1
|
Salataj E, Spilianakis CG, Chaumeil J. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Front Immunol 2023; 14:1156077. [PMID: 37215121 PMCID: PMC10193148 DOI: 10.3389/fimmu.2023.1156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over the past decades, it has become increasingly clear that higher order chromatin folding and organization within the nucleus is involved in the regulation of genome activity and serves as an additional epigenetic mechanism that modulates cellular functions and gene expression programs in diverse biological processes. In particular, dynamic allelic interactions and nuclear locations can be of functional importance during the process of lymphoid differentiation and the regulation of immune responses. Analyses of the proximity between chromatin and/or nuclear regions can be performed on populations of cells with high-throughput sequencing approaches such as chromatin conformation capture ("3C"-based) or DNA adenine methyltransferase identification (DamID) methods, or, in individual cells, by the simultaneous visualization of genomic loci, their primary transcripts and nuclear compartments within the 3-dimensional nuclear space using Fluorescence In Situ Hybridization (FISH) and immunostaining. Here, we present a detailed protocol to simultaneously detect nascent RNA transcripts (3D RNA FISH), their genomic loci (3D DNA FISH) and/or their chromosome territories (CT paint DNA FISH) combined with the antibody-based detection of various nuclear factors (immunofluorescence). We delineate the application and effectiveness of this robust and reproducible protocol in several murine T lymphocyte subtypes (from differentiating thymic T cells, to activated splenic and peripheral T cells) as well as other murine cells, including embryonic stem cells, B cells, megakaryocytes and macrophages.
Collapse
Affiliation(s)
- Eralda Salataj
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Julie Chaumeil
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
2
|
Boehm T, Morimoto R, Trancoso I, Aleksandrova N. Genetic conflicts and the origin of self/nonself-discrimination in the vertebrate immune system. Trends Immunol 2023; 44:372-383. [PMID: 36941153 DOI: 10.1016/j.it.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/22/2023]
Abstract
Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates. The evolutionarily recent lymphoid lineage is uniquely sensitive to mutations of the DNA maintenance methylase, which is an orphaned distant relative of prokaryotic restriction-modification systems. We discuss how the emergence of adaptive immunity gave rise to higher order genetic conflicts between genetic parasites and their vertebrate host.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Ryo Morimoto
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Inês Trancoso
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
3
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
4
|
Wu GS, Culberson EJ, Allyn BM, Bassing CH. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2583-2592. [PMID: 35534211 PMCID: PMC9133172 DOI: 10.4049/jimmunol.2100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/23/2022] [Indexed: 06/03/2023]
Abstract
The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRβ locus, one Vβ gene segment (V31) rearranges only by inversion, whereas all other Vβ segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRβ gene repertoire and allelic exclusion by stochastically limiting initiation of Vβ rearrangements before TCRβ protein-signaled permanent silencing of Vβ recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRβ gene repertoire by restricting their Vβ segments from initiating recombination and hindering aberrant nonfunctional Vβ recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vβ segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vβ recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRβ genes.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica J Culberson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
6
|
Skok JA. The art of chromosome dynamics: an interview with Jane Skok. Epigenomics 2022; 14:327-330. [PMID: 35195040 PMCID: PMC8977944 DOI: 10.2217/epi-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this interview, Professor Jane Skok speaks with Storm Johnson, commissioning editor for Epigenomics, on her work to date in the field of chromosome architecture and regulatory elements. Jane Skok's lab uses sophisticated microscopic techniques to visualize recombination in individual cells, tracing the dynamic changes in chromosome architecture and nuclear location at different stages of this complex process. This line of research unites two lifelong passions: science and art. After completing her PhD in immunology and genetics at the Imperial Cancer Research Fund in Lincoln's Inn Fields, Dr Skok took 12 years off and pursued training in art while caring for her young children. She then returned to science, joining David Gray's lab at Imperial College London as a postdoctoral fellow to study B cell biology and acquired expertise in Mandy Fisher's lab to understand how nuclear organization of the antigen receptor genes regulate V(D)J recombination and allelic exclusion. Dr Skok continued to pursue these questions in her own lab at University College London and elucidated the roles of Pax5, locus contraction and nuclear subcompartmentalization in maintaining allelic exclusion. In 2006, Dr Skok was recruited to New York University School of Medicine, where her lab has revealed the activities of several signaling factors in guiding B cell development and they made the surprising discovery that the RAG proteins and the DNA damage response factor ATM help ensure allelic exclusion at the immunoglobulin gene loci. More recently, those at the Skok lab have turned their attention to understanding how localized and long-range chromatin contacts impact gene regulation in health and disease settings.
Collapse
Affiliation(s)
- Jane A Skok
- Jane Skok Sandra and Edward H Meyer Professor, Department of Pathology, Associate Director of Basic Research Perlmutter Cancer Center, Affiliate member New York Genome Centre, New York University School of Medicine, 550 1st Ave, New York, NY 10022, USA
| |
Collapse
|
7
|
Libri A, Marton T, Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice During V(D)J Recombination. Front Genet 2022; 12:823943. [PMID: 35082840 PMCID: PMC8785701 DOI: 10.3389/fgene.2021.823943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.
