1
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
3
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Li B, Zhu G, Kang P, Chen J, He K, Wang X, Gao T, Li C, Li S. Influences of vitiligo-associated characteristics on the occurrence of diabetes mellitus: Interactive analysis of a cross-sectional study. Exp Dermatol 2023; 32:1805-1814. [PMID: 37584091 DOI: 10.1111/exd.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The risk of diabetes mellitus (DM) in vitiligo patients is higher than that in non-vitiligo population. Our goal was to explore the influencing factors for DM in vitiligo patients. A matched-pair design of 107 cases with DM and 428 controls without DM was conducted among vitiligo patients in Xijing hospital from January 2010 to October 2021. The baseline characteristics of patients were analysed based on standard descriptive statistics. The vitiligo-associated characteristics were analysed by logistic regression to identify influencing factors of DM. Interaction analysis was performed to explore the additive interactions between vitiligo-associated characteristics and baseline characteristics. After adjustment for the baseline characteristics, the severity of vitiligo [odds ratio (OR) = 2.47, 95% confidence interval (CI): 1.47-4.14] and onset age of vitiligo (OR = 0.98, 95% CI: 0.97-0.99) had a significant correlation with occurrence of DM. The severity of vitiligo had additive interaction with family history of diabetes [relative excess risk due to interaction (RERI) = 132.51 (95% CI: 5.51-1100.20), attributable proportion (AP) = 0.91 (95% CI: 0.17-0.95), synergy index (S) = 11.53 (95% CI: 1.32-100.5)] and with smoking history [RERI = 6.54 (95% CI: 0.67-19.83), AP = 0.64 (95% CI: 0.04-0.80), S = 3.48 (95% CI: 1.17-10.36)]. Earlier onset age of vitiligo and greater BSA involvement might be two independent risk factors for DM in vitiligo patients. Interaction assessment identified the severity of vitiligo as additive interaction factors with diabetes family history and with smoking history for the DM occurrence.
Collapse
Affiliation(s)
- Baizhang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Zhang SY, Xu QP, Shi LN, Li SW, Wang WH, Wang QQ, Lu LX, Xiao H, Wang JH, Li FY, Liang YM, Gong ST, Peng HR, Zhang Z, Tang H. Soluble CD4 effectively prevents excessive TLR activation of resident macrophages in the onset of sepsis. Signal Transduct Target Ther 2023; 8:236. [PMID: 37332010 DOI: 10.1038/s41392-023-01438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/20/2023] Open
Abstract
T lymphopenia, occurring in the early phase of sepsis in response to systemic inflammation, is commonly associated with morbidity and mortality of septic infections. We have previously shown that a sufficient number of T cells is required to constrain Toll-like receptors (TLRs) mediated hyperinflammation. However, the underlying mechanisms remains unsolved. Herein, we unveil that CD4+ T cells engage with MHC II of macrophages to downregulate TLR pro-inflammatory signaling. We show further that the direct contact between CD4 molecule of CD4+ T cells or the ectodomain of CD4 (soluble CD4, sCD4), and MHC II of resident macrophages is necessary and sufficient to prevent TLR4 overactivation in LPS and cecal ligation puncture (CLP) sepsis. sCD4 serum concentrations increase after the onset of LPS sepsis, suggesting its compensatory inhibitive effects on hyperinflammation. sCD4 engagement enables the cytoplasmic domain of MHC II to recruit and activate STING and SHP2, which inhibits IRAK1/Erk and TRAF6/NF-κB activation required for TLR4 inflammation. Furthermore, sCD4 subverts pro-inflammatory plasma membrane anchorage of TLR4 by disruption of MHC II-TLR4 raft domains that promotes MHC II endocytosis. Finally, sCD4/MHCII reversal signaling specifically interferes with TLR4 but not TNFR hyperinflammation, and independent of the inhibitive signaling of CD40 ligand of CD4+ cells on macrophages. Therefore, a sufficient amount of soluble CD4 protein can prevent excessive inflammatory activation of macrophages via alternation of MHC II-TLR signaling complex, that might benefit for a new paradigm of preventive treatment of sepsis.
Collapse
Affiliation(s)
- Sheng-Yuan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Ping Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Li-Na Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shih-Wen Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Wei-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Qing-Qing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Liao-Xun Lu
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Jun-Hong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Feng-Ying Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China
| | - Yin-Ming Liang
- The Laboratory of Genetic Regulators in The Immune System, Xin-xiang Medical University, Xin-xiang, Henan Province, 453003, China
| | - Si-Tang Gong
- The Joint Center of Translational Medicine, Guangzhou Women and Children's Medical Center and Institut Pasteur of Shanghai, Guangzhou, 510623, China
| | - Hao-Ran Peng
- Department of Microbiology, Naval Medical University, Shanghai, 200433, China.
| | - Zheng Zhang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 210031, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
9
|
Zhang R, Liu Q, Zhou S, He H, Zhao M, Ma W. Mesenchymal stem cell suppresses the efficacy of CAR-T toward killing lymphoma cells by modulating the microenvironment through stanniocalcin-1. eLife 2023; 12:82934. [PMID: 36779699 PMCID: PMC10019890 DOI: 10.7554/elife.82934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
Stem cells play critical roles both in the development of cancer and therapy resistance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on chimeric antigen receptor modified T cell (CAR-T) immunotherapy has been little addressed. Using an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimulated the expression of indoleamine 2,3-dioxygenase and programmed cell death-ligand 1 which contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key components of the NLRP3 inflammasome by modulating mitochondrial reactive oxygen species release. Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the stanniocalcin-1 (STC1) gene, which encodes the glycoprotein hormone STC-1, was knockdown in MSC. Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo, and STC1 played a critical role. These data revealed a novel function of MSC and STC-1 in suppressing CAR-T efficacy, which should be considered in cancer therapy and may also have potential applications in controlling the toxicity arising from the excessive immune response.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Qingxi Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai UniversityTianjinChina
- Qilu Institute of TechnologyShandongChina
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai UniversityTianjinChina
| | - Wenjian Ma
- Qilu Institute of TechnologyShandongChina
- College of Biotechnology, Tianjin University of Science and TechnologyTianjinChina
| |
Collapse
|
10
|
Increase in different peripheral effector T subsets in acute and chronic gout. Transpl Immunol 2023; 76:101763. [PMID: 36436796 DOI: 10.1016/j.trim.2022.101763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Gout (GT) belongs to a group of diseases caused by a purine metabolic disorder. GT is an inflammatory disease caused by the local deposition of uric acid in joints or adjacent tissues. The mechanism of GT is not fully explained, especially the involvement of an immune system. The objective of this study was to investigate the change in peripheral CD4+T subsets in acute and chronic GT patients. METHODS A total of 205 patients with acute and chronic GT and 87 healthy controls (HCs) were enrolled. The medical history improvement, clinical indicators, immune function, and peripheral CD4+T-lymphocyte detected by modified flow cytometry were collected in all subjects. RESULTS Compared with healthy controls, acute and chronic GT patients remarkably increased the absolute counts of T helper type 1 (Th1) cells (P < 0.05) and decreased the absolute number of Treg cells without significant difference (P > 0.05). In addition, the absolute number and percentage of Th1 cells and Th1/T helper type 2 (Th2) ratio increased significantly, and the ratio of Th2 cells decreased in patients with chronic GT compared to patients with acute GT (P < 0.05). The results of Spearman correlation analysis showed a notably negative correlation between the level of CRP and the absolute counts of peripheral Th1 and Th17 cells in patients with GT, while the levels of CD4+T sunsets had no significant correlation with ESR and uric acid. The course of the disease, the absolute number of Th1 cells, the percentage of Th1 cells and the ratio of Th1/Th2 cells were significantly associated with the progression of the disease, and the course of the disease was an independent risk factor for patients with chronic GT. CONCLUSION The balance of Th1 and Th2 were involved throughout the whole stages of GT, Th17 cells then become involved in the disease process as the disease progresses.
