1
|
Indo HP, Chatatikun M, Nakanishi I, Matsumoto KI, Imai M, Kawakami F, Kubo M, Abe H, Ichikawa H, Yonei Y, Beppu HJ, Minamiyama Y, Kanekura T, Ichikawa T, Phongphithakchai A, Udomwech L, Sukati S, Charong N, Somsak V, Tangpong J, Nomura S, Majima HJ. The Roles of Mitochondria in Human Being's Life and Aging. Biomolecules 2024; 14:1317. [PMID: 39456251 PMCID: PMC11506671 DOI: 10.3390/biom14101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The universe began 13.8 billion years ago, and Earth was born 4.6 billion years ago. Early traces of life were found as soon as 4.1 billion years ago; then, ~200,000 years ago, the human being was born. The evolution of life on earth was to become individual rather than cellular life. The birth of mitochondria made this possible to be the individual life. Since then, individuals have had a limited time of life. It was 1.4 billion years ago that a bacterial cell began living inside an archaeal host cell, a form of endosymbiosis that is the development of eukaryotic cells, which contain a nucleus and other membrane-bound compartments. The bacterium started to provide its host cell with additional energy, and the interaction eventually resulted in a eukaryotic cell, with both archaeal (the host cell) and bacterial (mitochondrial) origins still having genomes. The cells survived high concentrations of oxygen producing more energy inside the cell. Further, the roles of mitochondria in human being's life and aging will be discussed.
Collapse
Affiliation(s)
- Hiroko P. Indo
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
- Amanogawa Galactic Astronomy Research Center (AGARC), Kagoshima University Graduate School of Sciences and Engineering, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Motoki Imai
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Hiroshi Abe
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshishia University, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Hisashi J. Beppu
- Dr. Beppu’s Oral Health Care & Anti-Aging Clinic, Chuo-ku, Tokyo 103-0027, Japan
| | - Yukiko Minamiyama
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Lunla Udomwech
- School of Medicine, Walailak University, Thasala 80161, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nurdina Charong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Isotope Science Center, The University of Tokyo, 2-22-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Gastrointestinal Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
Kaste JAM, Walker BJ, Shachar-Hill Y. Reaction-diffusion modeling provides insights into biophysical carbon-concentrating mechanisms in land plants. PLANT PHYSIOLOGY 2024; 196:1374-1390. [PMID: 38857179 PMCID: PMC11444298 DOI: 10.1093/plphys/kiae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/12/2024]
Abstract
Carbon-concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM (PCCM) of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We found that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than those used in previous modeling studies resulting in low light use efficiency. Adding a complete PCCM into the leaf cells of a C3 land plant was predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions were when substomatal CO2 levels are as low as those found in land plants that already use biochemical CCMs and when gas exchange is limited, such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and the evolution of pyrenoids multiple times.
Collapse
Affiliation(s)
- Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Jiang HJ, Underwood TC, Bell JG, Lei J, Gonzales JC, Emge L, Tadese LG, Abd El-Rahman MK, Wilmouth DM, Brazaca LC, Ni G, Belding L, Dey S, Ashkarran AA, Nagarkar A, Nemitz MP, Cafferty BJ, Sayres DS, Ranjan S, Crocker DR, Anderson JG, Sasselov DD, Whitesides GM. Mimicking lightning-induced electrochemistry on the early Earth. Proc Natl Acad Sci U S A 2024; 121:e2400819121. [PMID: 39074283 PMCID: PMC11317556 DOI: 10.1073/pnas.2400819121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
To test the hypothesis that an abiotic Earth and its inert atmosphere could form chemically reactive carbon- and nitrogen-containing compounds, we designed a plasma electrochemical setup to mimic lightning-induced electrochemistry under steady-state conditions of the early Earth. Air-gap electrochemical reactions at air-water-ground interfaces lead to remarkable yields, with up to 40 moles of carbon dioxide being reduced into carbon monoxide and formic acid, and 3 moles of gaseous nitrogen being fixed into nitrate, nitrite, and ammonium ions, per mole of transmitted electrons. Interfaces enable reactants (e.g., minerals) that may have been on land, in lakes, and in oceans to participate in radical and redox reactions, leading to higher yields compared to gas-phase-only reactions. Cloud-to-ground lightning strikes could have generated high concentrations of reactive molecules locally, establishing diverse feedstocks for early life to emerge and survive globally.
Collapse
Affiliation(s)
- Haihui Joy Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Astronomy, Harvard University, Cambridge, MA02138
| | - Thomas C. Underwood
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX78705
| | - Jeffrey G. Bell
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Jonathan Lei
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Joe C. Gonzales
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lukas Emge
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Leah G. Tadese
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | | | - David M. Wilmouth
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Lais C. Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Supriya Dey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Ali Akbar Ashkarran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Amit Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Markus P. Nemitz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Brian J. Cafferty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - David S. Sayres
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Sukrit Ranjan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ85721
- Department of Planetary Sciences, University of Arizona, Tucson, AZ85721
| | - Daniel R. Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - James G. Anderson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | | | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
4
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
5
|
Wei GY, Zhao M, Sperling EA, Gaines RR, Kalderon-Asael B, Shen J, Li C, Zhang F, Li G, Zhou C, Cai C, Chen D, Xiao KQ, Jiang L, Ling HF, Planavsky NJ, Tarhan LG. Lithium isotopic constraints on the evolution of continental clay mineral factory and marine oxygenation in the earliest Paleozoic Era. SCIENCE ADVANCES 2024; 10:eadk2152. [PMID: 38552018 PMCID: PMC10980266 DOI: 10.1126/sciadv.adk2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.
Collapse
Affiliation(s)
- Guang-Yi Wei
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Mingyu Zhao
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Erik A. Sperling
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Boriana Kalderon-Asael
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chao Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation and Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu 610059, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu 610059, China
| | - Feifei Zhang
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Gaojun Li
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunfang Cai
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Daizhao Chen
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Rd. 18, 10085, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Fei Ling
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Lidya G. Tarhan
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
6
|
Qu L, Li M, Gong F, He L, Li M, Zhang C, Yin K, Xie W. Oxygen-driven divergence of marine group II archaea reflected by transitions of superoxide dismutases. Microbiol Spectr 2024; 12:e0203323. [PMID: 38047693 PMCID: PMC10783094 DOI: 10.1128/spectrum.02033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Reactive oxygen species (ROS), including superoxide anion, is a series of substances that cause oxidative stress for all organisms. Marine group II (MGII) archaea are mainly live in the surface seawater and exposed to considerable ROS. Therefore, it is important to understand the antioxidant capacity of MGII. Our research found that Fe/Mn- superoxide dismutase (Fe/MnSOD) may be more suitable for MGII to resist oxidative damage, and the changes in oxygen concentrations and SOD metallic cofactors play an important role in the selection of SOD by the 17 clades of MGII, which in turn affects the species differentiation of MGII. Overall, this study provides insight into the co-evolutionary history of these uncultivated marine archaea with the earth system.
