1
|
Zhang W, Nie Y, Xu T, Li Y, Xu Y, Chen X, Shi P, Liu F, Zhao H, Ma Q, Xu J. Evolutionary Process Underlying Receptor Gene Expansion and Cellular Divergence of Olfactory Sensory Neurons in Honeybees. Mol Biol Evol 2025; 42:msaf080. [PMID: 40172919 PMCID: PMC12001030 DOI: 10.1093/molbev/msaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Olfaction is crucial for animals' survival and adaptation. Unlike the strict singular expression of odorant receptor (OR) genes in vertebrate olfactory sensory neurons (OSNs), insects exhibit complex OR gene expression patterns. In honeybees (Apis mellifera), a significant expansion of OR genes implies a selection preference for the olfactory demands of social insects. However, the mechanisms underlying receptor expression specificity and their contribution to OSN divergence remain unclear. In this study, we used single-nucleus multiomics profiling to investigate the transcriptional regulation of OR genes and the cellular identity of OSNs in A. mellifera. We identified three distinct OR expression patterns, singular OR expression, co-expression of multiple OR genes with a single active promoter, and co-expression of multiple OR genes with multiple active promoters. Notably, ∼50% of OSNs co-expressed multiple OR genes, driven by polycistronic transcription of tandemly duplicated OR genes via a single active promoter. In these OSNs, their identity was determined by the first transcribed receptor. The divergent activation of the promoter for duplicated OR genes ensures the coordinated increased divergence of OSN population. By integrating multiomics data with genomic architecture, we illustrate how fundamental genetic mechanisms drive OR gene expansion and influence flanking regulatory elements, ultimately contributing to the cellular divergence of OSNs. Our findings highlight the interplay between gene duplication and regulatory evolution in shaping OSN diversity, providing new insights into the evolution and adaptation of olfaction in social insects. This study also sheds light on how genetic innovations contribute to the evolution of complex traits.
Collapse
Affiliation(s)
- Weixing Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Li
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoyong Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Qing Ma
- Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Matsunaga T, Reisenman CE, Goldman-Huertas B, Rajshekar S, Suzuki HC, Tadres D, Wong J, Louis M, Ramírez SR, Whiteman NK. Odorant receptors tuned to isothiocyanates in Drosophila melanogaster are co-opted and expanded in herbivorous relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.08.617316. [PMID: 39416046 PMCID: PMC11482750 DOI: 10.1101/2024.10.08.617316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Plants release volatile compounds that attract mutualists, deter herbivores, and deceive pollinators. Among them are electrophilic compounds such as isothiocyanates (ITCs) derived Brassicales plants that activate TrpA1 pain receptors by contact in Drosophila melanogaster and humans. However, it is unclear whether generalist animals evolved strategies to detect these electrophilic compounds via olfaction. To address this, and to understand how specialized insects co-opted these toxic compounds as hostplant signatures, we studied generalist micro-feeding ( D. melanogaster and Scaptomyza pallida ) and herbivorous mustard specialist drosophilid flies ( S. flava and S. montana ). In behavioral assays, D. melanogaster exposed to volatile allyl isothiocyanate (AITC) were rapidly immobilized, demonstrating the high toxicity of this compound to non-specialists. Through single sensillum recordings (SSR) from olfactory organs and behavioral assays, we found that the Odorant receptor 42a (Or42a) is necessary for volatile AITC detection and behavioral aversion. RNA expression following heterologous expression showed that lineage-specific, triplicated S. flava Or42a proteins exhibited paralog-specific broadened ITC sensitivity. AlphaFold2 modeling followed by site-directed mutagenesis and SSR identified two critical amino acid substitutions that changed Or sensitivity from fruit-derived odors to ITCs during the evolution of Or42a . Our findings suggest that ITCs, which are toxic to most insects, can be detected and avoided by non-specialists like D. melanogaster through olfaction. In the specialist S. flava , paralogous Or42a copies experienced gene duplication and amino acid substitutions resulting in expanded ITC sensitivity. Thus, insect olfactory systems can rapidly adapt to toxic host plant niches through co-option of chemosensory capabilities already present in their ancestors.
Collapse
Affiliation(s)
- Teruyuki Matsunaga
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Carolina E. Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | | | - Srivarsha Rajshekar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - Hiromu C. Suzuki
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Joshua Wong
- The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Santiago R. Ramírez
- Department of Evolution and Ecology, University of California Davis, Davis, CA
| | - Noah K. Whiteman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
3
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Van der Linden Costello P, Vanderzalm PJ, Coutinho-Budd J, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. eLife 2025; 13:RP100989. [PMID: 39883485 PMCID: PMC11781797 DOI: 10.7554/elife.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here, we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first 2 days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post- synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll UniversityUniversity HeightsUnited States
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| |
Collapse
|
4
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.632927. [PMID: 39868125 PMCID: PMC11760703 DOI: 10.1101/2025.01.16.632927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~60 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available data is limited by the incompleteness and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional and evolutionary studies to generate an integrated dataset of these sensory neuron pathways - and associated visualizations - creating an unprecedented comprehensive resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. These examples emphasize the power of this resource to promote further understanding of the construction, function and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Jérôme Mermet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
| | - Keita Endo
- RIKEN Center for Brain Science Wako Saitama 351-0198 Japan
| | - Steeve Cruchet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
- Connecticut Institute for Brain and Cognitive Sciences University of Connecticut Storrs Connecticut 06269 United States
| |
Collapse
|
5
|
Getahun MN. Livestock-vector interaction using volatile organic metabolites. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101269. [PMID: 39260769 DOI: 10.1016/j.cois.2024.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Biological interaction between two organisms living together in a given habitat is essential for healthy ecosystem functionality, got complexity, and exerts an arms race between the interacting organisms. Some vectors are exclusively blood feeders, and others supplement their diet with plant nectar. The feeding dynamics may determine their olfactory system complexity. Arthropod vectors that interact with livestock rely mainly on olfaction. Livestock odor profile is a complex trait and depends on host genetics, microbes, diet, and health status, which highlights its dynamic nature. Furthermore, volatile metabolites are shared between host animals, which exert its own challenge for vectors to find their preferred host. Elucidating the underlying host chemodiversity, especially signature scents, neuroethological mechanism of discrimination of preferred/unpreferred host from plethora of coexisting host is crucial to understand evolution and adaptation in vector-livestock interaction.
