1
|
Wizenty J, Sigal M. Helicobacter pylori, microbiota and gastric cancer - principles of microorganism-driven carcinogenesis. Nat Rev Gastroenterol Hepatol 2025; 22:296-313. [PMID: 40011753 DOI: 10.1038/s41575-025-01042-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The demonstration that Helicobacter pylori is a pathogenic bacterium with marked carcinogenic potential has paved the way for new preventive approaches for gastric cancer. Although decades of research have uncovered complex interactions of H. pylori with epithelial cells, current insights have refined our view on H. pylori-associated carcinogenesis. Specifically, the cell-type-specific effects on gastric stem and progenitor cells deep in gastric glands provide a new view on the ability of the bacteria to colonize long-term, manipulate host responses and promote gastric pathology. Furthermore, new, large-scale epidemiological data have shed light on factors that determine why only a subset of carriers progress to gastric cancer. Currently, technological advances have brought yet another revelation: H. pylori is far from the only microorganism able to colonize the stomach. Instead, the stomach is colonized by a diverse gastric microbiota, and there is emerging evidence for the occurrence and pathological effect of dysbiosis resulting from an aberrant interplay between H. pylori and the gastric mucosa. With the weight of this evidence mounting, here we consider how the lessons learned from H. pylori research inform and synergize with this emerging field to bring a more comprehensive understanding of the role of microbes in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy and BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
2
|
Zhang L, Duan X, Zhao Y, Zhang D, Zhang Y. Implications of intratumoral microbiota in tumor metastasis: a special perspective of microorganisms in tumorigenesis and clinical therapeutics. Front Immunol 2025; 16:1526589. [PMID: 39995663 PMCID: PMC11847830 DOI: 10.3389/fimmu.2025.1526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Tumor metastasis is the main cause of therapeutic failure and mortality in cancer patients. The intricate metastastic process is influenced by both the intrinsic properties of tumor cells and extrinsic factors, such as microorganisms. Notably, some microbiota have been discovered to colonize tumor tissues, collectively known as intratumoral microbiota. Intratumoral microbiota can modulate tumor progression through multiple mechanisms, including regulating immune responses, inducing genomic instability and gene mutations, altering metabolic pathways, controlling epigenetic pathways, and disrupting cancer-related signaling pathways. Furthermore, intratumoral microbiota have been shown to directly impact tumor metastasis by regulating cell adhesion, stem cell plasticity and stemness, mechanical stresses and the epithelial-mesenchymal transition. Indirectly, they may affect tumor metastasis by modulating the host immune system and the tumor microenvironment. These recent findings have reshaped our understanding of the relationship between microorganims and the metastatic process. In this review, we comprehensively summarize the existing knowledge on tumor metastasis and elaborate on the properties, origins and carcinogenic mechanisms of intratumoral microbiota. Moreover, we explore the roles of intratumoral microbiota in tumor metastasis and discuss their clinical implications. Ongoing research in this field will establish a solid foundation for novel therapeutic strategies and clinical treatments for various tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| | | | | | | | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Thomas RM. Microbial molecules, metabolites, and malignancy. Neoplasia 2025; 60:101128. [PMID: 39827500 PMCID: PMC11787689 DOI: 10.1016/j.neo.2025.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Research elucidating the role of the microbiome in carcinogenesis has grown exponentially over the past decade. Initially isolated to associative studies on colon cancer development, the field has expanded to encompass nearly every solid and liquid malignancy that may afflict the human body. Investigations are rapidly progressing from association to causation and one particular area of causal effect relates to microbial metabolites and how they influence cancer development, progression, and treatment response. These metabolites can be produced de novo from individual members of the microbiome, whether that be bacteria, fungi, archaea, or other microbial organisms, or they can be through metabolic processing of dietary compounds or even host-derived molecules. In this review, contemporary research elucidating mechanisms whereby microbial-derived molecules and metabolites impact carcinogenesis and cancer treatment efficacy will be presented. While many of the examples focus on bacterial metabolites in colon carcinogenesis, this simply illustrates the accelerated nature of these investigations that occurred early in microbiome research but provides an opportunity for growth in other cancer areas. Indeed, research into the interaction of microbiome-derived metabolites in other malignancies is growing as well as investigations that involve non-bacterial metabolites. This review will provide the reader a framework to expand their knowledge regarding this complex and exciting field of cancer research.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
4
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
6
|
Hu Y, Wang Y, Hu X, Chao H, Li S, Ni Q, Zhu Y, Hu Y, Zhao Z, Chen M. T4SEpp: A pipeline integrating protein language models to predict bacterial type IV secreted effectors. Comput Struct Biotechnol J 2024; 23:801-812. [PMID: 38328004 PMCID: PMC10847861 DOI: 10.1016/j.csbj.2024.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs and compared their performance. We integrated three modules into a model called T4SEpp. The first module searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) software tools, achieving ∼0.98 accuracy at a high specificity of ∼0.99, based on the assessment of an independent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.