Collapse
Affiliation(s)
- Liping Qu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Meng Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Fahui Gong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Lei He
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chuanlun Zhang
- Department of Ocean Science & Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Kedong Yin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
7
|
Belato FA, Mello B, Coates CJ, Halanych KM, Brown FD, Morandini AC, de Moraes Leme J, Trindade RIF, Costa-Paiva EM. Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments. GEOBIOLOGY 2024; 22:e12577. [PMID: 37750460 DOI: 10.1111/gbi.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.
Collapse
Affiliation(s)
- Flavia A Belato
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - Beatriz Mello
- Biology Institute, Genetics Department, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Federico D Brown
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - André C Morandini
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | | | - Ricardo I F Trindade
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| | - Elisa Maria Costa-Paiva
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| |
Collapse
|
8
|
Yang Z, Ma X, Wang Q, Tian X, Sun J, Zhang Z, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nat Commun 2023; 14:5542. [PMID: 37696791 PMCID: PMC10495350 DOI: 10.1038/s41467-023-41137-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae.
Collapse
Affiliation(s)
- Zhiping Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolin Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
9
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
10
|
Bauer KW, McKenzie NR, Bottini C, Erba E, Crowe SA. Carbon pump dynamics and limited organic carbon burial during OAE1a. GEOBIOLOGY 2023; 21:341-354. [PMID: 36567458 DOI: 10.1111/gbi.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Oceanic Anoxic Events (OAEs) are conspicuous intervals in the geologic record that are associated with the deposition of organic carbon (OC)-rich marine sediment, linked to extreme biogeochemical perturbations, and characterized by widespread ocean deoxygenation. Mechanistic links between the marine biological carbon pump (BCP), redox conditions, and organic carbon burial during OAEs, however, remain poorly constrained. In this work we reconstructed the BCP in the western Tethys Ocean across OAE1a (~120 Mya) using sediment geochemistry and OC mass accumulation rates (OCAcc ). We find that OCAcc were between 0.006 and 3.3 gC m-2 yr-1 , with a mean value of 0.79 ± 0.78 SD gC m-2 yr-1 -these rates are low and comparable to oligotrophic regions in the modern oceans. This challenges longstanding assumptions that oceanic anoxic events are intervals of strongly elevated organic carbon burial. Numerical modelling of the BCP, furthermore, reveals that such low OC fluxes are only possible with either or both low to moderate OC export fluxes from ocean surface waters, with rates similar to oligotrophic (nutrient-poor, <30 gC m-2 yr-1 ) and mesotrophic (moderate-nutrients, ~50-100 gC m-2 yr-1 ) regions in the modern ocean, and stronger than modern vertical OC attenuation. The low OC fluxes thus reflect a relatively weak BCP. Low to moderate productivity is further supported by palaeoecological and geochemical evidence and was likely maintained through nutrient limitation that developed in response to the burial and sequestration of phosphorus in association with iron minerals under ferruginous (anoxic iron-rich) ocean conditions. Without persistently high productivity, ocean deoxygenation during OAE1a was more likely driven by other physicochemical and biological factors including ocean warming, changes in marine primary producer community composition, and fundamental shifts in the efficiency of the BCP with associated effects and feedbacks.
Collapse
Affiliation(s)
- Kohen W Bauer
- Department of Earth Science, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ocean Networks Canada, University of Victoria Queenswood Campus, Victoria, British Columbia, Canada
| | - N Ryan McKenzie
- Department of Earth Science, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Cinzia Bottini
- Department of Earth Sciences, University of Milan, Milan, Italy
| | - Elisabetta Erba
- Department of Earth Sciences, University of Milan, Milan, Italy
| | - Sean A Crowe
- Department of Earth Science, University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of EOAS, University of British Columbia, Vancouver, British Columbia, Canada
- Department of M&I, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Hankamer B, Pregelj L, O'Kane S, Hussey K, Hine D. Delivering impactful solutions for the bioeconomy. TRENDS IN PLANT SCIENCE 2023; 28:583-596. [PMID: 36941134 DOI: 10.1016/j.tplants.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 05/22/2023]
Abstract
We are increasingly challenged to operate within our planetary boundaries, while delivering on United Nations (UN) Sustainable Development Goal (SDG) 2030 targets, and net-zero emissions by 2050. Failure to solve these challenges risks economic, social, political, climate, food, water, and fuel security. Therefore, new, scalable, and adoptable circular economy solutions are urgently required. The ability of plants to use light, capture CO2, and drive complex biochemistry is pivotal to delivering these solutions. However, harnessing this capability efficiently also requires robust accompanying economic, financial, market, and strategic analytics. A framework for this is presented here in the Commercialization Tourbillon. It supports the delivery of emerging plant biotechnologies and bio-inspired light-driven industry solutions within the critical 2030-2050 timeframe, to achieve validated economic, social, and environmental benefits.