Collapse
Affiliation(s)
- Alice Libri
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Timea Marton
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| |
Collapse
|
8
|
Glynn RA, Bassing CH. Nemo-Dependent, ATM-Mediated Signals from RAG DNA Breaks at Igk Feedback Inhibit V κ Recombination to Enforce Igκ Allelic Exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:371-383. [PMID: 34965965 PMCID: PMC8756740 DOI: 10.4049/jimmunol.2100696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
Monoallelic AgR gene expression underlies specific adaptive immune responses. AgR allelic exclusion is achieved by sequential initiation of V(D)J recombination between alleles and resultant protein from one allele signaling to prevent recombination of the other. The ATM kinase, a regulator of the DNA double-strand break (DSB) response, helps enforce allelic exclusion through undetermined mechanisms. ATM promotes repair of RAG1/RAG2 (RAG) endonuclease-induced DSBs and transduces signals from RAG DSBs during Igk gene rearrangement on one allele to transiently inhibit RAG1 protein expression, Igk accessibility, and RAG cleavage of the other allele. Yet, the relative contributions of ATM functions in DSB repair versus signaling to enforce AgR allelic exclusion remain undetermined. In this study, we demonstrate that inactivation in mouse pre-B cells of the NF-κB essential modulator (Nemo) protein, an effector of ATM signaling, diminishes RAG DSB-triggered repression of Rag1/Rag2 transcription and Igk accessibility but does not result in aberrant repair of RAG DSBs like ATM inactivation. We show that Nemo deficiency increases simultaneous biallelic Igk cleavage in pre-B cells and raises the frequency of B cells expressing Igκ proteins from both alleles. In contrast, the incidence of biallelic Igκ expression is not elevated by inactivation of the SpiC transcriptional repressor, which is induced by RAG DSBs in an ATM-dependent manner and suppresses Igk accessibility. Thus, we conclude that Nemo-dependent, ATM-mediated DNA damage signals enforce Igκ allelic exclusion by orchestrating transient repression of RAG expression and feedback inhibition of additional Igk rearrangements in response to RAG cleavage on one Igk allele.
Collapse
Affiliation(s)
- Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104,Department of Pathology and Laboratory Medicine, Children’s Hospital of Pennsylvania, Philadelphia, PA 19104
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104,Department of Pathology and Laboratory Medicine, Children’s Hospital of Pennsylvania, Philadelphia, PA 19104,Corresponding Author: Craig H. Bassing, Ph.D., Children’s Hospital of Philadelphia, 4054 Colket Translational Research Building, 3501 Civic Center Blvd., Philadelphia, PA 19104, 267-426-0311,
| |
Collapse
|
9
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
10
|
Cao P, Li G, Xiang J. Genome instability and lymphoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:552-557. [PMID: 34148893 PMCID: PMC10930211 DOI: 10.11817/j.issn.1672-7347.2021.190427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 11/03/2022]
Abstract
Lymphoma is one of the most common malignant tumor of the hematologic system. The genome instability is not only an important molecular basis for the development of lymphoma, but also has important value in the diagnosis and prognosis of lymphoma. There are 2 types of genome instability: Microsatellite instability (MSI/MIN) at gene level and chromosomal instability at chromosome level. Through the study on genes associated with lymphoma, the unstable genes associated with lymphoma could be found, meanwhile the mechanism of its occurrence and development of lymphoma could be explored, and the important basis of molecular biology could also be provided in the field of current hot lymphoma precision medical research.
Collapse
Affiliation(s)
- Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Guiyuan Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| |
Collapse
|
11
|
Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc Natl Acad Sci U S A 2021; 118:2103630118. [PMID: 34006647 DOI: 10.1073/pnas.2103630118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.
Collapse
|
12
|
Byrum JN, Hoolehan WE, Simpson DA, Rodgers W, Rodgers KK. Full length RAG2 expression enhances the DNA damage response in pre-B cells. Immunobiology 2021; 226:152089. [PMID: 33873062 DOI: 10.1016/j.imbio.2021.152089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
V(D)J recombination by the RAG1 and RAG2 protein complex in developing lymphocytes includes DNA double strand break (DSB) intermediates. RAG2 undergoes export from the nucleus and enrichment at the centrosome minutes following production of DSBs by genotoxic stress, suggesting that RAG2 participates in cellular responses to DSBs such as those generated during V(D)J recombination. To determine the effect of RAG2 expression on cell viability following DSB generation, we measured pre-B cells that expressed either full length (FL) wild-type RAG2, or a T490A mutant of RAG2 that has increased stability and fails to undergo nuclear export following generation of DSBs. Each RAG2 construct was labeled with GFP at the N-terminus. Compared to the T490A mutant, cells expressing FL RAG2 exhibited elevated apoptosis by 24 h following irradiation, and this coincided with a greater amount of Caspase 3 cleavage measured in cell lysates. Pre-B cells expressing either RAG2 protein exhibited similar increases in phospho-p53 levels following irradiation. Interestingly, FL RAG2-expressing cells exhibited elevated division relative to the T490A clone beginning ~24 h following irradiation, as well as an increased percentage of cells proceeding through mitosis, suggesting an improved rate of recovery following the initial burst in apoptosis. Altogether, these data show that FL RAG2, but not its stable nuclear export-defective T490A mutant, participates in pre-B cell decisions between apoptosis versus DNA repair and cell cycle progression following DNA damage.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Walker E Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - William Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.
| |
Collapse
|
13
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
14
|
Castañeda-Zegarra S, Fernandez-Berrocal M, Tkachov M, Yao R, Upfold NLE, Oksenych V. Genetic interaction between the non-homologous end-joining factors during B and T lymphocyte development: In vivo mouse models. Scand J Immunol 2020; 92:e12936. [PMID: 32654175 DOI: 10.1111/sji.12936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/07/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Non-homologous end joining (NHEJ) is the main DNA repair mechanism for the repair of double-strand breaks (DSBs) throughout the course of the cell cycle. DSBs are generated in developing B and T lymphocytes during V(D)J recombination to increase the repertoire of B and T cell receptors. DSBs are also generated during the class switch recombination (CSR) process in mature B lymphocytes, providing distinct effector functions of antibody heavy chain constant regions. Thus, NHEJ is important for both V(D)J recombination and CSR. NHEJ comprises core Ku70 and Ku80 subunits that form the Ku heterodimer, which binds DSBs and promotes the recruitment of accessory factors (e.g., DNA-PKcs, Artemis, PAXX, MRI) and downstream core factors (XLF, Lig4 and XRCC4). In recent decades, new NHEJ proteins have been reported, increasing complexity of this molecular pathway. Numerous in vivo mouse models have been generated and characterized to identify the interplay of NHEJ factors and their role in development of adaptive immune system. This review summarizes the currently available mouse models lacking one or several NHEJ factors, with a particular focus on early B cell development. We also underline genetic interactions and redundancy in the NHEJ pathway in mice.