Collapse
Affiliation(s)
- Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qinyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Kandpal M, Baral B, Varshney N, Jain AK, Chatterji D, Meena AK, Pandey RK, Jha HC. Gut-brain axis interplay via STAT3 pathway: Implications of Helicobacter pylori derived secretome on inflammation and Alzheimer's disease. Virulence 2024; 15:2303853. [PMID: 38197252 PMCID: PMC10854367 DOI: 10.1080/21505594.2024.2303853] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Ajay Kumar Jain
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | - Debi Chatterji
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| |
Collapse
|
8
|
Suzuki H, Hirai M. Helicobacter pylori infection and oxidative stress. J Clin Biochem Nutr 2024; 75:178-182. [PMID: 39583977 PMCID: PMC11579850 DOI: 10.3164/jcbn.24-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 11/26/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the migration of polymorphonuclear leukocytes from the gastric mucosal microcirculation through chemokine induction, leading to the excessive production of ROS. Like eukaryotes, H. pylori possesses superoxide dismutase and catalase, and is resistant to ROS from host polymorphonuclear leukocytes. Oxidants such as monochloramine produced by ROS cause chronic inflammation in the gastric mucosa. H. pylori-derived virulence factor m1-type VacA induces intracellular ROS accumulation and autophagy, which degrades the H. pylori-derived oncoprotein, CagA. In CD44v9-positive gastric cancer stem-like cells, reduced-type glutathione levels increase within the cell because of the cystine transporter on the cell surface, wherein oxidative stress-induced autophagy no longer occurs. As a result, the oncoprotein CagA accumulates in the cells, thus becoming tumorigenic.
Collapse
Affiliation(s)
- Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Miwa Hirai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
9
|
Xue Z, Li W, Ding H, Pei F, Zhang J, Gong Y, Fan R, Wang F, Wang Y, Chen Q, Li Y, Yang X, Zheng Y, Su G. Virulence gene polymorphisms in Shandong Helicobacter pylori strains and their relevance to gastric cancer. PLoS One 2024; 19:e0309844. [PMID: 39250512 PMCID: PMC11383249 DOI: 10.1371/journal.pone.0309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) virulence factors, particularly the cagA and vacA genotypes, play important roles in the pathogenic process of gastrointestinal disease. METHODS The cagA and vacA genotypes of 87 H. pylori strains were determined by PCR and sequencing. The EPIYA and CM motif patterns were analyzed and related to clinical outcomes. We examined the associations between the virulence genes of H. pylori and gastrointestinal diseases in Shandong, and the results were analyzed via the chi-square test and logistic regression model. RESULTS Overall, 76 (87.36%) of the strains carried the East Asian-type CagA, with the ABD types being the most prevalent (90.79%). However, no significant differences were observed among the different clinical outcomes. The analysis of CagA sequence types revealed 8 distinct types, encompassing 250 EPIYA motifs, including 4 types of EPIYA or EPIYA-like sequences. Additionally, 28 CM motifs were identified, with the most prevalent patterns being E (66.67%), D (16.09%), and W-W (5.75%). Notably, a significant association was discovered between strains with GC and the CM motif pattern D (P < 0.01). With respect to the vacA genotypes, the strains were identified as s1, s2, m1, m2, i1, i2, d1, d2, c1, and c2 in 87 (100%), 0 (0), 26 (29.89%), 61 (70.11%), 73 (83.91%), 14 (16.09%), 76 (87.36%), 11 (12.64%), 18 (20.69%), and 69 (79.31%), respectively. Specifically, the vacA m1 and c1 genotypes presented a significantly greater prevalence in strains from GC compared to CG (P < 0.05). Following adjustment for age and sex, the vacA c1 genotype demonstrated a notable association with GC (OR = 5.174; 95% CI, 1.402-20.810; P = 0.012). This association was both independent of and more pronounced than the correlations between vacA m1 and GC. CONCLUSIONS CagA proteins possessing CM motif pattern D were more frequently observed in patients with GC (P < 0.01), implying a potentially higher virulence of CM motif pattern D than the other CM motif patterns. Moreover, a strong positive association was identified between the vacA c1 genotype and GC, indicating that the vacA c1 genotype is a robust risk indicator for GC among male patients aged ≥55 years in Shandong.
Collapse
Affiliation(s)
- Zhijing Xue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hailing Ding
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, Shandong, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanan Gong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruyue Fan
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Youjun Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qing Chen
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanran Li
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Yang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
Linz B, Sticht H, Tegtmeyer N, Backert S. Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. Trends Microbiol 2024; 32:847-857. [PMID: 38485609 DOI: 10.1016/j.tim.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 09/06/2024]
Abstract
Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg; 91054 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Lai J, Angulmaduwa S, Kim MA, Kim A, Tissera K, Cho YJ, Cha JH. Influence of oipA Phase Variation on Virulence Phenotypes Related to Type IV Secretion System in Helicobacter pylori. Helicobacter 2024; 29:e13140. [PMID: 39440915 DOI: 10.1111/hel.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND oipA, an outer membrane protein of Helicobacter pylori, is linked to IL-8 induction and gastric inflammation, but its role is debated due to inconsistent findings. This study aims to explore the role of oipA phase variation in modulating the virulence traits of H. pylori, a bacterium strongly associated with the development of gastric cancer. MATERIAL AND METHODS American clinical isolate AH868 strain for naturally occurring phase variations of the oipA gene, and G27 strain for in vitro-induced phase variations were used to elucidate oipA's impact on key virulence phenotypes, including cell elongation, CagA phosphorylation, and IL-8 induction. RESULTS Using AH868 strain, natural oipA phase variation does not affect cell elongation and IL-8 induction. Interestingly, however, in vitro-induced oipA phase variations in G27 strain uncovered that 9.4% of oipA "Off" transformants exhibit reduced cell elongation while all maintaining consistent IL-8 induction levels. Additionally, complementation of oipA "Off to On" status restores the cell elongation phenotype in 12.5% of transformants, highlighting the importance of oipA in maintaining normal cell morphology. Crucially, these variations in cell elongation are not linked to changes in bacterial adherence capabilities. Furthermore, the study shows a correlation among oipA phase variation, cell elongation, and CagA phosphorylation, suggesting that oipA influences the functionality of the Type IV secretion system. Whole-genome sequencing of selected transformants reveals genetic variations in bab paralogue, cagY gene, and other genomic regions, underscoring the complex genetic interactions that shape H. pylori's virulence. CONCLUSIONS Our research provides new insights into the subtle yet significant role of oipA phase variation in H. pylori pathogenicity, emphasizing the need for further studies to explore the intricate molecular mechanisms involved. This understanding could pave the way for targeted therapeutic strategies to mitigate the impact of H. pylori on human health.
