1
|
Martínez-Carranza M, Škerlová J, Lee PG, Zhang J, Krč A, Sirohiwal A, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L, Masuyer G, Kaila VRI, Beard M, Dong M, Stenmark P. Activity of botulinum neurotoxin X and its structure when shielded by a non-toxic non-hemagglutinin protein. Commun Chem 2024; 7:179. [PMID: 39138288 PMCID: PMC11322297 DOI: 10.1038/s42004-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex and the crystal structure of the isolated NTNH protein. Unexpectedly, the BoNT/X complex is stable and protease-resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo. Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents very weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | - Linda Henriksson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Crisafulli S, Ciccimarra F, Khan Z, Maccarrone F, Trifirò G. Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature. Toxins (Basel) 2024; 16:306. [PMID: 39057946 PMCID: PMC11281390 DOI: 10.3390/toxins16070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Since its first approval by the Food and Drug Administration in 1989 for strabismus, botulinum toxin indications of use have been widely expanded. Due to its anticholinergic properties, this toxin is currently approved in adult patients for the treatment of a wide range of neuromuscular, otolaryngologic, orthopedic, gastrointestinal, and urologic disorders. Approved pediatric indications of use include the treatment of blepharospasm associated with dystonia, strabismus, lower-limb spasticity, focal spasticity in patients with cerebral palsy, and neurogenic detrusor overactivity. Alongside these approved indications, botulinum toxin is extensively used off-label. Although several clinical studies have shown that botulinum toxin is effective and well-tolerated in children, uncertainties persist regarding its long-term effects on growth and appropriate dosing in this population. As such, further research is needed to better define the botulinum toxin risk-benefit profile and expand approved uses in pediatrics. This narrative review aimed to provide a broad overview of the evidence concerning the clinical effectiveness and safety of BoNT with respect to its principal authorized and non-authorized pediatric therapeutic indications, as well as to describe perspectives on its future use in children.
Collapse
Affiliation(s)
| | - Francesco Ciccimarra
- Department of Diagnostics and Public Health, University of Verona, 37124 Verona, Italy; (F.C.); (F.M.)
| | - Zakir Khan
- Department of Pharmacy Practice, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Gulberg Green Campus, Islamabad 44000, Pakistan;
| | - Francesco Maccarrone
- Department of Diagnostics and Public Health, University of Verona, 37124 Verona, Italy; (F.C.); (F.M.)
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, 37124 Verona, Italy; (F.C.); (F.M.)
| |
Collapse
|
3
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Liu Z, Lee PG, Krez N, Lam KH, Liu H, Przykopanski A, Chen P, Yao G, Zhang S, Tremblay JM, Perry K, Shoemaker CB, Rummel A, Dong M, Jin R. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat Commun 2023; 14:2338. [PMID: 37095076 PMCID: PMC10125960 DOI: 10.1038/s41467-023-37860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadja Krez
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons. Commun Biol 2023; 6:122. [PMID: 36717690 PMCID: PMC9886929 DOI: 10.1038/s42003-023-04495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been widely used clinically as a muscle relaxant. These toxins target motor neurons and cleave proteins essential for neurotransmitter release like Synaptosomal-associated protein of 25 kDa (SNAP-25). In vitro assays for BoNT testing using rodent cells or immortalized cell lines showed limitations in accuracy and physiological relevance. Here, we report a cell-based assay for detecting SNAP-25-cleaving BoNTs by combining human induced Pluripotent Stem Cells (hiPSC)-derived motor neurons and a luminescent detection system based on split NanoLuc luciferase. This assay is convenient, rapid, free-of-specialized antibodies, with a detection sensitivity of femtomolar concentrations of toxin, and can be used to study the different steps of BoNT intoxication.
Collapse
|
6
|
Structure and activity of botulinum neurotoxin X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523524. [PMID: 36712025 PMCID: PMC9882044 DOI: 10.1101/2023.01.11.523524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex at 3.1 Å resolution. Unexpectedly, the BoNT/X complex is stable and protease resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo . Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
|
7
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Azzaz F, Hilaire D, Fantini J. Structural Basis of Botulinum Toxin Type F Binding to Glycosylated Human SV2A: In Silico Studies at the Periphery of a Lipid Raft. Biomolecules 2022; 12:1821. [PMID: 36551250 PMCID: PMC9776016 DOI: 10.3390/biom12121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxins are the deadliest microbial neurotoxins in humans, with a lethal dose of 1 ng/kg. Incidentally, these neurotoxins are also widely used for medical and cosmetic purposes. However, little is known about the molecular mechanisms that control binding of botulinum neurotoxin type F1 (BoNT/F1) to its membrane receptor, glycosylated human synaptic vesicle glycoprotein A (hSV2Ag). To elucidate these mechanisms, we performed a molecular dynamics simulation (MDS) study of initial binding kinetics of BoNT/F1 to SV2A. Since this toxin also interacts with gangliosides, the simulations were performed at the periphery of a lipid raft in the presence of both SV2A and gangliosides. Our study suggested that interaction of BoNT/F1 with SV2A is exclusively mediated by N-glycan moiety of SV2A, which interacts with aromatic residues Y898, Y910, F946, Y1059 and H1273 of this toxin. Thus, in contrast with botulinum neurotoxin A1 (BoNT/A1), BoNT/F1 does not interact with protein content of SV2A. We attributed this incapability to a barrage effect exerted by neurotoxin residues Y1132, Q1133 and K1134, which prevent formation of long-lasting intermolecular hydrogen bonds. We also provided structural elements that suggest that BoNT/F1 uses the strategy of BoNT/A1 combined with the strategy of botulinum neurotoxin type E to bind N-glycan of its glycoprotein receptor. Overall, our study opened a gate for design of a universal inhibitor aimed at disrupting N-glycan-toxin interactions and for bioengineering of a BoNT/F1 protein that may be able to bind protein content of synaptic vesicle glycoprotein for therapeutic purposes.