Collapse
Affiliation(s)
- Sergio Castañeda-Zegarra
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Marion Fernandez-Berrocal
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway.,Behavioural Neurobiology MS Program, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Max Tkachov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Rouan Yao
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Nikki Lyn Esnardo Upfold
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs Hospital, Clinic of Medicine, Trondheim University Hospital, Trondheim, Norway.,Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Huddinge, Sweden.,Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Bianchi JJ, Murigneux V, Bedora-Faure M, Lescale C, Deriano L. Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas. Cell Rep 2020; 27:2847-2858.e4. [PMID: 31167132 PMCID: PMC6581794 DOI: 10.1016/j.celrep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53−/− lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2−/−p53−/− T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development. Lymphomas from RAG2/p53- and p53-deficient mice bear distinct genome architectures Block in T cell development leads to 9qA4-5.3 rearrangements and amplifications Breakage-fusion-bridge events trigger 9qA4-5.3 aberrations in early T cell lymphomas The syntenic region 11q23 is amplified in some human hematological cancers
Collapse
Affiliation(s)
- Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
16
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
17
|
Musilli S, Abramowski V, Roch B, de Villartay JP. An in vivo study of the impact of deficiency in the DNA repair proteins PAXX and XLF on development and maturation of the hemolymphoid system. J Biol Chem 2020; 295:2398-2406. [PMID: 31915249 DOI: 10.1074/jbc.ac119.010924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Repair of DNA double-strand breaks by the nonhomologous end joining pathway is central for proper development of the adaptive immune system. This repair pathway involves eight factors, including XRCC4-like factor (XLF)/Cernunnos and the paralog of XRCC4 and XLF, PAXX nonhomologous end joining factor (PAXX). Xlf-/- and Paxx-/- mice are viable and exhibit only a mild immunophenotype. However, mice lacking both PAXX and XLF are embryonic lethal because postmitotic neurons undergo massive apoptosis in embryos. To decipher the roles of PAXX and XLF in both variable, diversity, and joining recombination and immunoglobulin class switch recombination, here, using Cre/lox-specific deletion to prevent double-KO embryonic lethality, we developed two mouse models of a conditional Xlf KO in a Paxx-/- background. Cre expressed under control of the iVav or CD21 promoter enabled Xlf deletion in early hematopoietic progenitors and splenic mature B cells, respectively. We demonstrate the XLF and PAXX interplay during variable, diversity, and joining recombination in vivo but not during class switch recombination, for which PAXX appeared to be fully dispensable. Xlf/Paxx double KO in hematopoietic progenitors resulted in a shorter lifespan associated with onset of thymic lymphomas, revealing a genome caretaking function of XLF/PAXX.
Collapse
Affiliation(s)
- Stefania Musilli
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Benoit Roch
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France.
| |
Collapse
|
18
|
Beck C, Castañeda-Zegarra S, Huse C, Xing M, Oksenych V. Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF. Biomolecules 2019; 10:biom10010060. [PMID: 31905950 PMCID: PMC7023129 DOI: 10.3390/biom10010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) trigger the Ataxia telangiectasia mutated (ATM)-dependent DNA damage response (DDR), which consists of histone H2AX, MDC1, RNF168, 53BP1, PTIP, RIF1, Rev7, and Shieldin. Early stages of B and T lymphocyte development are dependent on recombination activating gene (RAG)-induced DSBs that form the basis for further V(D)J recombination. Non-homologous end joining (NHEJ) pathway factors recognize, process, and ligate DSBs. Based on numerous loss-of-function studies, DDR factors were thought to be dispensable for the V(D)J recombination. In particular, mice lacking Mediator of DNA Damage Checkpoint Protein 1 (MDC1) possessed nearly wild-type levels of mature B and T lymphocytes in the spleen, thymus, and bone marrow. NHEJ factor XRCC4-like factor (XLF)/Cernunnos is functionally redundant with ATM, histone H2AX, and p53-binding protein 1 (53BP1) during the lymphocyte development in mice. Here, we genetically inactivated MDC1, XLF, or both MDC1 and XLF in murine vAbl pro-B cell lines and, using chromosomally integrated substrates, demonstrated that MDC1 stimulates the V(D)J recombination in cells lacking XLF. Moreover, combined inactivation of MDC1 and XLF in mice resulted in synthetic lethality. Together, these findings suggest that MDC1 and XLF are functionally redundant during the mouse development, in general, and the V(D)J recombination, in particular.
Collapse
Affiliation(s)
- Carole Beck
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Sergio Castañeda-Zegarra
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Camilla Huse
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Mengtan Xing
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway
- Department of Biosciences and Nutrition (BioNuT), Karolinska Institutet, 14183 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
19
|
Bétermier M, Borde V, de Villartay JP. Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks? Trends Cell Biol 2019; 30:87-96. [PMID: 31818700 DOI: 10.1016/j.tcb.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
DNA double-strand breaks (DSBs) are the most toxic DNA lesions given their oncogenic potential. Nevertheless, programmed DSBs (prDSBs) contribute to several biological processes. Formation of prDSBs is the 'price to pay' to achieve these essential biological functions. Generated by domesticated PiggyBac transposases, prDSBs have been integrated in the life cycle of ciliates. Created by Spo11 during meiotic recombination, they constitute a driving force of evolution and ensure balanced chromosome content for successful reproduction. Produced by the RAG1/2 recombinase, they are required for the development of the adaptive immune system in many species. The coevolution of processes that couple introduction of prDSBs to their accurate repair may constitute an effective safeguard against genomic instability.
Collapse
Affiliation(s)
- Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Valérie Borde
- Institut Curie, CNRS UMR3244, Sorbonne Université, Paris, France.