Collapse
Affiliation(s)
- Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lisette Pregelj
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shane O'Kane
- Treble Cone Advisory Brisbane Qld, Suite 75, 12 Welsby Street, New Farm, QLD 4005, Australia
| | - Karen Hussey
- Centre for Policy Futures, Faculty of Humanities and Social Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damian Hine
- Queensland Alliance for Agriculture and Food innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Long J, Zhang S, Luo K. Discovery of anomalous molybdenum enrichment in Ordovician and Silurian stone coal: Relevance, origin and recommendations. CHEMOSPHERE 2023; 320:137975. [PMID: 36720416 DOI: 10.1016/j.chemosphere.2023.137975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Molybdenum (Mo) is a strategic element but has a notably low concentration at the Earth's surface. Consequently, competition for molybdenum resources at the national strategic level has begun to emerge, and in recent years, large-scale mining has led to the gradual depletion of molybdenum deposit resources. Here, thirty-four element enrichment patterns of Ordovician and Silurian stone coals in central China are reported. Molybdenum is the most enriched element, with an average of 208 mg/kg (58.2-440 mg/kg), which is 99 times the global hard coal average, and this molybdenum enrichment is associated with Ba-Ga-U-Cr-Na-K--Cu-Se-Zn enrichment and elevated SiO2, CaO, K2O, MgO, Na2O, MnO and P2O5 concentrations. These analyses reveal four stone coal samples with molybdenum concentrations of 260, 312, 403 and 440 mg/kg, which meet the grade for the molybdenum mineral exploitation formulated standard, indicating that the Ordovician and Silurian stone coal deposits should be considered promising alternative sources of molybdenum. The crude reserve estimate of molybdenum is approximately 29.2 × 104 tons. The anomalous molybdenum in the studied stone coal was sourced from a complex combination of hydrothermal fluids, original biomass and terrigenous materials. The unique paleogeographic location and geological structure in central China resulted in the anomalous molybdenum concentrations in the stone coal forming at that time, producing a unique type of coal-hosted molybdenum deposit. Future studies will consider the ecological effects of the molybdenum extraction mode and the cost savings effects of extracting molybdenum from stone coal. A comprehensive utilization plan is also needed. Next, a thorough study of molybdenum exploration related to black rock series must be performed to increase the total molybdenum resources and support Chinese international competitiveness.
Collapse
Affiliation(s)
- Jie Long
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shixi Zhang
- School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Kadyshevich EA, Ostrovskii VE. From Minerals to Simplest Living Matter: Life Origination Hydrate Theory. Acta Biotheor 2023; 71:13. [PMID: 36976380 PMCID: PMC10043859 DOI: 10.1007/s10441-023-09463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Long since, people tried to solve the mystery of the way that led to the appearance and propagation of living entities. However, no harmonious understanding of this mystery existed, because neither the scientifically grounded source minerals nor the ambient conditions were proposed and because it was groundlessly taken that the process of living matter origination is endothermal. The Life Origination Hydrate Theory (LOH-Theory) first suggests the chemical way capable of leading from the specified abundant natural minerals to origination of multitudes of multitudes of simplest living entities and gives an original explanation for the phenomena of chirality and racemization delay. The LOH-Theory covers the period up to origination of the genetic code. The LOH-Theory is grounded on the following three discoveries based on the available information and on the results of our experimental works performed using original instrumentation and computer simulations. (1) There is the only one triad of natural minerals applicable for exothermal thermodynamically possible chemical syntheses of simplest living-matter components. (2) N-base, ribose, and phosphdiester radicals and nucleic acids as whole are size-compatible with structural gas-hydrate cavities. (3) The gas-hydrate structure arises around amido-groups in cooled undisturbed systems consisting of water and highly-concentrated functional polymers with amido-groups.The natural conditions and historic periods favorable for simplest living matter origination are revealed. The LOH-Theory is supported by results of observations, biophysical and biochemical experiments, and wide application of original three-dimensional and two-dimensional computer simulations of biochemical structures within gas-hydrate matrix. The instrumentation and procedures for experimental verification of the LOH-Theory are suggested. If future experiments are successful, they, possibly, could be the first step on the way to industrial synthesis of food from minerals, i.e., to execution of the work that is performed by plants.
Collapse
Affiliation(s)
- Elena A. Kadyshevich
- Obukhov Institute of Atmospheric Physics RAS, Pyzhevsky Side-Str. 3, Moscow, 119017 Russia
| | - Victor E. Ostrovskii
- Karpov Institute of Physical Chemistry present address, Kiev Highway Str. 6 , Obninsk, Kaluga region, 249033 Russia
| |
Collapse
|
14
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Natural Radioactivity and Chemical Evolution on the Early Earth: Prebiotic Chemistry and Oxygenation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238584. [PMID: 36500676 PMCID: PMC9740107 DOI: 10.3390/molecules27238584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
It is generally recognized that the evolution of the early Earth was affected by an external energy source: radiation from the early Sun. The hypothesis about the important role of natural radioactivity, as a source of internal energy in the evolution of the early Earth, is considered and substantiated in this work. The decay of the long-lived isotopes 232Th, 238U, 235U, and 40K in the Global Ocean initiated the oxygenation of the hydro- and atmosphere, and the abiogenesis. The content of isotopes in the ocean and the kinetics of their decay, the values of the absorbed dose and dose rate, and the efficiency of sea water radiolysis, as a function of time, were calculated. The ocean served as both a "reservoir" that collected components of the early atmosphere and products of their transformations, and a "converter" in which further chemical reactions of these compounds took place. Radical mechanisms were proposed for the formation of simple amino acids, sugars, and nitrogen bases, i.e., the key structures of all living things, and also for the formation of oxygen. The calculation results confirm the possible important role of natural radioactivity in the evolution of terrestrial matter, and the emergence of life.
Collapse
|
16
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Vitali R, Belcher CM, Kaplan JO, Watson AJ. Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence of forests. Nat Commun 2022; 13:7285. [PMID: 36435885 PMCID: PMC9701189 DOI: 10.1038/s41467-022-35081-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Throughout Earth's history, the abundance of oxygen in our atmosphere has varied, but by how much remains debated. Previously, an upper limit for atmospheric oxygen has been bounded by assumptions made regarding the fire window: atmospheric oxygen concentrations higher than 30-40% would threaten the regeneration of forests in the present world. Here we have tested these assumptions by adapting a Dynamic Global Vegetation Model to run over high atmospheric oxygen concentrations. Our results show that whilst global tree cover is significantly reduced under high O2 concentrations, forests persist in the wettest parts of the low and high latitudes and fire is more dependent on fuel moisture than O2 levels. This implies that the effect of fire on suppressing global vegetation under high O2 may be lower than previously assumed and questions our understanding of the mechanisms involved in regulating the abundance of oxygen in our atmosphere, with moisture as a potentially important factor.
Collapse
Affiliation(s)
- Rayanne Vitali
- Global Systems Institute, University of Exeter, Exeter, UK.
| | | | - Jed O Kaplan
- Department of Earth Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
18
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
19
|
Borges FO, Sampaio E, Santos CP, Rosa R. Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research. THE BIOLOGICAL BULLETIN 2022; 243:104-119. [PMID: 36548969 DOI: 10.1086/721468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractGlobal ocean O2 content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O2 fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O2 content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O2 and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.
