1
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Kramer TS, Wan FK, Pugliese SM, Atanas AA, Hiser AW, Luo J, Bueno E, Flavell SW. Neural Sequences Underlying Directed Turning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607076. [PMID: 39149398 PMCID: PMC11326294 DOI: 10.1101/2024.08.11.607076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.
Collapse
Affiliation(s)
- Talya S. Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K. Wan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M. Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W. Hiser
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Nakayama A, Watanabe M, Yamashiro R, Kuroyanagi H, Matsuyama HJ, Oshima A, Mori I, Nakano S. A hyperpolarizing neuron recruits undocked innexin hemichannels to transmit neural information in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2406565121. [PMID: 38753507 PMCID: PMC11127054 DOI: 10.1073/pnas.2406565121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
While depolarization of the neuronal membrane is known to evoke the neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting state of chemical neurotransmission. Here, we report that hyperpolarizing neurons can actively signal neural information by employing undocked hemichannels. We show that UNC-7, a member of the innexin family in Caenorhabditis elegans, functions as a hemichannel in thermosensory neurons and transmits temperature information from the thermosensory neurons to their postsynaptic interneurons. By monitoring neural activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process. UNC-7 is required to control thermotaxis behavior and functions independently of synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate neurotransmission from hyperpolarizing neurons in a manner that is distinct from the synaptic transmission, expanding the way of neural circuitry operations.
Collapse
Affiliation(s)
- Airi Nakayama
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Riku Yamashiro
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Hiroo Kuroyanagi
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Atsunori Oshima
- Department of Basic Biology, Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya464-8601, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi464-8601, Japan
- Molecular Physiology Division, Institute for Glyco-core Research, Nagoya University, Chikusa-ku, Nagoya464-8601, Japan
- Division of Innovative Modality Development, Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu501-11193, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
- Chinese Institute for Brain Research, Changping District, Beijing102206, China
| | - Shunji Nakano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| |
Collapse
|
4
|
Nicoletti M, Chiodo L, Loppini A, Liu Q, Folli V, Ruocco G, Filippi S. Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families. PLoS One 2024; 19:e0298105. [PMID: 38551921 PMCID: PMC10980225 DOI: 10.1371/journal.pone.0298105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024] Open
Abstract
The nematode Caenorhabditis elegans is a widely used model organism for neuroscience. Although its nervous system has been fully reconstructed, the physiological bases of single-neuron functioning are still poorly explored. Recently, many efforts have been dedicated to measuring signals from C. elegans neurons, revealing a rich repertoire of dynamics, including bistable responses, graded responses, and action potentials. Still, biophysical models able to reproduce such a broad range of electrical responses lack. Realistic electrophysiological descriptions started to be developed only recently, merging gene expression data with electrophysiological recordings, but with a large variety of cells yet to be modeled. In this work, we contribute to filling this gap by providing biophysically accurate models of six classes of C. elegans neurons, the AIY, RIM, and AVA interneurons, and the VA, VB, and VD motor neurons. We test our models by comparing computational and experimental time series and simulate knockout neurons, to identify the biophysical mechanisms at the basis of inter and motor neuron functioning. Our models represent a step forward toward the modeling of C. elegans neuronal networks and virtual experiments on the nematode nervous system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Letizia Chiodo
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Viola Folli
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
- D-tails s.r.l., Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Florence, Italy
- ICRANet—International Center for Relativistic Astrophysics Network, Pescara, Italy
| |
Collapse
|
5
|
Matsumoto A, Toyoshima Y, Zhang C, Isozaki A, Goda K, Iino Y. Neuronal sensorimotor integration guiding salt concentration navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2310735121. [PMID: 38252838 PMCID: PMC10835141 DOI: 10.1073/pnas.2310735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Animals navigate their environment by manipulating their movements and adjusting their trajectory which requires a sophisticated integration of sensory data with their current motor status. Here, we utilize the nematode Caenorhabditis elegans to explore the neural mechanisms of processing the sensory and motor information for navigation. We developed a microfluidic device which allows animals to freely move their heads while receiving temporal NaCl stimuli. We found that C. elegans regulates neck bending direction in response to temporal NaCl concentration changes in a way which is consistent with a C. elegans' navigational strategy which regulates traveling direction toward preferred NaCl concentrations. Our analysis also revealed that the activity of a neck motor neuron is significantly correlated with neck bending and activated by the decrease in NaCl concentration in a phase-dependent manner. By combining the analysis of behavioral and neural response to NaCl stimuli and optogenetic perturbation experiments, we revealed that NaCl decrease during ventral bending activates the neck motor neuron which counteracts ipsilateral bending. Simulations further suggest that this phase-dependent response of neck motor neurons can facilitate curving toward preferred salt concentrations.