Collapse
|
11
|
Feng W, Zhang Y, Sun P, Xiao M. Acquired immunity and Alzheimer's disease. J Biomed Res 2023; 37:15-29. [PMID: 36165328 PMCID: PMC9898041 DOI: 10.7555/jbr.36.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail:
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
12
|
Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. Int Immunopharmacol 2022; 110:109012. [DOI: 10.1016/j.intimp.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
13
|
Channappanavar R, Selvaraj M, More S, Perlman S. Alveolar macrophages protect mice from MERS-CoV-induced pneumonia and severe disease. Vet Pathol 2022; 59:627-638. [PMID: 35499307 DOI: 10.1177/03009858221095270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Emerging and re-emerging human coronaviruses (hCoVs) cause severe respiratory illness in humans, but the basis for lethal pneumonia in these diseases is not well understood. Alveolar macrophages (AMs) are key orchestrators of host antiviral defense and tissue tolerance during a variety of respiratory infections, and AM dysfunction is associated with severe COVID-19. In this study, using a mouse model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, we examined the role of AMs in MERS pathogenesis. Our results show that depletion of AMs using clodronate (CL) liposomes significantly increased morbidity and mortality in human dipeptidyl peptidase 4 knock-in (hDPP4-KI) mice. Detailed examination of control and AM-depleted lungs at different days postinfection revealed increased neutrophil activity but a significantly reduced MERS-CoV-specific CD4 T-cell response in AM-deficient lungs during later stages of infection. Furthermore, enhanced MERS severity in AM-depleted mice correlated with lung inflammation and lesions. Collectively, these data demonstrate that AMs are critical for the development of an optimal virus-specific T-cell response and controlling excessive inflammation during MERS-CoV infection.
Collapse
Affiliation(s)
| | | | - Sunil More
- Oklahoma State University, Stillwater, OK
| | | |
Collapse
|
14
|
Perner C, Krüger E. Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 2022; 13:859703. [PMID: 35572517 PMCID: PMC9092946 DOI: 10.3389/fimmu.2022.859703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuronal cells are specialists for rapid transfer and translation of information. Their electrical properties relay on a precise regulation of ion levels while their communication via neurotransmitters and neuropeptides depends on a high protein and lipid turnover. The endoplasmic Reticulum (ER) is fundamental to provide these necessary requirements for optimal neuronal function. Accumulation of misfolded proteins in the ER lumen, reactive oxygen species and exogenous stimulants like infections, chemical irritants and mechanical harm can induce ER stress, often followed by an ER stress response to reinstate cellular homeostasis. Imbedded between glial-, endothelial-, stromal-, and immune cells neurons are constantly in communication and influenced by their local environment. In this review, we discuss concepts of tissue homeostasis and innate immunity in the central and peripheral nervous system with a focus on its influence on ER stress, the unfolded protein response, and implications for health and disease.
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Lam M, Mansell A, Tate MD. Another One Fights the Dust - Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. Am J Respir Cell Mol Biol 2022; 66:601-611. [PMID: 35290170 DOI: 10.1165/rcmb.2021-0545tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is a multifaceted lung disease, characterised by persistent inflammation and structural remodelling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent pre-clinical findings in models of lung fibrosis have suggested a major role for the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome in silica-driven inflammation and fibrosis. This review outlines the beneficial effects of targeting the NLRP3 inflammasome in in vitro cell experiments and in in vivo animal models, whereby inflammation and fibrosis are abrogated following NLRP3 inflammasome inhibition. While preclinical evidence is promising, studies which explore NLRP3 inflammasomes in the clinical setting are warranted. In particular, there is still a need to identify biomarkers which may be helpful for the early detection of silicosis and to fully elucidate mechanisms underlying these beneficial effects to further develop or repurpose existing anti-NLRP3 drugs as novel treatments that limit disease progression.
Collapse
Affiliation(s)
- Maggie Lam
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University , Department of Molecular and Translational Sciences, Clayton, Victoria, Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash Univerisity, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia.,Adiso Therapeutics Inc, Concord, Massachusetts, United States
| | - Michelle D Tate
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia;
| |
Collapse
|
16
|
Mao J, Ma X, Zhu J, Zhang H. Ginsenoside Rg1 ameliorates psoriasis-like skin lesions by suppressing proliferation and NLRP3 inflammasomes in keratinocytes. J Food Biochem 2022; 46:e14053. [PMID: 35218026 DOI: 10.1111/jfbc.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
As a common chronic skin disease, psoriasis is characterized by the involvement of congenital acquired inflammatory immune diseases. In the study, our results indicated the effect of ginsenoside Rg1 on psoriasis-like skin and the potential protection mechanisms that have not yet been investigated. In vivo, psoriasis-like skin mice model was induced by imiquimod (IMQ), then was treated by ginsenoside Rg1 for consecutive 4 weeks to evaluate its effect, respectively. In vitro, M5 cocktail treatment of human immortalized keratinocyte HaCaT-induced psoriasis-like skin cell model, which was exposed to ginsenoside Rg1. The inflammatory cell infiltration, expression level of keratinocyte proliferation marker Ki67, keratinocyte proliferation, inflammatory cytokines, and ROS/NLRP3 pathway-related proteins in vivo and in vitro were examined by hematoxylin and eosin, immunohistochemistry, ELISA, CCK-8, flow cytometry, and western blot. All results demonstrated that ginsenoside Rg1 attenuated the injury of psoriasis-like skin, which inhibited the proliferation of skin keratinocytes and the activation of NLRP3 inflammasome and the level of inflammatory factors such as IL-1β and IL-18, and decreased the level of Ki67, NLRP3, and caspase-1 in mice and HaCaT. Furthermore, NLRP3 overexpression attenuates the effect of ginsenoside Rg1 on M5 cocktail-induced proliferation and NLRP3 inflammasomes in HaCaT. These results demonstrated that ginsenoside Rg1 could suppress the ROS/NLRP3 pathway to treat psoriasis-like skin. PRACTICAL APPLICATIONS: This is the very first study to explore the efficacy of ginsenoside Rg1 against psoriasis-like skin lesions to reveal the underlying mechanism. In this paper, the detection of skin histopathological analysis, CCK-8, flow cytometry, western blot, and ELISA analysis shows that ginsenoside Rg1 has preventive effect on psoriasis caused by imiquimod or M5 cocktail through inhibiting NLRP3 inflammasome, which helps in the development of novel nutraceutical/functional food against psoriasis and thus could improve the quality of life in psoriasis patients.
Collapse
Affiliation(s)
- Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Xin Ma
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Jiong Zhu
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
18
|
Wang L, Pu W, Wang C, Lei L, Li H. Microtubule affinity regulating kinase 4 promoted activation of the NLRP3 inflammasome-mediated pyroptosis in periodontitis. J Oral Microbiol 2022; 14:2015130. [PMID: 34992737 PMCID: PMC8725745 DOI: 10.1080/20002297.2021.2015130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Microtubule dynamics plays a crucial role in the spatial arrangement of cell organelles and activation of the NLRP3 inflammasome. Purpose This study aimed to explore whether microtubule affinity regulating kinase 4 (MARK4) can be a therapeutic target of periodontitis by affecting microtubule dynamics and NLRP3 inflammasome-mediated pyroptosis in macrophages. Materials and Methods The NLRP3 inflammasome-related genes and MARK4 were measured in the healthy and inflamed human gingival tissues. Bone marrow-derived macrophages (BMDMs) were infected with Porphyromonas gingivalis, while the MARK4 inhibitors (OTSSP167 and Compound 50) and small interference RNA were utilized to restrain MARK4. Apoptosis-associated speck-like protein (ASC) speck was detected by confocal, and levels of interleukin-1β (IL-1β), as well as IL-18, were assessed by ELISA. Results Increased staining and transcription of MARK4, NLRP3, ASC, and Caspase-1 were observed in the inflamed gingiva. P. gingivalis infection promoted MARK4 expression and the NLRP3 inflammasome in BMDMs. Inhibition of MARK4 decreased LDH release, IL-1β and IL-18 production, ASC speck formation, and the pyroptosis-related genes transcription. Furthermore, MARK4 inhibition reduced microtubule polymerization and acetylation in P. gingivalis-infected BMDMs. Conclusions MARK4 promoted NLRP3 inflammasome activation and pyroptosis in P. gingivalis-infected BMDMs by affecting microtubule dynamics. MARK4 inhibition might be a potential target in regulating the NLRP3 inflammasome during periodontitis progress.
