1
|
Yuan Z, Liu M, Zhang L, Jia L, Hao S, Su D, Tang L, Wang C, Wang M, Wen Z. Notch1 hyperactivity drives ubiquitination of NOX2 and dysfunction of CD8+ regulatory T cells in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2025; 64:1500-1512. [PMID: 38652598 DOI: 10.1093/rheumatology/keae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Patients with SLE display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimaeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimaeras. CONCLUSION Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for the clinical management of SLE.
Collapse
Affiliation(s)
- Zixin Yuan
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Li Jia
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Siao Hao
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Danhua Su
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Longhai Tang
- Division of Research Center, Suzhou Blood Center, Suzhou, China
| | - Chunhong Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Mingyuan Wang
- Division of Research Center, Suzhou Blood Center, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Xu Z, Su B. Distinct functions of CD4 + and CD8 + regulatory T cells in autoimmunity. Nat Immunol 2025; 26:159-160. [PMID: 39870902 DOI: 10.1038/s41590-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Affiliation(s)
- Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Center for Immune-Related Diseases at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Oncology at Xiangya Cancer Center and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism (SYIIM), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Chung EYM, Wang YM, Shaw K, Ronning E, Wang Y, Zhang GY, Hu M, Keung K, McCarthy HJ, Harris DCH, Stephen A. CD8 + Regulatory T Cells Induced by Peptide Vaccination Ameliorates Experimental Model of Membranous Nephropathy. Nephrology (Carlton) 2025; 30:e70005. [PMID: 39970933 DOI: 10.1111/nep.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
AIM CD8+ regulatory T cells (Tregs) are cross-protective across multiple animal models of autoimmunity. Recently, specific peptides from a yeast-peptide-major histocompatibility complex library that expanded CD8+ Tregs in murine experimental multiple sclerosis were reported. Whether these peptides also expand CD8+ Tregs and protect against Heymann nephritis (HN), an experimental model of membranous nephropathy is unknown. We aimed to assess the efficacy of peptide vaccination to induce CD8+ Tregs in HN. METHODS Lewis rats were immunised with Fx1A/complete Freund's adjuvant to induce HN and received peptide vaccination 1 week before (prevention vaccination) or 1 week after disease induction (treatment vaccination). To understand whether the effect of peptide vaccination was mediated by CD8+ Tregs, we adoptively transferred CD8+ T cells 1 week after peptide vaccination into HN rats. RESULTS Prevention vaccination, but not treatment vaccination, significantly reduced anti-Fx1A autoantibody levels and serum creatinine. Both prevention and treatment vaccination reduced histological kidney injury. mRNA expression of Helios, the major CD8+ Treg transcription factor, was upregulated in both the spleen and kidney with prevention vaccination and in the kidney with treatment vaccination. Adoptive transfer of CD8+ T cells after peptide vaccination significantly reduced serum creatinine, proteinuria, histological kidney injury, anti-Fx1A autoantibody levels, germinal centre formation, and mRNA expression of markers of T follicular helper cells (Bcl6, interleukin-21), T helper 1 cells (interferon-γ, Tbet) and T helper 17 cells (interleukin-6, interleukin-17). CONCLUSIONS Peptide vaccination induces CD8+ Tregs that ameliorate induction of experimental membranous nephropathy which may represent a further peripheral regulation of autoimmunity.
Collapse
Affiliation(s)
- Edmund Y M Chung
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Karli Shaw
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Emily Ronning
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Karen Keung
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Hugh J McCarthy
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Alexander Stephen
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Chen X, Ghanizada M, Mallajosyula V, Sola E, Capasso R, Kathuria KR, Davis MM. Differential roles of human CD4 + and CD8 + regulatory T cells in controlling self-reactive immune responses. Nat Immunol 2025; 26:230-239. [PMID: 39806065 PMCID: PMC11785521 DOI: 10.1038/s41590-024-02062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Here we analyzed the relative contributions of CD4+ regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8+ regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4+ and CD8+ regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes. FOXP3 knockout in tonsil T cells led to production of antibodies against a variety of autoantigens and increased the affinity of influenza-specific antibodies. By contrast, GZMB knockout resulted in an increase in follicular helper T cells, consistent with the ablation of CD8+ regulatory T cells observed in mouse models, and a marked expansion of autoreactive CD8+ and CD4+ T cells. These findings highlight the distinct yet complementary roles of CD8+ and CD4+ regulatory T cells in regulating cellular and humoral responses to prevent autoimmunity.