Collapse
|
20
|
Xiao KQ, Moore OW, Babakhani P, Curti L, Peacock CL. Mineralogical control on methylotrophic methanogenesis and implications for cryptic methane cycling in marine surface sediment. Nat Commun 2022; 13:2722. [PMID: 35581283 PMCID: PMC9114137 DOI: 10.1038/s41467-022-30422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen—Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments. Adsorption of methylamines onto clay minerals provides a hitherto unrecognised control on methane production in marine surface sediment.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK.
| | - Oliver W Moore
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| | - Peyman Babakhani
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| | - Lisa Curti
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| | - Caroline L Peacock
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Waajen AC, Prescott R, Cockell CS. Meteorites as Food Source on Early Earth: Growth, Selection, and Inhibition of a Microbial Community on a Carbonaceous Chondrite. ASTROBIOLOGY 2022; 22:495-508. [PMID: 35319269 DOI: 10.1089/ast.2021.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meteoritic material accumulated on the surface of the anoxic early Earth during the Late Heavy Bombardment around 4.0 Gya and may have provided Earth's surface with extraterrestrial nutrients and energy sources. This research investigates the growth of an anaerobic microbial community from pond sediment on native and pyrolyzed (heat-treated) carbonaceous chondrite Cold Bokkeveld. The community was grown anaerobically in liquid media. Native Cold Bokkeveld supported the growth of a phylogenetically clustered subset of the original pond community by habitat filtering. The anaerobic community on meteorite was dominated by the Deltaproteobacteria Geobacteraceae and Desulfuromonadaceae. Members of these taxa are known to use elemental sulfur and ferric iron as electron acceptors, and organic compounds as electron donors. Pyrolyzed Cold Bokkeveld, however, was inhibitory to the growth of the microbial community. These results show that carbonaceous chondrites can support and select for a specific anaerobic microbial community, but that pyrolysis, for example by geothermal activity, could inhibit microbial growth and toxify the material. This research shows that extraterrestrial meteoritic material can shape the abundance and composition of anaerobic microbial ecosystems with implications for early Earth. These results also provide a basis to design anaerobic material processing of asteroidal material for future human settlement.
Collapse
Affiliation(s)
- Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - R Prescott
- Department of Environmental Health Sciences, University of South Carolina, Columbia South Carolina, USA
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
23
|
Ershov BG. Important role of seawater radiolysis of the World Ocean in the chemical evolution of the early Earth. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
A Thermodynamic Model for Water Activity and Redox Potential in Evolution and Development. J Mol Evol 2022; 90:182-199. [DOI: 10.1007/s00239-022-10051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
|
25
|
Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Evidence for the oxidation of Earth's crust from the evolution of manganese minerals. Nat Commun 2022; 13:960. [PMID: 35181670 PMCID: PMC8857192 DOI: 10.1038/s41467-022-28589-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/06/2022] [Indexed: 11/08/2022] Open
Abstract
Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth's crust through time. Changes in crustal redox state are critical to Earth's evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 ± 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth's history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.
Collapse
|
27
|
Abstract
The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O2 in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives-integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean-atmosphere system in anoxic, low-oxygen, and high-oxygen states.
Collapse
Affiliation(s)
- Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
- Alternative Earths Team, Interdisciplinary Consortia for Astrobiology Research, National Aeronautics and Space Administration, Riverside, California 92521, USA
- Nexus for Exoplanet System Science (NExSS), National Aeronautics and Space Administration, Washington, DC 20546, USA
| | - Noah J Planavsky
- Alternative Earths Team, Interdisciplinary Consortia for Astrobiology Research, National Aeronautics and Space Administration, Riverside, California 92521, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
28
|
Cooke GJ, Marsh DR, Walsh C, Black B, Lamarque JF. A revised lower estimate of ozone columns during Earth's oxygenated history. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211165. [PMID: 35070343 PMCID: PMC8728182 DOI: 10.1098/rsos.211165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/25/2021] [Indexed: 05/17/2023]
Abstract
The history of molecular oxygen (O2) in Earth's atmosphere is still debated; however, geological evidence supports at least two major episodes where O2 increased by an order of magnitude or more: the Great Oxidation Event (GOE) and the Neoproterozoic Oxidation Event. O2 concentrations have likely fluctuated (between 10-3 and 1.5 times the present atmospheric level) since the GOE ∼2.4 Gyr ago, resulting in a time-varying ozone (O3) layer. Using a three-dimensional chemistry-climate model, we simulate changes in O3 in Earth's atmosphere since the GOE and consider the implications for surface habitability, and glaciation during the Mesoproterozoic. We find lower O3 columns (reduced by up to 4.68 times for a given O2 level) compared to previous work; hence, higher fluxes of biologically harmful UV radiation would have reached the surface. Reduced O3 leads to enhanced tropospheric production of the hydroxyl radical (OH) which then substantially reduces the lifetime of methane (CH4). We show that a CH4 supported greenhouse effect during the Mesoproterozoic is highly unlikely. The reduced O3 columns we simulate have important implications for astrobiological and terrestrial habitability, demonstrating the relevance of three-dimensional chemistry-climate simulations when assessing paleoclimates and the habitability of faraway worlds.
Collapse
Affiliation(s)
- G. J. Cooke
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - D. R. Marsh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- National Center for Atmospheric Research, Boulder, CO 80301, USA
| | - C. Walsh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - B. Black
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Earth and Atmospheric Sciences, CUNY City College, New York, NY, USA
| | - J.-F. Lamarque
- National Center for Atmospheric Research, Boulder, CO 80301, USA
| |
Collapse
|
29
|
Triple oxygen isotope constraints on atmospheric O 2 and biological productivity during the mid-Proterozoic. Proc Natl Acad Sci U S A 2021; 118:2105074118. [PMID: 34911756 PMCID: PMC8713798 DOI: 10.1073/pnas.2105074118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ'17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air-sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air-sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ'17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.
Collapse
|
30
|
Abstract
The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.