Collapse
Affiliation(s)
- Jing Lai
- Department of Periodontics, Changsha Stomatological Hospital, Changsha, Hunan, China
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sacheera Angulmaduwa
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Myeong-A Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Health Research Institute, Apple Tree Dental Hospital, Bucheon, Republic of Korea
| | - Kavinda Tissera
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Yong-Joon Cho
- Department of Molecular Bioscience and Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
12
|
Naing C, Aung HH, Aye SN, Poovorawan Y, Whittaker MA. CagA toxin and risk of Helicobacter pylori-infected gastric phenotype: A meta-analysis of observational studies. PLoS One 2024; 19:e0307172. [PMID: 39173001 PMCID: PMC11341061 DOI: 10.1371/journal.pone.0307172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is frequently associated with non-cardia type gastric cancer, and it is designated as a group I carcinogen. This study aimed to systematically review and meta-analyze the evidence on the prevalence of CagA status in people with gastric disorders in the Indo-Pacific region, and to examine the association of CagA positive in the risk of gastric disorders. This study focused on the Indo-Pacific region owing to the high disability adjusted life-years related to these disorders, the accessibility of efficient treatments for this common bacterial infection, and the varying standard of care for these disorders, particularly among the elderly population in the region. METHODS Relevant studies were identified in the health-related electronic databases including PubMed, Ovid, Medline, Ovid Embase, Index Medicus, and Google Scholar that were published in English between 1 January 2000, and 18 November 2023. For pooled prevalence, meta-analysis of proportional studies was done, after Freeman-Tukey double arcsine transformation of data. A random-effect model was used to compute the pooled odds ratio (OR) and 95% confidence interval (CI) to investigate the relationship between CagA positivity and gastric disorders. RESULTS Twenty-four studies from eight Indo-Pacific countries (Bhutan, India, Indonesia, Malaysia, Myanmar, Singapore, Thailand, Vietnam) were included. Overall pooled prevalence of CagA positivity in H. pylori-infected gastric disorders was 83% (95%CI = 73-91%). Following stratification, the pooled prevalence of CagA positivity was 78% (95%CI = 67-90%) in H. pylori-infected gastritis, 86% (95%CI = 73-96%) in peptic ulcer disease, and 83% (95%CI = 51-100%) in gastric cancer. Geographic locations encountered variations in CagA prevalence. There was a greater risk of developing gastric cancer in those with CagA positivity compared with gastritis (OR = 2.53,95%CI = 1.15-5.55). CONCLUSION Findings suggest that the distribution of CagA in H. pylori-infected gastric disorders varies among different type of gastric disorders in the study countries, and CagA may play a role in the development of gastric cancer. It is important to provide a high standard of care for the management of gastric diseases, particularly in a region where the prevalence of these disorders is high. Better strategies for effective treatment for high-risk groups are required for health programs to revisit this often-neglected infectious disease.
Collapse
Affiliation(s)
- Cho Naing
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| | - Htar Htar Aung
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Saint Nway Aye
- School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maxine A. Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| |
Collapse
|
13
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
14
|
Weisy OKM, Kedia RA, Mahmoud I, Abu Odeh RO, Mussa BM, Abusnana S, Soliman SSM, Muhammad JS, Hamad M, Ghemrawi R, Khoder G. Assessment of Helicobacter pylori cytotoxin-associated Gene A (Cag A) protein and its association with ferritin and vitamin B12 deficiencies among adult healthy asymptomatic residents in Sharjah, United Arab Emirates. Heliyon 2024; 10:e32141. [PMID: 38882276 PMCID: PMC11180313 DOI: 10.1016/j.heliyon.2024.e32141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The United Arab Emirates (UAE) serves as an effective epidemiological site for assessing Helicobacter pylori (H. pylori) infection due to its diverse population. However, comprehensive studies on the prevalence of H. pylori in the UAE are notably scarce. In depth prevalence studies are needed as a preventive measure against gastric cancer and other emerging extra gastric diseases associated with H. pylori infection. Aim: This study aimed to assess H. pylori infection and its virulent oncoprotein, the Cytotoxin-Associated Gene (Cag A) and its association with ferritin and vitamin B12 deficiencies. Methods: The study was conducted on 1094 healthy asymptomatic volunteers residents in the Sharjah Emirate, UAE. Enzyme-linked immunosorbent assay (ELISA) was performed to assess H. pylori infection using H. pylori antibodies (IgG), and detection of CagA protein using Cag A antibody (IgG) in the human serum. Ferritin and vitamin B12 serum levels were assessed and correlated to H. pylori infection. Results: This study focuses mainly on the assessment of H. pylori and its virulent factor CagA, in relation to vitamin B12 and ferritin deficiencies. Remarkably, 49.6 % of the participants were detected positive for H. pylori, with over half of these cases involving CagA positive strains. Notably, among Emirati participants, 76.11 % of those with H. pylori infection were CagA positive. Statistical analysis revealed a significant correlation between H. pylori, CagA level, and ferritin/vitamin B12 deficiencies. Conclusion: These findings emphasize the importance of timely detection and eradication of H. pylori not only as a preventive strategy against gastric cancer but also as an effective strategy to rescue the adverse effects from ferritin and vitamin B12 deficiencies, thereby improving the overall health outcomes of individuals affected by H. pylori infection.