Collapse
Affiliation(s)
- Merid N Getahun
- International Centre of Insect Physiology and Ecology (icipe), Kenya.
| |
Collapse
|
6
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Costello PVDL, Vanderzalm PJ, Coutinho-Budd JC, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602232. [PMID: 39005309 PMCID: PMC11245089 DOI: 10.1101/2024.07.05.602232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, United States
| | - Jaeda C Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
7
|
Howe JR, Chan CL, Lee D, Blanquart M, Lee JH, Romero HK, Zadina AN, Lemieux ME, Mills F, Desplats PA, Tye KM, Root CM. Control of innate olfactory valence by segregated cortical amygdala circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600895. [PMID: 38979308 PMCID: PMC11230396 DOI: 10.1101/2024.06.26.600895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Animals exhibit innate behaviors that are stereotyped responses to specific evolutionarily relevant stimuli in the absence of prior learning or experience. These behaviors can be reduced to an axis of valence, whereby specific odors evoke approach or avoidance responses. The posterolateral cortical amygdala (plCoA) mediates innate attraction and aversion to odor. However, little is known about how this brain area gives rise to behaviors of opposing motivational valence. Here, we sought to define the circuit features of plCoA that give rise to innate attraction and aversion to odor. We characterized the physiology, gene expression, and projections of this structure, identifying a divergent, topographic organization that selectively controls innate attraction and avoidance to odor. First, we examined odor-evoked responses in these areas and found sparse encoding of odor identity, but not valence. We next considered a topographic organization and found that optogenetic stimulation of the anterior and posterior domains of plCoA elicits attraction and avoidance, respectively, suggesting a functional axis for valence. Using single cell and spatial RNA sequencing, we identified the molecular cell types in plCoA, revealing an anteroposterior gradient in cell types, whereby anterior glutamatergic neurons preferentially express VGluT2 and posterior neurons express VGluT1. Activation of these respective cell types recapitulates appetitive and aversive behaviors, and chemogenetic inhibition reveals partial necessity for responses to innate appetitive or aversive odors. Finally, we identified topographically organized circuits defined by projections, whereby anterior neurons preferentially project to medial amygdala, and posterior neurons preferentially project to nucleus accumbens, which are respectively sufficient and necessary for innate attraction and aversion. Together, these data advance our understanding of how the olfactory system generates stereotypic, hardwired attraction and avoidance, and supports a model whereby distinct, topographically distributed plCoA populations direct innate olfactory responses by signaling to divergent valence-specific targets, linking upstream olfactory identity to downstream valence behaviors, through a population code. This suggests a novel amygdala circuit motif in which valence encoding is represented not by the firing properties of individual neurons, but by population level identity encoding that is routed through divergent targets to mediate distinct behaviors of opposing appetitive and aversive responses.
Collapse
Affiliation(s)
- James R. Howe
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chung-Lung Chan
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Donghyung Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marlon Blanquart
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James H. Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haylie K. Romero
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abigail N. Zadina
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | | | - Fergil Mills
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | - Paula A. Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kay M. Tye
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Cory M. Root
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Zhang R, Ng R, Wu ST, Su CY. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet 2024; 38:122-133. [PMID: 39529229 PMCID: PMC11617259 DOI: 10.1080/01677063.2024.2426014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The study of olfaction in Drosophila melanogaster has greatly benefited from genetic reagents such as olfactory receptor mutant lines and GAL4 reporter lines. The CRISPR/Cas9 gene-editing system has been increasingly used to create null receptor mutants or replace coding regions with GAL4 reporters. To further expand this toolkit for manipulating fly olfactory receptor neurons (ORNs), we generated null alleles for 11 different olfactory receptors by using CRISPR/Cas9 to knock in LexA drivers, including multiple lines for receptors which have thus far lacked knock-in mutants. The targeted neuronal types represent a broad range of antennal ORNs from all four morphological sensillum classes. Additionally, we confirmed their loss-of-function phenotypes, assessed receptor haploinsufficiency, and evaluated the specificity of the LexA knock-in drivers. These receptor mutant lines have been deposited at the Bloomington Drosophila Stock Center for use by the broader scientific community.
Collapse
Affiliation(s)
- Runqi Zhang
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Renny Ng
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| |
Collapse
|
9
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
10
|
Stahr M, Lytle A, Avila K, Huseth AS, Bertone M, Quesada-Ocampo LM. Drosophila hydei as a Potential Vector of Ceratocystis fimbriata, the Causal Agent of Sweetpotato Black Rot, in Storage Facilities. PHYTOPATHOLOGY 2024; 114:1664-1671. [PMID: 38669594 DOI: 10.1094/phyto-09-23-0328-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Ceratocystis fimbriata, the causal agent of sweetpotato black rot, is a pathogen capable of developing and spreading within postharvest settings. A survey of North Carolina sweetpotato storage facilities was conducted to determine the arthropods present and identify potential vectors of C. fimbriata. Sixteen taxonomic categories were recovered, and the genus Drosophila (Diptera: Drosophilidae) accounted for 79% of individuals sampled, with Drosophila hydei being the most abundant species. Behavioral assays were conducted to determine if D. hydei is attracted to C. fimbriata-inoculated roots and if the pathogen could be recovered from external or internal surfaces of the insect. Flies were released in insect-trapping pitchers containing either C. fimbriata-inoculated or noninoculated roots or Petri dishes. No significant differences in fly number were detected in sweetpotato-baited pitchers; however, significant differences were found in the pitcher baited with a mature C. fimbriata culture. Flies were subjected to washes to determine if viable C. fimbriata was present (internally or externally); washes were plated onto carrot agar plates and observed for the presence of C. fimbriata colonies. Both external and internal washes had viable C. fimbriata inocula with no significant differences, and inoculated sweetpotatoes had a significantly higher number of flies carrying C. fimbriata. This study suggests that D. hydei can carry C. fimbriata from infected sweetpotatoes and move viable C. fimbriata inocula both externally and internally, making this the first report of any Drosophila sp. serving as a potential vector for the Ceratocystis genus.