Collapse
Affiliation(s)
- Xin Chen
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Mustafa Ghanizada
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karan Raj Kathuria
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Lu BY, Lucca LE, Lewis W, Wang J, Nogueira CV, Heer S, Rayon-Estrada V, Axisa PP, Reeves SM, Buitrago-Pocasangre NC, Pham GH, Kojima ML, Wei W, Aizenbud L, Bacchiocchi A, Zhang L, Walewski JJ, Chiang V, Olino K, Clune J, Halaban R, Kluger Y, Coyle AJ, Kisielow J, Obermair FJ, Kluger HM, Hafler DA. Circulating tumor-reactive KIR +CD8 + T cells suppress anti-tumor immunity in patients with melanoma. Nat Immunol 2025; 26:82-91. [PMID: 39609626 DOI: 10.1038/s41590-024-02023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Effective anti-tumor immunity is driven by cytotoxic CD8+ T cells with specificity for tumor antigens. However, the factors that control successful tumor rejection are not well understood. Here we identify a subpopulation of CD8+ T cells that are tumor-antigen-specific and can be identified by KIR expression but paradoxically impair anti-tumor immunity in patients with melanoma. These tumor-antigen-specific KIR+CD8+ regulatory T cells target other tumor-antigen-specific CD8+ T cells, can be detected in both the tumor and the blood, have a conserved transcriptional program and are associated with a poor overall survival. These findings broaden our understanding of the transcriptional and functional heterogeneity of human CD8+ T cells and implicate KIR+CD8+ regulatory T cells as a cellular mediator of immune evasion in human cancer.
Collapse
Affiliation(s)
- Benjamin Y Lu
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Wesley Lewis
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Jiping Wang
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | | | | | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- University of Toulouse, Inserm, CNRS, University Toulouse III-Paul Sabatier, Cancer Research Center of Toulouse, Toulouse, France
| | - Sarah M Reeves
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mina L Kojima
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wei
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Lilach Aizenbud
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | | | - Lin Zhang
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Joseph J Walewski
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Veronica Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Ruth Halaban
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | | | - Jan Kisielow
- Repertoire Immune Medicines, Schlieren, Switzerland
| | | | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Srinivasan S, Mishra S, Fan KKH, Wang L, Im J, Segura C, Mukherjee N, Huang G, Rao M, Ma C, Zhang N. Age-Dependent Bi-Phasic Dynamics of Ly49 +CD8 + Regulatory T Cell Population. Aging Cell 2024:e14461. [PMID: 39696807 DOI: 10.1111/acel.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Aging is tightly associated with reduced immune protection but increased risk of autoimmunity and inflammatory conditions. Regulatory T cells are one of the key cells to maintaining immune homeostasis. The age-dependent changes in CD4+Foxp3+ regulatory T cells (Tregs) have been well documented. However, the nonredundant Foxp3-CD8+ Tregs were never examined in the context of aging. This study first established clear distinctions between phenotypically overlapping CD8+ Tregs and virtual memory T cells. Then, we elucidated the dynamics of CD8+ Tregs across the lifespan in mice and further extended our investigation to human peripheral blood mononuclear cells (PBMCs). In mice, we discovered a bi-phasic dynamic shift in the frequency of CD8+CD44hiCD122hiLy49+ Tregs, with a steady increase in young adults and a notable peak in middle age followed by a decline in older mice. Transcriptomic analysis revealed that mouse CD8+ Tregs upregulated a selected set of natural killer (NK) cell-associated genes, including NKG2D, with age. Importantly, NKG2D might negatively regulate CD8+ Tregs. Additionally, by analyzing a scRNA-seq dataset of human PBMC, we found a distinct CD8+ Treg-like subset (Cluster 10) with comparable age-dependent frequency changes and gene expression, suggesting a conserved aging pattern in CD8+ Treg across mice and humans. In summary, our findings highlight the importance of CD8+ Tregs in immune regulation and aging.
Collapse
Affiliation(s)
- Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Gilead Sciences Inc, California, USA
| | - Kenneth Ka-Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - John Im
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Courtney Segura
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
7
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
8
|
Gardell JL, Maurer ME, Childs MM, Pham MN, Meengs B, Julien SH, Tan C, Boster DR, Quach P, Therriault JH, Hermansky G, Patton DT, Bowser J, Chen A, Morgan NN, Gilbertson EA, Bogatzki L, Encarnacion K, McMahan CJ, Crane CA, Swiderek KM. Preclinical characterization of MTX-101: a novel bispecific CD8 Treg modulator that restores CD8 Treg functions to suppress pathogenic T cells in autoimmune diseases. Front Immunol 2024; 15:1452537. [PMID: 39559361 PMCID: PMC11570885 DOI: 10.3389/fimmu.2024.1452537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Regulatory CD8 T cells (CD8 Treg) are responsible for the selective killing of self-reactive and pathogenic CD4 T cells. In autoimmune disease, CD8 Treg may accumulate in the peripheral blood but fail to control the expansion of pathogenic CD4 T cells that subsequently cause tissue destruction. This CD8 Treg dysfunction is due in part to the expression of inhibitory killer immunoglobulin-like receptors (KIR; KIR2DL isoforms [KIR2DL1, KIR2DL2, and KIR2DL3]); these molecules serve as autoimmune checkpoints and limit CD8 Treg activation. Methods Here we describe the pre-clinical characterization of MTX-101, a bispecific antibody targeting inhibitory KIR and CD8. Using human peripheral blood mononuculear cells (PBMC) derived from healthy donors and autoimmune patients, humanized mouse models, and human derived tissue organoids, we evaluated the molecular mechanisms and functional effects of MTX-101. Results By binding to KIR, MTX-101 inhibited KIR signaling that can restore CD8 Treg ability to eliminate pathogenic CD4 T cells. MTX-101 bound and activated CD8 Treg in human peripheral blood mononuclear cells (PBMC), resulting in increased CD8 Treg cytolytic capacity, activation, and prevalence. Enhancing CD8 Treg function with MTX-101 reduced pathogenic CD4 T cell expansion and inflammation, without increasing pro-inflammatory cytokines or activating immune cells that express either target alone. MTX-101 reduced antigen induced epithelial cell death in disease affected tissues, including in tissue biopsies from individuals with autoimmune disease (i.e., celiac disease, Crohn's disease). The effects of MTX-101 were specific to autoreactive CD4 T cells and did not suppress responses to viral and bacterial antigens. In a human PBMC engrafted Graft versus Host Disease (GvHD) mouse model of acute inflammation, MTX-101 bound CD8 Treg and delayed onset of disease. MTX-101 induced dose dependent binding, increased prevalence and cytolytic capacity of CD8 Treg, as well as increased CD4 T cell death. MTX-101 selectively bound CD8 Treg without unwanted immune cell activation or increase of pro-inflammatory serum cytokines and exhibited an antibody-like half-life in pharmacokinetic and exploratory tolerability studies performed using IL-15 transgenic humanized mice with engrafted human lymphocytes, including CD8 Treg at physiologic ratios. Conclusion Collectively, these data support the development of MTX-101 for the treatment of autoimmune diseases.