Collapse
Affiliation(s)
- Om Kolthoom M Weisy
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Reena A Kedia
- Research Institute for Medical & Health Sciences, University of Sharjah, United Arab Emirates
| | - Ibrahim Mahmoud
- Department of Family and Community Medicine and Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Raed O Abu Odeh
- Research Institute for Medical & Health Sciences, University of Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bashair M Mussa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, Sharjah, United Arab Emirates
- Clinical Science Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical & Health Sciences, University of Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical & Health Sciences, University of Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical & Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Dudukchyan DA, Sarkisyan DK, Andreev DN. <I>Helicobacter pylori</I> infection and dermatological diseases. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:43-49. [DOI: 10.21518/ms2024-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Helicobacter pylori (H. Pylori), microaerophilic spiral-shaped Gram-negative bacteria which colonize the gastric mucosa of human population, is the leading causal factor in the development of a whole range of diseases of the gastroduodenal region (chronic gastritis, gastric and duodenal ulcer disease, MALT lymphoma and gastric adenocarcinoma). Since the discovery of H. pylori infection and the identification of its leading role in the development of a range of gastroenterological diseases, researchers have begun to actively study the potential trigger significance of this pathogen in the development of extragastric pathology. At the epidemiological level, H. pylori infection has been shown to be frequently associated with skin diseases such as rosacea, acne, chronic urticaria and psoriasis, although the clinical significance of these associations remains clouded. In fact, recent meta-analytic studies (2019–2024) demonstrate an increased risk of developing the above diseases in H. pylori-infected individuals with odds ratios ranging from 1.19 to 3.00. On the other hand, not all studies have showed that eradication therapy of this microorganism helps reduce the clinical severity of symptoms of skin diseases, which is hypothetically explained only by the trigger role of infection within the complex pathogenesis. In a modern light, such associations can be viewed in terms of pathogenetic findings through the implementation of the syndrome of increased epithelial permeability (SIEP). The chronic gastritis caused by H. pylori infection is believed to lead to increased permeability of the epithelial lining of the stomach, as well as the walls of the mucosal vessels and a higher exposure of bacterial and nutritional antigens in the systemic circulation, which can induce both local release of inflammatory mediators in tissues and systemic immunological reactions (autoimmune and inflammatory processes, formation of molecular mimicry-induced immune complexes and cross-reactive antibodies).
Collapse
Affiliation(s)
| | - D. K. Sarkisyan
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | | |
Collapse
|
16
|
Sharafutdinov I, Harrer A, Müsken M, Rottner K, Sticht H, Täger C, Naumann M, Tegtmeyer N, Backert S. Cortactin-dependent control of Par1b-regulated epithelial cell polarity in Helicobacter infection. CELL INSIGHT 2024; 3:100161. [PMID: 38646547 PMCID: PMC11033139 DOI: 10.1016/j.cellin.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/23/2024]
Abstract
Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Täger
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, D-39120, Magdeburg, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| |
Collapse
|
17
|
Qiao Z, Wang E, Bao B, Tan X, Yuan L, Wang D. Association of Helicobacter pylori CagA seropositivity with gastric precancerous lesions: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2024; 36:687-694. [PMID: 38526941 DOI: 10.1097/meg.0000000000002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The objective of this meta-analysis is to delineate the association between H. pylori CagA serological status and the prevalence of gastric precancerous lesions (GPL). We searched peer-reviewed articles up to October 2023. The extraction of data from the included studies was carried out as well as the quality assessment. Pooled effect sizes were calculated using a random effect model. Thirteen studies met the inclusion criteria, comprising 2728 patients with GPL and 17 612 controls. The aggregate odds ratio (OR) for the association between serum CagA and GPL was 2.74 (95% CI = 2.25-3.32; P = 0.00; I 2 = 60.4%), irrespective of H. pylori infection status. Within the H. pylori -infected cohort, the OR was 2.25 (95% CI = 1.99-2.56; P = 0.00; I 2 = 0.0%). Conversely, among the non-infected individuals, the OR was 1.63 (95% CI = 1.04-2.54; P = 0.038; I 2 = 0.0%). Heterogeneity was explored using subgroup and meta-regression analyses, indicating that the variability between studies likely stemmed from differences in disease classification. Our results demonstrated robustness and negligible publication bias. The meta-analysis underscores a more pronounced association between H. pylori CagA seropositivity and the risk of developing GPL than between seronegativity and the same risk, irrespective of H. pylori infection status at the time. Additionally, the strength of the association was heightened in the presence of an active H. pylori infection. The implications of these findings advocate for the utility of CagA serostatus as a potential biomarker for screening GPL.
Collapse
Affiliation(s)
- Zengyun Qiao
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian
- Dalian Municipal Central Hospital, China Medical University, Shenyang
| | - Enbo Wang
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian
| | - Boyang Bao
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian
- Dalian Municipal Central Hospital, Dalian Medical University, Dalian
| | - Xiaodong Tan
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liu Yuan
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian
- Dalian Municipal Central Hospital, China Medical University, Shenyang
| | - Dong Wang
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian
- Dalian Municipal Central Hospital, China Medical University, Shenyang
| |
Collapse
|
18
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
19
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
21
|
Apoorva E, Jacob R, Rao DN, Kumar S. Helicobacter pylori enhances HLA-C expression in the human gastric adenocarcinoma cells AGS and can protect them from the cytotoxicity of natural killer cells. Helicobacter 2024; 29:e13069. [PMID: 38516860 DOI: 10.1111/hel.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.
Collapse
Affiliation(s)
- Etikala Apoorva
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rini Jacob
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Peng Y, Lei X, Yang Q, Zhang G, He S, Wang M, Ling R, Zheng B, He J, Chen X, Li F, Zhou Q, Zhao L, Ye G, Li G. Helicobacter pylori CagA-mediated ether lipid biosynthesis promotes ferroptosis susceptibility in gastric cancer. Exp Mol Med 2024; 56:441-452. [PMID: 38383581 PMCID: PMC10907675 DOI: 10.1038/s12276-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 02/23/2024] Open
Abstract
Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.