Collapse
Affiliation(s)
- Lulu Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenchen Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Shi W, Meng Z, Luo J. Connexin 43 (Cx43) regulates high-glucose-induced retinal endothelial cell angiogenesis and retinal neovascularization. Front Endocrinol (Lausanne) 2022; 13:909207. [PMID: 36120455 PMCID: PMC9478119 DOI: 10.3389/fendo.2022.909207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of type 1 and type 2 diabetes mellitus (DM) and a major cause of blindness. Retinal neovascularization plays a critical role in the proliferative DR. In this study, high glucose-induced connexin 43 (Cx43) expression in human retinal endothelial cells (hRECs) in a dose-dependent manner. Compared with hRECs under normal culture conditions, high-glucose (HG)-stimulated hRECs showed promoted tubule formation, increased ROS release, and elevated levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), vascular endothelial growth factor A (VEGFA), and intercellular adhesion molecule 1 (ICAM-1) in the culture medium. HG-induced alterations were further magnified after Cx43 overexpression, whereas partially eliminated after Cx43 knockdown. Finally, in the DR mouse model, impaired retinal structure, increased CD31 expression, and elevated mRNA levels of TNF-α, IL-1β, VEGFA, and ICAM-1 were observed; in-vivo Cx43 knockdown partially reversed these phenomena. Conclusively, Cx43 knockdown could inhibit hREC angiogenesis, therefore improving DR in the mouse model.
Collapse
Affiliation(s)
- Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
20
|
Wang D, Jiang Y, Song Y, Zeng Y, Li C, Wang X, Liu Y, Xiao J, Kong Y, Zhao H. Altered T-Cell Subsets are Associated with Dysregulated Cytokine Secretion of CD4 + T Cells During HIV Infection. J Inflamm Res 2021; 14:5149-5163. [PMID: 34675594 PMCID: PMC8504938 DOI: 10.2147/jir.s333902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background CD4+ T cells play a critical role in the regulation of immunopathogenesis in HIV infection. Previous studies have shown contradictory results of the CD4+ T-cell responses in people living with HIV (PLHIV). Methods A cross-sectional study was performed on 40 healthy controls, 134 ART-naïve PLHIV, and 34 individuals who experienced 3-year ART with low baseline CD4 count from 4 August 2016 to 23 January 2019. We determined the frequencies of CD4+ T-cell subsets and described the cytokine secretion pattern of total and subsets of CD4+ T cells in these individuals. Results We found that CD4+ T cells in PLHIV displayed enhanced secretion of pro-inflammation cytokines and polyfunctionality due to HIV disease progression (r = -0.282, P = 0.0035 for IFN-γ; r = -0.412, P = 0.0002 for TNF-α; r = -0.243, P < 0.0001 for GM-CSF; r = -0.252, P = 0.0093 for IFN-γ+ TNF-α+ cells). However, the altered T-cell subsets, as presented by the loss of naïve cells and expansion of memory/effector population in PLHIV, were associated with discordant results in total and subsets of CD4+ T cells. As major cytokine-producing T subsets, effector/memory CD4 subsets showed impaired cytokine production (P < 0.05). We further demonstrated that 3-year ART treatment could improve CD4 counts by increasing the pool of naïve T cells but could not restore cytokine secretion in CD4+ T-cell subsets (P < 0.05). Conclusion These data identified the impaired capacity of cytokine secretion in CD4+ T-cell subsets due to HIV disease progression, and the altered T-cell subsets were associated with pseudo-elevation of cytokine production in total CD4+ T cells. This study collectively suggested the importance of therapies that can preserve and/or enhance the function of CD4+ T cells in strategies of HIV remission.
Collapse
Affiliation(s)
- Di Wang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yangzi Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cuilin Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Liu
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiang Xiao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Tan Y, Liu X, Yu X, Shen T, Wang Z, Luo Z, Luo X, Yang X. Lack of lymphocytes exacerbate heat stroke severity in male mice through enhanced inflammatory response. Int Immunopharmacol 2021; 101:108206. [PMID: 34626875 DOI: 10.1016/j.intimp.2021.108206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023]
Abstract
Though it has long been thought that the immune system is implicated in the pathophysiology of heat stroke, the underlying mechanisms are still poorly understood. As it has been reported in the literature that lymphocyte disturbance occurs in heat stroke patients or animals, we attempted to seek experimental evidence to define the role of lymphocytes in the pathophysiology of heat stroke. In our study, we used male Balb/c mice to establish a passive heat stroke model. We found that lymphocyte-deficient Severe combined immunodeficient (SCID) mice exposed to heat stress exhibited exacerbated heat stroke severity, which could be indicated by increased rates of mortality and serum levels of inflammatory cytokines compared to wildtype control mice. We further showed, through the depletion of T lymphocytes in wildtype mice and the transfer of wildtype lymphocytes into SCID mice, respectively, that T lymphocytes were both necessary and sufficient to alleviate the severity of heat stroke by inhibiting the early inflammatory response. Moreover, we found that the severity of heat injuries in heat-stressed wildtype mice showed great inter-individual variability, and the early number of T lymphocytes could be negatively associated with the severity of heat stroke. Our results suggest that lack of T lymphocytes could exacerbate the severity of heat stroke by augmenting inflammatory response, and the early circulating T lymphocytes may serve as a potential biomarker for the diagnosis of heat stroke.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xiaoqian Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xueting Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tingting Shen
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zeze Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
22
|
Rice TF, Diavatopoulos DA, Guo Y, Donaldson B, Bouqueau M, Bosanquet A, Barnett S, Holder B, Kampmann B. Modification of innate immune responses to Bordetella pertussis in babies from pertussis vaccinated pregnancies. EBioMedicine 2021; 72:103612. [PMID: 34649076 PMCID: PMC8517834 DOI: 10.1016/j.ebiom.2021.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Tetanus, diphtheria, acellular pertussis, inactivated polio (Tdap-IPV) vaccines administered during pregnancy protect young infants from Bordetella pertussis (B. pertussis) infection. Whilst the impact of maternal Tdap-IPV vaccination on infants' humoral response to subsequent pertussis immunisation has been investigated, little is known about any impact on innate responses. METHODS We investigated the immune response to B. pertussis in mothers and infants from Tdap-IPV-vaccinated and unvaccinated pregnancies, utilising a whole blood assay and flow cytometric phenotyping of neonatal natural killer (NK) cells, monocytes and dendritic cells. Blood was collected from mother and umbilical cord at birth, and from infants at seven weeks (one week pre-primary pertussis immunisation) and five months of age (one month post-primary pertussis immunisation). 21 mothers and 67 infants were studied. FINDINGS Vaccinated women had elevated pro-inflammatory cytokine responses to B. pertussis. At birth, babies of vaccinated women had elevated IL-2 and IL-12 responses, elevated classical monocyte proportions, and reduced monocyte and NK cell cytokine responses. The elevated IL-2 response persisted to seven weeks-of-age, when lower IL-10 and IL-13 responses were also seen. One-month post-primary pertussis vaccination, infants from vaccinated pregnancies still had lower IL-10 responses to B. pertussis, as well as lower IL-4. INTERPRETATION This study suggests that pertussis vaccination during pregnancy impacts infant cellular immune responses, potentially contributing to the modification of antibody responses already reported following primary immunisation against B. pertussis. FUNDING National Institute for Health Research Imperial Biomedical Research Centre and IMmunising PRegnant women and INfants neTwork (funded by the GCRF Networks in Vaccines R&D).