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
20
|
Mika J, Kabacik S, Badie C, Polanska J, Candéias SM. Germline DNA Retention in Murine and Human Rearranged T Cell Receptor Gene Coding Joints: Alternative Recombination Signal Sequences and V(D)J Recombinase Errors. Front Immunol 2019; 10:2637. [PMID: 31781122 PMCID: PMC6857471 DOI: 10.3389/fimmu.2019.02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/24/2019] [Indexed: 12/02/2022] Open
Abstract
The genes coding for the antigenic T cell receptor (TR) subunits are assembled in thymocytes from discrete V, D, and J genes by a site-specific recombination process. A tight control of this activity is required to prevent potentially detrimental recombination events. V, D, and J genes are flanked by semi-conserved nucleotide motives called recombination signal sequences (RSSs). V(D)J recombination is initiated by the precise introduction of a DNA double-strand break exactly at the border of the genes and their RSSs by the RAG recombinase. RSSs are therefore physically separated from the coding region of the genes before assembly of a rearranged TR gene. During a high throughput profiling of TRB genes in mice, we identified rearranged TRB genes in which part or all of a flanking RSS was retained in V-D or D-J coding joints. In some instances, this retention of germline DNA resulted from the use of an upstream alternative RSS. However, we also identified TRB sequences where retention of germline DNA occurred in the absence of alternative RSS, suggesting that RAG activity was mis-targeted during recombination. Similar events were also identified in human rearranged TRB and TRG genes. The use of alternative RSSs during V(D)J recombination illustrates the complexity of RAG-RSSs interactions during V(D)J recombination. While the frequency of errors resulting from mis-targeted RAG activity is very low, we believe that these RAG errors may be at the origin of oncogenic translocations and are a threat for genetic stability in developing lymphocytes.
Collapse
Affiliation(s)
- Justyna Mika
- Data Mining Division, Silesian University of Technology, Gliwice, Poland
| | - Sylwia Kabacik
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards Public Health England Chilton, Didcot, United Kingdom
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards Public Health England Chilton, Didcot, United Kingdom
| | - Joanna Polanska
- Data Mining Division, Silesian University of Technology, Gliwice, Poland
| | - Serge M Candéias
- Université Grenoble Alpes, CEA, CNRS, IRIG-LCBM, Grenoble, France
| |
Collapse
|
21
|
Han Q, Ma J, Gu Y, Song H, Kapadia M, Kawasawa YI, Dovat S, Song C, Ge Z. RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia. J Cancer 2019; 10:3842-3850. [PMID: 31333801 PMCID: PMC6636280 DOI: 10.7150/jca.33989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
The recombination mediated by recombination activating gene (RAG) is not only the dominant mutational process but also the predominant driver of oncogenic genomic rearrangement in acute lymphoblastic leukemia (ALL). It is further responsible for leukemic clonal evolution. In this study, significant RAG1 increase is observed in the subsets of B-ALL patients, and high expression of RAG1 is observed to be correlated with high proliferation markers. IKZF1-encoded protein, IKAROS, directly binds to the RAG1 promoter and regulates RAG1 expression in leukemic cells. CK2 inhibitor by increasing IKAROS activity significantly suppresses RAG1 expression in ALL in an IKAROS-dependent manner. Patients with IKZF1 deletion have significantly higher expression of RAG1 compared to that without IKZF1 deletion. CK2 inhibitor treatment also results in an increase in IKZF1 binding to the RAG1 promoter and suppression of RAG1 expression in primary ALL cells. Taken together, these results demonstrate that RAG1 high expression is associated with high proliferation markers in B-ALL. Our data for the first time proved that RAG1 expression is directly suppressed by IKAROS. Our results also reveal drive oncogenesis of B-ALL is driven by high expression of RAG1 with IKAROS dysfunction together, which have significance in an integrated prognostic model for adult ALL.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Yuka Imamura Kawasawa
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Genome Sciences and Bioinformatics Core Facility, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA17033, USA
| | - Sinisa Dovat
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Roch B, Abramowski V, Chaumeil J, de Villartay JP. Cernunnos/Xlf Deficiency Results in Suboptimal V(D)J Recombination and Impaired Lymphoid Development in Mice. Front Immunol 2019; 10:443. [PMID: 30923523 PMCID: PMC6426757 DOI: 10.3389/fimmu.2019.00443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Xlf/Cernunnos is unique among the core factors of the non-homologous end joining (NHEJ) DNA double strand breaks (DSBs) repair pathway, in the sense that it is not essential for V(D)J recombination in vivo and in vitro. Unlike other NHEJ deficient mice showing a SCID phenotype, Xlf−/− mice present a unique immune phenotype with a moderate B- and T-cell lymphopenia, a decreased cellularity in the thymus, and a characteristic TCRα repertoire bias associated with the P53-dependent apoptosis of CD4+CD8+ DP thymocytes. Here, we thoroughly analyzed Xlf−/− mice immune phenotype and showed that it is specifically related to the DP stage but independent of the MHC-driven antigen presentation and T-cell activation during positive selection. Instead, we show that V(D)J recombination is subefficient in Xlf−/− mice in vivo, exemplified by the presence of unrepaired DSBs in the thymus. This results in a moderate developmental delay of both B- and T-lymphocytes at key V(D)J recombination dependent stages. Furthermore, subefficient V(D)J recombination waves are accumulating during TCRα rearrangement, causing the typical TCRα repertoire bias with loss of distal Vα and Jα rearrangements.
Collapse
Affiliation(s)
- Benoit Roch
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Vincent Abramowski
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Julie Chaumeil
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris-Descartes, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in the Immune System", INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Hewitt SL, Wong JB, Lee JH, Nishana M, Chen H, Coussens M, Arnal SM, Blumenberg LM, Roth DB, Paull TT, Skok JA. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Rep 2018; 21:979-993. [PMID: 29069605 PMCID: PMC5662208 DOI: 10.1016/j.celrep.2017.09.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jason B Wong
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Hongxi Chen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suzzette M Arnal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Lili M Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
25
|
Nucks1 synergizes with Trp53 to promote radiation lymphomagenesis in mice. Oncotarget 2018; 7:61874-61889. [PMID: 27542204 PMCID: PMC5308697 DOI: 10.18632/oncotarget.11297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/− Nucks1+/− mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/− mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/− Nucks1+/− mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/− Nucks1+/− mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/− Nucks1+/− mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/− Nucks1+/− mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.