Collapse
Affiliation(s)
- Yanmei Peng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xuetao Lei
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qingbin Yang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guofan Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sixiao He
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Minghao Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ruoyu Ling
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Boyang Zheng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiayong He
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinhua Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fengping Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiming Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liying Zhao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Gengtai Ye
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
23
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
24
|
Mahmud MT, Ahmed F, Rana MJ, Rahman MA, Atta A, Saif-Ur-Rahman KM. Association of HLA gene polymorphisms with Helicobacter pylori related gastric cancer-a systematic review. HLA 2024; 103:e15394. [PMID: 38372631 DOI: 10.1111/tan.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
The appropriate host cell immune responses for the progression of several diseases, including gastric or stomach cancer (GC), are significantly influenced by HLA polymorphisms. Our objective was to systematically review the evidence linking HLA polymorphisms with the risk of Helicobacter. pylori related GC. We conducted a comprehensive literature search to identify studies published between 2000 and April 2023 on the association of HLA polymorphisms with H. pylori related GC using databases such as Medline through PubMed, Embase, Web of Science (core collection), The Cochrane Library, and Scopus. Two authors independently screened articles, extracted data, and assessed the risk of bias using the Risk of Bias Assessment tool for Non-randomized Studies. From 7872 retrieved studies, 19 met inclusion criteria, encompassing 1656 cases and 16,787 controls across four World Health Organization regions, with Japan contributing the most studies. We explored HLA-A/B/C, HLA-DRB1/DQA1/DQB1, HLA-G, and MICA alleles. Of 29 significant HLA polymorphisms identified, 18 showed a positive association with GC, whereas 11 were negatively associated. HLA-DQB1*06 allele was most frequently associated to susceptibility, as reported in four studies, followed by HLA-DRB1*04 and HLA-DQA1*01, each reported in two studies. Conversely, HLA-G*01, HLA-DQA1*01, HLA-DQA1*05, and HLA-DQB1*03 were identified as protective in two studies each. Additionally, five genotypes and six haplotypes were reported as positive, whereas three genotypes and two haplotypes were negative factors for the disease incidence or mortality. Despite heterogeneity in the study population and types of HLA polymorphisms examined, our analysis indicates certain polymorphisms are associated with H. pylori related GC progression and mortality in specific populations.
Collapse
Affiliation(s)
- Md Toslim Mahmud
- Department of Microbiology, Noakhali Science & Technology University, Sonapur, Noakhali, Bangladesh
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Feroz Ahmed
- Department of Biology, University of Texas-Arlington, Arlington, Texas, USA
- Laboratory of Environmental Biology, Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Md Jowel Rana
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Md Arifur Rahman
- Department of Microbiology, Noakhali Science & Technology University, Sonapur, Noakhali, Bangladesh
| | - Afshan Atta
- Department of Hematopathology, Skims Tertiary Centre Hospital (STCH), Srinagar, India
| | - K M Saif-Ur-Rahman
- College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland and Cochrane Ireland, University of Galway, Galway, Ireland
| |
Collapse
|
25
|
Lou N, Zhai M, Su Z, Chu F, Li Y, Chen Y, Liao M, Li P, Bo R, Meng X, Zhang P, Ding X. Pharmacodynamics and pharmacological mechanism of Moluodan concentrated pill in the treatment of atrophic gastritis: A network pharmacological study and in vivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116937. [PMID: 37480968 DOI: 10.1016/j.jep.2023.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moluodan concentrated pill (MLD) is a traditional herbal formula used in China for the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism of action remains unclear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic effect and mechanism of action of MLD in the treatment of CAG using network pharmacology and in vivo experiments. MATERIALS AND METHODS The active compounds of MLD were determined using network pharmacology, utilizing various Chinese medicine databases such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicine Integrated Database, Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine, and a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology. The compounds found in the root of Anemone altaica Fisch. were extracted from the China National Knowledge Infrastructure literature database. Additionally, the Swiss Target Prediction database and Similarity Ensemble Approach were employed to identify the potential targets of these components. CAG-related targets were gathered from the GeneCards and DisGeNET databases. Protein-protein interactions (PPIs) of the genes associated with the drug-disease crossover were examined, and a core PPI network was constructed using the STRING database (version 11.5) and Cytoscape (version 3.7.2). A gene-pathway network was established to identify significant target genes and pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, based on these findings and existing data, the tumor necrosis factor (TNF) signaling pathway was selected for further validation through in vivo experiments. RESULTS A total of 724 active molecules in MLD yielded 961 identified target genes, of which 179 were found to be potentially associated with CAG. From the common targets, a PPI network revealed ten core targets. Enrichment analysis suggested that MLD may primarily target TNF and AKT in the treatment of CAG. Essential signaling pathways, such as the PI3K-AKT and TNF pathways, were found to be crucial for the therapeutic effects of MLD on CAG. Furthermore, potential interactions and crosstalk between these pathways were identified. Moreover, we confirmed that MLD effectively improved gastric mucosa atrophy and cellular ultrastructural damage, while increasing pepsinogen secretion and decreasing gastrin, somatostatin, and motilin levels. Subsequent molecular biology studies in rat models of CAG demonstrated that MLD treatment significantly reduced the expression levels of TNF-α, phosphatidylinositol 3'-kinase (PI3K), and phosphorylated Akt (P < 0.05). Notably, the expression of nuclear factor kappa-B (NF-κB) exhibited a contrasting trend (P < 0.05), potentially associated with the crucial tumor suppressor role of NF-κB p105. CONCLUSION This study provides evidence that MLD effectively alleviates stomach mucosal atrophy through modulation of the TNF/PI3K/AKT signaling pathway. These findings establish a solid theoretical foundation for the practical management of CAG.