Collapse
Grants
- JP17H06113 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00416 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20K21805 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19H04980 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJCR22N4 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- JPMJPR1947 MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JP26830006 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP18K14848 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP22H04838 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP17H05970 MEXT | Japan Society for the Promotion of Science (JSPS)
- 19H04928 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMXP09F19UT0122 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP09F20UT0123 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Ayaka Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Chenqi Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga525-8577, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
6
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
7
|
Almoril-Porras A, Calvo AC, Niu L, Beagan J, Hawk JD, Aljobeh A, Wisdom EM, Ren I, Díaz-García M, Wang ZW, Colón-Ramos DA. Specific configurations of electrical synapses filter sensory information to drive choices in behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551556. [PMID: 37577611 PMCID: PMC10418224 DOI: 10.1101/2023.08.01.551556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.
Collapse
Affiliation(s)
- Agustin Almoril-Porras
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ana C. Calvo
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Jonathan Beagan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Josh D. Hawk
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ahmad Aljobeh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Elias M. Wisdom
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ivy Ren
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Malcom Díaz-García
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Daniel A. Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- Wu Tsai Institute, Yale University; New Haven, CT 06510, USA
- Marine Biological Laboratory; Woods Hole, MA, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico; San Juan 00901, Puerto Rico
| |
Collapse
|
8
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Levichev A, Faumont S, Berner RZ, Purcell Z, White AM, Chicas-Cruz K, Lockery SR. The conserved endocannabinoid anandamide modulates olfactory sensitivity to induce hedonic feeding in C. elegans. Curr Biol 2023; 33:1625-1639.e4. [PMID: 37084730 PMCID: PMC10175219 DOI: 10.1016/j.cub.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/23/2023]
Abstract
The ability of cannabis to increase food consumption has been known for centuries. In addition to producing hyperphagia, cannabinoids can amplify existing preferences for calorically dense, palatable food sources, a phenomenon called hedonic amplification of feeding. These effects result from the action of plant-derived cannabinoids that mimic endogenous ligands called endocannabinoids. The high degree of conservation of cannabinoid signaling at the molecular level across the animal kingdom suggests hedonic feeding may also be widely conserved. Here, we show that exposure of Caenorhabditis elegans to anandamide, an endocannabinoid common to nematodes and mammals, shifts both appetitive and consummatory responses toward nutritionally superior food, an effect analogous to hedonic feeding. We find that anandamide's effect on feeding requires the C. elegans cannabinoid receptor NPR-19 but can also be mediated by the human CB1 cannabinoid receptor, indicating functional conservation between the nematode and mammalian endocannabinoid systems for the regulation of food preferences. Furthermore, anandamide has reciprocal effects on appetitive and consummatory responses to food, increasing and decreasing responses to inferior and superior foods, respectively. Anandamide's behavioral effects require the AWC chemosensory neurons, and anandamide renders these neurons more sensitive to superior foods and less sensitive to inferior foods, mirroring the reciprocal effects seen at the behavioral level. Our findings reveal a surprising degree of functional conservation in the effects of endocannabinoids on hedonic feeding across species and establish a new system to investigate the cellular and molecular basis of endocannabinoid system function in the regulation of food choice.