Collapse
|
26
|
Candéias SM, Kabacik S, Olsen AK, Eide DM, Brede DA, Bouffler S, Badie C. Ionizing radiation does not impair the mechanisms controlling genetic stability during T cell receptor gene rearrangement in mice. Int J Radiat Biol 2018; 94:357-365. [PMID: 29431562 DOI: 10.1080/09553002.2018.1439195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To determine whether low dose/low dose rate radiation-induced genetic instability may result from radiation-induced inactivation of mechanisms induced by the ATM-dependent DNA damage response checkpoint. To this end, we analysed the faithfulness of T cell receptor (TR) gene rearrangement by V(D)J recombination in DNA from mice exposed to a single dose of X-ray or chronically exposed to low dose rate γ radiation. MATERIALS AND METHODS Genomic DNA obtained from the blood or the thymus of wild type or Ogg1-deficient mice exposed to low (0.1) or intermediate/high (0.2-1 Gy) doses of radiation either by acute X-rays exposure or protracted exposure to low dose-rate γ-radiation was used to analyse by PCR the presence of illegitimate TR gene rearrangements. RESULTS Radiation exposure does not increase the onset of TR gene trans-rearrangements in irradiated mice. In mice where it happens, trans-rearrangements remain sporadic events in developing T lymphocytes. CONCLUSION We concluded that low dose/low dose rate ionizing radiation (IR) exposure does not lead to widespread inactivation of ATM-dependent mechanisms, and therefore that the mechanisms enforcing genetic stability are not impaired by IR in developing lymphocytes and lymphocyte progenitors, including BM-derived hematopoietic stem cells, in low dose/low dose rate exposed mice.
Collapse
Affiliation(s)
- Serge M Candéias
- a CEA, CNRS, BIG-LCBM, University of Grenoble Alpes , Grenoble , France
| | - Sylwia Kabacik
- b Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK
| | - Ann-Karin Olsen
- c Centre for Environmental Radioactivity (CERAD CoE) , Ås , Norway.,d Department of Molecular Biology , Norwegian Institute of Public Health , Oslo , Norway
| | - Dag M Eide
- c Centre for Environmental Radioactivity (CERAD CoE) , Ås , Norway.,e Department of Toxicology and Risk , Norwegian Institute of Public Health , Oslo , Norway
| | - Dag A Brede
- c Centre for Environmental Radioactivity (CERAD CoE) , Ås , Norway.,f Norwegian University of Life Sciences (NMBU) , Ås , Norway
| | - Simon Bouffler
- b Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK
| | - Christophe Badie
- b Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Oxfordshire , UK
| |
Collapse
|
27
|
Coffre M, Koralov SB. miRNAs in B Cell Development and Lymphomagenesis. Trends Mol Med 2017; 23:721-736. [PMID: 28694140 DOI: 10.1016/j.molmed.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
B lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies is of B cell origin, suggesting that the development and activation of B cells need to be tightly regulated. In recent years, increasing evidence has emerged demonstrating that microRNAs (miRNAs) - a class of non-coding RNAs that control gene expression - are involved in the regulation of B cell development and function. We provide here an overview of the current knowledge on the role of miRNAs and their relevant targets in B cell development, B cell activation, and B cell malignant transformation.
Collapse
Affiliation(s)
- Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
28
|
Arya R, Bassing CH. V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends Genet 2017; 33:479-489. [PMID: 28532625 PMCID: PMC5499712 DOI: 10.1016/j.tig.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.
Collapse
Affiliation(s)
- Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Lescale C, Lenden Hasse H, Deriano L. Paralogie et redondance : maintenir l’intégrité du génome au cours de la recombinaison V(D)J. Med Sci (Paris) 2017; 33:474-477. [DOI: 10.1051/medsci/20173305005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Rommel PC, Oliveira TY, Nussenzweig MC, Robbiani DF. RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J Exp Med 2017; 214:815-831. [PMID: 28179379 PMCID: PMC5339680 DOI: 10.1084/jem.20161638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
Rommel et al. reveal a novel RAG1/2-mediated insertion pathway, which has the potential to destabilize the lymphocyte genome and shares features with DNA insertions observed in human cancer. The RAG recombinase (RAG1/2) plays an essential role in adaptive immunity by mediating V(D)J recombination in developing lymphocytes. In contrast, aberrant RAG1/2 activity promotes lymphocyte malignancies by causing chromosomal translocations and DNA deletions at cancer genes. RAG1/2 can also induce genomic DNA insertions by transposition and trans-V(D)J recombination, but only few such putative events have been documented in vivo. We used next-generation sequencing techniques to examine chromosomal rearrangements in primary murine B cells and discovered that RAG1/2 causes aberrant insertions by releasing cleaved antibody gene fragments that subsequently reintegrate into DNA breaks induced on a heterologous chromosome. We confirmed that RAG1/2 also mobilizes genomic DNA into independent physiological breaks by identifying similar insertions in human lymphoma and leukemia. Our findings reveal a novel RAG1/2-mediated insertion pathway distinct from DNA transposition and trans-V(D)J recombination that destabilizes the genome and shares features with reported oncogenic DNA insertions.
Collapse
Affiliation(s)
- Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
31
|
Liu X, Shao Z, Jiang W, Lee BJ, Zha S. PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Nat Commun 2017; 8:13816. [PMID: 28051062 PMCID: PMC5216128 DOI: 10.1038/ncomms13816] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
Non-homologous end-joining (NHEJ) is the most prominent DNA double strand break (DSB) repair pathway in mammalian cells. PAXX is the newest NHEJ factor, which shares structural similarity with known NHEJ factors—XRCC4 and XLF. Here we report that PAXX is dispensable for physiological NHEJ in otherwise wild-type mice. Yet Paxx−/− mice require XLF and Xlf−/− mice require PAXX for end-ligation. As such, Xlf−/−Paxx−/− mice display severe genomic instability and neuronal apoptosis, which eventually lead to embryonic lethality. Despite their structural similarities, only Xlf−/− cells, but not Paxx−/− cells require ATM/DNA-PK kinase activity for end-ligation. Mechanistically, PAXX promotes the accumulation of KU at DSBs, while XLF enhances LIG4 recruitment without affecting KU dynamics at DNA breaks in vivo. Together these findings identify the molecular functions of PAXX in KU accumulation at DNA ends and reveal distinct, yet critically complementary functions of PAXX and XLF during NHEJ. Non-homologous end-joining is the key pathway for repairing double-stranded DNA breaks in mammalian cells. Here the authors show that PAXX promotes the accumulation of KU at DNA breaks and is essential for end-joining in cells lacking XLF.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Zhengping Shao
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Wenxia Jiang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Brian J Lee
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| | - Shan Zha
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians &Surgeons, Columbia University, 1130 Saint Nicholas Avenue, Room 501, New York City, New York 10032, USA
| |
Collapse
|
32
|
Coffre M, Benhamou D, Rieß D, Blumenberg L, Snetkova V, Hines MJ, Chakraborty T, Bajwa S, Jensen K, Chong MMW, Getu L, Silverman GJ, Blelloch R, Littman DR, Calado D, Melamed D, Skok JA, Rajewsky K, Koralov SB. miRNAs Are Essential for the Regulation of the PI3K/AKT/FOXO Pathway and Receptor Editing during B Cell Maturation. Cell Rep 2016; 17:2271-2285. [PMID: 27880903 PMCID: PMC5679080 DOI: 10.1016/j.celrep.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/14/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development.