Collapse
Affiliation(s)
- Ni Lou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Mengyin Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Fuhao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Yuan Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Mengting Liao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Rongqiang Bo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Xiangmei Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Xia Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100000, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| |
Collapse
|
26
|
Wang B, Xu F, Zhang Z, Shen D, Wang L, Wu H, Yan Q, Cui C, Wang P, Wei Q, Shao X, Wang M, Qian G. Type IV secretion system effector sabotages multiple defense systems in a competing bacterium. THE ISME JOURNAL 2024; 18:wrae121. [PMID: 38959853 PMCID: PMC11253431 DOI: 10.1093/ismejo/wrae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, United States
| | - Chuanbin Cui
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi'an 710061, China
| | - Pingping Wang
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi'an 710061, China
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaolong Shao
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
27
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
28
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
29
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
30
|
Yamaguchi N, Sakaguchi T, Isomoto H, Inamine T, Ueda H, Fukuda D, Ohnita K, Kanda T, Kurumi H, Matsushima K, Hirayama T, Yashima K, Tsukamoto K. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. J Clin Med 2023; 12:5384. [PMID: 37629426 PMCID: PMC10455120 DOI: 10.3390/jcm12165384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection causes a progression to atrophic gastritis and results in gastric cancer. Cytotoxin-associated gene A (CagA), a major virulence factor of H. pylori, is injected into gastric epithelial cells using the type IV secretion system. On the other hand, gastric epithelial cells degrade CagA using an autophagy system, which is strictly regulated by the autophagy-related (ATG) genes. This study aimed to identify SNPs in ATG5, ATG10, ATG12, and ATG16L1 associated with gastric mucosal atrophy (GMA). Here, two-hundred H. pylori-positive participants without gastric cancer were included. The degree of GMA was evaluated via the pepsinogen method. Twenty-five SNPs located in the four candidate genes were selected as tag SNPs. The frequency of each SNP between the GMA and the non-GMA group was evaluated. The rs6431655, rs6431659, and rs4663136 in ATG16L1 and rs26537 in ATG12 were independently associated with GMA. Of these four SNPs, the G/G genotype of rs6431659 in ATG16L1 has the highest odd ratio (Odds ratio = 3.835, 95% confidence intervals = 1.337-1.005, p = 0.008). Further functional analyses and prospective analyses with a larger sample size are required.
Collapse
Affiliation(s)
- Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takuki Sakaguchi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Haruka Ueda
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Daisuke Fukuda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biological Science, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Fukuda Yutaka Clinic, 3-5 Hamaguchi-machi, Nagasaki 852-8107, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Shunkaikai Inoue Hospital, 6-12 Takara-machi, Nagasaki 850-0045, Japan
| | - Tsutomu Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hiroki Kurumi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuo Yashima
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
31
|
Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, Susaki EA, Taira M, Hatakeyama M. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal 2023; 16:eabp9020. [PMID: 37463245 DOI: 10.1126/scisignal.abp9020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.
Collapse
Affiliation(s)
- Atsushi Takahashi-Kanemitsu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mengxue Lu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ippei Kikuchi
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 924-1192, Japan
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Research Center of Microbial Carcinogenesis, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
32
|
Voura M, Anwar S, Sigala I, Parasidou E, Fragoulidou S, Hassan MI, Sarli V. Synthesis, Structural Modification, and Bioactivity Evaluation of Substituted Acridones as Potent Microtubule Affinity-Regulating Kinase 4 Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1052-1074. [PMID: 37470016 PMCID: PMC10353068 DOI: 10.1021/acsptsci.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/21/2023]
Abstract
Acridones present numerous pharmacological activities, including inhibition of microtubule affinity-regulating kinase 4 (MARK4) kinase activity. To investigate structure-activity relationships and develop potent MARK4 inhibitors, derivatives of 2-methylacridone were synthesized and tested for their activity against MARK4 kinase. Selective substitutions at the nitrogen atom were accomplished by treating 2-methylacridone with alkyl halides in the presence of K2CO3. In addition, amidation of acridone acetic acid 11 with piperazine or tryptophan methyl ester followed by derivatization with various amines gave a series of new acridone derivatives. Among the tested compounds, six were identified as possessing high inhibitory activity against MARK4. The molecular modeling studies showed that the derivatives bearing piperazine or tryptophan bind well to the ATP-binding site of MARK4. The antiproliferative activity of six active compounds was evaluated against HeLa and U87MG cancer cells. Tryptophan derivatives 23a, 23b, and 23c showed significant cytotoxicity against both cell lines with EC50 values ranging from 2.13 to 4.22 μM, while derivatives bearing piperazine were found to be not cytotoxic. Additionally, compound 23a decreased the proliferation of human MDA-MB-435 and U251 cancer cells in the low micromolar range; however, it also affects the non-cancerous HGF cells. Due to their high binding affinity against MARK4, the synthesized compounds could be potential agents to target MARK4 against cancer and tauopathies.