Collapse
|
31
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
32
|
Khademian M, Imlay JA. How Microbes Evolved to Tolerate Oxygen. Trends Microbiol 2021; 29:428-440. [PMID: 33109411 PMCID: PMC8043972 DOI: 10.1016/j.tim.2020.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
Ancient microbes invented biochemical mechanisms and assembled core metabolic pathways on an anoxic Earth. Molecular oxygen appeared far later, forcing microbes to devise layers of defensive tactics that fend off the destructive actions of both reactive oxygen species (ROS) and oxygen itself. Recent work has pinpointed the enzymes that ROS attack, plus an array of clever protective strategies that abet the well known scavenging systems. Oxygen also directly damages the low-potential metal centers and radical-based mechanisms that optimize anaerobic metabolism; therefore, committed anaerobes have evolved customized tactics that defend these various enzymes from occasional oxygen exposure. Thus a more comprehensive, detailed, and surprising view of oxygen toxicity is coming into view.
Collapse
Affiliation(s)
- Maryam Khademian
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Billings SA, Lajtha K, Malhotra A, Berhe AA, de Graaff MA, Earl S, Fraterrigo J, Georgiou K, Grandy S, Hobbie SE, Moore JAM, Nadelhoffer K, Pierson D, Rasmussen C, Silver WL, Sulman BN, Weintraub S, Wieder W. Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02290. [PMID: 33426701 DOI: 10.1002/eap.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil-related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable.
Collapse
Affiliation(s)
- S A Billings
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas, 66047, USA
| | - K Lajtha
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - A Malhotra
- Department of Earth System Science, Stanford University, Stanford, California, 94305, USA
| | - A A Berhe
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, 95344, USA
| | - M-A de Graaff
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - S Earl
- Global Institute of Sustainability, Arizona State University, Tempe, Arizona, 85281, USA
| | - J Fraterrigo
- Department of Natural Resources and Environmental Sciences, and Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, Illinois, 61820, USA
| | - K Georgiou
- Department of Earth System Science, Stanford University, Stanford, California, 94305, USA
| | - S Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - S E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455, USA
| | - J A M Moore
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, USA
| | - K Nadelhoffer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - D Pierson
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - C Rasmussen
- Department of Environmental Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - W L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - B N Sulman
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, USA
| | - S Weintraub
- National Ecological Observatory Network, Batelle, Boulder, Colorado, 80309, USA
| | - W Wieder
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, 80307, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
34
|
Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK, Martin WF. The metabolic network of the last bacterial common ancestor. Commun Biol 2021; 4:413. [PMID: 33772086 PMCID: PMC7997952 DOI: 10.1038/s42003-021-01918-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/26/2021] [Indexed: 02/03/2023] Open
Abstract
Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial anaerobes, we identified 146 protein families that trace to the last bacterial common ancestor, LBCA, and form the conserved predicted core of its metabolic network, which requires only nine genes to encompass all universal metabolites. Our results indicate that LBCA performed gluconeogenesis towards cell wall synthesis, and had numerous RNA modifications and multifunctional enzymes that permitted life with low gene content. In accordance with recent findings for LUCA and LACA, analyses of thousands of individual gene trees indicate that LBCA was rod-shaped and the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Joana C Xavier
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Rebecca E Gerhards
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
35
|
A persistently low level of atmospheric oxygen in Earth's middle age. Nat Commun 2021; 12:351. [PMID: 33441548 PMCID: PMC7806885 DOI: 10.1038/s41467-020-20484-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Resolving how Earth surface redox conditions evolved through the Proterozoic Eon is fundamental to understanding how biogeochemical cycles have changed through time. The redox sensitivity of cerium relative to other rare earth elements and its uptake in carbonate minerals make the Ce anomaly (Ce/Ce*) a particularly useful proxy for capturing redox conditions in the local marine environment. Here, we report Ce/Ce* data in marine carbonate rocks through 3.5 billion years of Earth's history, focusing in particular on the mid-Proterozoic Eon (i.e., 1.8 - 0.8 Ga). To better understand the role of atmospheric oxygenation, we use Ce/Ce* data to estimate the partial pressure of atmospheric oxygen (pO2) through this time. Our thermodynamics-based modeling supports a major rise in atmospheric oxygen level in the aftermath of the Great Oxidation Event (~ 2.4 Ga), followed by invariant pO2 of about 1% of present atmospheric level through most of the Proterozoic Eon (2.4 to 0.65 Ga).
Collapse
|
36
|
Hammarlund EU, Flashman E, Mohlin S, Licausi F. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 2020; 370:370/6515/eaba3512. [PMID: 33093080 DOI: 10.1126/science.aba3512] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Oxygen-sensing mechanisms of eukaryotic multicellular organisms coordinate hypoxic cellular responses in a spatiotemporal manner. Although this capacity partly allows animals and plants to acutely adapt to oxygen deprivation, its functional and historical roots in hypoxia emphasize a broader evolutionary role. For multicellular life-forms that persist in settings with variable oxygen concentrations, the capacity to perceive and modulate responses in and between cells is pivotal. Animals and higher plants represent the most complex life-forms that ever diversified on Earth, and their oxygen-sensing mechanisms demonstrate convergent evolution from a functional perspective. Exploring oxygen-sensing mechanisms across eukaryotic kingdoms can inform us on biological innovations to harness ever-changing oxygen availability at the dawn of complex life and its utilization for their organismal development.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden. .,Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sofie Mohlin
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. .,PlantLab, Institute of Life Sciences, Scuola Superiore, Sant'Anna, 56124 Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
37
|
Rubin S, Parr T, Da Costa L, Friston K. Future climates: Markov blankets and active inference in the biosphere. J R Soc Interface 2020; 17:20200503. [PMID: 33234063 PMCID: PMC7729048 DOI: 10.1098/rsif.2020.0503] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
We formalize the Gaia hypothesis about the Earth climate system using advances in theoretical biology based on the minimization of variational free energy. This amounts to the claim that non-equilibrium steady-state dynamics-that underwrite our climate-depend on the Earth system possessing a Markov blanket. Our formalization rests on how the metabolic rates of the biosphere (understood as Markov blanket's internal states) change with respect to solar radiation at the Earth's surface (i.e. external states), through the changes in greenhouse and albedo effects (i.e. active states) and ocean-driven global temperature changes (i.e. sensory states). Describing the interaction between the metabolic rates and solar radiation as climatic states-in a Markov blanket-amounts to describing the dynamics of the internal states as actively inferring external states. This underwrites climatic non-equilibrium steady-state through free energy minimization and thus a form of planetary autopoiesis.
