases including cardiovascular disorders. Cardiovascular disorders have a magnitude of well-established risk factors and etiology, but their correlation with CNVs is still being studied. In this article, we have discussed history of CNVs and a summary on the diseases associated with CNVs. To detect such variations, we shed light on the number of techniques introduced so far and their limitations. The lack of studies on cardiovascular diseases to determine the frequency of such variants needs clinical studies with larger cohorts. This review is a compilation of articles suggesting the importance of CNVs in multitude of cardiovascular anomalies. Finally, future perspectives for better understanding of CNVs and cardiovascular disorders have also been discussed.
Collapse
Affiliation(s)
- Aatira Vijay
- Genomics Division, Defence Institute of Physiology & Allied Sciences, Delhi, India
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology & Allied Sciences, Delhi, India
| | - Mohammad Zahid Ashraf
- Genomics Division, Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
43
|
Han Y, Ma FY, Di Paolo J, Nikolic-Paterson DJ. An inhibitor of spleen tyrosine kinase suppresses experimental crescentic glomerulonephritis. Int J Immunopathol Pharmacol 2018; 32:2058738418783404. [PMID: 29923438 PMCID: PMC6024518 DOI: 10.1177/2058738418783404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-selective inhibitors of spleen tyrosine kinase (SYK) efficiently suppress
disease in T cell-dependent models of crescentic glomerulonephritis. However,
the therapeutic potential of selective SYK inhibitors in this disease has not
been established. In addition, we lack knowledge regarding SYK expression in
non-myeloid cells in glomerulonephritis. We addressed these two issues in a rat
model of nephrotoxic serum nephritis (NTN) using a SYK inhibitor, GS-492429.
Disease was induced in Sprague-Dawley rats (Study 1) or Wistar-Kyoto (WKY) rats
(Study 2) by immunization with sheep IgG and administration of sheep anti-rat
nephrotoxic serum. Animals were untreated or received GS-492429 (30 mg/kg/bid)
or vehicle treatment from 2 h before nephrotoxic serum injection until being
killed 3 or 24 h later (Study 1) or 14 days later (Study 2). Two-colour confocal
microscopy found that SYK expression in NTN kidney was restricted to myeloid
cells and platelets, with no evidence of SYK expression by T cells, mesangial
cells, podocytes or tubular epithelial cells. In Study 1, GS-492429 treatment
significantly reduced glomerular neutrophil and macrophage infiltration, with
protection from glomerular thrombosis and proteinuria. In Study 2, GS-492429
treatment reduced glomerular crescent formation by 70% on day 14 NTN in
conjunction with reduced glomerular thrombosis, glomerulosclerosis and tubular
damage. This was accompanied by a marked reduction in markers of inflammation
(CCL2, TNF-α, NOS2, MMP-12). Importantly, the protective effects of GS-492429
were independent of T cell infiltration and activation and independent of
JAK/STAT3 signalling. In conclusion, this study demonstrates that a SYK
inhibitor can suppress the development of crescentic glomerulonephritis through
effects upon myeloid cells and platelets.
Collapse
Affiliation(s)
- Yingjie Han
- 1 Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia.,2 Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| | - Frank Y Ma
- 1 Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia.,2 Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| | | | - David J Nikolic-Paterson
- 1 Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia.,2 Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
44
|
NF1 deficiency correlates with estrogen receptor signaling and diminished survival in breast cancer. NPJ Breast Cancer 2018; 4:29. [PMID: 30182054 PMCID: PMC6117327 DOI: 10.1038/s41523-018-0080-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
The key negative regulatory gene of the RAS pathway, NF1, is mutated or deleted in numerous cancer types and is associated with increased cancer risk and drug resistance. Even though women with neurofibromatosis (germline NF1 mutations) have a substantially increased breast cancer risk at a young age and NF1 is commonly mutated in sporadic breast cancers, we have a limited understanding of the role of NF1 in breast cancer. We utilized CRISPR-Cas9 gene editing to create Nf1 rat models to evaluate the effect of Nf1 deficiency on tumorigenesis. The resulting Nf1 indels induced highly penetrant, aggressive mammary adenocarcinomas that express estrogen receptor (ER) and progesterone receptor (PR). We identified distinct Nf1 mRNA and protein isoforms that were altered during tumorigenesis. To evaluate NF1 in human breast cancer, we analyzed genomic changes in a data set of 2000 clinically annotated breast cancers. We found NF1 shallow deletions in 25% of sporadic breast cancers, which correlated with poor clinical outcome. To identify biological networks impacted by NF1 deficiency, we constructed gene co-expression networks using weighted gene correlation network analysis (WGCNA) and identified a network connected to ESR1 (estrogen receptor). Moreover, NF1-deficient cancers correlated with established RAS activation signatures. Estrogen-dependence was verified by estrogen-ablation in Nf1 rats where rapid tumor regression was observed. Additionally, Nf1 deficiency correlated with increased estrogen receptor phosphorylation in mammary adenocarcinomas. These results demonstrate a significant role for NF1 in both NF1-related breast cancer and sporadic breast cancer, and highlight a potential functional link between neurofibromin and the estrogen receptor.