Collapse
Affiliation(s)
- Thomas F Rice
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK; Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yanping Guo
- National Heart and Lung Institute (NHLI), Imperial College London, UK
| | - Beverly Donaldson
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Marielle Bouqueau
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Anna Bosanquet
- Section of Paediatrics, Department of Medicine, Imperial College London, UK
| | - Sara Barnett
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK
| | - Beth Holder
- Department of Metabolism, Development and Reproduction (MDR), Lecturer in Maternal and Fetal Health, Imperial College London, Institute of Reproductive and Developmental Biology (IRDB), Hammersmith Campus, London W12 0HS, UK; Section of Paediatrics, Department of Medicine, Imperial College London, UK.
| | - Beate Kampmann
- Section of Paediatrics, Department of Medicine, Imperial College London, UK; The Vaccine Centre, London School of Hygiene and Tropical Medicine, UK; Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Gambia
| |
Collapse
|
23
|
Makkar R, Behl T, Bungau S, Kumar A, Arora S. Understanding the Role of Inflammasomes in Rheumatoid Arthritis. Inflammation 2021; 43:2033-2047. [PMID: 32712858 DOI: 10.1007/s10753-020-01301-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammasomes are the molecular pathways that activate upon conditions of infection or stress and trigger the activation and maturation of inflammatory cytokines. Immune reactions in conjugation with inflammatory processes play a pivotal role in developing innumerable diseases. An over reactive immune system fabricates many allergic and hypersensitive reactions in response to autoantibodies activated against modified self-epitopes and similar molecules. Rheumatoid arthritis (RA) is a complex autoimmune inflammatory disorder commencing with inflammation in small joints like hands, knees, and wrist eventually entrapping larger joints such as spine. The formation of autoantibodies called rheumatoid factor (RF) and citrullinated proteins against immunoglobulin G symbolizes autoimmune nature of the disease. The presence of autoantibodies embarks principal diagnostic hallmark of the disease. With the advancement of technology, the therapeutic approach is also advancing. A new era of molecules, namely inflammasomes, are activated upon infection or in response to stress and trigger the activation of various proinflammatory cytokines such interleukins which engage in the defense mechanism of the innate immunity. Robust linking among the activity of dysregulated inflammasomes and the heritable acquired inflammatory diseases and disorders emphasizes the significance of this pathway in altering the immune responses. The current review highlights the functioning of inflammasomes and their possible role in disease dysregulation.
Collapse
Affiliation(s)
- Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
24
|
Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021; 28:251-261. [PMID: 33901136 PMCID: PMC8169640 DOI: 10.1097/moh.0000000000000658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hematopoiesis is co-regulated by innate immunity, which is an ancient evolutionary defense mechanism also involved in the development and regeneration of damaged tissues. This review seeks to shed more light on the workings of the Nlrp3 inflammasome, which is an intracellular innate immunity pattern recognition receptor and sensor of changes in the hematopoietic microenvironment, and focus on its role in hematopoieisis. RECENT FINDINGS Hematopoietic stem progenitor cells (HSPCs) are exposed to several external mediators of innate immunity. Moreover, since hemato/lymphopoietic cells develop from a common stem cell, their behavior and fate are coregulated by intracellular innate immunity pathways. Therefore, the Nlrp3 inflammasome is functional both in immune cells and in HSPCs and affects hematopoiesis in either a positive or negative way, depending on its activity level. Specifically, while a physiological level of activation regulates the trafficking of HSPCs and most likely maintains their pool in the bone marrow, hyperactivation may lead to irreversible cell damage by pyroptosis and HSPC senescence and contribute to the origination of myelodysplasia and hematopoietic malignancies. SUMMARY Modulation of the level of Nrp3 inflammasome activation will enable improvements in HSPC mobilization, homing, and engraftment strategies. It may also control pathological activation of this protein complex during HSPC senescence, graft-versus-host disease, the induction of cytokine storms, and the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| |
Collapse
|
25
|
Castejón ML, Montoya T, Alarcón-de-la-Lastra C, González-Benjumea A, Vázquez-Román MV, Sánchez-Hidalgo M. Dietary oleuropein and its acyl derivative ameliorate inflammatory response in peritoneal macrophages from pristane-induced SLE mice via canonical and noncanonical NLRP3 inflammasomes pathway. Food Funct 2021; 11:6622-6631. [PMID: 32656558 DOI: 10.1039/d0fo00235f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease without an effective and safe treatment. Besides, macrophages are the major components of the innate immune system and play a critical role in the inflammation process in SLE. Secoiridoids from olive tree are phenolic compounds which have shown important pharmacological effects. Particularly, oleuropein (OL) has shown antioxidant, anti-inflammatory and immunomodulatory properties suggesting a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. In addition, different studies have shown the importance of acyl derivatives of natural phenols due to their better hydrophilic/lipophilic balance.
Collapse
Affiliation(s)
- M L Castejón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - T Montoya
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | - A González-Benjumea
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - M V Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, Seville, Spain
| | - M Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
26
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
27
|
Jones E, Sheng J, Carlson J, Wang S. Aging-induced fragility of the immune system. J Theor Biol 2021; 510:110473. [PMID: 32941914 PMCID: PMC7487974 DOI: 10.1016/j.jtbi.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
The adaptive and innate branches of the vertebrate immune system work in close collaboration to protect organisms from harmful pathogens. As an organism ages its immune system undergoes immunosenescence, characterized by declined performance or malfunction in either immune branch, which can lead to disease and death. In this study we develop a mathematical framework of coupled innate and adaptive immune responses, namely the integrated immune branch (IIB) model. This model describes dynamics of immune components in both branches, uses a shape-space representation to encode pathogen-specific immune memory, and exhibits three steady states - health, septic death, and chronic inflammation - qualitatively similar to clinically-observed immune outcomes. In this model, the immune system (initialized in the health state) is subjected to a sequence of pathogen encounters, and we use the number of prior pathogen encounters as a proxy for the "age" of the immune system. We find that repeated pathogen encounters may trigger a fragility in which any encounter with a novel pathogen will cause the system to irreversibly switch from health to chronic inflammation. This transition is consistent with the onset of "inflammaging", a condition observed in aged individuals who experience chronic low-grade inflammation even in the absence of pathogens. The IIB model predicts that the onset of chronic inflammation strongly depends on the history of encountered pathogens; the timing of onset differs drastically when the same set of infections occurs in a different order. Lastly, the coupling between the innate and adaptive immune branches generates a trade-off between rapid pathogen clearance and a delayed onset of immunosenescence. Overall, by considering the complex feedback between immune compartments, our work suggests potential mechanisms for immunosenescence and provides a theoretical framework at the system level and on the scale of an organism's lifetime to account for clinical observations.
Collapse
Affiliation(s)
- Eric Jones
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Jiming Sheng
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Jean Carlson
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| | - Shenshen Wang
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Dai XY, Li XW, Zhu SY, Li MZ, Zhao Y, Talukder M, Li YH, Li JL. Lycopene Ameliorates Di(2-ethylhexyl) Phthalate-Induced Pyroptosis in Spleen via Suppression of Classic Caspase-1/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1291-1299. [PMID: 33475360 DOI: 10.1021/acs.jafc.0c06534] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lycopene (Lyc) as a natural antioxidant has attracted widespread attention. Di(2-ethylhexyl) phthalate (DEHP) can cause serious spleen injury in animals via the environment and food chain. For investigation of whether Lyc could alleviate DEHP-exerted pyroptosis in spleen through inhibiting the Caspase-1/NLRP3 pathway activation, 140 male mice were randomly divided into 7 groups: control group, vehicle control group, Lyc group (5 mg/kg BW/day), DEHP-exposed group (500 or 1000 mg/kg BW/day, respectively), and DEHP + Lyc groups by daily administration for 28 days. Pathological results showed that the supplementation of Lyc alleviated DEHP-induced inflammatory infiltration. Moreover, the addition of Lyc inhibited DEHP-induced Caspase-1, NLRP3, ASC, NF-κB, IL-1β, and IL-18 overexpression and GSDMD down-expression. These results indicate that Lyc could inhibit DEHP-induced Caspase-1-dependent pyroptosis and the inflammatory response. Taken together, the study provided new evidence that Lyc may be a strategy to mitigate spleen injury induced by DEHP.