Collapse
Affiliation(s)
- Maria Voura
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ioanna Sigala
- Laboratory
of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleftheria Parasidou
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Souzanna Fragoulidou
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Vasiliki Sarli
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
33
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
34
|
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat Rev Dis Primers 2023; 9:19. [PMID: 37081005 PMCID: PMC11558793 DOI: 10.1038/s41572-023-00431-8] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Medical Department Klinik of Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Schulz
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
| | - Stella I Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Sebastian Suerbaum
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- National Reference Center for Helicobacter pylori, Munich, Germany
| |
Collapse
|
35
|
Cao Z, An L, Han Y, Jiao S, Zhou Z. The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36924251 DOI: 10.3724/abbs.2023038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) is an aggressive malignant disease which still lacks effective early diagnosis markers and targeted therapies, representing the fourth-leading cause of cancer-associated death worldwide. The Hippo signaling pathway plays crucial roles in organ size control and tissue homeostasis under physiological conditions, yet its aberrations have been closely associated with several hallmarks of cancer. The last decade witnessed a burst of investigations dissecting how Hippo dysregulation contributes to tumorigenesis, highlighting the therapeutic potential of targeting this pathway for tumor intervention. In this review, we systemically document studies on the Hippo pathway in the contexts of gastric tumor initiation, progression, metastasis, acquired drug resistance, and the emerging development of Hippo-targeting strategies. By summarizing major open questions in this field, we aim to inspire further in-depth understanding of Hippo signaling in GC development, as well as the translational implications of targeting Hippo for GC treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China.,CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
36
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
37
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
38
|
Domínguez-Martínez DA, Fontes-Lemus JI, García-Regalado A, Juárez-Flores Á, Fuentes-Pananá EM. IL-8 Secreted by Gastric Epithelial Cells Infected with Helicobacter pylori CagA Positive Strains Is a Chemoattractant for Epstein-Barr Virus Infected B Lymphocytes. Viruses 2023; 15:651. [PMID: 36992360 PMCID: PMC10054738 DOI: 10.3390/v15030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Helicobacter pylori and EBV are considered the main risk factors in developing gastric cancer. Both pathogens establish life-lasting infections and both are considered carcinogenic in humans. Different lines of evidence support that both pathogens cooperate to damage the gastric mucosa. Helicobacter pylori CagA positive virulent strains induce the gastric epithelial cells to secrete IL-8, which is a potent chemoattractant for neutrophils and one of the most important chemokines for the bacterium-induced chronic gastric inflammation. EBV is a lymphotropic virus that persists in memory B cells. The mechanism by which EBV reaches, infects and persists in the gastric epithelium is not presently understood. In this study, we assessed whether Helicobacter pylori infection would facilitate the chemoattraction of EBV-infected B lymphocytes. We identified IL-8 as a powerful chemoattractant for EBV-infected B lymphocytes, and CXCR2 as the main IL-8 receptor whose expression is induced by the EBV in infected B lymphocytes. The inhibition of expression and/or function of IL-8 and CXCR2 reduced the ERK1/2 and p38 MAPK signaling and the chemoattraction of EBV-infected B lymphocytes. We propose that IL-8 at least partially explains the arrival of EBV-infected B lymphocytes to the gastric mucosa, and that this illustrates a mechanism of interaction between Helicobacter pylori and EBV.
Collapse
Affiliation(s)
- Diana A. Domínguez-Martínez
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - José I. Fontes-Lemus
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Alejandro García-Regalado
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Ángel Juárez-Flores
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
39
|
Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Cell Death Dis 2023; 14:21. [PMID: 36635265 PMCID: PMC9837097 DOI: 10.1038/s41419-023-05568-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization. Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
Collapse
Affiliation(s)
- Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
40
|
Guo Y, Cao XS, Zhou MG, Yu B. Gastric microbiota in gastric cancer: Different roles of Helicobacter pylori and other microbes. Front Cell Infect Microbiol 2023; 12:1105811. [PMID: 36704105 PMCID: PMC9871904 DOI: 10.3389/fcimb.2022.1105811] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. The gastric microbiota plays a critical role in the development of GC. First, Helicobacter pylori (H. pylori) infection is considered a major risk factor for GC. However, recent studies based on microbiota sequencing technology have found that non-H. pylori microbes also exert effects on gastric carcinogenesis. Following the infection of H. pylori, gastric microbiota dysbiosis could be observed; the stomach is dominated by H. pylori and the abundances of non-H. pylori microbes reduce substantially. Additionally, decreased microbial diversity, alterations in the microbial community structure, negative interactions between H. pylori and other microbes, etc. occur, as well. With the progression of gastric lesions, the number of H. pylori decreases and the number of non-H. pylori microbes increases correspondingly. Notably, H. pylori and non-H. pylori microbes show different roles in different stages of gastric carcinogenesis. In the present mini-review, we provide an overview of the recent findings regarding the role of the gastric microbiota, including the H. pylori and non-H. pylori microbes, in the development of GC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xue-Shan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng-Ge Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
41
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
42
|
Hatakeyama M. Impact of the Helicobacter pylori Oncoprotein CagA in Gastric Carcinogenesis. Curr Top Microbiol Immunol 2023; 444:239-257. [PMID: 38231221 DOI: 10.1007/978-3-031-47331-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Institute of Microbial Chemistry, Laboratory of Microbial Carcinogenesis, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021, Japan.