Collapse
Affiliation(s)
- Fodil Azzaz
- Fodil Azzaz, INSERM U_1072, Faculté de Médecine Nord, Bd Pierre Dramard, University of Aix-Marseille, 13015 Marseille, France
| | - Didier Hilaire
- DGA (Direction Générale de L’armement)—DGA Maîtrise NRBC, 91710 Vert le Petit, France
| | - Jacques Fantini
- Fodil Azzaz, INSERM U_1072, Faculté de Médecine Nord, Bd Pierre Dramard, University of Aix-Marseille, 13015 Marseille, France
| |
Collapse
|
9
|
Ramirez-Franco J, Azzaz F, Sangiardi M, Ferracci G, Youssouf F, Popoff MR, Seagar M, Lévêque C, Fantini J, El Far O. Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex. Cell Mol Life Sci 2022; 79:496. [PMID: 36006520 PMCID: PMC11073447 DOI: 10.1007/s00018-022-04527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of BoNT/B bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside allowing a lipid-binding loop of BoNT/B to interact with the glycone part of the synaptotagmin-associated GT1b. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Fodil Azzaz
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Marion Sangiardi
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Géraldine Ferracci
- Aix-Marseille Université (AMU), CNRS, INP, Institute of Neurophysiopathology, UMR7051, PINT, PFNT, Marseille, France
| | - Fahamoe Youssouf
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | | | - Michael Seagar
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Christian Lévêque
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France.
| | - Jacques Fantini
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France
| | - Oussama El Far
- 1INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015, Marseille, France.
| |
Collapse
|
10
|
Chen B, Liu Z, Perry K, Jin R. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition. Sci Rep 2022; 12:9028. [PMID: 35637242 PMCID: PMC9151644 DOI: 10.1038/s41598-022-12909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, IL, 60439, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Carré D, Martin V, Kouidri Y, Morin R, Norlund M, Gomes A, Lagarde JM, Lezmi S. The distribution of neuromuscular junctions depends on muscle pennation, when botulinum neurotoxin receptors and SNAREs expression are uniform in the rat. Toxicon 2022; 212:34-41. [DOI: 10.1016/j.toxicon.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
12
|
Structural Analysis of Botulinum Neurotoxins Type B and E by Cryo-EM. Toxins (Basel) 2021; 14:toxins14010014. [PMID: 35050991 PMCID: PMC8781748 DOI: 10.3390/toxins14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the causative agents of a potentially lethal paralytic disease targeting cholinergic nerve terminals. Multiple BoNT serotypes exist, with types A, B and E being the main cause of human botulism. Their extreme toxicity has been exploited for cosmetic and therapeutic uses to treat a wide range of neuromuscular disorders. Although naturally occurring BoNT types share a common end effect, their activity varies significantly based on the neuronal cell-surface receptors and intracellular SNARE substrates they target. These properties are the result of structural variations that have traditionally been studied using biophysical methods such as X-ray crystallography. Here, we determined the first structures of botulinum neurotoxins using single-particle cryogenic electron microscopy. The maps obtained at 3.6 and 3.7 Å for BoNT/B and /E, respectively, highlight the subtle structural dynamism between domains, and of the binding domain in particular. This study demonstrates how the recent advances made in the field of single-particle electron microscopy can be applied to bacterial toxins of clinical relevance and the botulinum neurotoxin family in particular.