Collapse
Affiliation(s)
- Anastasia Levichev
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Rachel Z Berner
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Zhifeng Purcell
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Amanda M White
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Kathy Chicas-Cruz
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Shawn R Lockery
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
10
|
Kano A, Matsuyama HJ, Nakano S, Mori I. AWC thermosensory neuron interferes with information processing in a compact circuit regulating temperature-evoked posture dynamics in the nematode Caenorhabditis elegans. Neurosci Res 2023; 188:10-27. [PMID: 36336147 DOI: 10.1016/j.neures.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Elucidating how individual neurons encode and integrate sensory information to generate a behavior is crucial for understanding neural logic underlying sensory-dependent behavior. In the nematode Caenorhabditis elegans, information flow from sensory input to behavioral output is traceable at single-cell level due to its entirely solved neural connectivity. C. elegans processes the temperature information for regulating behavior consisting of undulatory posture dynamics in a circuit including two thermosensory neurons AFD and AWC, and their postsynaptic interneuron AIY. However, how the information processing in AFD-AWC-AIY circuit generates the posture dynamics remains elusive. To quantitatively evaluate the posture dynamics, we introduce locomotion entropy, which measures bandwidth of the frequency spectrum of the undulatory posture dynamics, and assess how the motor pattern fluctuates. We here found that AWC disorders the information processing in AFD-AWC-AIY circuit for regulating temperature-evoked posture dynamics. Under slow temperature ramp-up, AWC adjusts AFD response, whereby broadening the temperature range in which animals exhibit fluctuating posture undulation. Under rapid temperature ramp-up, AWC increases inter-individual variability in AIY activity and the fluctuating posture undulation. We propose that a compact nervous system recruits a sensory neuron as a fluctuation inducer for regulating sensory-dependent behavior.
Collapse
Affiliation(s)
- Amane Kano
- Group of Molecular Neurobiology, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hironori J Matsuyama
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shunji Nakano
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
11
|
Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome. Sci Rep 2022; 12:3043. [PMID: 35197494 PMCID: PMC8866504 DOI: 10.1038/s41598-022-06988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Klinotaxis is a strategy of chemotaxis behavior in Caenorhabditis elegans (C. elegans), and random walking is evident during its locomotion. As yet, the understanding of the neural mechanisms underlying these behaviors has remained limited. In this study, we present a connectome-based simulation model of C. elegans to concurrently realize realistic klinotaxis and random walk behaviors and explore their neural mechanisms. First, input to the model is derived from an ASE sensory neuron model in which the all-or-none depolarization characteristic of ASEL neuron is incorporated for the first time. Then, the neural network is evolved by an evolutionary algorithm; klinotaxis emerged spontaneously. We identify a plausible mechanism of klinotaxis in this model. Next, we propose the liquid synapse according to the stochastic nature of biological synapses and introduce it into the model. Adopting this, the random walk is generated autonomously by the neural network, providing a new hypothesis as to the neural mechanism underlying the random walk. Finally, simulated ablation results are fairly consistent with the biological conclusion, suggesting the similarity between our model and the biological network. Our study is a useful step forward in behavioral simulation and understanding the neural mechanisms of behaviors in C. elegans.
Collapse
|
12
|
Liu M, Kumar S, Sharma AK, Leifer AM. A high-throughput method to deliver targeted optogenetic stimulation to moving C. elegans populations. PLoS Biol 2022; 20:e3001524. [PMID: 35089912 PMCID: PMC8827482 DOI: 10.1371/journal.pbio.3001524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/09/2022] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal's body such as its head or tail; it automatically delivers stimuli triggered upon the animal's behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal's behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior-posterior intensity combinations were measured. The animal's probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal's response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.
Collapse
Affiliation(s)
- Mochi Liu
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Anuj K. Sharma
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew M. Leifer
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
13
|
Bergs A, Henss T, Glock C, Nagpal J, Gottschalk A. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods Mol Biol 2022; 2468:89-115. [PMID: 35320562 DOI: 10.1007/978-1-0716-2181-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Thilo Henss
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
14
|
Ramachandran S, Banerjee N, Bhattacharya R, Lemons ML, Florman J, Lambert CM, Touroutine D, Alexander K, Schoofs L, Alkema MJ, Beets I, Francis MM. A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. eLife 2021; 10:e71747. [PMID: 34766905 PMCID: PMC8626090 DOI: 10.7554/elife.71747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 01/11/2023] Open
Abstract
Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.