Collapse
Affiliation(s)
- Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David Benhamou
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel
| | - David Rieß
- Harvard Medical School, Pathology, Boston, MA 02115, USA
| | - Lili Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Valentina Snetkova
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Marcus J Hines
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Sofia Bajwa
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Kari Jensen
- Harvard Medical School, Pathology, Boston, MA 02115, USA
| | - Mark M W Chong
- Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Lelise Getu
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Gregg J Silverman
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | - Dan R Littman
- Skirball Institute, NYU School of Medicine, New York, NY 10016, USA; The HHMI, NYU School of Medicine, New York, NY 10016, USA
| | - Dinis Calado
- Harvard Medical School, Pathology, Boston, MA 02115, USA
| | - Doron Melamed
- Department of Immunology, Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Klaus Rajewsky
- Harvard Medical School, Pathology, Boston, MA 02115, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
33
|
Lescale C, Deriano L. The RAG recombinase: Beyond breaking. Mech Ageing Dev 2016; 165:3-9. [PMID: 27863852 DOI: 10.1016/j.mad.2016.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022]
Abstract
DNA double-strand breaks (DSBs) are commonly seen as lesions that threaten genome integrity and contribute to cancer and aging processes. However, in the context of antigen receptor gene assembly, known as V(D)J recombination, DSBs are obligatory intermediates that allow the establishment of genetic diversity and adaptive immunity. V(D)J recombination is initiated when the lymphoid-restricted recombination-activating genes RAG1 and RAG2 are expressed and form a site-specific endonuclease (the RAG nuclease or RAG recombinase). Here, we discuss the ability of the RAG nuclease to minimize the risks of genome disruption by coupling the breakage and repair steps of the V(D)J reaction. This implies that the RAG genes, derived from an ancient transposon, have undergone strong selective pressure to prohibit transposition in favor of promoting controlled DNA end joining in cis by the ubiquitous DNA damage response and DNA repair machineries. We also discuss the idea that, in addition to being essential for the rearrangement of antigen receptor genes, RAG-mediated DSBs could impact cellular processes and outcomes by affecting genetic and epigenetic programs.
Collapse
Affiliation(s)
- Chloé Lescale
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
34
|
Meek K, Xu Y, Bailie C, Yu K, Neal JA. The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. THE JOURNAL OF IMMUNOLOGY 2016; 197:3165-3174. [PMID: 27574300 DOI: 10.4049/jimmunol.1600597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/06/2016] [Indexed: 11/19/2022]
Abstract
The evidence that ATM affects resolution of RAG-induced DNA double-strand breaks is profuse and unequivocal; moreover, it is clear that the RAG complex itself cooperates (in an undetermined way) with ATM to facilitate repair of these double-strand breaks by the classical nonhomologous end-joining pathway. The mechanistic basis for the cooperation between ATM and the RAG complex has not been defined, although proposed models invoke ATM and RAG2's C terminus in maintaining the RAG postcleavage complex. In this study, we show that ATM reduces the rate of both coding and signal joining in a robust episomal assay; we suggest that this is the result of increased stability of the postcleavage complex. ATM's ability to inhibit VDJ joining requires its enzymatic activity. The noncore C termini of both RAG1 and RAG2 are also required for ATM's capacity to limit signal (but not coding) joining. Moreover, potential phosphorylation targets within the C terminus of RAG2 are also required for ATM's capacity to limit signal joining. These data suggest a model whereby the RAG signal end complex is stabilized by phosphorylation of RAG2 by ATM.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yao Xu
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Caleb Bailie
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, College of Human Medicine, Michigan State University, East Lansing, MI 48824
| | - Jessica A Neal
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824; and
| |
Collapse
|
35
|
Zhao L, Frock RL, Du Z, Hu J, Chen L, Krangel MS, Alt FW. Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development. J Exp Med 2016; 213:1921-36. [PMID: 27526713 PMCID: PMC4995090 DOI: 10.1084/jem.20160670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
T cell antigen receptor δ (Tcrd) variable region exons are assembled by RAG-initiated V(D)J recombination events in developing γδ thymocytes. Here, we use linear amplification-mediated high-throughput genome-wide translocation sequencing (LAM-HTGTS) to map hundreds of thousands of RAG-initiated Tcrd D segment (Trdd1 and Trdd2) rearrangements in CD4(-)CD8(-) double-negative thymocyte progenitors differentiated in vitro from bone marrow-derived hematopoietic stem cells. We find that Trdd2 joins directly to Trdv, Trdd1, and Trdj segments, whereas Trdd1 joining is ordered with joining to Trdd2, a prerequisite for further rearrangement. We also find frequent, previously unappreciated, Trdd1 and Trdd2 rearrangements that inactivate Tcrd, including sequential rearrangements from V(D)J recombination signal sequence fusions. Moreover, we find dozens of RAG off-target sequences that are generated via RAG tracking both upstream and downstream from the Trdd2 recombination center across the Tcrd loop domain that is bounded by the upstream INT1-2 and downstream TEA elements. Disruption of the upstream INT1-2 boundary of this loop domain allows spreading of RAG on- and off-target activity to the proximal Trdv domain and, correspondingly, shifts the Tcrd V(D)J recombination landscape by leading to predominant V(D)J joining to a proximal Trdv3 pseudogene that lies just upstream of the normal boundary.