Collapse
|
13
|
Liu Z, Zhang S, Chen P, Tian S, Zeng J, Perry K, Dong M, Jin R. Structural basis for selective modification of Rho and Ras GTPases by Clostridioides difficile toxin B. SCIENCE ADVANCES 2021; 7:eabi4582. [PMID: 34678063 PMCID: PMC8535798 DOI: 10.1126/sciadv.abi4582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 05/15/2023]
Abstract
Toxin B (TcdB) is a primary cause of Clostridioides difficile infection (CDI). This toxin acts by glucosylating small GTPases in the Rho/Ras families, but the structural basis for TcdB recognition and selectivity of specific GTPase substrates remain unsolved. Here, we report the cocrystal structures of the glucosyltransferase domain (GTD) of two distinct TcdB variants in complex with human Cdc42 and R-Ras, respectively. These structures reveal a common structural mechanism by which TcdB recognizes Rho and R-Ras. Furthermore, we find selective clustering of adaptive residue changes in GTDs that determine their substrate preferences, which helps partition all known TcdB variants into two groups that display distinct specificities toward Rho or R-Ras. Mutations that selectively disrupt GTPases binding reduce the glucosyltransferase activity of the GTD and the toxicity of TcdB holotoxin. These findings establish the structural basis for TcdB recognition of small GTPases and reveal strategies for therapeutic interventions for CDI.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Knockin mouse models demonstrate differential contributions of synaptotagmin-1 and -2 as receptors for botulinum neurotoxins. PLoS Pathog 2021; 17:e1009994. [PMID: 34662366 PMCID: PMC8553082 DOI: 10.1371/journal.ppat.1009994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.
Collapse
|
15
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep 2021; 30:2526-2539.e6. [PMID: 32101733 PMCID: PMC7138525 DOI: 10.1016/j.celrep.2020.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties. Botulinum neurotoxins (BoNTs) are extremely toxic biothreats. Lam et al. report the crystal structures and neutralizing mechanisms of six unique antitoxin VHHs against BoNT/A1 and BoNT/B1, the two major human pathogenic BoNTs. They then develop a platform for structure-based rational design of bifunctional VHH heterodimers with superior antitoxin potencies.
Collapse
|
17
|
Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable protein biosensors. Nature 2021; 591:482-487. [PMID: 33503651 PMCID: PMC8074680 DOI: 10.1038/s41586-021-03258-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023]
Abstract
Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Hsien-Wei Yeh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jooyoung Park
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Hansol Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Robert A. Langan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Scott E. Boyken
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marc J. Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Longxing Cao
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marcos C. Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jimin Wi
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Lance Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Byung-Ha Oh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| |
Collapse
|
18
|
The 25 kDa H CN Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. Toxins (Basel) 2020; 12:toxins12120743. [PMID: 33255952 PMCID: PMC7760224 DOI: 10.3390/toxins12120743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The extraordinarily potent clostridial neurotoxins (CNTs) comprise tetanus neurotoxin (TeNT) and the seven established botulinum neurotoxin serotypes (BoNT/A-G). They are composed of four structurally independent domains: the roles of the catalytically active light chain, the translocation domain HN, and the C-terminal receptor binding domain HCC are largely resolved, but that of the HCN domain sandwiched between HN and HCC has remained unclear. Here, mutants of BoNT/A, BoNT/B, and TeNT were generated by deleting their HCN domains or swapping HCN domains between each other. Both deletion and replacement of TeNT HCN domain by HCNA and HCNB reduced the biological activity similarly, by ~95%, whereas BoNT/A and B deletion mutants displayed >500-fold reduced activity in the mouse phrenic nerve hemidiaphragm assay. Swapping HCN domains between BoNT/A and B hardly impaired their biological activity, but substitution with HCNT did. Binding assays revealed that in the absence of HCN, not all receptor binding sites are equally well accessible. In conclusion, the presence of HCN is vital for CNTs to exert their neurotoxicity. Although structurally similar, the HCN domain of TeNT cannot equally substitute those of BoNT and vice versa, leaving the possibility that HCNT plays a different role in the intoxication mechanism of TeNT.
Collapse
|
19
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
20
|
Davies JR, Masuyer G, Stenmark P. Structural and Biochemical Characterization of Botulinum Neurotoxin Subtype B2 Binding to Its Receptors. Toxins (Basel) 2020; 12:toxins12090603. [PMID: 32957706 PMCID: PMC7551386 DOI: 10.3390/toxins12090603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) can be used therapeutically to treat a wide range of neuromuscular and neurological conditions. A collection of natural BoNT variants exists which can be classified into serologically distinct serotypes (BoNT/B), and further divided into subtypes (BoNT/B1, B2, …). BoNT subtypes share a high degree of sequence identity within the same serotype yet can display large variation in toxicity. One such example is BoNT/B2, which was isolated from Clostridium botulinum strain 111 in a clinical case of botulism, and presents a 10-fold lower toxicity than BoNT/B1. In an effort to understand the molecular mechanisms behind this difference in potency, we here present the crystal structures of BoNT/B2 in complex with the ganglioside receptor GD1a, and with the human synaptotagmin I protein receptor. We show, using receptor-binding assays, that BoNT/B2 has a slightly higher affinity for GD1a than BoNT/B1, and confirm its considerably weaker affinity for its protein receptors. Although the overall receptor-binding mechanism is conserved for both receptors, structural analysis suggests the lower affinity of BoNT/B2 is the result of key substitutions, where hydrophobic interactions important for synaptotagmin-binding are replaced by polar residues. This study provides a template to drive the development of future BoNT therapeutic molecules centered on assessing the natural subtype variations in receptor-binding that appears to be one of the principal stages driving toxicity.