Collapse
|
9
|
Ding JQ, Zhang JQ, Zhao SJ, Jiang DB, Lu JR, Yang SY, Wang J, Sun YJ, Huang YN, Hu CC, Zhang XY, Zhang JX, Liu TY, Han CY, Qiao XP, Guo J, Zhao C, Yang K. Follicular CD8 + T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167303. [PMID: 38878831 DOI: 10.1016/j.bbadis.2024.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.
Collapse
Affiliation(s)
- Jia-Qi Ding
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China; Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun-Qi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Si-Jia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Dong-Bo Jiang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Rui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Shu-Ya Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yuan-Jie Sun
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yi-Nan Huang
- Department of Emergency, the Second Affiliated Hospital (Xixian New District Central Hospital), Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Chen-Chen Hu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xi-Yang Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Xing Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Tian-Yue Liu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Chen-Ying Han
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xu-Peng Qiao
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| |
Collapse
|
10
|
Zhao C, Wang C, Wang R, Shan W, Wang W, Deng H. Regulatory T Cells Nanoextinguisher to Manipulate Multiple Immune Evasion for Immunotherapy. ACS NANO 2024; 18:24105-24117. [PMID: 39171893 DOI: 10.1021/acsnano.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Regulatory T cells (Treg) play key roles in inhibiting effective antitumor immunity. However, therapeutic Treg depletion fails to consistently enhance immune responses due to the emergence of a wave of peripherally converted Treg cells postdepletion, along with undesired off-target side effects. Here, we report a nanoextinguisher decorated with functional peptides via tumor microenvironment responsive linkers to selectively block Treg function and maintain Treg levels rather than deplete them. The nanoextinguisher specifically neutralizes TGF-β to inhibit the recruitment of Treg cells and the conversion of naive T cells into Treg cells, thus promoting antitumor immunity. Moreover, the nanoextinguisher can alleviate tumor resistance to immunogenic photodynamic therapy, vaccination therapy, and checkpoint inhibition. The nanoextinguisher showed 30-fold potentiation in antitumor effect compared to standalone photodynamic therapy or vaccination therapy. Overall, utilizing a nanoextinguisher to inhibit Treg function without triggering reconversion represents a generalizable method to reverse immune evasion, yielding antitumor efficacy.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Rujie Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
11
|
Fan JN, Ho H, Chiang BL. Characterization of novel CD8 + regulatory T cells and their modulatory effects in murine model of inflammatory bowel disease. Cell Mol Life Sci 2024; 81:327. [PMID: 39085655 PMCID: PMC11335251 DOI: 10.1007/s00018-024-05378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.
Collapse
Affiliation(s)
- Jia-Ning Fan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Soloviova K, Via CS. Sex differences in donor T cell targeting of host splenocyte subpopulations in acute and chronic murine graft-vs.-host disease: implications for lupus-like autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.595177. [PMID: 38915570 PMCID: PMC11195085 DOI: 10.1101/2024.06.07.595177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
This study sought to compare in vivo sex differences in either a Th1-dominant CTL response or a Tfh-mediated lupus-like antibody response using the parent-into F1 murine model of acute or chronic GVHD respectively. In acute GVHD we observed no significant sex differences in the hierarchy of donor CD8 CTL elimination of splenocyte subsets. B cells were the most sensitive to elimination in both sexes; however, the male response was significantly stronger. Sex differences in chronic GVHD were more widespread; females exhibited significantly greater numbers of total splenocytes and host CD4 Tfh cells, B cells and CD8 T cells consistent with reports of greater female autoantibody production in this model. The more potent male CTL response in acute GVHD conflicts with reports of greater female CTL responses following infections or vaccines and may reflect the absence of exogenous innate immune stimuli in this model.