Collapse
Affiliation(s)
- Sergio Rubin
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain, Belgium
| | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Lancelot Da Costa
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
- Department of Mathematics, Imperial College London, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
38
|
Larsson ED, Dong G, Veryazov V, Ryde U, Hedegård ED. Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes? Dalton Trans 2020; 49:1501-1512. [PMID: 31922155 DOI: 10.1039/c9dt04486h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lytic polysaccharide monooxygenase (LPMO) enzymes boost polysaccharide depolymerization through oxidative chemistry, which has fueled the hope for more energy-efficient production of biofuel. We have recently proposed a mechanism for the oxidation of the polysaccharide substrate (E. D. Hedegård and U. Ryde, Chem. Sci., 2018, 9, 3866-3880). In this mechanism, intermediates with superoxide, oxyl, as well as hydroxyl (i.e. [CuO2]+, [CuO]+ and [CuOH]2+) cores were involved. These complexes can have both singlet and triplet spin states, and both spin-states may be important for how LPMOs function during catalytic turnover. Previous calculations on LPMOs have exclusively been based on density functional theory (DFT). However, different DFT functionals are known to display large differences for spin-state splittings in transition-metal complexes, and this has also been an issue for LPMOs. In this paper, we study the accuracy of DFT for spin-state splittings in superoxide, oxyl, and hydroxyl intermediates involved in LPMO turnover. As reference we employ multiconfigurational perturbation theory (CASPT2).
Collapse
Affiliation(s)
- Ernst D Larsson
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
40
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
41
|
Planavsky NJ, Robbins LJ, Kamber BS, Schoenberg R. Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus 2020; 10:20190140. [PMID: 32642054 DOI: 10.1098/rsfs.2019.0140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deciphering the role-if any-that free oxygen levels played in controlling the timing and tempo of the radiation of complex life is one of the most fundamental questions in Earth and life sciences. Accurately reconstructing Earth's redox history is an essential part of tackling this question. Over the past few decades, there has been a proliferation of research employing geochemical redox proxies in an effort to tell the story of Earth's oxygenation. However, many of these studies, even those considering the same geochemical proxy systems, have led to conflicting interpretations of the timing and intensity of oxygenation events. There are two potential explanations for conflicting redox reconstructions: (i) that free oxygen levels were incredibly dynamic in both time and space or (ii) that collectively, as a community-including the authors of this article-we have frequently studied rocks affected by secondary weathering and alteration (particularly secondary oxidation) while neglecting to address the impact of this alteration on the generated data. There are now multiple case studies that have documented previously overlooked secondary alteration, resolving some of the conflicting constrains regarding redox evolution. Here, an analysis of a large shale geochemistry database reveals significant differences in cerium (Ce) anomalies, a common palaeoredox proxy, between outcrop and drill core samples. This inconsistency provides support for the idea that geochemical data from altered samples are frequently published in the peer-reviewed literature. As individuals and a geochemical community, most of us have been slow to appreciate how pervasive the problem is but there are examples of other communities that have faced and met the challenges raised by such quality control crises. Further evidence of the high potential for alteration of deep-time geochemical samples, and recognition of the manner in which this may lead to spurious results and palaeoenvironmental interpretations, indicate that sample archiving, in publicly accessible collections needs to become a prerequisite for publication of new palaeoredox data. Finally, the geochemical community need to think about ways to implement additional quality control measures to increase the fidelity of palaeoredox proxy work.
Collapse
Affiliation(s)
- Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Leslie J Robbins
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Balz S Kamber
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ronny Schoenberg
- Department of Geosciences, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
42
|
Kuncha SK, Venkadasamy VL, Amudhan G, Dahate P, Kola SR, Pottabathini S, Kruparani SP, Shekar PC, Sankaranarayanan R. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. eLife 2020; 9:58118. [PMID: 32463355 PMCID: PMC7302879 DOI: 10.7554/elife.58118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions. The first animals evolved around 750 million years ago from single-celled ancestors that were most similar to modern-day organisms called the Choanoflagellates. As animals evolved they developed more complex body plans consisting of multiple cells organized into larger structures known as tissues and organs. Over time cells also evolved increased levels of molecules called reactive oxygen species, which are involved in many essential cell processes but are toxic at high levels. Animal cells also contain more types of molecules known as transfer ribonucleic acids, or tRNAs for short, than Choanoflagellate cells and other single-celled organisms. These molecules deliver building blocks known as amino acids to the machinery that produces new proteins. To ensure the proteins are made correctly, it is important that tRNAs deliver specific amino acids to the protein-building machinery in the right order. Each type of tRNA usually only pairs with a specific type of amino acid, but sometimes the enzymes involved in this process can make mistakes. Therefore, cells contain proofreading enzymes that help remove incorrect amino acids on tRNAs. One such enzyme – called ATD – is only found in animals. Experiments in test tubes reported that ATD removes an amino acid called alanine from tRNAs that are supposed to carry threonine, but its precise role in living cells remained unclear. To address this question, Kuncha et al. studied proofreading enzymes in human kidney cells. The experiments showed that, in addition to ATD, a second enzyme known as ThrRS was also able to correct alanine substitutions for threonines on tRNAs. However, reactive oxygen species inactivated the proofreading ability of ThrRS, suggesting ATD plays an essential role in correcting errors in cells containing high levels of reactive oxygen species. These findings suggest that as organisms evolved multiple cells and the levels of tRNA and oxidative stress increased, this led to the appearance of a new proofreading enzyme. Further studies found that ATD originated around 900 million years ago, before Choanoflagellates and animals diverged, indicating these enzymes might have helped to shape the evolution of animals. The next step following on from this work will be to understand the role of ATD in the cells of organs that are known to have particularly high levels of reactive oxygen species, such as testis and ovaries.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | | | - Priyanka Dahate
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sankara Rao Kola
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - P Chandra Shekar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
43
|
A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME JOURNAL 2020; 14:2142-2152. [PMID: 32424249 PMCID: PMC7368068 DOI: 10.1038/s41396-020-0668-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
Clues to the evolutionary steps producing innovations in oxygenic photosynthesis may be preserved in the genomes of organisms phylogenetically placed between non-photosynthetic Vampirovibrionia (formerly Melainabacteria) and the thylakoid-containing Cyanobacteria. However, only two species with published genomes are known to occupy this phylogenetic space, both within the genus Gloeobacter. Here, we describe nearly complete, metagenome-assembled genomes (MAGs) of an uncultured organism phylogenetically placed near Gloeobacter, for which we propose the name Candidatus Aurora vandensis {Au’ro.ra. L. fem. n. aurora, the goddess of the dawn in Roman mythology; van.de’nsis. N.L. fem. adj. vandensis of Lake Vanda, Antarctica}. The MAG of A. vandensis contains homologs of most genes necessary for oxygenic photosynthesis including key reaction center proteins. Many accessory subunits associated with the photosystems in other species either are missing from the MAG or are poorly conserved. The MAG also lacks homologs of genes associated with the pigments phycocyanoerethrin, phycoeretherin and several structural parts of the phycobilisome. Additional characterization of this organism is expected to inform models of the evolution of oxygenic photosynthesis.