Collapse
Affiliation(s)
- Jonathan R. Davies
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Correspondence: (G.M.); (P.S.)
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden
- Correspondence: (G.M.); (P.S.)
| |
Collapse
|
21
|
Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable allosteric biosensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743576 DOI: 10.1101/2020.07.18.206946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring allosteric protein switches have been repurposed for developing novel biosensors and reporters for cellular and clinical applications 1 , but the number of such switches is limited, and engineering them is often challenging as each is different. Here, we show that a very general class of allosteric protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which binding of a peptide key triggers biological outputs of interest 2 . Using broadly applicable design principles, we allosterically couple binding of protein analytes of interest to the reconstitution of luciferase activity and a bioluminescent readout through the association of designed lock and key proteins. Because the sensor is based purely on thermodynamic coupling of analyte binding to switch activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We demonstrate the modularity of this platform by creating biosensors that, with little optimization, sensitively detect the anti-apoptosis protein Bcl-2, the hIgG1 Fc domain, the Her2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac Troponin I and an anti-Hepatitis B virus (HBV) antibody that achieve the sub-nanomolar sensitivity necessary to detect clinically relevant concentrations of these molecules. Given the current need for diagnostic tools for tracking COVID-19 3 , we use the approach to design sensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The latter, which incorporates a de novo designed RBD binder, has a limit of detection of 15pM with an up to seventeen fold increase in luminescence upon addition of RBD. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
Collapse
|
22
|
Yin L, Masuyer G, Zhang S, Zhang J, Miyashita SI, Burgin D, Lovelock L, Coker SF, Fu TM, Stenmark P, Dong M. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biol 2020; 18:e3000618. [PMID: 32182233 PMCID: PMC7077807 DOI: 10.1371/journal.pbio.3000618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A–G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a “gain-of-function” mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL–lipid interactions and create a modified BoNT/B with improved therapeutic efficacy. Botulinum neurotoxins are a family of bacterial toxins, some of which are approved for medical and cosmetic uses. This study shows that introducing aromatic residues to a lipid binding loop improved therapeutic efficacy of botulinum neurotoxin B by enhancing its ability to bind to lipid membranes at motor nerve terminals.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | - Tian-min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (PS); (MD)
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (PS); (MD)
| |
Collapse
|
23
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
24
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
25
|
Martínez-Carranza M, Blasco P, Gustafsson R, Dong M, Berntsson RPA, Widmalm G, Stenmark P. Synaptotagmin Binding to Botulinum Neurotoxins. Biochemistry 2019; 59:491-498. [PMID: 31809018 DOI: 10.1021/acs.biochem.9b00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are exceptionally toxic proteins that cause paralysis but are also extensively used as treatment for various medical conditions. Most BoNTs bind two receptors on neuronal cells, namely, a ganglioside and a protein receptor. Differences in the sequence between the protein receptors from different species can impact the binding affinity and toxicity of the BoNTs. Here we have investigated how BoNT/B, /DC, and /G, all three toxins that utilize synaptotagmin I and II (Syt-I and Syt-II, respectively) as their protein receptors, bind to Syt-I and -II of mouse/rat, bovine, and human origin by isothermal titration calorimetry analysis. BoNT/G had the highest affinity for human Syt-I, and BoNT/DC had the highest affinity for bovine Syt-II. As expected, BoNT/B, /DC, and /G showed very low levels of binding to human Syt-II. Furthermore, we carried out saturation transfer difference (STD) and STD-TOCSY NMR experiments that revealed the region of the Syt peptide in direct contact with BoNT/G, which demonstrate that BoNT/G recognizes the Syt peptide in a model similar to that in the established BoNT/B-Syt-II complex. Our analyses also revealed that regions outside the Syt peptide's toxin-binding region are important for the helicity of the peptide and, therefore, the binding affinity.
Collapse
Affiliation(s)
| | - Pilar Blasco
- Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Min Dong
- Department of Urology, Boston's Children Hospital, and Department of Microbiology and Immunology and Department of Surgery , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Ronnie Per-Arne Berntsson
- Department of Medical Biochemistry and Biophysics , Umeå University , SE-90187 Umeå , Sweden.,Wallenberg Centre for Molecular Medicine , Umeå University , SE-90187 Umeå , Sweden
| | - Göran Widmalm
- Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Experimental Medical Science , Lund University , SE-221 00 Lund , Sweden
| |
Collapse
|
26
|
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon 2019; 175:36-43. [PMID: 31783045 DOI: 10.1016/j.toxicon.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
A dual-receptor interaction with a polysialoganglioside and synaptic vesicle glycoprotein 2 (SV2) is required for botulinum neurotoxin A (BoNT) toxicity. Here, we review what is currently known about the BoNT/A-SV2 interaction based on structural studies. Currently, five crystal structures of the receptor-binding domain (Hc) of BoNT subtypes A1 and A2 complexed to the large luminal domain (LD4) of SV2C have been determined. On the basis of the available structures, we will discuss the importance of protein-protein and protein-carbohydrate interactions for BoNT/A toxicity as well as the high plasticity of BoNT/A for receptor recognition by tolerating a variety of side-chain interactions at the interface. A plausible explanation how receptor-binding specificity of BoNT/A may be achieved without an extensive and conserved side chain-side chain interaction network will be provided.