Collapse
Affiliation(s)
- Kateryna Soloviova
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda MD 20814
| | - Charles S Via
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda MD 20814
| |
Collapse
|
13
|
Vemulawada C, Renavikar PS, Crawford MP, Steward-Tharp S, Karandikar NJ. Disruption of IFNγ, GZMB, PRF1, or LYST Results in Reduced Suppressive Function in Human CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1722-1732. [PMID: 38607279 PMCID: PMC11105984 DOI: 10.4049/jimmunol.2300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Chakrapani Vemulawada
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Pranav S. Renavikar
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
| | - Michael P. Crawford
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Scott Steward-Tharp
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
14
|
Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 2024; 24:338-357. [PMID: 38086932 PMCID: PMC11145724 DOI: 10.1038/s41577-023-00970-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 05/04/2024]
Abstract
The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.
Collapse
Affiliation(s)
- Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolas A Stevens
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
15
|
Hetemäki I, Sarkkinen J, Heikkilä N, Drechsel K, Mäyränpää MI, Färkkilä A, Laakso S, Mäkitie O, Arstila TP, Kekäläinen E. Dysregulated germinal center reaction with expanded T follicular helper cells in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy lymph nodes. J Allergy Clin Immunol 2024; 153:1445-1455. [PMID: 38128835 DOI: 10.1016/j.jaci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS GC reactions are disrupted in APECED as a result of defective T-cell control.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Karen Drechsel
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, FIMM & HiLIFE University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine, Helsinki, Finland; Department of Obstetrics and Gynecology, University Hospital, Helsinki, Finland
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Hafler D, Lu B, Lucca L, Lewis W, Wang J, Nogeuira C, Heer S, Axisa PP, Buitrago-Pocasangre N, Pham G, Kojima M, Wei W, Aizenbud L, Bacchiocchi A, Zhang L, Walewski J, Chiang V, Olino K, Clune J, Halaban R, Kluger Y, Coyle A, Kisielow J, Obermair FJ, Kluger H. Circulating Tumor Reactive KIR+CD8+ T cells Suppress Anti-Tumor Immunity in Patients with Melanoma. RESEARCH SQUARE 2024:rs.3.rs-3956671. [PMID: 38464315 PMCID: PMC10925449 DOI: 10.21203/rs.3.rs-3956671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Effective anti-tumor immunity is largely driven by cytotoxic CD8+ T cells that can specifically recognize tumor antigens. However, the factors which ultimately dictate successful tumor rejection remain poorly understood. Here we identify a subpopulation of CD8+ T cells which are tumor antigen-specific in patients with melanoma but resemble KIR+CD8+ T cells with a regulatory function (Tregs). These tumor antigen-specific KIR+CD8+ T cells are detectable in both the tumor and the blood, and higher levels of this population are associated with worse overall survival. Our findings therefore suggest that KIR+CD8+ Tregs are tumor antigen-specific but uniquely suppress anti-tumor immunity in patients with melanoma.
Collapse
|
17
|
Kim HJ, Nakagawa H, Choi JY, Che X, Divris A, Liu Q, Wight AE, Zhang H, Saad A, Solhjou Z, Deban C, Azzi JR, Cantor H. A narrow T cell receptor repertoire instructs thymic differentiation of MHC class Ib-restricted CD8+ regulatory T cells. J Clin Invest 2024; 134:e170512. [PMID: 37934601 PMCID: PMC10760956 DOI: 10.1172/jci170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - John Y. Choi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuchun Che
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Andrew Divris
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Qingshi Liu
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew E. Wight
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hengcheng Zhang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Anis Saad
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Christa Deban
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Harvey Cantor
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| |
Collapse
|
18
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
19
|
Badr ME, Zhang Z, Tai X, Singer A. CD8 T cell tolerance results from eviction of immature autoreactive cells from the thymus. Science 2023; 382:534-541. [PMID: 37917689 PMCID: PMC11302524 DOI: 10.1126/science.adh4124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
CD8 T cell tolerance is thought to result from clonal deletion of autoreactive thymocytes before they differentiate into mature CD8 T cells in the thymus. However, we report that, in mice, CD8 T cell tolerance instead results from premature thymic eviction of immature autoreactive CD8 thymocytes into the periphery, where they differentiate into self-tolerant mature CD8 T cells. Premature thymic eviction is triggered by T cell receptor (TCR)-driven down-regulation of the transcriptional repressor Gfi1, which induces expression of sphingosine-1-phosphate receptor-1 (S1P1) on negatively selected immature CD8 thymocytes. Thus, premature thymic eviction is the basis for CD8 T cell tolerance and is the mechanism responsible for the appearance in the periphery of mature CD8 T cells bearing autoreactive TCRs that are absent from the thymus.