Collapse
|
45
|
|
46
|
|
47
|
Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Funct Integr Genomics 2018; 18:559-567. [PMID: 29737453 DOI: 10.1007/s10142-018-0613-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 02/03/2023]
Abstract
Copy number variation (CNV) of DNA sequences, functionally significant but yet fully ascertained, is believed to confer considerable increments in unexplained heritability of quantitative traits. Identification of phenotype-associated CNVs (paCNVs) therefore is a pressing need in CNV studies to speed up their exploitation in cattle breeding programs. Here, we provided a new avenue to achieve this goal that is to project the published CNV data onto meta-quantitative trait loci (meta-QTL) map which connects causal genes with phenotypes. Any CNVs overlapping meta-QTL therefore will be potential paCNVs. This study reported potential paCNVs in Bos taurus autosome 3 (BTA3). Notably, overview indexes and CNVs both highlighted a narrower region (BTA3 54,500,000-55,000,000 bp, named BTA3_INQTL_6) within one constructed meta-QTL. Then, we ascertained guanylate-binding protein 4 (GBP4) among the nine positional candidate genes was significantly associated with adult cattle stature, including body weight (BW, P < 0.05) and withers height (WHT, P < 0.05), fitting GBP4 CNV either with three levels or with six levels in the model. Although higher copy number downregulated the mRNA levels of GBP2 (P < 0.05) and GBP4 (P < 0.05) in 1-Mb window (54.0-55.0 Mb) in muscle and adipose, additional analyses will be needed to clarify the causality behind the ascertained association.
Collapse
|
48
|
Li S, Dou X, Gao R, Ge X, Qian M, Wan L. A remark on copy number variation detection methods. PLoS One 2018; 13:e0196226. [PMID: 29702671 PMCID: PMC5922522 DOI: 10.1371/journal.pone.0196226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.
Collapse
Affiliation(s)
- Shuo Li
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xialiang Dou
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Ruiqi Gao
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xinzhou Ge
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Minping Qian
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Lin Wan
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Kobayashi T, Namba M, Koyano T, Fukushima M, Sato M, Ohtsuka M, Matsuyama M. Successful production of genome-edited rats by the rGONAD method. BMC Biotechnol 2018; 18:19. [PMID: 29606116 PMCID: PMC5879918 DOI: 10.1186/s12896-018-0430-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent progress in development of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD) in mice; a novel in vivo genome editing system that does not require ex vivo handling of embryos, and this technology is newly developed and renamed as "improved GONAD" (i-GONAD). However, this technology has been limited only to mice. Therefore in this study, we challenge to apply this technology to rats. RESULTS Here, we determine the most suitable condition for in vivo gene delivery towards rat preimplantation embryos using tetramethylrhodamine-labelled dextran, termed as Rat improved GONAD (rGONAD). Then, to investigate whether this method is feasible to generate genome-edited rats by delivery of CRISPR/Cas9 components, the tyrosinase (Tyr) gene was used as a target. Some pups showed albino-colored coat, indicating disruption of wild-type Tyr gene allele. Furthermore, we confirm that rGONAD method can be used to introduce genetic changes in rat genome by the ssODN-based knock-in. CONCLUSIONS We first establish the rGONAD method for generating genome-edited rats. We demonstrate high efficiency of the rGONAD method to produce knock-out and knock-in rats, which will facilitate the production of rat genome engineering experiment. The rGONAD method can also be readily applicable in mammals such as guinea pig, hamster, cow, pig, and other mammals.
Collapse
Affiliation(s)
- Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
- Shigei Medical Research Hospital, Minami-ku, Okayama 701-0202 Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Kagoshima 890-8544 Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa 259-1193 Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193 Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| |
Collapse
|
50
|
Malekpour SA, Pezeshk H, Sadeghi M. MSeq-CNV: accurate detection of Copy Number Variation from Sequencing of Multiple samples. Sci Rep 2018; 8:4009. [PMID: 29507384 PMCID: PMC5838159 DOI: 10.1038/s41598-018-22323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/16/2018] [Indexed: 01/23/2023] Open
Abstract
Currently a few tools are capable of detecting genome-wide Copy Number Variations (CNVs) based on sequencing of multiple samples. Although aberrations in mate pair insertion sizes provide additional hints for the CNV detection based on multiple samples, the majority of the current tools rely only on the depth of coverage. Here, we propose a new algorithm (MSeq-CNV) which allows detecting common CNVs across multiple samples. MSeq-CNV applies a mixture density for modeling aberrations in depth of coverage and abnormalities in the mate pair insertion sizes. Each component in this mixture density applies a Binomial distribution for modeling the number of mate pairs with aberration in the insertion size and also a Poisson distribution for emitting the read counts, in each genomic position. MSeq-CNV is applied on simulated data and also on real data of six HapMap individuals with high-coverage sequencing, in 1000 Genomes Project. These individuals include a CEU trio of European ancestry and a YRI trio of Nigerian ethnicity. Ancestry of these individuals is studied by clustering the identified CNVs. MSeq-CNV is also applied for detecting CNVs in two samples with low-coverage sequencing in 1000 Genomes Project and six samples form the Simons Genome Diversity Project.
Collapse
Affiliation(s)
- Seyed Amir Malekpour
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Pezeshk
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran.
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Mathematics and Statistics, Concordia University, Montreal, Canada.
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|