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-0815, Japan.
| |
Collapse
|
43
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
44
|
Wang H, Zhao M, Shi F, Zheng S, Xiong L, Zheng L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front Cell Infect Microbiol 2023; 13:1062803. [PMID: 37124036 PMCID: PMC10140366 DOI: 10.3389/fcimb.2023.1062803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Gastric cancer (GC), a common and high-mortality disease, still occupies an important position in current cancer research, and Helicobacter pylori (H. pylori) infection as its important risk factor has been a hot and challenging research area. Among the numerous pathogenic factors of H. pylori, the virulence protein CagA has been widely studied as the only bacterial-derived oncoprotein. It was found that CagA entering into gastric epithelial cells (GECs) can induce the dysregulation of multiple cellular pathways such as MAPK signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, Wnt/β-catenin signaling pathway, JAK-STAT signaling pathway, Hippo signaling pathway through phosphorylation and non-phosphorylation. These disordered pathways cause pathological changes in morphology, adhesion, polarity, proliferation, movement, and other processes of GECs, which eventually promotes the occurrence of GC. With the deepening of H. pylori-related research, the research on CagA-induced abnormal signaling pathway has been updated and deepened to some extent, so the key signaling pathways activated by CagA are used as the main stem to sort out the pathogenesis of CagA in this paper, aiming to provide new strategies for the H. pylori infection and treatment of GC in the future.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
45
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
46
|
Freire de Melo F, Marques HS, Fellipe Bueno Lemos F, Silva Luz M, Rocha Pinheiro SL, de Carvalho LS, Souza CL, Oliveira MV. Role of nickel-regulated small RNA in modulation of Helicobacter pylori virulence factors. World J Clin Cases 2022; 10:11283-11291. [PMID: 36387830 PMCID: PMC9649571 DOI: 10.12998/wjcc.v10.i31.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects about half of the world's population. H. pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A (CagA). CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H. pylori infection. In this sense, small regulatory RNAs (sRNAs) are important macromolecules capable of inhibiting and activating gene expression. This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections. Recent discoveries have shown that nickel-regulated small RNA (NikS) is a post-transcriptional regulator of virulence properties of H. pylori, including the oncoprotein CagA. Notably, high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA. In addition, NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without. With that in mind, this minireview approaches, in an accessible way, the most important and current aspects about the role of NikS in the control of virulence factors of H. pylori and the potential clinical repercussions of this modulation.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Brazil
| | - Fabian Fellipe Bueno Lemos
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Lorena Sousa de Carvalho
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Cláudio Lima Souza
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Márcio Vasconcelos Oliveira
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
47
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
48
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
49
|
Nishikawa H, Christiany P, Hayashi T, Iizasa H, Yoshiyama H, Hatakeyama M. Kinase Activity of PAR1b, Which Mediates Nuclear Translocation of the BRCA1 Tumor Suppressor, Is Potentiated by Nucleic Acid-Mediated PAR1b Multimerization. Int J Mol Sci 2022; 23:6634. [PMID: 35743080 PMCID: PMC9223676 DOI: 10.3390/ijms23126634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023] Open
Abstract
PAR1b is a cytoplasmic serine/threonine kinase that controls cell polarity and cell-cell interaction by regulating microtubule stability while mediating cytoplasmic-to-nuclear translocation of BRCA1. PAR1b is also a cellular target of the CagA protein of Helicobacter pylori, which leads to chronic infection causatively associated with the development of gastric cancer. The CagA-PAR1b interaction inactivates the kinase activity of PAR1b and thereby dampens PAR1b-mediated BRCA1 phosphorylation, which reduces the level of nuclear BRCA1 and thereby leads to BRCAness and BRCAness-associated genome instability underlying gastric carcinogenesis. While PAR1b can multimerize within the cells, little is known about the mechanism and functional role of PAR1b multimerization. We found in the present study that PAR1b was multimerized in vitro by binding with nucleic acids (both single- and double-stranded DNA/RNA) via the spacer region in a manner independent of nucleic-acid sequences, which markedly potentiated the kinase activity of PAR1b. Consistent with these in vitro observations, cytoplasmic introduction of double-stranded DNA or expression of single-stranded RNA increased the PAR1b kinase activity in the cells. These findings indicate that the cytoplasmic DNA/RNA contribute to nuclear accumulation of BRCA1 by constitutively activating/potentiating cytoplasmic PAR1b kinase activity, which is subverted in gastric epithelial cells upon delivery of H. pylori CagA oncoprotein.
Collapse
Affiliation(s)
- Hiroko Nishikawa
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Priscillia Christiany
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
- Laboratory of Virology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Center for Infectious Cancers, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
50
|
Tahmina K, Hikawa N, Takahashi-Kanemitsu A, Knight CT, Sato K, Itoh F, Hatakeyama M. Transgenically expressed Helicobacter pylori CagA in vascular endothelial cells accelerates arteriosclerosis in mice. Biochem Biophys Res Commun 2022; 618:79-85. [PMID: 35716599 DOI: 10.1016/j.bbrc.2022.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Arteriosclerosis is intimately associated with cardiovascular diseases. Recently, evidence accumulated that infection with Helicobacter pylori cagA-positive strains, which causes gastritis, peptic ulceration, and gastric cancer, is also involved in the development of arteriosclerosis. The cagA-encoded CagA protein is injected into the attached gastric epithelial cells via the type IV secretion system. We previously showed that CagA-containing exosomes are secreted from CagA-injected gastric epithelial cells and enter the systemic blood circulation, delivering CagA into endothelial cells. In the present study, transgenic mice were established in which CagA was selectively expressed in endothelial cells by Cre-loxP system. Treatment of the mice with a high-fat diet revealed that atherogenic lesions were induced in mice expressing CagA in vascular endothelial cells but not in CagA-nonexpressing mice. To investigate the effects of CagA on endothelial cells, we also established conditional CagA-expressing human vascular endothelial cells using the Tet-on system. Upon induction of CagA, a dramatic change in cell morphology was observed that was concomitantly associated with the loss of the endothelial cells to form tube-like structures. Induction of CagA also activated the pro-inflammatory transcription factor STAT3. Thus, exosome-delivered CagA deregulates signals that activates STAT3 in endothelial cells, which accelerates inflammation that promotes arteriosclerosis/atherosclerosis.
Collapse
Affiliation(s)
- Kamrunnesa Tahmina
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Narumi Hikawa
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | | | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; Laboratory of Virology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, 141-0021, Japan; Center for Indfectious Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.
| |
Collapse
|