Collapse
Affiliation(s)
- Mohamed Elsherif Badr
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhongmei Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
21
|
Guo J, Wang Y, Tang L, Tang T, Li Z, Li M, Wang L, Zeng A, Ma Y, Huang S, Jiang X, Guo W. The regulation of Tfh cell differentiation by β-hydroxybutyrylation modification of transcription factor Bcl6. Chromosoma 2023; 132:257-268. [PMID: 37227491 PMCID: PMC10209948 DOI: 10.1007/s00412-023-00799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Transcriptional repressor B cell lymphoma 6 (Bcl6) is a major transcription factor involved in Tfh cell differentiation and germinal center response, which is regulated by a variety of biological processes. However, the functional impact of post-translational modifications, particularly lysine β-hydroxybutyrylation (Kbhb), on Bcl6 remains elusive. In this study, we revealed that Bcl6 is modified by Kbhb to affect Tfh cell differentiation, resulting in the decrease of cell population and cytokine IL-21. Furthermore, the modification sites are identified from enzymatic reactions to be lysine residues at positions 376, 377, and 379 by mass spectrometry, which is confirmed by site-directed mutagenesis and functional analyses. Collectively, our present study provides evidence on the Kbhb modification of Bcl6 and also generates new insights into the regulation of Tfh cell differentiation, which is a starting point for a thorough understanding of the functional involvement of Kbhb modification in the differentiations of Tfh and other T cells.
Collapse
Affiliation(s)
- Jingtian Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yimeng Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lei Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tiejun Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhuolan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Mengyuan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liming Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Aizhong Zeng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuxiao Ma
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shihao Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xiaomeng Jiang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, People's Republic of China.
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
22
|
Cantor H. Renegade T cell clones and autoimmune disease. Proc Natl Acad Sci U S A 2023; 120:e2310236120. [PMID: 37467287 PMCID: PMC10401021 DOI: 10.1073/pnas.2310236120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Affiliation(s)
- Harvey Cantor
- Department of Cancer Immunology, Dana-Farber Cancer Institute and Department of Immunology, Harvard Medical School, Boston, MA02215
| |
Collapse
|
23
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Abstract
The incomplete removal of T cells that are reactive against self-proteins during their differentiation in the thymus requires mechanisms of tolerance that prevent their effector function within the periphery. A further challenge is imposed by the need to establish tolerance to the holobiont self, which comprises a highly complex community of commensal microorganisms. Here, we review recent advances in the investigation of peripheral T cell tolerance, focusing on new insights into mechanisms of tolerance to the gut microbiota, including tolerogenic antigen-presenting cell types and immunomodulatory lymphocytes, and their layered ontogeny that underlies developmental windows for establishing intestinal tolerance. While emphasizing the intestine as a model tissue for studying peripheral T cell tolerance, we highlight overlapping and distinct pathways that underlie tolerance to self-antigens versus commensal antigens within a broader framework for immune tolerance.
Collapse
|
25
|
Abstract
The coevolution of multiple specialized T follicular regulatory cell subsets has led to fine-tuning of human germinal center responses in providing optimal antibody production and preventing events leading to autoimmunity (see the related Research Article by Le Coz et al.).
Collapse
Affiliation(s)
- Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Lisbon Academic Medical Center, Universidade de Lisboa, Lisboa, Portugal
| | - Johanne Jacobsen
- Department of Immunology, Oslo University Hospital, 0424, Oslo, Norway
| | - Saumya Kumar
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
26
|
Astarita JL, Dominguez CX, Tan C, Guillen J, Pauli ML, Labastida R, Valle J, Kleinschek M, Lyons J, Zarrin AA. Treg specialization and functions beyond immune suppression. Clin Exp Immunol 2023; 211:176-183. [PMID: 36571811 PMCID: PMC10019124 DOI: 10.1093/cei/uxac123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The actions of the immune system are finely tuned, involving complex communication and coordination between diverse immune and non-immune cells across the tissues of the body. A healthy immune system requires a precise balance between immunity and tolerance. Regulatory T cells (Tregs) have long been appreciated as one of the master regulators of this balance; their importance is underscored by the autoimmunity that develops in mice and humans when Tregs are missing or dysfunctional. In addition to the immunoregulatory roles of Tregs in suppressing autoimmunity and inflammation via control of adaptive and innate immune responses, several non-immune modulatory functions of Tregs have been identified in recent years. In this review, we have highlighted the growing literature on the action of Tregs in metabolism, stem cell maintenance, tissue repair, and angiogenesis. Alongside Tregs' immune suppressive role, these non-suppressive activities comprise a key function of Tregs in regulating health and disease. As Tregs receive increasing attention as therapeutic targets, understanding their non-canonical functions may become an important feature of Treg-directed interventions.