Collapse
|
44
|
Planavsky NJ, Reinhard CT, Isson TT, Ozaki K, Crockford PW. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere? ASTROBIOLOGY 2020; 20:628-636. [PMID: 32228301 DOI: 10.1089/ast.2019.2060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Earth's ocean-atmosphere system has undergone a dramatic but protracted increase in oxygen (O2) abundance. This environmental transition ultimately paved the way for the rise of multicellular life and provides a blueprint for how a biosphere can transform a planetary surface. However, estimates of atmospheric oxygen levels for large intervals of Earth's history still vary by orders of magnitude-foremost for Earth's middle history. Historically, estimates of mid-Proterozoic (1.9-0.8 Ga) atmospheric oxygen levels are inferred based on the kinetics of reactions occurring in soils or in the oceans, rather than being directly tracked by atmospheric signatures. Rare oxygen isotope systematics-based on quantifying the rare oxygen isotope 17O in addition to the conventionally determined 16O and 18O-provide a means to track atmospheric isotopic signatures and thus potentially provide more direct estimates of atmospheric oxygen levels through time. Oxygen isotope signatures that deviate strongly from the expected mass-dependent relationship between 16O, 17O, and 18O develop during ozone formation, and these "mass-independent" signals can be transferred to the rock record during oxidation reactions in surface environments that involve atmospheric O2. The magnitude of these signals is dependent upon pO2, pCO2, and the overall extent of biospheric productivity. Here, we use a stochastic approach to invert the mid-Proterozoic Δ17O record for a new estimate of atmospheric pO2, leveraging explicit coupling of pO2 and biospheric productivity in a biogeochemical Earth system model to refine the range of atmospheric pO2 values that is consistent with a given observed Δ17O. Using this approach, we find new evidence that atmospheric oxygen levels were less than ∼1% of the present atmospheric level (PAL) for at least some intervals of the Proterozoic Eon.
Collapse
Affiliation(s)
- Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Terry T Isson
- Environmental Research Institute, University of Waikato, Tauranga, New Zealand
| | - Kazumi Ozaki
- Department of Environmental Science, Toho University, Funabashi, Chiba, Japan
| | - Peter W Crockford
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
45
|
Ugelow MS, Berry JL, Browne EC, Tolbert MA. The Impact of Molecular Oxygen on Anion Composition in a Hazy Archean Earth Atmosphere. ASTROBIOLOGY 2020; 20:658-669. [PMID: 32159384 DOI: 10.1089/ast.2019.2145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric organic hazes are common in planetary bodies in our solar system and likely exoplanet atmospheres as well. In addition, geochemical data support the existence of an organic haze in the early Earth's atmosphere. Much of what is known about organic haze formation derives from studies of Saturn's moon Titan. It is believed that on Titan ions play an important role in haze formation. It is possible, by using Titan as an analog for the Archean Earth, to consider that an Archean haze could have formed by similar processes. Here, we examine the anion chemistry that occurs during laboratory simulations of early Earth haze formation and measure the composition of gaseous anions as a function of O2 mixing ratio. Gaseous anion composition and relative abundances are measured by an atmospheric pressure interface time-of-flight mass spectrometer and are compared to previous photochemical haze mass loading measurements. Numerous anions are observed spanning from mass-to-charge ratio 26 to 246, with a majority of the identified anions containing carbon, hydrogen, nitrogen, and/or oxygen. A shift in the anion composition occurs with increasing the precursor O2 mixing ratio. With 0-20 ppmv O2 in CH4/CO2/N2 mixtures, ions contain mostly organic nitrogen, with CNO- being the most intense ion peak. As the precursor O2 is increased to 200 and 2000 ppmv, inorganic nitrogen ions become the dominant chemical group, with NO3- having the most intense ion signal. The clear shift in the ionic composition could be indicative of a modification to the gas-phase chemistry that occurs in the transition from an anoxic atmosphere to an oxygen-containing atmosphere, with potential astrobiological significance.
Collapse
Affiliation(s)
- Melissa S Ugelow
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
- Now at Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University Space Research Association, Columbia, Maryland
| | - Jennifer L Berry
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Eleanor C Browne
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
46
|
Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, Reinhard CT, Planavsky NJ. On the co-evolution of surface oxygen levels and animals. GEOBIOLOGY 2020; 18:260-281. [PMID: 32175670 DOI: 10.1111/gbi.12382] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Few topics in geobiology have been as extensively debated as the role of Earth's oxygenation in controlling when and why animals emerged and diversified. All currently described animals require oxygen for at least a portion of their life cycle. Therefore, the transition to an oxygenated planet was a prerequisite for the emergence of animals. Yet, our understanding of Earth's oxygenation and the environmental requirements of animal habitability and ecological success is currently limited; estimates for the timing of the appearance of environments sufficiently oxygenated to support ecologically stable populations of animals span a wide range, from billions of years to only a few million years before animals appear in the fossil record. In this light, the extent to which oxygen played an important role in controlling when animals appeared remains a topic of debate. When animals originated and when they diversified are separate questions, meaning either one or both of these phenomena could have been decoupled from oxygenation. Here, we present views from across this interpretive spectrum-in a point-counterpoint format-regarding crucial aspects of the potential links between animals and surface oxygen levels. We highlight areas where the standard discourse on this topic requires a change of course and note that several traditional arguments in this "life versus environment" debate are poorly founded. We also identify a clear need for basic research across a range of fields to disentangle the relationships between oxygen availability and emergence and diversification of animal life.