Collapse
Affiliation(s)
- Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Amanda Lytle
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Kelly Avila
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Anders S Huseth
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Mathew Bertone
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| |
Collapse
|
11
|
Puri P, Wu ST, Su CY, Aljadeff J. Peripheral preprocessing in Drosophila facilitates odor classification. Proc Natl Acad Sci U S A 2024; 121:e2316799121. [PMID: 38753511 PMCID: PMC11126917 DOI: 10.1073/pnas.2316799121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using Drosophila as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.
Collapse
Affiliation(s)
- Palka Puri
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Chih-Ying Su
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
12
|
Perry S, Clark JT, Ngo P, Ray A. Receptors underlying an odorant's valence across concentrations in Drosophila larvae. J Exp Biol 2024; 227:jeb247215. [PMID: 38511428 PMCID: PMC11166451 DOI: 10.1242/jeb.247215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Odorants interact with receptors expressed in specialized olfactory neurons, and neurons of the same class send their axons to distinct glomeruli in the brain. The stereotypic spatial glomerular activity map generates recognition and the behavioral response for the odorant. The valence of an odorant changes with concentration, typically becoming aversive at higher concentrations. Interestingly, in Drosophila larvae, the odorant (E)-2-hexenal is aversive at low concentrations and attractive at higher concentrations. We investigated the molecular and neural basis of this phenomenon, focusing on how activities of different olfactory neurons conveying opposing effects dictate behaviors. We identified the repellant neuron in the larvae as one expressing the olfactory receptor Or7a, whose activation alone at low concentrations of (E)-2-hexenal elicits an avoidance response in an Or7a-dependent manner. We demonstrate that avoidance can be overcome at higher concentrations by activation of additional neurons that are known to be attractive, most notably odorants that are known activators of Or42a and Or85c. These findings suggest that in the larval stage, the attraction-conveying neurons can overcome the aversion-conveying channels for (E)-2-hexenal.
Collapse
Affiliation(s)
- Sarah Perry
- Graduate program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Jonathan T. Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Paulina Ngo
- Department of Molecular Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Graduate program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Song C, Chen D, Jiang C, Li C, Chen L, Huang R, Wang X, Qin J, Li Q. Herbivore-induced plant volatiles emitted by citrus in response to spider mite infestation can attract predatory mites. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:435-447. [PMID: 38253912 DOI: 10.1093/jee/toae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Understanding the nutritional interplay among plants, pests, and natural enemies is essential for sustainable pest management. Enhancing the efficiency of natural enemies, such as Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) is critical, and exploiting herbivore-induced plant volatiles (HIPVs) offers a promising approach. However, N. californicus has rarely been reported to utilize HIPVs to improve their biological control capabilities. Our research revealed a significant difference in the diversity of volatile compounds detected in clean Citrus reticulata Blanco leaves compared to those in C. reticulata leaves infested with Panonychus citri (McGregor) (Acari: Tetranychidae), regardless of mite presence. This suggests that P. citri infestation induces a wide array of HIPVs in C. reticulata leaves. We conducted olfactory behavioral assays to evaluate the response of N. californicus to synthetic HIPVs. Results revealed that linalool (1.00 mg/mL), 2,2,4-trimethylpentane (10.0 mg/mL), undecylcyclohexane (1.00 mg/mL), and (+)-dibenzoyl-L-tartaric anhydride (10.0 mg/mL) significantly attracted N. californicus while pentadecanal (1.00 mg/mL) significantly deterred it. A 3-component blend of linalool, undecylcyclohexane, and (+)-dibenzoyl-L-tartaric anhydride was better than other combinations in attracting N. californicus. This combination provided the basis for developing an attractant for N. californicus, facilitating the rate of its dispersal to enhance its biological control of pests. Consequently, this research offers vital insights into improving the sustainable pest control potential of predatory mites.
Collapse
Affiliation(s)
- Cancan Song
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Die Chen
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Chunxian Jiang
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Chengcheng Li
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Lin Chen
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Rong Huang
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Xian Wang
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Jie Qin
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| | - Qing Li
- Department of plant protection, College of Agronomy, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu, China
| |
Collapse
|
14
|
Kato A, Ohta K, Okanoya K, Kazama H. Dopaminergic neurons dynamically update sensory values during olfactory maneuver. Cell Rep 2023; 42:113122. [PMID: 37757823 DOI: 10.1016/j.celrep.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic neurons (DANs) drive associative learning to update the value of sensory cues, but their contribution to the assessment of sensory values outside the context of association remains largely unexplored. Here, we show in Drosophila that DANs in the mushroom body encode the innate value of odors and constantly update the current value by inducing plasticity during olfactory maneuver. Our connectome-based network model linking all the way from the olfactory neurons to DANs reproduces the characteristics of DAN responses, proposing a concrete circuit mechanism for computation. Downstream of DANs, odors alone induce value- and dopamine-dependent changes in the activity of mushroom body output neurons, which store the current value of odors. Consistent with this neural plasticity, specific sets of DANs bidirectionally modulate flies' steering in a virtual olfactory environment. Thus, the DAN circuit known for discrete, associative learning also continuously updates odor values in a nonassociative manner.