Collapse
Affiliation(s)
| | | | | | | | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | | | | |
Collapse
|
29
|
Huang JH, Chiang BL. Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience 2021; 24:102103. [PMID: 33615201 PMCID: PMC7881254 DOI: 10.1016/j.isci.2021.102103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Regulatory T cells induced by B cells (Treg-of-B cells), a distinct Foxp3- Treg cell subset, have established the roles in the suppression of inflammatory conditions, including asthma and intestinal inflammation. However, little is known about the regulatory effects of Treg-of-B cells on innate immunity. Herein, we examined whether Treg-of-B cells could regulate macrophage function and prevent NLRP3-associated diseases, particularly inflammatory gouty arthritis. Treg-of-B cells, but not thymus-derived Treg or effector T cells, inhibited inflammasome-mediated IL-1β secretion, caspase-1 activation, and NLRP3 production by LPS/ATP stimulation in a cell contact-dependent manner. In addition, Treg-of-B cells inhibited monosodium urate-induced NLRP3 inflammasome activation in vitro via NF-κB signaling. Treg-of-B cells ameliorated gouty inflammation in a mouse air pouch model by reducing neutrophil and leukocyte influx and cytokine and chemokine production. Our results demonstrated that Treg-of-B cells exerted regulatory effects on innate immunity by suppressing NLRP3 inflammasome activation and feasible for future therapeutic applications.
Collapse
Affiliation(s)
- Jing-Hui Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei 10041, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
30
|
Molla MD, Akalu Y, Geto Z, Dagnew B, Ayelign B, Shibabaw T. Role of Caspase-1 in the Pathogenesis of Inflammatory-Associated Chronic Noncommunicable Diseases. J Inflamm Res 2020; 13:749-764. [PMID: 33116753 PMCID: PMC7585796 DOI: 10.2147/jir.s277457] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Caspase-1 is the first and extensively studied inflammatory caspase that is activated through inflammasome assembly. Inflammasome is a cytosolic formation of multiprotein complex that aimed to start inflammatory response against infections or cellular damages. The process leads to an auto-activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Recently, the role of caspase-1 and inflammasome in inflammatory-induced noncommunicable diseases (NCDs) like obesity, diabetes mellitus (DM), cardiovascular diseases (CVDs), cancers and chronic respiratory diseases have widely studied. However, their reports are distinct and even they have reported contrasting role of caspase-1 in the development and progression of NCDs. A few studies have reported that caspase-1/inflammasome assembley has a protective role in the initiation and progression of these diseases through the activation of the noncanonical caspase-1 target substrates like gasdermin-D and regulation of immune cells. Conversely, others have revealed that caspase-1 has a direct/indirect effect in the development and progression of several NCDs. Therefore, in this review, we systematically summarized the role of caspase-1 in the development and progression of NCDs, especially in obesity, DM, CVDs and cancers.
Collapse
Affiliation(s)
- Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zeleke Geto
- Department of Biomedical Sciences, School of Medicine, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Baye Dagnew
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
31
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
32
|
Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Res Int 2020; 136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
33
|
Nowill AE, de Campos-Lima PO. Immune Response Resetting as a Novel Strategy to Overcome SARS-CoV-2-Induced Cytokine Storm. THE JOURNAL OF IMMUNOLOGY 2020; 205:2566-2575. [PMID: 32958687 DOI: 10.4049/jimmunol.2000892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which rapidly became a pandemic of global proportions. Sepsis is commonly present with high lethality in the severe forms of the disease. The virus-induced cytokine storm puts the immune system in overdrive at the expense of the pathogen-specific immune response and is likely to underlie the most advanced COVID-19 clinical features, including sepsis-related multiple organ dysfunction as well as the pathophysiological changes found in the lungs. We review the major therapeutic strategies that have been considered for sepsis and might be amenable to repurposing for COVID-19. We also discuss two different immunization strategies that have the potential to confer antiviral heterologous protection: innate-induced trained immunity and adaptive-induced immune response resetting.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas SP 13083-888, Brazil;
| | - Pedro O de Campos-Lima
- Boldrini Children's Center, Campinas SP 13083-210, Brazil; and .,Functional and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas SP 13083-865, Brazil
| |
Collapse
|
34
|
Kong X, Liao Y, Zhou L, Zhang Y, Cheng J, Yuan Z, Wang S. Hematopoietic Cell Kinase (HCK) Is Essential for NLRP3 Inflammasome Activation and Lipopolysaccharide-Induced Inflammatory Response In Vivo. Front Pharmacol 2020; 11:581011. [PMID: 33041826 PMCID: PMC7523510 DOI: 10.3389/fphar.2020.581011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/20/2020] [Indexed: 01/15/2023] Open
Abstract
Activation of the NLRP3 inflammasome results in caspase 1 cleavage, which subsequently leads to IL-1β and IL-18 secretion, as well as pyroptosis, and aberrant activation of the inflammasome is involved in several diseases such as type 2 diabetes, atherosclerosis, multiple sclerosis, Parkinson's disease, and Alzheimer's disease. NLRP3 activity is regulated by various kinases. Genetic and pharmacological inhibition of the hematopoietic cell kinase (HCK), a member of the Src family of non-receptor tyrosine kinases (NRTKs) primarily expressed in myeloid cells, has previously been shown to ameliorate inflammation, indicating that it may be involved in the regulation of microglia function. However, the underlying mechanism is not known. Hence, in this study, we aimed to investigate the role of HCK in NLRP3 inflammasome activation. We demonstrated that HCK silencing inhibited NLRP3 inflammasome activation. Furthermore, the HCK-specific inhibitor, A419259, attenuated the release of IL-1β and caspase 1(P20) from the macrophages and microglia and reduced the formation of the apoptosis-associated speck-like protein with a CARD domain (ASC) oligomer. We also observed that HCK binds to full length NLRP3 and its NBD(NACHT) and LRR domains, but not to the PYD domain. In vivo, the HCK inhibitor attenuated the LPS-induced inflammatory response in the liver of LPS-challenged mice. Collectively, these results suggested that HCK plays a critical role in NLRP3 inflammasome activation. Our results will enhance current understanding regarding the effectiveness of HCK inhibitors for treating acute inflammatory diseases.
Collapse
Affiliation(s)
- Xiangxi Kong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Lujun Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020; 260:118258. [PMID: 32818542 DOI: 10.1016/j.lfs.2020.118258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Inflammation is a sophisticated biological tissue response to both extrinsic and intrinsic stimuli. Although the pathological aspects of inflammation are well appreciated, there are still rooms for understanding the physiological functions of the inflammation. Recent studies have focused on mechanisms, context and the role of physiological inflammation. Besides, there have been progress in the comprehension of commensal microbiota, immunometabolism, cancer and intracellular signaling events' roles that impact on the regulation of inflammation. Despite the fact that inflammatory responses are vital through tissue damage, understanding the mechanisms to turn off the finished or unnecessary inflammation is crucial for restoring homeostasis. Inflammation seems to be a smart process that acts like two edges of a sword, meaning that it has both protective and deleterious consequences. Knowing both edges and the regulation processes will help the future understanding and therapy for various diseases.