Collapse
|
27
|
Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc Natl Acad Sci U S A 2019; 116:18098-18108. [PMID: 31431523 DOI: 10.1073/pnas.1908051116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.
Collapse
|
28
|
Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 2019; 9:1634. [PMID: 30733520 PMCID: PMC6367388 DOI: 10.1038/s41598-018-37647-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/05/2018] [Indexed: 11/12/2022] Open
Abstract
Clostridial neurotoxins (CNTs), which include botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT), are the most potent toxins known to science and are the causative agents of botulism and tetanus, respectively. The evolutionary origins of CNTs and their relationships to other proteins remains an intriguing question. Here we present a large-scale bioinformatic screen for putative toxin genes in all currently available genomes. We detect a total of 311 protein sequences displaying at least partial homology to BoNTs, including 161 predicted toxin sequences that have never been characterized. We focus on a novel toxin family from Chryseobacterium piperi with homology to BoNTs. We resequenced the genome of C. piperi to confirm and further analyze the genomic context of these toxins, and also examined their potential toxicity by expression of the protease domain of one C. piperi toxin in human cells. Our analysis suggests that these C. piperi sequences encode a novel family of metalloprotease toxins that are distantly related to BoNTs with similar domain architecture. These toxins target a yet unknown class of substrates, potentially reflecting divergence in substrate specificity between the metalloprotease domains of these toxins and the related metalloprotease domain of clostridial neurotoxins.
Collapse
|
29
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Elliott M, Favre-Guilmard C, Liu SM, Maignel J, Masuyer G, Beard M, Boone C, Carré D, Kalinichev M, Lezmi S, Mir I, Nicoleau C, Palan S, Perier C, Raban E, Zhang S, Dong M, Stenmark P, Krupp J. Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. SCIENCE ADVANCES 2019; 5:eaau7196. [PMID: 30746458 PMCID: PMC6357751 DOI: 10.1126/sciadv.aau7196] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 05/10/2023]
Abstract
Although botulinum neurotoxin serotype A (BoNT/A) products are common treatments for various disorders, there is only one commercial BoNT/B product, whose low potency, likely stemming from low affinity toward its human receptor synaptotagmin 2 (hSyt2), has limited its therapeutic usefulness. We express and characterize two full-length recombinant BoNT/B1 proteins containing designed mutations E1191M/S1199Y (rBoNT/B1MY) and E1191Q/S1199W (rBoNT/B1QW) that enhance binding to hSyt2. In preclinical models including human-induced pluripotent stem cell neurons and a humanized transgenic mouse, this increased hSyt2 affinity results in high potency, comparable to that of BoNT/A. Last, we solve the cocrystal structure of rBoNT/B1MY in complex with peptides of hSyt2 and its homolog hSyt1. We demonstrate that neuronal surface receptor binding limits the clinical efficacy of unmodified BoNT/B and that modified BoNT/B proteins have promising clinical potential.
Collapse
MESH Headings
- Animals
- Botulinum Toxins, Type A/chemistry
- Botulinum Toxins, Type A/genetics
- Botulinum Toxins, Type A/metabolism
- Botulinum Toxins, Type A/pharmacology
- Crystallography, X-Ray
- Female
- Glycine/metabolism
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Smooth/drug effects
- Mutation
- Neurons/drug effects
- Neurons/metabolism
- Protein Engineering
- Rabbits
- Rats, Sprague-Dawley
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Static Electricity
- Synaptotagmin II/chemistry
- Synaptotagmin II/genetics
- Synaptotagmin II/metabolism
Collapse
Affiliation(s)
- Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
| | | | - Sai Man Liu
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
| | - Christopher Boone
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Denis Carré
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| | | | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| | - Imran Mir
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
| | | | - Shilpa Palan
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
| | - Cindy Perier
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| | - Elsa Raban
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Johannes Krupp
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France
| |
Collapse
|
31
|
A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 2018; 9:5367. [PMID: 30560862 PMCID: PMC6299077 DOI: 10.1038/s41467-018-07789-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic β-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery. The translocation domain (HN) of Botulinum neurotoxins (BoNTs) mediates the delivery of the BoNT light chain (LC) into neuronal cytosol. Here the authors provide insights into HN membrane insertion by determining the crystal structure of BoNT/A1 HN at acidic pH, which reveals a molecular switch in HN, where buried α-helices are transformed into surface-exposed hydrophobic β-hairpins.