Collapse
Affiliation(s)
| | | | - Corey Tan
- TRex Biosciences, South San Francisco, CA, USA
| | | | | | | | - Jose Valle
- TRex Biosciences, South San Francisco, CA, USA
| | | | - Jesse Lyons
- TRex Biosciences, South San Francisco, CA, USA
| | - Ali A Zarrin
- Correspondence: TRexBio, fourth floor, 681 Gateway Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Budziło O, Irga-Jaworska N, Myszyńska M, Malanowska M, Niedźwiecki M. The Impact of Past COVID-19 Infection on Selected Lymphocyte Subsets in Pediatric Patients. Vaccines (Basel) 2023; 11:vaccines11030659. [PMID: 36992243 DOI: 10.3390/vaccines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
The impact of past COVID-19 infection on the immune system remains unidentified. So far, several papers have revealed the dependence between the count of lymphocytes and their subsets and the outcome of an acute disease. However, still there is little information about long-term consequences, particularly in the pediatric population. We attempted to verify whether a dysregulation of the immune system may be the reason for observed complications after past COVID-19 infection. Hence, we tried to prove that abnormalities in lymphocyte subpopulations are found in patients a certain time after the COVID-19 infection. In our paper, we enrolled 466 patients after SARS-CoV-2 infection, and evaluated their subsets of lymphocytes within 2–12 months after infection and compared them to the control group assessed several years before the pandemic. It occurred that main differences are observed in CD19+ lymphocytes and the index CD4+/CD8+ lymphocytes. We believe that this is only the introduction to further investigation of the immune system of pediatric patients post-COVID-19 infection.
Collapse
Affiliation(s)
- Oskar Budziło
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Ninela Irga-Jaworska
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Marcelina Myszyńska
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Magdalena Malanowska
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Maciej Niedźwiecki
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| |
Collapse
|
28
|
Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4 + T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol 2023; 24:487-500. [PMID: 36759711 PMCID: PMC9992328 DOI: 10.1038/s41590-023-01425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.
Collapse
Affiliation(s)
- Victoria Lee
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Donald M Rodriguez
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Nicole K Ganci
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Junting Ai
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jaime L Chao
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Matthew T Walker
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Christine H Miller
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - David E J Klawon
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Domenick E Kennedy
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Drug Discovery Science and Technology, AbbVie, North Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marcus R Clark
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023; 186:1309-1327. [PMID: 37001498 PMCID: PMC10119687 DOI: 10.1016/j.cell.2023.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
30
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Regulatory T cells and systemic vasculitis. Curr Opin Rheumatol 2023; 35:25-30. [PMID: 36508306 DOI: 10.1097/bor.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Emerging data suggest that regulatory T-cells (Treg) alterations play a major role in systemic vasculitis pathophysiology. We performed a systematic review of recent advances in the role of Treg and interleukin (IL)-10 in the pathogenesis and treatment of systemic vasculitis, including giant cell arteritis (GCA), Takayasu arteritis, Behçet's disease, antineutrophil cytoplasm antibodies (ANCA) associated vasculitis (AAV), and cryoglobulinemia associated vasculitis. RECENT FINDINGS Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Decreased peripheral blood frequencies of Treg are described in all vasculitis when compared to healthy donors. Altered Treg functions are reported in GCA, Takayasu arteritis, AAV, and Behçet's disease with different mechanisms proposed. Treatment with biologics, and sometimes other immunosuppressants, may restore Treg frequencies and/or immune activity with significant differences in active disease or disease in remission in several systemic vasculitis. IL-10 is elevated in GCA, AAV, cryoglobulinemia associated vasculitis. In Behçet's disease, IL-10 is decreased in peripheral blood and elevated in saliva. In Takayasu arteritis, IL-10 levels were essentially elevated in patients' vessel wall. Several new therapeutic approaches targeting Treg and Il-10 (low dose IL-2, CAR Treg…) are developed to treat patients with systemic vasculitis. SUMMARY Treg and IL-10 play a central role in the regulation of inflammation in vasculitis and new targeting approaches are emerging.
Collapse
|
32
|
Nandakumar KS, Nündel K. Editorial: Systemic lupus erythematosus - predisposition factors, pathogenesis, diagnosis, treatment and disease models. Front Immunol 2022; 13:1118180. [PMID: 36591294 PMCID: PMC9802400 DOI: 10.3389/fimmu.2022.1118180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden,*Correspondence: Kutty Selva Nandakumar,
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
33
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
34
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
35
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Radziszewska A, Moulder Z, Jury EC, Ciurtin C. CD8 + T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int J Mol Sci 2022; 23:11431. [PMID: 36232733 PMCID: PMC9569696 DOI: 10.3390/ijms231911431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
CD8+ T cells are cytotoxic lymphocytes that destroy pathogen infected and malignant cells through release of cytolytic molecules and proinflammatory cytokines. Although the role of CD8+ T cells in connective tissue diseases (CTDs) has not been explored as thoroughly as that of other immune cells, research focusing on this key component of the immune system has recently gained momentum. Aberrations in cytotoxic cell function may have implications in triggering autoimmunity and may promote tissue damage leading to exacerbation of disease. In this comprehensive review of current literature, we examine the role of CD8+ T cells in systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, polymyositis, and dermatomyositis with specific focus on comparing what is known about CD8+ T cell peripheral blood phenotypes, CD8+ T cell function, and CD8+ T cell organ-specific profiles in adult and juvenile forms of these disorders. Although, the precise role of CD8+ T cells in the initiation of autoimmunity and disease progression remains to be elucidated, increasing evidence indicates that CD8+ T cells are emerging as an attractive target for therapy in CTDs.