Collapse
Affiliation(s)
- M Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran.
| | - A Abbasi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - Z M Hassan
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - N Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Science, Iran
| |
Collapse
|
36
|
Zhang A, Xing J, Xia T, Zhang H, Fang M, Li S, Du Y, Li XC, Zhang Z, Zeng MS. EphA2 phosphorylates NLRP3 and inhibits inflammasomes in airway epithelial cells. EMBO Rep 2020; 21:e49666. [PMID: 32352641 DOI: 10.15252/embr.201949666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammasomes are intracellular complexes that form in the cytosol of inflammatory cells. NLRP3 is one of the sensor proteins in the complex that can recognize a wide variety of stimuli ranging from microbial components to environmental particulates. Here, we report that in mouse airway epithelial cells (AECs), inflammasome activation is inhibited by EphA2, a member of the transmembrane tyrosine kinase receptor family, via tyrosine phosphorylation of NLRP3 in a model of reovirus infection. We find that EphA2 depletion markedly enhances interleukin-1β (IL-1β) and interleukin-18 (IL-18) production in response to the virus. EphA2-/- mice show stronger inflammatory infiltration and enhanced inflammasome activation upon viral infection, and aggravated asthma symptoms upon ovalbumin (ova) induction. Mechanistically, EphA2 binds to NLRP3 and induces its phosphorylation at Tyr132, thereby interfering with ASC speck formation and blocking the activation of the NLRP3-inflammasome. These data demonstrate that reovirus employs EphA2 to suppress inflammasome activation in AECs and that EphA2 deficiency causes a pathological exacerbation of asthma in an ova-induced asthma model.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Junji Xing
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Zhang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingli Fang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shibing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong Du
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
38
|
Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochem Pharmacol 2020; 175:113863. [PMID: 32081791 DOI: 10.1016/j.bcp.2020.113863] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an intracellular protein complex that initiates cellular injury via assembly of NLRP3, ASC and caspase-1 in response to microbial infection and sterile stressors. The importance of NLRP3 inflammasome in immunity and human diseases has been well documented. Up to now, targeted inhibition of the assembly of NLRP3 inflammasome complex and of its activation was thought to be therapeutic strategy for associated diseases. Recent studies show that a host of molecules such as NIMA-related kinase 7 (Nek7) and DEAD-box helicase 3 X-linked (DDX3X) and a large number of biological mediators including cytokines, microRNAs, nitric oxide, carbon monoxide, nuclear factor erythroid-2 related factor 2 (Nrf2) and cellular autophagy participate in the activation and inactivation of NLRP3 inflammasome. This review summarizes current understanding of the molecular basis of NLRP3 inflammasome activation and inactivation. This knowledge may lead to development of new therapies directed at NLRP3 inflammasome related diseases.
Collapse
|
39
|
Yang Q, Liu Q, Lv H, Wang F, Liu R, Zeng N. Effect of pulegone on the NLPR3 inflammasome during inflammatory activation of THP-1 cells. Exp Ther Med 2019; 19:1304-1312. [PMID: 32010303 PMCID: PMC6966169 DOI: 10.3892/etm.2019.8327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Pulegone is a key active component of Schizonepeta essential oil and has been determined to have anti-inflammatory properties. However, the underlying molecular mechanisms with regard to the NLR family pyrin domain containing 3 (NLRP3) inflammasome, also known as the NALP3 inflammasome, have remained to be elucidated. NLRP3 represents a potential link between inflammation and immunity and may play possible key role in various pathologies. In the present study, the modulatory effects of pulegone on the NLRP3 inflammasome were investigated. THP-1 cells induced with phorbol myristate acetate were divided into various groups, including the Normal (control), lipopolysaccharide (LPS), LPS + ATP/nigericin, LPS + ATP/nigericin + 0.2% DMSO and pulegone (0.2, 0.1 and 0.05 mg/ml) groups. ELISA was used to detect the levels of interleukin (IL)-1β and IL-18 in the cell supernatants and the influence of potassium ions was assessed. PCR was used to determine the expression levels of NLRP3, caspase-1, IL-1β and IL-1α in the cell lysates. Furthermore, NLRP3 and apoptosis-associated speck-like protein (ASC) were detected via immunofluorescence assays and fluorescence microscopy was employed to determine the reactive oxygen species (ROS) levels in the THP-1 cells. The results indicated reduced levels of IL-18 and IL-1β in the supernatant of the cells of the pulegone groups when compared with those in the LPS + ATP/nigericin group. In addition, reduced mRNA production of inflammasome-associated genes was detected in the cell lysates after pulegone treatment. The immunofluorescence analyses indicated significantly reduced protein expression levels of NLRP3 and ASC in the pulegone groups, as well as co-localization of the NLRP3 and ASC proteins. The pulegone groups also exhibited significantly reduced ROS levels. Furthermore, a high concentration of potassium ions significantly reduced the secretion of IL-1β after induction/stimulation. In conclusion, the present study suggested that pulegone exerts its anti-inflammatory effects on LPS + ATP/nigericin-induced THP-1 cells via inhibition of NLRP3 expression, and its regulatory mechanism is associated with potassium channel and ROS pathways. It was hypothesized that pulegone first inhibits ROS signaling, to then inhibit NLRP3 expression as a downstream event. It appeared that NLRP3 may be situated further downstream and represented the link between inflammation and immunity.
Collapse
Affiliation(s)
- Qingxin Yang
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, P.R. China
| | - Qi Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Hongjun Lv
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Feng Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Rong Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
40
|
Nowill AE, Fornazin MC, Spago MC, Dorgan Neto V, Pinheiro VRP, Alexandre SSS, Moraes EO, Souza GHMF, Eberlin MN, Marques LA, Meurer EC, Franchi GC, de Campos-Lima PO. Immune Response Resetting in Ongoing Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1298-1312. [PMID: 31358659 PMCID: PMC6697741 DOI: 10.4049/jimmunol.1900104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023]
Abstract
Cure of severe infections, sepsis, and septic shock with antimicrobial drugs is a challenge because morbidity and mortality in these conditions are essentially caused by improper immune response. We have tested the hypothesis that repeated reactivation of established memory to pathogens may reset unfavorable immune responses. We have chosen for this purpose a highly stringent mouse model of polymicrobial sepsis by cecum ligation and puncture. Five weeks after priming with a diverse Ag pool, high-grade sepsis was induced in C57BL/6j mice that was lethal in 24 h if left untreated. Antimicrobial drug (imipenem) alone rescued 9.7% of the animals from death, but >5-fold higher cure rate could be achieved by combining imipenem and two rechallenges with the Ag pool (p < 0.0001). Antigenic stimulation fine-tuned the immune response in sepsis by contracting the total CD3+ T cell compartment in the spleen and disengaging the hyperactivation state in the memory T subsets, most notably CD8+ T cells, while preserving the recovery of naive subsets. Quantitative proteomics/lipidomics analyses revealed that the combined treatment reverted the molecular signature of sepsis for cytokine storm, and deregulated inflammatory reaction and proapoptotic environment, as well as the lysophosphatidylcholine/phosphatidylcholine ratio. Our results showed the feasibility of resetting uncontrolled hyperinflammatory reactions into ordered hypoinflammatory responses by memory reactivation, thereby reducing morbidity and mortality in antibiotic-treated sepsis. This beneficial effect was not dependent on the generation of a pathogen-driven immune response itself but rather on the reactivation of memory to a diverse Ag pool that modulates the ongoing response.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Márcia C Fornazin
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Maria C Spago
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Vicente Dorgan Neto
- Surgery Department, Santa Casa School of Medical Sciences, São Paulo 01221-020, Brazil
| | - Vitória R P Pinheiro
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Simônia S S Alexandre
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Edgar O Moraes
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, Barueri 06455-020, Brazil
| | - Marcos N Eberlin
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Lygia A Marques
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Eduardo C Meurer
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Gilberto C Franchi
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | | |
Collapse
|
41
|
Abstract
Inflammation has long been proven to engage in tumor initiation and progression. Inflammasome, as a member of innate immunity-induced host defense inflammation, also plays critical roles in cancer. Inflammasome is a multiprotein complex responding to pathogen-associated molecular patterns and damage-associated molecular patterns. It is composed of receptors such as NOD-like receptors and AIM2-like receptors, adaptor protein ASC, and effector caspase-1, which can process proinflammatory cytokines interleukin (IL)-1β and IL-18. It has been reported that upregulated inflammasome activity is correlated to various types of cancers including breast cancer, gastric cancer, brain tumor, and malignant prostate, while inflammasomes also have a protective role in colitis-associated cancer. Autophagy, an intracellular recycling process for maintaining homeostasis, is deemed to contribute to the underlying mechanism of its dual roles in cancer. It has been found that distinct tumor stages and different isotypes of caspases involved in the inflammasome pathway can affect the roles of inflammasome in cancer. In this review, we update the latest evidence of inflammasome roles in cancer and novel inflammasome pathway-targeting agents for immunotherapy and discuss future research directions of inflammasome-based target therapy.