Collapse
|
32
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
33
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
34
|
Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel) 2018; 10:toxins10070278. [PMID: 29973505 PMCID: PMC6071219 DOI: 10.3390/toxins10070278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - John A Chaddock
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
35
|
Stern D, Weisemann J, Le Blanc A, von Berg L, Mahrhold S, Piesker J, Laue M, Luppa PB, Dorner MB, Dorner BG, Rummel A. A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. PLoS Pathog 2018; 14:e1007048. [PMID: 29718991 PMCID: PMC5951583 DOI: 10.1371/journal.ppat.1007048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity. Botulinum neurotoxins are Janus-faced molecules: due to their exquisite toxicity, botulinum neurotoxins are considered as biological weapons, but they are also highly effective medicines for numerous neurological indications. However, what mediates their exquisite toxicity? The exclusive binding to neurons and the subsequent paralysis cuts off the host’s communication networks. The neurospecific binding is ensured by anchoring to two receptor molecules both embedded in the membrane: a complex ganglioside and a synaptic vesicle protein. Here, we reveal a third interaction between a hydrophobic so-called HC loop protruding from the surface of the serotypes BoNT/B, DC, and G into the lipid membrane. Only this HC loop ensures their high-affinity binding to the neuronal receptors also at physiological temperature (37°C). Hereby, BoNT/B, DC, and G prevent untimely dissociation prior to uptake into the neuron. Therefore, our study provides the mechanistic basis for the development of inhibitors to combat botulism, but it also has implications for engineering toxin—membrane interactions yielding optimized BoNT-based therapeutics to treat neuromuscular dysfunctions successfully. Intriguingly, a broadly neutralizing anti-HIV-1 antibody shares a similar strategy, emphasizing the general relevance of our results for host—pathogen interactions.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Alexander Le Blanc
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Laura von Berg
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Stefan Mahrhold
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Janett Piesker
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Peter B. Luppa
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Martin Bernhard Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte Gertrud Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail: (BGD); (AR)
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail: (BGD); (AR)
| |
Collapse
|
36
|
Gustafsson R, Zhang S, Masuyer G, Dong M, Stenmark P. Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding. Toxins (Basel) 2018; 10:E153. [PMID: 29649119 PMCID: PMC5923319 DOI: 10.3390/toxins10040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are a family of highly dangerous bacterial toxins, with seven major serotypes (BoNT/A-G). Members of BoNTs, BoNT/A1 and BoNT/B1, have been utilized to treat an increasing number of medical conditions. The clinical trials are ongoing for BoNT/A2, another subtype of BoNT/A, which showed promising therapeutic properties. Both BoNT/A1 and BoNT/A2 utilize three isoforms of synaptic vesicle protein SV2 (SV2A, B, and C) as their protein receptors. We here present a high resolution (2.0 Å) co-crystal structure of the BoNT/A2 receptor-binding domain in complex with the human SV2C luminal domain. The structure is similar to previously reported BoNT/A-SV2C complexes, but a shift of the receptor-binding segment in BoNT/A2 rotates SV2C in two dimensions giving insight into the dynamic behavior of the interaction. Small differences in key residues at the binding interface may influence the binding to different SV2 isoforms, which may contribute to the differences between BoNT/A1 and BoNT/A2 observed in the clinic.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
37
|
Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 2018; 147:2-12. [PMID: 29438679 DOI: 10.1016/j.toxicon.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/23/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes.
Collapse
|
38
|
Zhang S, Berntsson RPA, Tepp WH, Tao L, Johnson EA, Stenmark P, Dong M. Structural basis for the unique ganglioside and cell membrane recognition mechanism of botulinum neurotoxin DC. Nat Commun 2017; 8:1637. [PMID: 29158482 PMCID: PMC5696347 DOI: 10.1038/s41467-017-01534-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the most potent toxins known, are potential bioterrorism agents. It is well established that all seven serotypes of BoNTs (BoNT/A-G) require complex gangliosides as co-receptors. Here, we report that BoNT/DC, a presumed mosaic toxin between BoNT/D and BoNT/C1, binds and enters efficiently into neurons lacking complex gangliosides and shows no reduction in toxicity in mice deficient in complex gangliosides. The co-crystal structure of BoNT/DC with sialyl-Thomsen-Friedenreich antigen (Sialyl-T) suggests that BoNT/DC recognizes only the sialic acid, but not other moieties in gangliosides. Using liposome flotation assays, we demonstrate that an extended loop in BoNT/DC directly interacts with lipid membranes, and the co-occurring sialic acid binding and loop-membrane interactions mediate the recognition of gangliosides in membranes by BoNT/DC. These findings reveal a unique mechanism for cell membrane recognition and demonstrate that BoNT/DC can use a broad range of sialic acid-containing moieties as co-receptors.