Collapse
Affiliation(s)
- Ayaka Kato
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
15
|
Tao L, Wechsler SP, Bhandawat V. Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila. Nat Commun 2023; 14:6818. [PMID: 37884581 PMCID: PMC10603174 DOI: 10.1038/s41467-023-42613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Most real-world behaviors - such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes in Drosophila by optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
| | - Samuel P Wechsler
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Boné E, González-Audino P, Sfara V. The Response of Susceptible and Pyrethroid-Resistant Blattella germanica (Dyctioptera: Blattellidae) to Shelter-Associated Cues. NEOTROPICAL ENTOMOLOGY 2023; 52:848-859. [PMID: 37552458 DOI: 10.1007/s13744-023-01071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
In this work, it was studied the role of faeces in the location and permanence in a shelter in susceptible and pyrethroid-resistant individuals of Blattella germanica (Linnaeus 1767). Additionally, the effect of different concentrations of palmitic acid on the modulation of these behaviours was tested. A shelter constituted by a square cardboard structure was offered to susceptible as well as to resistant specimens. The shelter bases were treated with faecal extracts obtained from susceptible or resistant cockroaches, or with solutions of palmitic acid. The behaviour of susceptible as well as resistant specimens was analysed using infrared videography software. Susceptible's faecal extract attracted both specimens since the time spent by cockroaches to locate the treated shelters was lower, whereas the faecal extract from resistant insects did not elicit any effect on both strains. Faecal extracts showed an arrestant effect on both strains, suggested by the time spent inside the shelter that was significantly higher in their presence. On the other hand, treatment with palmitic acid produced an attractant or a repellent effect depending on the concentration and strain. The tested lower concentration was attractant to susceptible insects, but did not produce any effect on resistant ones. In addition, the higher concentrations did not produce any effect on susceptible individuals, but resulted repellent for resistant ones. Palmitic acid did not produce an arrestant effect on the strains as there was not an increase in time spent inside the shelter in the presence of this substance. An increase in the number of visits to the shelter and to the periphery was also observed in shelters treated with the faecal extract and with the lower concentration of palmitic acid. These results show that compounds of the susceptible faeces were attractant to cockroaches of both strains, while faecal extracts from resistant insects were not. Moreover, a dual effect of palmitic acid was observed, being attractant at low concentrations and repellent as concentration increased. Additionally, a difference in the concentration threshold at which the effect of this substance changes was observed between strains.
Collapse
Affiliation(s)
- Emiliano Boné
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat Y Sostenibilidad, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola González-Audino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Buenos Aires, Argentina
| | - Valeria Sfara
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat Y Sostenibilidad, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
18
|
Chandak R, Raman B. Neural manifolds for odor-driven innate and acquired appetitive preferences. Nat Commun 2023; 14:4719. [PMID: 37543628 PMCID: PMC10404252 DOI: 10.1038/s41467-023-40443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Sensory stimuli evoke spiking neural responses that innately or after learning drive suitable behavioral outputs. How are these spiking activities intrinsically patterned to encode for innate preferences, and could the neural response organization impose constraints on learning? We examined this issue in the locust olfactory system. Using a diverse odor panel, we found that ensemble activities both during ('ON response') and after stimulus presentations ('OFF response') could be linearly mapped onto overall appetitive preference indices. Although diverse, ON and OFF response patterns generated by innately appetitive odorants (higher palp-opening responses) were still limited to a low-dimensional subspace (a 'neural manifold'). Similarly, innately non-appetitive odorants evoked responses that were separable yet confined to another neural manifold. Notably, only odorants that evoked neural response excursions in the appetitive manifold could be associated with gustatory reward. In sum, these results provide insights into how encoding for innate preferences can also impact associative learning.
Collapse
Affiliation(s)
- Rishabh Chandak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
19
|
Puri P, Wu ST, Su CY, Aljadeff J. Shallow networks run deep: Peripheral preprocessing facilitates odor classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550211. [PMID: 37546820 PMCID: PMC10401955 DOI: 10.1101/2023.07.23.550211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The mammalian brain implements sophisticated sensory processing algorithms along multilayered ('deep') neural-networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using Drosophila as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently-sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.
Collapse
Affiliation(s)
- Palka Puri
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Ray S, Sun K, Stopfer M. Innate attraction and aversion to odors in locusts. PLoS One 2023; 18:e0284641. [PMID: 37428771 PMCID: PMC10332586 DOI: 10.1371/journal.pone.0284641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Many animals display innate preferences for some odors, but the physiological mechanisms underlying these preferences are poorly understood. Here, with behavioral tests, we establish a model system well suited to investigating olfactory mechanisms, the locust Schistocerca americana. We conducted open field tests in an arena designed to provide only olfactory cues to guide navigation choices. We found that newly hatched locusts navigated toward, and spent more time near, the odor of wheat grass than humidified air. In similar tests, we found that hatchlings avoided moderate concentrations of major individual components of the food blend odor, 1-hexanol (1% v/v) and hexanal (0.9% v/v) diluted in mineral oil relative to control presentations of unscented mineral oil. Hatchlings were neither attracted nor repelled by a lower concentration (0.1% v/v) of 1-hexanol but were moderately attracted to a low concentration (0.225% v/v) of hexanal. We quantified the behavior of the animals by tracking their positions with the Argos software toolkit. Our results establish that hatchlings have a strong, innate preference for food odor blend, but the valence of the blend's individual components may be different and may change depending on the concentration. Our results provide a useful entry point for an analysis of physiological mechanisms underlying innate sensory preferences.
Collapse
Affiliation(s)
- Subhasis Ray
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Plaksha University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kui Sun
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Marachlian E, Huerta R, Locatelli FF. Gain modulation and odor concentration invariance in early olfactory networks. PLoS Comput Biol 2023; 19:e1011176. [PMID: 37343029 DOI: 10.1371/journal.pcbi.1011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States of America
| | - Fernando F Locatelli
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Odell SR, Zito N, Clark D, Mathew D. Stability of olfactory behavior syndromes in the Drosophila larva. Sci Rep 2023; 13:2398. [PMID: 36765192 PMCID: PMC9918538 DOI: 10.1038/s41598-023-29523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Individuals of many animal populations exhibit idiosyncratic behaviors. One measure of idiosyncratic behavior is a behavior syndrome, defined as the stability of one or more behavior traits in an individual across different situations. While behavior syndromes have been described in various animal systems, their properties and the circuit mechanisms that generate them are poorly understood. We thus have an incomplete understanding of how circuit properties influence animal behavior. Here, we characterize olfactory behavior syndromes in the Drosophila larva. We show that larvae exhibit idiosyncrasies in their olfactory behavior over short time scales. They are influenced by the larva's satiety state and odor environment. Additionally, we identified a group of antennal lobe local neurons that influence the larva's idiosyncratic behavior. These findings reveal previously unsuspected influences on idiosyncratic behavior. They further affirm the idea that idiosyncrasies are not simply statistical phenomena but manifestations of neural mechanisms. In light of these findings, we discuss more broadly the importance of idiosyncrasies to animal survival and how they might be studied.