Collapse
Affiliation(s)
- Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Richard L Frock
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
36
|
Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Res 2016; 44:9624-9637. [PMID: 27436288 PMCID: PMC5175335 DOI: 10.1093/nar/gkw633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 02/01/2023] Open
Abstract
The RAG1/RAG2 endonuclease initiates V(D)J recombination at antigen receptor loci but also binds to thousands of places outside of these loci. RAG2 localizes directly to lysine 4 trimethylated histone 3 (H3K4me3) through a plant homeodomain (PHD) finger. The relative contribution of RAG2-dependent and RAG1-intrinsic mechanisms in determining RAG1 binding patterns is not known. Through analysis of deep RAG1 ChIP-seq data, we provide a quantitative description of the forces underlying genome-wide targeting of RAG1. Surprisingly, sequence-specific DNA binding contributes minimally to RAG1 targeting outside of antigen receptor loci. Instead, RAG1 binding is driven by two distinct modes of interaction with chromatin: the first is driven by H3K4me3, promoter-focused and dependent on the RAG2 PHD, and the second is defined by H3K27Ac, enhancer-focused and dependent on ‘non-core’ portions of RAG1. Based on this and additional chromatin and genomic features, we formulated a predictive model of RAG1 targeting to the genome. RAG1 binding sites predicted by our model correlate well with observed patterns of RAG1-mediated breaks in human pro-B acute lymphoblastic leukemia. Overall, this study provides an integrative model for RAG1 genome-wide binding and off-target activity and reveals a novel role for the RAG1 non-core region in RAG1 targeting.
Collapse
Affiliation(s)
- Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Rashu Seth
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA .,Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| |
Collapse
|
37
|
Abstract
Analysis of chromosomal translocation sequence locations in human lymphomas has provided valuable clues about the mechanism of the translocations and when they occur. Biochemical analyses on the mechanisms of DNA breakage and rejoining permit formulation of detailed models of the human chromosomal translocation process in lymphoid neoplasms. Most human lymphomas are derived from B cells in which a DNA break at an oncogene is initiated by activation-induced deaminase (AID). The partner locus in many cases is located at one of the antigen receptor loci, and this break is generated by the recombination activating gene (RAG) complex or by AID. After breakage, the joining process typically occurs by non-homologous DNA end-joining (NHEJ). Some of the insights into this mechanism also apply to translocations that occur in non-lymphoid neoplasms.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Center, Room 5428, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, California 90089-9176, USA
| |
Collapse
|
38
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
39
|
Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB, Revy P, de Villartay JP, Deriano L. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 2016; 7:10529. [PMID: 26833222 PMCID: PMC4740868 DOI: 10.1038/ncomms10529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2c/c mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2c/cXLF−/−p53−/− mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly. Antigen receptor diversity relies on careful DNA cleavage and repair. Here the authors identify a functional interplay between RAG2 and XLF during V(D)J recombination, revealing an important role for the RAG complex in repairing induced DNA double-strand breaks and maintaining genome integrity.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Marie Bedora-Faure
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Valentine Murigneux
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Gabriella Vera
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - David B Roth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| |
Collapse
|
40
|
Xu K, Liu H, Shi Z, Song G, Zhu X, Jiang Y, Zhou Z, Liu X. Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. Eur J Immunol 2015; 46:1011-9. [PMID: 26692406 DOI: 10.1002/eji.201545896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock-in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B-cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc-binding, exhibit no impairment in either RAG2 stability or T/B-cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangrong Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuzhang Jiang
- Department of Medical Laboratory, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 2015; 6:e2010. [PMID: 26633716 PMCID: PMC4720889 DOI: 10.1038/cddis.2015.354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.
Collapse
Affiliation(s)
- S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - A Peschiaroli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
| |
Collapse
|
42
|
Mijušković M, Chou YF, Gigi V, Lindsay CR, Shestova O, Lewis SM, Roth DB. Off-Target V(D)J Recombination Drives Lymphomagenesis and Is Escalated by Loss of the Rag2 C Terminus. Cell Rep 2015; 12:1842-52. [PMID: 26365182 DOI: 10.1016/j.celrep.2015.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 08/08/2015] [Indexed: 11/29/2022] Open
Abstract
Genome-wide analysis of thymic lymphomas from Tp53(-/-) mice with wild-type or C-terminally truncated Rag2 revealed numerous off-target, RAG-mediated DNA rearrangements. A significantly higher fraction of these errors mutated known and suspected oncogenes/tumor suppressor genes than did sporadic rearrangements (p < 0.0001). This tractable mouse model recapitulates recent findings in human pre-B ALL and allows comparison of wild-type and mutant RAG2. Recurrent, RAG-mediated deletions affected Notch1, Pten, Ikzf1, Jak1, Phlda1, Trat1, and Agpat9. Rag2 truncation substantially increased the frequency of off-target V(D)J recombination. The data suggest that interactions between Rag2 and a specific chromatin modification, H3K4me3, support V(D)J recombination fidelity. Oncogenic effects of off-target rearrangements created by this highly regulated recombinase may need to be considered in design of site-specific nucleases engineered for genome modification.
Collapse
Affiliation(s)
- Martina Mijušković
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Yi-Fan Chou
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vered Gigi
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Boston Consulting Group, 1735 Market Street, Philadelphia, PA 19103, USA
| | - Cory R Lindsay
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardeza Foundation for Hematological Research, Thomas Jefferson University, 394 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19104, USA
| | - Olga Shestova
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Translational Research Program, Abramson Family Research Cancer Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanna M Lewis
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
44
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
45
|
Abstract
The variable domains of Ig and T-cell receptor genes in vertebrates are assembled from gene fragments by the V(D)J recombination process. The RAG1-RAG2 recombinase (RAG1/2) initiates this recombination by cutting DNA at the borders of recombination signal sequences (RSS) and their neighboring gene segments. The RAG1 protein is also known to contain a ubiquitin E3 ligase activity, located in an N-terminal region that is not strictly required for the basic recombination reaction but helps to regulate recombination. The isolated E3 ligase domain was earlier shown to ubiquitinate one site in a neighboring RAG1 sequence. Here we show that autoubiquitination of full-length RAG1 at this specific residue (K233) results in a large increase of DNA cleavage by RAG1/2. A mutational block of the ubiquitination site abolishes this effect and inhibits recombination of a test substrate in mouse cells. Thus, ubiquitination of RAG1, which can be promoted by RAG1's own ubiquitin ligase activity, plays a significant role in governing the level of V(D)J recombination activity.