Collapse
Affiliation(s)
- Sicai Zhang
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Liang Tao
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Gustafsson R, Berntsson RPA, Martínez-Carranza M, El Tekle G, Odegrip R, Johnson EA, Stenmark P. Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 2017; 591:3781-3792. [PMID: 29067689 DOI: 10.1002/1873-3468.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022]
Abstract
Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | - Geniver El Tekle
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Richard Odegrip
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
40
|
Chevalier A, Silva DA, Rocklin GJ, Hicks DR, Vergara R, Murapa P, Bernard SM, Zhang L, Lam KH, Yao G, Bahl CD, Miyashita SI, Goreshnik I, Fuller JT, Koday MT, Jenkins CM, Colvin T, Carter L, Bohn A, Bryan CM, Fernández-Velasco DA, Stewart L, Dong M, Huang X, Jin R, Wilson IA, Fuller DH, Baker D. Massively parallel de novo protein design for targeted therapeutics. Nature 2017; 550:74-79. [PMID: 28953867 PMCID: PMC5802399 DOI: 10.1038/nature23912] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.
Collapse
Affiliation(s)
- Aaron Chevalier
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Gabriel J Rocklin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Renan Vergara
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Patience Murapa
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Christopher D Bahl
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - James T Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Merika T Koday
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
- Virvio Inc., Seattle, Washington 98195, USA
| | - Cody M Jenkins
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Tom Colvin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Alan Bohn
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - Cassie M Bryan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - D Alejandro Fernández-Velasco
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México City 04510, Mexico
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xuhui Huang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, Washington 98109, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
41
|
Yao G, Lam KH, Weisemann J, Peng L, Krez N, Perry K, Shoemaker CB, Dong M, Rummel A, Jin R. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Sci Rep 2017; 7:7438. [PMID: 28785006 PMCID: PMC5547058 DOI: 10.1038/s41598-017-07457-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lisheng Peng
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
42
|
Tao L, Peng L, Berntsson RPA, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 2017; 8:53. [PMID: 28674381 PMCID: PMC5495808 DOI: 10.1038/s41467-017-00064-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B’s therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy. Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Liang Tao
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Lisheng Peng
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-901 87, Sweden
| | | | - SunHyun Park
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Division of Predictive Toxicological Research, Predictive model Research Center, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Feifan Yu
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Christopher Boone
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | | | | | | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Johannes Krupp
- IPSEN Bioinnovation, Abingdon, OX14 4RY, UK. .,IPSEN Innovation, Les Ulis, 91940, France.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
43
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
44
|
Desplantes R, Lévêque C, Muller B, Lotierzo M, Ferracci G, Popoff M, Seagar M, Mamoun R, El Far O. Affinity biosensors using recombinant native membrane proteins displayed on exosomes: application to botulinum neurotoxin B receptor. Sci Rep 2017; 7:1032. [PMID: 28432329 PMCID: PMC5430821 DOI: 10.1038/s41598-017-01198-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
The development of simple molecular assays with membrane protein receptors in a native conformation still represents a challenging task. Exosomes are extracellular vesicles which, due to their stability and small size, are suited for analysis in various assay formats. Here, we describe a novel approach to sort recombinant fully native and functional membrane proteins to exosomes using a targeting peptide. Specific binding of high affinity ligands to the potassium channel Kv1.2, the G-protein coupled receptor CXCR4, and the botulinum neurotoxin type B (BoNT/B) receptor, indicated their correct assembly and outside out orientation in exosomes. We then developed, using a label-free optical biosensor, a new method to determine the kinetic constants of BoNT/B holotoxin binding to its receptor synaptotagmin2/GT1b ganglioside (kon = 2.3 ×105 M−1.s−1, koff = 1.3 10−4 s−1), yielding an affinity constant (KD = 0.6 nM) similar to values determined from native tissue. In addition, the recombinant binding domain of BoNT/B, a potential vector for neuronal delivery, bound quasi-irreversibly to synaptotagmin 2/GT1b exosomes. Engineered exosomes provide thus a novel means to study membrane proteins for biotechnology and clinical applications.
Collapse
Affiliation(s)
- Richard Desplantes
- INSERM, UMR_S 1072, 13015, Marseille, France.,Aix-Marseille Université, 13015, Marseille, France
| | - Christian Lévêque
- INSERM, UMR_S 1072, 13015, Marseille, France.,Aix-Marseille Université, 13015, Marseille, France
| | - Benjamin Muller
- Ciloa, cc90 - Université Montpellier 2, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Manuela Lotierzo
- Ciloa, cc90 - Université Montpellier 2, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Géraldine Ferracci
- Aix-Marseille Université, 13015, Marseille, France.,CNRS, UMR 7286, Plate-Forme de Recherche en Neurosciences PFRN, 13015, Marseille, France
| | - Michel Popoff
- CNR Anaérobies et botulisme, Unité Bactéries anaérobies et toxines. Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Michael Seagar
- INSERM, UMR_S 1072, 13015, Marseille, France.,Aix-Marseille Université, 13015, Marseille, France
| | - Robert Mamoun
- Ciloa, cc90 - Université Montpellier 2, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Oussama El Far
- INSERM, UMR_S 1072, 13015, Marseille, France. .,Aix-Marseille Université, 13015, Marseille, France.
| |
Collapse
|
45
|
Connan C, Voillequin M, Chavez CV, Mazuet C, Leveque C, Vitry S, Vandewalle A, Popoff MR. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Cell Microbiol 2017; 19. [PMID: 28296078 DOI: 10.1111/cmi.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.