Collapse
Affiliation(s)
- Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London WC1E 6JF, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Zachary Moulder
- University College London Medical School, University College London, London WC1E 6DE, UK
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London WC1E 6JF, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
37
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Whyte CE, Singh K, Burton OT, Aloulou M, Kouser L, Veiga RV, Dashwood A, Okkenhaug H, Benadda S, Moudra A, Bricard O, Lienart S, Bielefeld P, Roca CP, Naranjo-Galindo FJ, Lombard-Vadnais F, Junius S, Bending D, Ono M, Hochepied T, Halim TY, Schlenner S, Lesage S, Dooley J, Liston A. Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. J Exp Med 2022; 219:e20212391. [PMID: 35699942 PMCID: PMC9202720 DOI: 10.1084/jem.20212391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.
Collapse
Affiliation(s)
- Carly E. Whyte
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kailash Singh
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Oliver T. Burton
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Meryem Aloulou
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Centre national de la recherche scientifique U5051, Institut national de la santé et de la recherche médicale U1291, University of Toulouse III, Toulouse, France
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Amy Dashwood
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Samira Benadda
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
| | - Alena Moudra
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Orian Bricard
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | | | - Carlos P. Roca
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Félix Lombard-Vadnais
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Quebec, Canada
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | | | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Sylvie Lesage
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - James Dooley
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
París-Muñoz A, Aizpurua G, Barber DF. Helios Expression Is Downregulated on CD8+ Treg in Two Mouse Models of Lupus During Disease Progression. Front Immunol 2022; 13:922958. [PMID: 35784310 PMCID: PMC9244697 DOI: 10.3389/fimmu.2022.922958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
T-cell–mediated autoimmunity reflects an imbalance in this compartment that is not restored by tolerogenic immune cells, e.g., regulatory T cells or tolerogenic dendritic cells (tolDCs). Although studies into T-cell equilibrium have mainly focused on regulatory CD4+FoxP3+ T cells (CD4+ Tregs), recent findings on the lesser known CD8+ Tregs (CD44+CD122+Ly49+) have highlighted their non-redundant role in regulating lupus-like disease and their regulatory phenotype facilitated by the transcription factor Helios in mice and humans. However, there are still remaining questions about Helios regulation and dynamics in different autoimmune contexts. Here, we show the absence of CD8+ Tregs in two lupus-prone murine models: MRL/MPJ and MRL/lpr, in comparison with a non-prone mouse strain like C57BL/6. We observed that all MRL animals showed a dramatically reduced population of CD8+ Tregs and a greater Helios downregulation on diseased mice. Helios induction was detected preferentially on CD8+ T cells from OT-I mice co-cultured with tolDCs from C57BL/6 but not in MRL animals. Furthermore, the Helios profile was also altered in other relevant T-cell populations implicated in lupus, such as CD4+ Tregs, conventional CD4+, and double-negative T cells. Together, these findings could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating lupus disease states.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Aizpurua
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- *Correspondence: Domingo F. Barber,
| |
Collapse
|
41
|
Zimmerer JM, Han JL, Peterson CM, Zeng Q, Ringwald BA, Cassol C, Chaudhari S, Hart M, Hemminger J, Satoskar A, Abdel-Rasoul M, Wang JJ, Warren RT, Zhang ZJ, Breuer CK, Bumgardner GL. Antibody-suppressor CXCR5 + CD8 + T cellular therapy ameliorates antibody-mediated rejection following kidney transplant in CCR5 KO mice. Am J Transplant 2022; 22:1550-1563. [PMID: 35114045 PMCID: PMC9177711 DOI: 10.1111/ajt.16988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
CCR5 KO kidney transplant (KTx) recipients are extraordinarily high alloantibody producers and develop pathology that mimics human antibody-mediated rejection (AMR). C57BL/6 and CCR5 KO mice (H-2b ) were transplanted with A/J kidneys (H-2a ); select cohorts received adoptive cell therapy (ACT) with alloprimed CXCR5+ CD8+ T cells (or control cells) on day 5 after KTx. ACT efficacy was evaluated by measuring posttransplant alloantibody, pathology, and allograft survival. Recipients were assessed for the quantity of CXCR5+ CD8+ T cells and CD8-mediated cytotoxicity to alloprimed IgG+ B cells. Alloantibody titer in CCR5 KO recipients was four-fold higher than in C57BL/6 recipients. The proportion of alloprimed CXCR5+ CD8+ T cells 7 days after KTx in peripheral blood, lymph node, and spleen was substantially lower in CCR5 KO compared to C57BL/6 recipients. In vivo cytotoxicity towards alloprimed IgG+ B cells was also reduced six-fold in CCR5 KO recipients. ACT with alloprimed CXCR5+ CD8+ T cells (but not alloprimed CXCR5- CD8+ or third-party primed CXCR5+ CD8+ T cells) substantially reduced alloantibody titer, ameliorated AMR pathology, and prolonged allograft survival. These results indicate that a deficiency in quantity and function of alloprimed CXCR5+ CD8+ T cells contributes to high alloantibody and AMR in CCR5 KO recipient mice, which can be rescued with ACT.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea M. Peterson
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Clarissa Cassol
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Zheng J. Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
42
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Borys SM, Bag AK, Brossay L, Adeegbe DO. The Yin and Yang of Targeting KLRG1 + Tregs and Effector Cells. Front Immunol 2022; 13:894508. [PMID: 35572605 PMCID: PMC9098823 DOI: 10.3389/fimmu.2022.894508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
The literature surrounding KLRG1 has primarily focused on NK and CD8+ T cells. However, there is evidence that the most suppressive Tregs express KLRG1. Until now, the role of KLRG1 on Tregs has been mostly overlooked and remains to be elucidated. Here we review the current literature on KLRG1 with an emphasis on the KLRG1+ Treg subset role during cancer development and autoimmunity. KLRG1 has been recently proposed as a new checkpoint inhibitor target, but these studies focused on the effects of KLRG1 blockade on effector cells. We propose that when designing anti-tumor therapies targeting KLRG1, the effects on both effector cells and Tregs will have to be considered.