Collapse
Affiliation(s)
- Xinyu Cao
- Queen Mary College, Medical school of Nanchang University, Nanchang, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Sun L, Ma W, Gao W, Xing Y, Chen L, Xia Z, Zhang Z, Dai Z. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis 2019; 10:542. [PMID: 31316052 PMCID: PMC6637184 DOI: 10.1038/s41419-019-1761-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Propofol infusion syndrome (PRIS) is an uncommon life-threatening complication observed most often in patients receiving high-dose propofol. High-dose propofol treatment with a prolonged duration can damage the immune system. However, the associated molecular mechanisms remain unclear. An increasing number of clinical and experimental observations have demonstrated that tissue-resident macrophages play a critical role in immune regulation during anaesthesia and procedural sedation. Since the inflammatory response is essential for mediating propofol-induced cell death and proinflammatory reactions, we hypothesised that propofol overdose induces macrophage pyroptosis through inflammasomes. Using primary cultured bone marrow-derived macrophages, murine macrophage cell lines (RAW264.7, RAW-asc and J774) and a mouse model, we investigated the role of NLRP3 inflammasome activation and secondary pyroptosis in propofol-induced cell death. We found that high-dose propofol strongly cleaved caspase-1 but not caspase-11 and biosynthesis of downstream interleukin (IL)-1β and IL-18. Inhibition of caspase-1 activity blocks IL-1β production. Moreover, NLRP3 deletion moderately suppressed cleaved caspase-1 as well as the proportion of pyroptosis, while levels of AIM2 were increased, triggering a compensatory pathway to pyroptosis in NLRP3-/- macrophages. Here, we show that propofol-induced mitochondrial reactive oxygen species (ROS) can trigger NLRP3 inflammasome activation. Furthermore, apoptosis-associated speck-like protein (ASC) was found to mediate NLRP3 and AIM2 signalling and contribute to propofol-induced macrophage pyroptosis. In addition, our work shows that propofol-induced apoptotic initiator caspase (caspase-9) subsequently cleaved effector caspases (caspase-3 and 7), indicating that both apoptotic and pyroptotic cellular death pathways are activated after propofol exposure. Our studies suggest, for the first time, that propofol-induced pyroptosis might be restricted to macrophage through an NLRP3/ASC/caspase-1 pathway, which provides potential targets for limiting adverse reactions during propofol application. These findings demonstrate that propofol overdose can trigger cell death through caspase-1 activation and offer new insights into the use of anaesthetic drugs.
Collapse
Affiliation(s)
- Lingbin Sun
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Shipai, Guangzhou, People's Republic of China
| | - Wei Ma
- Translational Medicine Collaorative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China
| | - Wenli Gao
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China
| | - Yanmei Xing
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Shipai, Guangzhou, People's Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhongjun Zhang
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China
| | - Zhongliang Dai
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, People's Republic of China.
| |
Collapse
|
43
|
Hong P, Gu RN, Li FX, Xiong XX, Liang WB, You ZJ, Zhang HF. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation 2019; 16:121. [PMID: 31174550 PMCID: PMC6554993 DOI: 10.1186/s12974-019-1498-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin domain-containing 3) inflammasome is a member of the NLR family of innate immune cell sensors. These are crucial regulators of cytokine secretions, which promote ischemic cell death and insulin resistance. This review summarizes recent progress regarding the NLRP3 inflammasome as a potential treatment for ischemic stroke in patients with diabetes, two complicated diseases that often occur together. Stroke worsens glucose metabolism abnormalities, and the outcomes after stroke are more serious for diabetic patients compared with those without diabetes. Inflammation contributes to organ injury after ischemic stroke and diabetes. Recent research has focused on inhibiting the activation of inflammasomes and thus reducing the maturation of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Studies suggest that inhibition of NLRP3 prevents or alleviates both ischemic stroke and diabetes. Targeting against the assembly and activity of the NLRP3 inflammasome is a potential and novel therapy for inflammasome-associated diseases, including ischemic stroke concomitant with diabetes.
Collapse
Affiliation(s)
- Pu Hong
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruo-Nan Gu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng-Xian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Bin Liang
- Cardiac Electrophysiology Lab, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4 W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1Y 4 W7, Canada
| | - Zhi-Jian You
- Department of Anesthesiology, Shenzhen SAMII Medical Center, Shenzhen, Guangdong, People's Republic of China.
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Tang R, Zhong T, Wu C, Zhou Z, Li X. The Remission Phase in Type 1 Diabetes: Role of Hyperglycemia Rectification in Immune Modulation. Front Endocrinol (Lausanne) 2019; 10:824. [PMID: 31849842 PMCID: PMC6901662 DOI: 10.3389/fendo.2019.00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
The remission phase (or honeymoon period) is a spontaneous "temporary cure stage" in type 1 diabetes course, which provides a good human model for studying β-cell protection. The exact mechanisms are still uncertain, but one of the generally recognized mechanisms is that correction of "glucotoxicity" by exogenous insulin therapy leads to "β-cell rest" and β-cell recovery. Beyond this, the remission phase is accompanied by changes in various immune cells and immune molecules, indicating downregulation of immune response, and induction of immune tolerance. The role of hyperglycemia rectification in the regulation of immune response should be emphasized because glucose metabolism is critical to maintain the normal function of immune system. Here, recent evidence of immune modulation based on the rectification of hyperglycemia from multiple aspects such as immune cells, inflammatory cytokines, biomolecules, and cell antigenicity was reviewed. It should be noteworthy that the interaction between glucose metabolism and immune plays an important role in the pathogenesis of the remission phase. The best intervention strategy may be the combination of strict glycemic control and immune modulation to protect β-cell function as early as possible.
Collapse
Affiliation(s)
- Rong Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Ting Zhong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Chao Wu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
- *Correspondence: Zhiguang Zhou
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Central South University, Changsha, China
- Xia Li
| |
Collapse
|
45
|
Not so crystal clear: observations from a case of crystalline arthritis with cytokine release syndrome (CRS) after chimeric antigen receptor (CAR)-T cell therapy. Bone Marrow Transplant 2018; 54:632-634. [DOI: 10.1038/s41409-018-0357-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 01/14/2023]
|
46
|
Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: Implications for psychiatric disorders. Brain Behav Immun 2018; 73:66-84. [PMID: 29902514 PMCID: PMC6526722 DOI: 10.1016/j.bbi.2018.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/27/2022] Open
Abstract
The production of inflammatory proteins by the innate immune system is a tightly orchestrated procedure that allows the body to efficiently respond to exogenous and endogenous threats. Recently, accumulating evidence has indicated that disturbances in the inflammatory response system not only provoke autoimmune disorders, but also can have deleterious effects on neuronal function and mental health. As inflammation in the brain is primarily mediated by microglia, there has been an expanding focus on the mechanisms through which these cells initiate and propagate neuroinflammation. Microglia can enter persistently active states upon their initial recognition of an environmental stressor and are thereafter prone to elicit amplified and persistent inflammatory responses following subsequent exposures to stressors. A recent focus on why primed microglia cells are susceptible to environmental insults has been the NLRP3 inflammasome. Its function within the innate immune system is regulated in such a manner that supports a role for the complex in gating neuroinflammatory responses. The activation of NLRP3 inflammasome in microglia results in the cleavage of zymogen inflammatory interleukins into functional forms that elicit a number of consequential effects in the local neuronal environment. There is evidence to support the principle that within primed neuroimmune systems a lowered threshold for NLRP3 activation can cause persistent neuroinflammation or the amplified production of inflammatory cytokines, such as IL-1β and IL-18. Over the course of an individual's lifetime, persistent neuroinflammation can subsequently lead to the pathophysiological signatures that define psychological disorders. Therefore, targeting the NLRP3 inflammasome complex may represent an innovative and consequential approach to limit neuroinflammatory states in psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Francis J. Herman