Collapse
Affiliation(s)
- Seth R Odell
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Nicholas Zito
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - David Clark
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
23
|
Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons. Biosystems 2023; 223:104802. [PMID: 36375712 DOI: 10.1016/j.biosystems.2022.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
The olfactory system in insects has evolved to process the dynamic changes in the concentration of food odors or sex pheromones to localize the nutrients or conspecific mating partners. Experimental studies have suggested that projection neurons (PNs) in insects encode not only the stimulus intensity but also its rate-of-change (input gradient). In this study, we aim to develop a simple computational model for a PN to understand the mechanism underlying the coding of the rate-of-change information. We show that the spike frequency adaptation is a potential key mechanism for reproducing the phasic response pattern of the PN in Drosophila. We also demonstrate that this adaptation mechanism enables the PN to encode the rate-of-change of the input firing rate. Finally, our model predicts that the PN exhibits the intensity-invariant response for the pulse and ramp odor stimulus. These results suggest that the developed model is useful for investigating the coding principle underlying olfactory information processing in insects.
Collapse
|
24
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Clark JT, Ganguly A, Ejercito J, Luy M, Dahanukar A, Ray A. Chemosensory detection of aversive concentrations of ammonia and basic volatile amines in insects. iScience 2022; 26:105777. [PMID: 36594011 PMCID: PMC9804102 DOI: 10.1016/j.isci.2022.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Basic volatiles like ammonia are found in insect environments, and at high concentrations cause an atypical action potential burst, followed by inhibition in multiple classes of olfactory receptor neurons (ORNs) in Drosophila melanogaster. During the period of inhibition, ORNs are unable to fire action potentials to their ligands but continue to display receptor potentials. An increase in calcium is also observed in antennal cells of Drosophila and Aedes aegypti. In the gustatory system, ammonia inhibits sugar and salt responses in a dose-dependent manner. Other amines show similar effects in both gustatory and olfactory neurons, correlated with basicity. The concentrations that inhibit neurons reduce proboscis extension to sucrose in Drosophila. In Aedes, a brief exposure to volatile ammonia abolishes attraction to human skin odor for several minutes. These findings reveal an effect that prevents detection of attractive ligands in the olfactory and gustatory systems and has potential in insect control.
Collapse
Affiliation(s)
- Jonathan Trevorrow Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Anindya Ganguly
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jadrian Ejercito
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew Luy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Corresponding author
| |
Collapse
|
26
|
Yoon S, Shin M, Shim J. Inter-organ regulation by the brain in Drosophila development and physiology. J Neurogenet 2022:1-13. [DOI: 10.1080/01677063.2022.2137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Aymanns F, Chen CL, Ramdya P. Descending neuron population dynamics during odor-evoked and spontaneous limb-dependent behaviors. eLife 2022; 11:e81527. [PMID: 36286408 PMCID: PMC9605690 DOI: 10.7554/elife.81527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Deciphering how the brain regulates motor circuits to control complex behaviors is an important, long-standing challenge in neuroscience. In the fly, Drosophila melanogaster, this is coordinated by a population of ~ 1100 descending neurons (DNs). Activating only a few DNs is known to be sufficient to drive complex behaviors like walking and grooming. However, what additional role the larger population of DNs plays during natural behaviors remains largely unknown. For example, they may modulate core behavioral commands or comprise parallel pathways that are engaged depending on sensory context. We evaluated these possibilities by recording populations of nearly 100 DNs in individual tethered flies while they generated limb-dependent behaviors, including walking and grooming. We found that the largest fraction of recorded DNs encode walking while fewer are active during head grooming and resting. A large fraction of walk-encoding DNs encode turning and far fewer weakly encode speed. Although odor context does not determine which behavior-encoding DNs are recruited, a few DNs encode odors rather than behaviors. Lastly, we illustrate how one can identify individual neurons from DN population recordings by using their spatial, functional, and morphological properties. These results set the stage for a comprehensive, population-level understanding of how the brain's descending signals regulate complex motor actions.
Collapse
Affiliation(s)
- Florian Aymanns
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFLLausanneSwitzerland
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFLLausanneSwitzerland
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFLLausanneSwitzerland
| |
Collapse
|
29
|
Zocchi D, Ye ES, Hauser V, O'Connell TF, Hong EJ. Parallel encoding of CO 2 in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents. Curr Biol 2022; 32:4225-4239.e7. [PMID: 36070776 PMCID: PMC9561050 DOI: 10.1016/j.cub.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dhruv Zocchi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily S Ye
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Virginie Hauser
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Devineni AV. Sensory biology: Olfactory crosstalk reshapes odor coding. Curr Biol 2022; 32:R1002-R1005. [PMID: 36220084 DOI: 10.1016/j.cub.2022.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New research uncovers a novel form of crosstalk between olfactory pathways in the antennal lobe, the first olfactory center of the fly brain. This crosstalk reshapes odor coding and may explain how carbon dioxide can elicit either attraction or aversion.