Collapse
|
46
|
Karo JM, Sun JC. Novel molecular mechanism for generating NK-cell fitness and memory. Eur J Immunol 2015; 45:1906-15. [PMID: 26018782 DOI: 10.1002/eji.201445339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022]
Abstract
The mammalian immune system has been traditionally subdivided into two compartments known as the innate and the adaptive. T cells and B cells, which rearrange their antigen-receptor genes using the RAG recombinase, comprise the adaptive arm of immunity. Meanwhile, every other white blood cell has been grouped together under the broad umbrella of innate immunity, including NK cells. NK cells are considered innate lymphocytes because of their rapid responses to stressed cells and their ability to develop without receptor gene rearrangement (i.e. in RAG-deficient mice). However, new findings implicate a critical function for RAG proteins during NK-cell ontogeny, and suggest a novel mechanism by which controlled DNA breaks during NK-cell development dictate the fitness, function, and longevity of these cells. This review highlights recent work describing how DNA break events can impact cellular differentiation and fitness in a variety of cell types and settings.
Collapse
Affiliation(s)
- Jenny M Karo
- Immunology Program and Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program and Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Abstract
INTRODUCTION OR BACKGROUND The V(D)J recombination is a DNA rearrangement process that generates the diversity of T and B lymphocyte immune repertoire. It proceeds through the generation of a DNA double-strand break (DNA-DSB) by the Rag1/2 lymphoid-specific factors, which is repaired by the non-homologous end joining (NHEJ) DNA repair pathway. V(D)J recombination also constitutes a checkpoint in the lymphoid development. SOURCES OF DATA V(D)J recombination defect results in severe combined immune deficiency (SCID) with a lack of T and B lymphocytes. AREAS OF AGREEMENT The V(D)J recombination represents one of the few programmed molecular events leading to DNA-DSBs that strictly relies on NHEJ. Two NHEJ factors, Artemis and XLF/Cernunnos, were identified through the molecular studies of SCID patients. Mutations in PRKDC and DNA Ligase IV genes also result in SCID. GROWING POINTS Studies in mice have demonstrated that XLF/Cernunnos is dispensable for V(D)J recombination in lymphoid cells but not for the repair of genotoxic-induced DNA-DSBs, which raises the question of the implication of Rag1/2 factors in the DNA repair phase of V(D)J recombination. AREAS TIMELY FOR DEVELOPING RESEARCH New factors of NHEJ, such as PAXX, are being identified. Patients with NHEJ deficiency (XRCC4) without immune deficiency were recently reported. We, therefore, may not have yet the complete picture of DNA-DSB repair in the context of V(D)J recombination.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| |
Collapse
|
48
|
Shimazaki N, Lieber MR. Histone methylation and V(D)J recombination. Int J Hematol 2014; 100:230-7. [PMID: 25060705 DOI: 10.1007/s12185-014-1637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
V(D)J recombination is the process by which the diversity of antigen receptor genes is generated and is also indispensable for lymphocyte development. This recombination event occurs in a cell lineage- and stage-specific manner, and is carefully controlled by chromatin structure and ordered histone modifications. The recombinationally active V(D)J loci are associated with hypermethylation at lysine4 of histone H3 and hyperacetylation of histones H3/H4. The recombination activating gene 1 (RAG1) and RAG2 complex initiates recombination by introducing double-strand DNA breaks at recombination signal sequences (RSS) adjacent to each coding sequence. To be recognized by the RAG complex, RSS sites must be within an open chromatin context. In addition, the RAG complex specifically recognizes hypermethylated H3K4 through its plant homeodomain (PHD) finger in the RAG2 C terminus, which stimulates RAG catalytic activity via that interaction. In this review, we describe how histone methylation controls V(D)J recombination and discuss its potential role in lymphoid malignancy by mistargeting the RAG complex.
Collapse
Affiliation(s)
- Noriko Shimazaki
- Section of Molecular and Computational Biology, Departments of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, USC Norris Comprehensive Cancer Ctr., Rm. 5428, 1441 Eastlake Ave., MC 9176, Los Angeles, CA, 90089-9176, USA,
| | | |
Collapse
|
49
|
Larmonie NSD, Dik WA, Meijerink JPP, Homminga I, van Dongen JJM, Langerak AW. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 2014; 98:1173-84. [PMID: 23904235 DOI: 10.3324/haematol.2012.082156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nicole S D Larmonie
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Modeling of the RAG reaction mechanism. Cell Rep 2014; 7:307-315. [PMID: 24703851 DOI: 10.1016/j.celrep.2014.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/18/2013] [Accepted: 03/03/2014] [Indexed: 11/24/2022] Open
Abstract
In vertebrate V(D)J recombination, it remains unclear how the RAG complex coordinates its catalytic steps with binding to two distant recombination sites. Here, we test the ability of the plausible reaction schemes to fit observed time courses for RAG nicking and DNA hairpin formation. The reaction schemes with the best fitting capability (1) strongly favor a RAG tetrameric complex over a RAG octameric complex; (2) indicate that once a RAG complex brings two recombination signal sequence (RSS) sites into synapsis, the synaptic complex rarely disassembles; (3) predict that the binding of both RSS sites (synapsis) occurs before catalysis (nicking); and (4) show that the RAG binding properties permit strong distinction between RSS sites within active chromatin versus nonspecific DNA or RSS sites within inactive chromatin. The results provide general insights for synapsis by nuclear proteins as well as more specific testable predictions for the RAG proteins.
Collapse
|