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA,Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA; Department of Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
47
|
Ma ZZ, Sun HS, Lv JC, Guo L, Yang QR. Expression and clinical significance of the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus erythematosus. JOURNAL OF INFLAMMATION-LONDON 2018; 15:16. [PMID: 30202244 PMCID: PMC6122698 DOI: 10.1186/s12950-018-0192-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Background The aim of the study was to investigate the expression of the NEK7-NLRP3 inflammasome signaling pathway in the peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), as well as its clinical significance. Methods A total of 38 SLE patients and 33 healthy volunteers were recruited. Real time PCR and western blotting were performed to determine mRNA and protein levels of NEK7, NLRP3 inflammasome components (NLRP3, ASC, and Caspase-1), and downstream cytokines (IL-1b and IL-18) in PBMCs from the two groups. ELISA was used to detect serum levels of IL-1b and IL-18. The same methods were used to detect changes in the above indices in the 25 SLE patients after treatment. Correlations between clinical and laboratory parameters were also analyzed. Results Compared to those in healthy controls, levels of NEK7, NLPR3, and ASC were lower in SLE patients; however, Caspase-1, IL-1b, and IL-18 were expressed at higher levels. mRNA levels of NEK7, NLRP3, and ASC were inversely correlated with disease activity, whereas a positive correlation was observed with IL-1b and IL-18. After treatment, mRNA levels of NEK7 and NLRP3 increased, whereas Caspase-1, IL-1b, and IL-18 decreased significantly. Compared to those in SLE patients without renal damage, patients with lupus nephritis (LN) exhibited lower mRNA levels of NEK7, NLRP3, and ASC but higher levels of Caspase-1, IL-1b, and IL-18. Conclusions Results indicate that the expression of the NEK7-NLRP3 complex might play a protective role in the pathogenesis of SLE and is inversely correlated with disease activity. A positive effect of NEK7 on NLRP3 was observed, and the low expression of NLRP3 in SLE patients might be related to the low expression of NEK7. Overexpression of Caspase-1 in SLE patients mediates the maturation and release of IL-1b and IL-18, and contributes to the pathogenesis of SLE and LN.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Hong-Sheng Sun
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Ji-Cai Lv
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Lei Guo
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Qing-Rui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| |
Collapse
|
48
|
Novel insights into the role of inflammasomes in autoimmune and metabolic rheumatic diseases. Rheumatol Int 2018; 38:1345-1354. [DOI: 10.1007/s00296-018-4074-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
|
49
|
Bittermann A, Gao S, Rezvani S, Li J, Sikes KJ, Sandy J, Wang V, Lee S, Holmes G, Lin J, Plaas A. Oral Ibuprofen Interferes with Cellular Healing Responses in a Murine Model of Achilles Tendinopathy. ACTA ACUST UNITED AC 2018; 4. [PMID: 30687812 PMCID: PMC6347402 DOI: 10.23937/2572-3243.1510049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The attempted healing of tendon after acute injury (overloading, partial tear or complete rupture) proceeds via the normal wound healing cascade involving hemostasis, inflammation, matrix synthesis and matrix remodeling. Depending on the degree of trauma and the nature of the post-injury milieu, a variable degree of healing and recovery of function occurs. Post-injury analgesia is often achieved with NSAIDs such as Ibuprofen, however there is increasing evidence that NSAID usage may interfere with the healing process. This study aimed to investigate the cellular mechanism by which IBU therapy might lead to a worsening of tendon pathology. Methods: We have examined the effect of oral Ibuprofen, on Achilles tendon healing in a TGFb1-induced murine tendinopathy model. Dosing was started 3 days after initial injury (acute cellular response phase) and continued for 22 days or started at 9 days after injury (transition to matrix regeneration phase) and given for 16 days. Cellular changes in tendon and surrounding peritenon were assessed using Hematoxylin/Eosin, chondroid accumulation with Safranin O and anti-aggrecan immunohistochemistry, and neo-vessel formation with GSI Lectin histochemistry. Markers of inflammation included histochemical localization of hyaluronan, immunohistochemistry of heavy chain 1 and TNFα-stimulated glycoprotein-6 (TSG6). Cell responses were further examined by RT-qPCR of 84 NFκB target genes and 84 wound healing genes. Biomechanical properties of tendons were evaluated by tensile testing. Results: At a clinically-relevant dosage, Ibuprofen prevented the process of remodeling/removal of the inflammatory matrix components, hyaluronan, HC1 and TSG6. Furthermore, the aberrant matrix remodeling was accompanied by activation at day 28 of genes (Col1a2, Col5a3, Plat, Ccl12, Itga4, Stat3, Vegfa, Mif, Col4a1, Rhoa, Relb, F8, Cxcl9, Lta, Ltb, Ccl12, Cdkn1a, Ccl22, Sele, Cd80), which were not activated at any time without the drug, and so appear most likely to be involved in the pathology. Of these, Vegfa, Col4a1, F8, Cxcl9 and Sele, have been shown to play a role in vascular remodeling, consistent with the appearance at 25 days of vasculogenic cell groups in the peritenon and fat pad stroma surrounding the Achilles of the drug-dosed mice. Tensile stiffness (p = 0.004) and elastic modulus (p = 0.012) were both decreased (relative to age-matched uninjured and non-dosed mice) in mice dosed with Ibuprofen from day 3 to day 25, whether injured or not. Conclusion: We conclude that the use of Ibuprofen for pain relief during inflammatory phases of tendinopathy, might interfere with the normal processes of extracellular matrix remodeling and cellular control of expression of inflammatory and wound healing genes. It is proposed that the known COX2-mediated anti-inflammatory effect of ibuprofen has detrimental effects on the turnover of a pro-inflammatory HA matrix produced in response to soft-tissue injury, thus preventing the switch to cellular responses associated with functional matrix remodeling and eventual healing.
Collapse
Affiliation(s)
- Adam Bittermann
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Orthopaedic Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Shuguang Gao
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Sabah Rezvani
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, USA
| | - John Sandy
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Vincent Wang
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Simon Lee
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - George Holmes
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Johnny Lin
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Anna Plaas
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| |
Collapse
|
50
|
Li Y, Liu C, Wan XS, Li SW. NLRP1 deficiency attenuates diabetic retinopathy (DR) in mice through suppressing inflammation response. Biochem Biophys Res Commun 2018; 501:351-357. [PMID: 29571734 DOI: 10.1016/j.bbrc.2018.03.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/24/2023]
Abstract
Diabetic retinopathy (DR) is the common cause of diabetic vascular complications. The NOD-like receptor (NLR) family, pyrin domain containing 1 (NLRP1), also known as NALP1, inflammasome is the first member of the NLR family to be discovered, playing an important role in inflammatory response. However, its effect on DR development has not been reported. In the study, the wild type (WT) and NLRP1-/- mice were injected with streptozotocin (STZ) to induce DR. The results indicated that NLRP1-/- significantly increased bodyweight reduction and decreased blood glucose levels induced by STZ. WT/DR mice exhibited higher levels of NLRP1 in retinas. NLRP1-/- ameliorated retinal abnormalities in DR mice using H&E staining. In addition, attenuated avascular areas and neovascular tufts were also observed in NLRP1-/-/DR mice. The levels of pro-inflammatory cytokines in serum and retinas were highly induced in WT/DR mice, whereas being markedly reduced by NLRP1-/-. In addition, vascular endothelial growth factor (VEGF) and Iba1 expressions induced by STZ in serum or retinas were significantly down-regulated in NLRP1-/-/DR mice. Consistently, NLRP1-/- attenuated ASC and Caspase-1 expressions in retinas of DR mice. Compared to WT/DR group, NLRP1-/- markedly decreased retina p-nuclear factor-κB (NF-κB), interleukin-1β (IL-1β) and IL-18 levels. And similar results were confirmed in vitro that suppressing NLRP1/ASC inflammasome ameliorated inflammatory response in fructose-treated retinal ganglion cells. The results above indicated that the modulation of NLRP1 inflammasome might be a promising strategy for DR therapy.
Collapse
Affiliation(s)
- Yan Li
- Central South University, Changsha 410083, Hunan Province, China
| | - Chang Liu
- Beijing Aier-Intech Eye Hospital, Panjiayuan Plaza, No.12 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xin-Shun Wan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Shao-Wei Li
- Central South University, Changsha 410083, Hunan Province, China; Beijing Aier-Intech Eye Hospital, Panjiayuan Plaza, No.12 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|