Collapse
Affiliation(s)
- Chloé Connan
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Marie Voillequin
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | | | - Christian Leveque
- INSERM, UMR_S 1072 (UNIS), Faculté de Médecine -Secteur Nord, Aix Marseille Université, Marseille, France
| | - Sandrine Vitry
- Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Michel R Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
46
|
Wang J, Meng J, Nugent M, Tang M, Dolly JO. Neuronal entry and high neurotoxicity of botulinum neurotoxin A require its N-terminal binding sub-domain. Sci Rep 2017; 7:44474. [PMID: 28295026 PMCID: PMC5353748 DOI: 10.1038/srep44474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/09/2017] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic proteins known, due to inhibiting the neuronal release of acetylcholine and causing flaccid paralysis. Most BoNT serotypes target neurons by binding to synaptic vesicle proteins and gangliosides via a C-terminal binding sub-domain (HCC). However, the role of their conserved N-terminal sub-domain (HCN) has not been established. Herein, we created a mutant form of recombinant BoNT/A lacking HCN (rAΔHCN) and showed that the lethality of this mutant is reduced 3.3 × 104-fold compared to wild-type BoNT/A. Accordingly, low concentrations of rAΔHCN failed to bind either synaptic vesicle protein 2C or neurons, unlike the high-affinity neuronal binding obtained with 125I-BoNT/A (Kd = 0.46 nM). At a higher concentration, rAΔHCN did bind to cultured sensory neurons and cluster on the surface, even after 24 h exposure. In contrast, BoNT/A became internalised and its light chain appeared associated with the plasmalemma, and partially co-localised with vesicle-associated membrane protein 2 in some vesicular compartments. We further found that a point mutation (W985L) within HCN reduced the toxicity over 10-fold, while this mutant maintained the same level of binding to neurons as wild type BoNT/A, suggesting that HCN makes additional contributions to productive internalization/translocation steps beyond binding to neurons.
Collapse
Affiliation(s)
- Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jianghui Meng
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Marc Nugent
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Minhong Tang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
47
|
Yang NJ, Chiu IM. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J Mol Biol 2017; 429:587-605. [PMID: 28065740 PMCID: PMC5325782 DOI: 10.1016/j.jmb.2016.12.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
49
|
Hamark C, Berntsson RPA, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G. Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J Am Chem Soc 2016; 139:218-230. [PMID: 27958736 DOI: 10.1021/jacs.6b09534] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion. The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound. Herein we set out to characterize the carbohydrate minimal binding epitope of the botulinum neurotoxin serotype A. By means of ligand-based NMR spectroscopy, X-ray crystallography, computer simulations, and isothermal titration calorimetry, a screening of ganglioside analogues together with a detailed characterization of various carbohydrate ligand complexes with the toxin were accomplished. We show that the representation of the glycan epitope to the protein affects the details of binding. Notably, both branches of the oligosaccharide GD1a can associate to botulinum neurotoxin serotype A when expressed as individual trisaccharides. It is, however, the terminal branch of GD1a as well as this trisaccharide motif alone, corresponding to the sialyl-Thomsen-Friedenreich antigen, that represents the active ligand epitope, and these compounds bind to the neurotoxin with a high degree of predisposition but with low affinities. This finding does not correlate with the oligosaccharide moieties having a strong contribution to the total affinity, which was expected to be the case. We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.
Collapse
Affiliation(s)
- Christoffer Hamark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Linda M Henriksson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Development of an Innovative in Vitro Potency Assay for Anti-Botulinum Antitoxins. Toxins (Basel) 2016; 8:toxins8100276. [PMID: 27669303 PMCID: PMC5086636 DOI: 10.3390/toxins8100276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins are bacterial proteins that cause botulism, a life-threatening disease. Therapy relies mostly on post-intoxication antibody treatment. The only accepted method to measure the potency of, and to approve, antitoxin preparations is the mouse lethality neutralization bioassay. However, this assay is time-consuming, labor-intensive, costly, and raises ethical issues related to the large numbers of laboratory animals needed. Until now, all efforts to develop an alternative in vitro assay have not provided a valid replacement to the mouse potency assay. In the present study, we report the development of an innovative in vitro assay for determining botulinum antitoxin potency, using botulinum type B as a model. The concept of the assay is to mimic two fundamental steps in botulinum intoxication: receptor binding and catalytic activity. By simulating these steps in vitro we were able to accurately determine the potency of antitoxin preparations. The reproducibility of the assay was high with a CV < 13%. Most importantly, the antitoxin potency measured by the in vitro assay highly correlated with that measured by the standard in vivo mouse assay (r = 0.9842, p < 0.0001). Thus, this new in vitro assay has the potential to be considered, after validation, as a replacement to the mouse assay for quantitating neutralizing antibody concentrations in pharmaceutical botulinum antitoxin preparations. Future adoption of this in vitro assay would minimize the use of laboratory animals, speed up the time, and reduce the cost of botulinum antitoxin approval.
Collapse
|