Collapse
Affiliation(s)
- Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Nebapure SM, Shankarganesh K, Rajna S, Naga KC, Pandey D, Gambhir S, Praveen KV, Subramanian S. Dynamic changes in virus-induced volatiles in cotton modulate the orientation and oviposition behavior of the whitefly Bemisia tabaci. Front Physiol 2022; 13:1017948. [PMID: 36299257 PMCID: PMC9589893 DOI: 10.3389/fphys.2022.1017948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of insect vector behavior by virus-induced plant volatiles is well known. But how the viral disease progression alters the plant volatiles and its effect on vector behavior remains less explored. Our studies tracked changes in volatile profile in progressive infection stages of cotton leaf curl virus (CLCuV) infected plants and their effect on B. tabaci behavior. Significant differences in virus titers were noticed between progressive infection stages showing distinct symptoms. Whiteflies initially settled on CLCuV infected plants, but their preference was shifted to healthy plants over time. GC-MS analysis revealed subtle quantitative/qualitative changes in volatile organic compounds (VOCs) between the healthy and selected CLCuV infection stages. VOCs such as hexanal, (E)-2-hexen-1-ol, (+)-α-pinene, (−)-β-pinene, (Z)-3-hexen-1-ol, (+)-sylvestrene, and (1S,2E,6E, 10R)-3,7,11,11-tetramethylbicycloundeca-2,6-diene (Bicyclogermacrene) were associated with the infection stage showing upward curling of leaves; (E)-2-hexen-1-ol, β-myrcene, β-ocimene, and copaene were associated with the infection stage showing downward curling. Validation studies with eight synthetic VOCs indicated that γ-terpinene elicited attraction to B. tabaci (Olfactometric Preference Index (OPI) = 1.65), while β-ocimene exhibited strong repellence (OPI = 0.64) and oviposition reduction (66.01%–92.55%). Our studies have demonstrated that progression of CLCuV disease in cotton was associated with dynamic changes in volatile profile which influences the behavioural responses of whitefly, B.tabaci. Results have shown that VOCs such as (+)-α-pinene, (−)-β-pinene γ-Terpinene, α-guaiene; 4- hydroxy- 4 methyl-2- pentanone and β-ocimene emitted from Begomovirus infected plants could be the driving force for early attraction and later repellence/oviposition deterrence of B. tabaci on virus-infected plants. The findings of this study offer scope for the management of whitefly, B. tabaci through semiochemicals.
Collapse
Affiliation(s)
| | - Karuppan Shankarganesh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, India
| | - Salim Rajna
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Shubham Gambhir
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sabtharishi Subramanian
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sabtharishi Subramanian,
| |
Collapse
|
32
|
Herre M, Goldman OV, Lu TC, Caballero-Vidal G, Qi Y, Gilbert ZN, Gong Z, Morita T, Rahiel S, Ghaninia M, Ignell R, Matthews BJ, Li H, Vosshall LB, Younger MA. Non-canonical odor coding in the mosquito. Cell 2022; 185:3104-3123.e28. [PMID: 35985288 PMCID: PMC9480278 DOI: 10.1016/j.cell.2022.07.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Olivia V Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriela Caballero-Vidal
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Yanyan Qi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary N Gilbert
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Zhongyan Gong
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Saher Rahiel
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Majid Ghaninia
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nat Commun 2022; 13:3814. [PMID: 35780140 PMCID: PMC9250499 DOI: 10.1038/s41467-022-31253-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Birds, reptiles and insects have the ability to discriminate humidity levels that influence their survival and geographic distribution. Insects are particularly susceptible to humidity changes due to high surface area to volume ratios, but it remains unclear how humidity sensors transduce humidity signals. Here we identified Or42b-expressing olfactory sensory neurons, which are required for moisture attraction in Drosophila. The sensilla housing Or42b neurons show cuticular deformations upon moist air stimuli, indicating a conversion of humidity into mechanical force. Accordingly, we found Or42b neurons directly respond to humidity changes and rely on the mechanosensitive ion channel TMEM63 to mediate humidity sensing (hygrosensation). Expressing human TMEM63B in Tmem63 mutant flies rescued their defective phenotype in moisture attraction, demonstrating functional conservation. Thus, our results reveal a role of Tmem63 in hygrosensation and support the strategy to detect humidity by transforming it into a mechanical stimulus, which is unique in sensory transduction.
Collapse
|
34
|
Tao L, Bhandawat V. Mechanisms of Variability Underlying Odor-Guided Locomotion. Front Behav Neurosci 2022; 16:871884. [PMID: 35600988 PMCID: PMC9115574 DOI: 10.3389/fnbeh.2022.871884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation. We review these sources of variability in the context of the Drosophila olfactory system. While these sources of variability are important, using a model for locomotion, we show that another important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| | - Vikas Bhandawat
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A, Younger MA, Matthews BJ, Merhof D, Thiberge S, Ignell R, Strauch M, McBride CS. Mosquito brains encode unique features of human odour to drive host seeking. Nature 2022; 605:706-712. [PMID: 35508661 PMCID: PMC9725754 DOI: 10.1038/s41586-022-04675-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
A globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient disease vector1. Host-seeking female mosquitoes strongly prefer human odour over the odour of animals2,3, but exactly how they distinguish between the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components4-7, making discrimination an interesting sensory coding challenge. Here we show that human and animal odours evoke activity in distinct combinations of olfactory glomeruli within the Ae. aegypti antennal lobe. One glomerulus in particular is strongly activated by human odour but responds weakly, or not at all, to animal odour. This human-sensitive glomerulus is selectively tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in human odour and which probably originate from unique human skin lipids. Using synthetic blends, we further demonstrate that signalling in the human-sensitive glomerulus significantly enhances long-range host-seeking behaviour in a wind tunnel, recapitulating preference for human over animal odours. Our research suggests that animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals targets for the design of next-generation mosquito-control strategies.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Jessica L Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Annika Hinze
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexis L Kriete
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Graduate Program in Entomology, North Carolina State University, Raleigh, NC, USA
| | - Azwad Iqbal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Stephan Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
36
|
Honda T. Optogenetic and thermogenetic manipulation of defined neural circuits and behaviors in Drosophila. Learn Mem 2022; 29:100-109. [PMID: 35332066 PMCID: PMC8973390 DOI: 10.1101/lm.053556.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Neural network dynamics underlying flexible animal behaviors remain elusive. The fruit fly Drosophila melanogaster is considered an excellent model in behavioral neuroscience because of its simple neuroanatomical architecture and the availability of various genetic methods. Moreover, Drosophila larvae's transparent body allows investigators to use optical methods on freely moving animals, broadening research directions. Activating or inhibiting well-defined events in excitable cells with a fine temporal resolution using optogenetics and thermogenetics led to the association of functions of defined neural populations with specific behavioral outputs such as the induction of associative memory. Furthermore, combining optogenetics and thermogenetics with state-of-the-art approaches, including connectome mapping and machine learning-based behavioral quantification, might provide a complete view of the experience- and time-dependent variations of behavioral responses. These methodologies allow further understanding of the functional connections between neural circuits and behaviors such as chemosensory, motivational, courtship, and feeding behaviors and sleep, learning, and memory.