Collapse
Affiliation(s)
- Samantha M Borys
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Arup K Bag
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Dennis O Adeegbe
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
44
|
Gelmez MY, Betul Oktelik F, Cinar S, Ozbalak M, Ozluk O, Aktan M, Deniz G. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
45
|
Akama-Garren EH, Carroll MC. Lupus Susceptibility Loci Predispose Mice to Clonal Lymphocytic Responses and Myeloid Expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2403-2424. [PMID: 35477687 PMCID: PMC9254690 DOI: 10.4049/jimmunol.2200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 05/17/2023]
Abstract
Lupus susceptibility results from the combined effects of numerous genetic loci, but the contribution of these loci to disease pathogenesis has been difficult to study due to the large cellular heterogeneity of the autoimmune immune response. We performed single-cell RNA, BCR, and TCR sequencing of splenocytes from mice with multiple polymorphic lupus susceptibility loci. We not only observed lymphocyte and myeloid expansion, but we also characterized changes in subset frequencies and gene expression, such as decreased CD8 and marginal zone B cells and increased Fcrl5- and Cd5l-expressing macrophages. Clonotypic analyses revealed expansion of B and CD4 clones, and TCR repertoires from lupus-prone mice were distinguishable by algorithmic specificity prediction and unsupervised machine learning classification. Myeloid differential gene expression, metabolism, and altered ligand-receptor interaction were associated with decreased Ag presentation. This dataset provides novel mechanistic insight into the pathophysiology of a spontaneous model of lupus, highlighting potential therapeutic targets for autoantibody-mediated disease.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
46
|
Abstract
Identification of regulatory CD8+ T cells that suppress pathological immune responses is an importunate pursuit. In a recent issue of Science, Li et al. demonstrated that human KIR+CD8+ T cells suppress autoimmunity by eliminating pathogenic CD4+ T cells.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
47
|
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Mallajosyula VVA, Bracey NA, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Dekker CL, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Chien YH, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. KIR +CD8 + T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022; 376:eabi9591. [PMID: 35258337 PMCID: PMC8995031 DOI: 10.1126/science.abi9591] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxim Zaslavsky
- Program in Computer Science, Stanford University, Stanford, CA, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J. Sikora
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Shin-Heng Chiou
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Chen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiefu Li
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M. McSween
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Nathan A. Bracey
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopal Krishna R. Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kartik Bhamidipati
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen L. Hauser
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ludvig M. Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Yueh-Hsiu Chien
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Kari C. Nadeau
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naresha Saligrama
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Gertel S, Polachek A, Elkayam O, Furer V. Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases. Autoimmun Rev 2022; 21:103085. [PMID: 35341974 DOI: 10.1016/j.autrev.2022.103085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Regulatory T cells (Tregs) comprise a CD4+CD25+Foxp3+ T cell subset for maintaining immune tolerance, and their deficits and/or dysfunction are observed in autoimmune diseases. The lymphocyte activation gene 3 (LAG-3, also known as CD223), which is an immunoglobulin superfamily member expressed on peripheral immune cells, is recognized as an inhibitory regulator of Tregs. LAG-3+ T cells represent a novel protective Tregs subset that produces interleukin-10. Alterations in LAG-3+ Tregs have been reported in several autoimmune diseases, suggesting their potential pathogenic role. Recent studies have indicated that LAG-3+ Tregs may be associated not only with immunopathology but also with response to therapy in several autoimmune and autoinflammatory diseases, such as rheumatoid arthritis, psoriasis, psoriatic arthritis and others. We present a review of Tregs phenotypes and functions, with a focus on LAG-3+ Tregs, and discuss their potential role as biomarkers for treatment response in autoimmune diseases.
Collapse
Affiliation(s)
- Smadar Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ari Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
50
|
Conchon A, Soudja S. [An original molecular cooperation regulates the immunosuppressive function of CD8 + Tregs]. Med Sci (Paris) 2022; 38:227-229. [PMID: 35179481 DOI: 10.1051/medsci/2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Axel Conchon
- Master 1 Cancer, université Claude Bernard Lyon 1, France
| | - Saidi Soudja
- Centre de recherche en cancérologie de Lyon, France
| |
Collapse
|