Collapse
Affiliation(s)
- Devon B Cole
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia
- Santa Fe Institute, Santa Fe, New Mexico
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Susannah M Porter
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California
| | - Christopher T Reinhard
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| |
Collapse
|
47
|
Zumberge JA, Rocher D, Love GD. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. GEOBIOLOGY 2020; 18:326-347. [PMID: 31865640 PMCID: PMC7233469 DOI: 10.1111/gbi.12378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/30/2019] [Indexed: 05/23/2023]
Abstract
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780-729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid-Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen-bound regular steranes from Tonian rocks, including 21-norcholestane, 27-norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C30 sterane series from our least thermally mature Chuar Group samples. Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen-bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic-rich rock samples generally yield higher S/H ratios than for organic-lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C27 sterane (cholestane) predominance among total C26 -C30 steranes is a common feature found for all samples investigated, with lower amounts of C28 steranes (ergostane and crysotane) also present. No traces of known ancient C30 sterane compounds; including 24-isopropylcholestanes, 24-n-propylcholestanes, or 26-methylstigmastanes, are detectable in any of these pre-Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation.
Collapse
Affiliation(s)
- J. Alex Zumberge
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | | | - Gordon D. Love
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
48
|
Reinhard CT, Planavsky NJ, Ward BA, Love GD, Le Hir G, Ridgwell A. The impact of marine nutrient abundance on early eukaryotic ecosystems. GEOBIOLOGY 2020; 18:139-151. [PMID: 32065509 DOI: 10.1111/gbi.12384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The rise of eukaryotes to ecological prominence represents one of the most dramatic shifts in the history of Earth's biosphere. However, there is an enigmatic temporal lag between the emergence of eukaryotic organisms in the fossil record and their much later ecological expansion. In parallel, there is evidence for a secular increase in the availability of the key macronutrient phosphorus (P) in Earth's oceans. Here, we use an Earth system model equipped with a size-structured marine ecosystem to explore relationships between plankton size, trophic complexity, and the availability of marine nutrients. We find a strong dependence of planktonic ecosystem structure on ocean nutrient abundance, with a larger ocean nutrient inventory leading to greater overall biomass, broader size spectra, and increasing abundance of large Zooplankton. If existing estimates of Proterozoic marine nutrient levels are correct, our results suggest that increases in the ecological impact of eukaryotic algae and trophic complexity in eukaryotic ecosystems were directly linked to restructuring of the global P cycle associated with the protracted rise of surface oxygen levels. Our results thus suggest an indirect but potentially important mechanism by which ocean oxygenation may have acted to shape marine ecological function during late Proterozoic time.
Collapse
Affiliation(s)
- Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Noah J Planavsky
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Ben A Ward
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gordon D Love
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
| | | | - Andy Ridgwell
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
- School of Geographical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Weaver RJ. Hypothesized Evolutionary Consequences of the Alternative Oxidase (AOX) in Animal Mitochondria. Integr Comp Biol 2020; 59:994-1004. [PMID: 30912813 DOI: 10.1093/icb/icz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The environment in which eukaryotes first evolved was drastically different from what they experience today, and one of the key limiting factors was the availability of oxygen for mitochondrial respiration. During the transition to a fully oxygenated Earth, other compounds such as sulfide posed a considerable constraint on using mitochondrial aerobic respiration for energy production. The ancestors of animals, and those that first evolved from the simpler eukaryotes have mitochondrial respiratory components that are absent from later-evolving animals. Specifically, mitochondria of most basal metazoans have a sulfide-resistant alternative oxidase (AOX), which provides a secondary oxidative pathway to the classical cytochrome pathway. In this essay, I argue that because of its resistance to sulfide, AOX respiration was critical to the evolution of animals by enabling oxidative metabolism under otherwise inhibitory conditions. I hypothesize that AOX allowed for metabolic flexibility during the stochastic oxygen environment of early Earth which shaped the evolution of basal metazoans. I briefly describe the known functions of AOX, with a particular focus on the decreased production of reactive oxygen species (ROS) during stress conditions. Then, I propose three evolutionary consequences of AOX-mediated protection from ROS observed in basal metazoans: 1) adaptation to stressful environments, 2) the persistence of facultative sexual reproduction, and 3) decreased mitochondrial DNA mutation rates. Recognizing the diversity of mitochondrial respiratory systems present in animals may help resolve the mechanisms involved in major evolutionary processes such as adaptation and speciation.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA
| |
Collapse
|
50
|
Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, Syed K. Comprehensive Analyses of Cytochrome P450 Monooxygenases and Secondary Metabolite Biosynthetic Gene Clusters in Cyanobacteria. Int J Mol Sci 2020; 21:ijms21020656. [PMID: 31963856 PMCID: PMC7014017 DOI: 10.3390/ijms21020656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The prokaryotic phylum Cyanobacteria are some of the oldest known photosynthetic organisms responsible for the oxygenation of the earth. Cyanobacterial species have been recognised as a prosperous source of bioactive secondary metabolites with antibacterial, antiviral, antifungal and/or anticancer activities. Cytochrome P450 monooxygenases (CYPs/P450s) contribute to the production and diversity of various secondary metabolites. To better understand the metabolic potential of cyanobacterial species, we have carried out comprehensive analyses of P450s, predicted secondary metabolite biosynthetic gene clusters (BGCs), and P450s located in secondary metabolite BGCs. Analysis of the genomes of 114 cyanobacterial species identified 341 P450s in 88 species, belonging to 36 families and 79 subfamilies. In total, 770 secondary metabolite BGCs were found in 103 cyanobacterial species. Only 8% of P450s were found to be part of BGCs. Comparative analyses with other bacteria Bacillus, Streptomyces and mycobacterial species have revealed a lower number of P450s and BGCs and a percentage of P450s forming part of BGCs in cyanobacterial species. A mathematical formula presented in this study revealed that cyanobacterial species have the highest gene-cluster diversity percentage compared to Bacillus and mycobacterial species, indicating that these diverse gene clusters are destined to produce different types of secondary metabolites. The study provides fundamental knowledge of P450s and those associated with secondary metabolism in cyanobacterial species, which may illuminate their value for the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Makhosazana Jabulile Khumalo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|