Collapse
Affiliation(s)
- Takato Honda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
He J, Tuo W, Zhang X, Dai Y, Fang M, Zhou T, Xiu M, Liu Y. Olfactory Senses Modulate Food Consumption and Physiology in Drosophila melanogaster. Front Behav Neurosci 2022; 16:788633. [PMID: 35431829 PMCID: PMC9011337 DOI: 10.3389/fnbeh.2022.788633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Both sensory and metabolic processes guide food intake. Olfactory inputs help coordinate food appreciation and selection, but their role in food consumption and post-feeding physiology remains poorly understood. In this study, using Drosophila melanogaster as a model system, we investigated the effects of olfactory sensory neurons (OSNs) on food consumption, metabolism, and stress responses. We found that dysfunction of OSNs affects diverse processes, including decreased food consumption, increased triacylglycerol level, enhanced stress resistance to starvation or desiccation, and decreased cold resistance. Decreased neuropeptide F receptor (NPFR) level or increased insulin activity in OSNs inhibited food consumption, while impaired NPF signaling or insulin signaling in OSNs increased resistance to starvation and desiccation. These studies provide insights into the function of the olfactory system in control of feeding behaviors and physiology.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Wenjuan Tuo
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ming Fang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Minghui Xiu,
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Yongqi Liu,
| |
Collapse
|
38
|
Characterizations of botanical attractant of Halyomorpha halys and selection of relevant deorphanization candidates via computational approach. Sci Rep 2022; 12:4170. [PMID: 35264639 PMCID: PMC8907264 DOI: 10.1038/s41598-022-07840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Halyomorpha halys has been recognized as a global cross-border pest species. Along with well-established pheromone trapping approaches, there have been many attempts to utilize botanical odorant baits for field monitoring. Due to sensitivity, ecological friendliness, and cost-effectiveness for large-scale implementation, the selection of botanical volatiles as luring ingredients and/or synergists for H. halys is needed. In the current work, botanical volatiles were tested by olfactometer and electrophysiological tests. Results showed that linalool oxide was a potential candidate for application as a behavioral modifying chemical. It drove remarkable attractiveness toward H. halys adults in Y-tube assays, as well as eliciting robust electroantennographic responsiveness towards antennae. A computational pipeline was carried out to screen olfactory proteins related to the reception of linalool oxide. Simulated docking activities of four H. halys odorant receptors and two odorant binding proteins to linalool oxide and nerolidol were performed. Results showed that all tested olfactory genes were likely to be involved in plant volatile-sensing pathways, and they tuned broadly to tested components. The current work provides insights into the later development of field demonstration strategies using linalool oxide and its molecular targets.
Collapse
|
39
|
Gupta A, Singh SS, Mittal AM, Singh P, Goyal S, Kannan KR, Gupta AK, Gupta N. Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. iScience 2022; 25:103938. [PMID: 35265812 PMCID: PMC8899409 DOI: 10.1016/j.isci.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
Many experimental studies have examined behavioral and electrophysiological responses of mosquitoes to odors. However, the differences across studies in data collection, processing, and reporting make it difficult to perform large-scale analyses combining data from multiple studies. Here we extract and standardize data for 12 mosquito species, along with Drosophila melanogaster for comparison, from over 170 studies and curate the Mosquito Olfactory Response Ensemble (MORE), publicly available at https://neuralsystems.github.io/MORE. We demonstrate the ability of MORE in generating biological insights by finding patterns across studies. Our analyses reveal that ORs are tuned to specific ranges of several physicochemical properties of odorants; the empty-neuron recording technique for measuring OR responses is more sensitive than the Xenopus oocyte technique; there are systematic differences in the behavioral preferences reported by different types of assays; and odorants tend to become less attractive or more aversive at higher concentrations. MORE is a database of behavioral and electrophysiological responses to odors MORE includes data from 170 studies covering 12 species of mosquitoes along with flies MORE shows differences in odor preferences measured with different assays Empty-neuron technique measures responses more sensitively than the oocyte technique
Collapse
|
40
|
Abstract
Are olfactory receptor neurons (ORNs) arranged in a functionally meaningful manner to facilitate information processing? Here, we address this long-standing question by uncovering a valence map in the olfactory periphery of Drosophila. Within sensory hairs, we find that neighboring ORNs antagonistically regulate behaviors: stereotypically compartmentalized large- and small-spike ORNs, recognized by their characteristic spike amplitudes, either promote or inhibit the same type of behavior, respectively. Systematic optogenetic and thermogenetic assays—covering the majority of antennal sensilla—highlight a valence-opponent organization. Critically, odor-mixture behavioral experiments show that lateral inhibition between antagonistic ORNs mediates robust behavioral decisions in response to countervailing cues. Computational modeling predicts that the robustness of behavioral output depends on odor mixture ratios. A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.
Collapse
|
41
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
42
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
43
|
Patel R, Hallem EA. Olfaction: One receptor drives opposite behaviors. Curr Biol 2022; 32:R93-R96. [PMID: 35077699 DOI: 10.1016/j.cub.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many odorants are attractive at low concentrations but repulsive at higher concentrations. A new study demonstrates that, in Caenorhabditis elegans, a single odorant receptor acts in two different neuron pairs to mediate both attractive and repulsive responses to an odorant.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
45
|
Rubene D, Urhan U, Ninkovic V, Brodin A. Great Tits Learn Odors and Colors Equally Well, and Show No Predisposition for Herbivore-Induced Plant Volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.800057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ability to efficiently localize productive foraging habitat is crucial for nesting success of insectivorous birds. Some bird species can use olfaction to identify caterpillar-infested trees by detection of herbivore induced plant volatiles (HIPVs), but these cues probably need to be learned. So far, we know very little about the process of olfactory learning in birds, whether insectivorous species have a predisposition for detecting and learning HIPVs, due to the high ecological significance of these odors, and how olfaction is integrated with vision in making foraging decisions. In a standardized setup, we tested whether 35 wild-caught great tits (Parus major) show any preference for widely abundant HIPVs compared to neutral (non-induced) plant odors, how fast they learn to associate olfactory, visual and multimodal foraging cues with food, and whether the olfactory preferences and learning speed were influenced by bird sex or habitat (urban or rural). We also tested how fast birds switch to a new cue of the same modality. Great tits showed no initial preference for HIPVs compared to neutral odors, and they learned all olfactory cues at a similar pace, except for methyl salicylate (MeSA), which they learned more slowly. We also found no differences in learning speeds between visual, olfactory and multimodal foraging cues, but birds learned the second cue they were offered faster than the first one. Bird sex or habitat had no effect on learning speed or olfactory preference, but urban birds tended to learn visual cues more slowly. We conclude that insectivorous birds utilize olfactory and visual cues with similar efficiency in foraging, and that they probably don‘t have any special predisposition toward the tested HIPVs. These results confirm that great tits are flexible foragers with good learning abilities.
Collapse
|
46
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
47
|
Takeuchi KI, Honda D, Okumura M, Miura M, Chihara T. Systemic innate immune response induces death of olfactory receptor neurons in Drosophila. Genes Cells 2021; 27:113-123. [PMID: 34921694 DOI: 10.1111/gtc.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Neural functions are known to decline during normal aging and neurodegenerative diseases. However, the mechanisms of functional impairment owing to the normal aging of the brain are poorly understood. Previously, we reported that caspase-3-like protease, the protease responsible for inducing apoptosis, is activated in a subset of olfactory receptor neurons (ORNs), especially in Drosophila Or42b neurons, during normal aging. Herein, we investigated the molecular mechanism underlying age-related caspase-3-like protease activation and cell death in Or42b neurons. Gene expression profiling of young and aged fly antenna showed that the expression of antimicrobial peptides was significantly upregulated, suggesting an activated innate immune response. Consistent with this observation, inhibition or activation of the innate immune pathway caused delayed or precocious cell death, respectively, in Or42b neurons. Accordingly, autonomous cell activation of the innate immune pathway in Or42b neurons is not likely required for their age-related death, whereas the systemic innate immune response induces caspase-3-like protease activation in Or42b neurons; this indicated that the death of these neurons is regulated non-cell autonomously. We propose a possible link between the innate immune response and the death of olfactory neurons during normal aging.
Collapse
Affiliation(s)
- Ken-Ichi Takeuchi
- Department of Genetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
48
|
Mrisho LM, Maeda DG, Ortiz ZM, Ghanavi HR, Legg JP, Stensmyr MC. Influence of Olfaction in Host-Selection Behavior of the Cassava Whitefly Bemisia tabaci. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.775778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cassava is a vital food-security crop in Sub-Saharan Africa. Cassava crops are, however, severely affected by viral diseases transmitted by members of the whitefly species complex Bemisia tabaci. We have here investigated the role of olfaction in host selection behavior of the cassava whitefly B. tabaci SSA-ESA biotype. Surprisingly, we find that the whiteflies appear to make little use of olfaction to find their favored host. The cassava whitely shows a highly reduced olfactory system, both at the morphological and molecular level. Whitefly antennae possess only 15 sensilla with possible olfactory function, and from the genome we identified just a handful of candidate chemoreceptors, including nine tuning odorant receptors, which would afford the whitefly with one of the smallest olfactomes identified from any insect to date. Behavioral experiments with host and non-host plants, as well as with identified specific volatiles from these sources, suggest that the few input channels present are primarily tuned toward the identification of unwanted features, rather than favored ones, a strategy quite unlike most other insects. The demonstrated repellence effect of specific volatile chemicals produced by certain plants unflavored by whiteflies suggests that intercropping with these plants could be a viable strategy to reduce whitefly infestations in cassava fields.
Collapse
|
49
|
Wang Q, Xu P, Sanchez S, Duran P, Andreazza F, Isaacs R, Dong K. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. PEST MANAGEMENT SCIENCE 2021; 77:3698-3705. [PMID: 33442945 DOI: 10.1002/ps.6282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Insects rely on their sense of smell to locate food and hosts, find mates and select sites for laying eggs. Use of volatile compounds, such as essential oils (EOs), to repel insect pests and disrupt their olfaction-driven behaviors has great practical significance in integrated pest management. However, our knowledge on the olfaction-based mechanisms of EO repellency is quite limited. RESULTS We evaluated the repellency of peppermint oil and nine plant EO components in Drosophila melanogaster, a model insect for olfaction study, and D. suzukii, a major fruit crop pest. All nine volatiles, menthone, (-)-menthol, menthyl acetate, (R)-(+)-limonene, nerol, (+)-fenchone, (-)-α-thujone, camphor, norcamphor and peppermint oil, elicited repellency in D. melanogaster in a dose-dependent manner. Most of the compounds, except camphor, also elicited repellency in D. suzukii. Menthone, (R)-(+)-limonene and (+)-fenchone were the most potent repellents against D. suzukii. Repellency was reduced or abolished in two D. melanogaster mutants of the odorant receptor co-receptor (Orco), indicating that the observed repellency is odorant receptor (Or)-mediated. Repellency by peppermint oil, menthone, (R)-(+)-limonene, (-)-α-thujone and norcamphor also involves Or-independent mechanism(s). Single sensillum recording from both species revealed that common and distinct Ors and olfactory receptor neurons were activated by these compounds. CONCLUSIONS The tested plant EO components evoke repellency by activating multiple Ors in both Drosophila species. Our study provides a foundation for further elucidation of the mechanism of EOs repellency and species-specific olfactory adaptations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peng Xu
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Simon Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Phil Duran
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Felipe Andreazza
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
50
|
Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genet 2021; 17:e1009677. [PMID: 34237075 PMCID: PMC8291717 DOI: 10.1371/journal.pgen.1009677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/20/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-β-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum. Pyrethrum extract began to be used as an insect repellent against biting arthropods and blood-sucking mosquitoes since ancient times. However, the mechanisms underlying pyrethrum repellency remains unknown. In this study, we took advantage of Drosophila melanogaster as a model insect system for olfaction studies and conducted a series of electrophysiological, molecular genetic and behavioral experiments to understand the mechanism of pyrethrum repellency in D. melanogaster. We discovered that pyrethrum repels D. melanogaster by activating multiple odorant receptors (Ors). Apparently simultaneous activation of these Ors by various components in pyrethrum extract makes pyrethrum one of the most potent and the longest used insect repellents in the human history.
Collapse
|