Collapse
Affiliation(s)
- Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michele L Lemons
- Department of Biological and Physical Sciences, Assumption UniversityWorcesterUnited States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven)LeuvenBelgium
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven)LeuvenBelgium
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
15
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
16
|
Koopman M, Janssen L, Nollen EAA. An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biol 2021; 19:170. [PMID: 34429103 PMCID: PMC8386059 DOI: 10.1186/s12915-021-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01085-2.
Collapse
Affiliation(s)
- M Koopman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - L Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E A A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Davis L, Radman I, Goutou A, Tynan A, Baxter K, Xi Z, O'Shea JM, Chin JW, Greiss S. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. eLife 2021; 10:67075. [PMID: 34350826 PMCID: PMC8448529 DOI: 10.7554/elife.67075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted. Animal behaviour and movement emerges from the stimulation of nerve cells that are connected together like a circuit. Researchers use various tools to investigate these neural networks in model organisms such as roundworms, fruit flies and zebrafish. The trick is to activate some nerve cells, but not others, so as to isolate their specific role within the neural circuit. One way to do this is to switch genes on or off in individual cells as a way to control their neuronal activity. This can be achieved by building a photocaged version of the enzyme Cre recombinase which is designed to target specific genes. The modified Cre recombinase contains an amino acid (the building blocks of proteins) that inactivates the enzyme. When the cell is illuminated with UV light, a part of the amino acid gets removed allowing Cre recombinase to turn on its target gene. However, cells do not naturally produce these photocaged amino acids. To overcome this, researchers can use a technology called genetic code expansion which provides cells with the tools they need to build proteins containing these synthetic amino acids. Although this technique has been used in live animals, its application has been limited due to the small amount of proteins it produces. Davis et al. therefore set out to improve the efficiency of genetic code expansion so that it can be used to study single nerve cells in freely moving roundworms. In the new system, named LaserTAC, individual cells are targeted with UV light that ‘uncages’ the Cre recombinase enzyme so it can switch on a gene for a protein that controls neuronal activity. Davis et al. used this approach to stimulate a pair of neurons sensitive to touch to see how this impacted the roundworm’s behaviour. This revealed that individual neurons within this pair contribute to the touch response in different ways. However, input from both neurons is required to produce a robust reaction. These findings show that the LaserTAC system can be used to manipulate gene activity in single cells, such as neurons, using light. It allows researchers to precisely control in which cells and when a given gene is switched on or off. Also, with the improved efficiency of the genetic code expansion, this technology could be used to modify proteins other than Cre recombinase and be applied to other artificial amino acids that have been developed in recent years.
Collapse
Affiliation(s)
- Lloyd Davis
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Inja Radman
- Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Angeliki Goutou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailish Tynan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kieran Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack M O'Shea
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sebastian Greiss
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Hallinen KM, Dempsey R, Scholz M, Yu X, Linder A, Randi F, Sharma AK, Shaevitz JW, Leifer AM. Decoding locomotion from population neural activity in moving C. elegans. eLife 2021; 10:66135. [PMID: 34323218 PMCID: PMC8439659 DOI: 10.7554/elife.66135] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans.
Collapse
Affiliation(s)
- Kelsey M Hallinen
- Department of Physics, Princeton University, Princeton, United States
| | - Ross Dempsey
- Department of Physics, Princeton University, Princeton, United States
| | - Monika Scholz
- Department of Physics, Princeton University, Princeton, United States
| | - Xinwei Yu
- Department of Physics, Princeton University, Princeton, United States
| | - Ashley Linder
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Francesco Randi
- Department of Physics, Princeton University, Princeton, United States
| | - Anuj K Sharma
- Department of Physics, Princeton University, Princeton, United States
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, United States.,Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, United States
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, United States.,Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
19
|
Yu X, Creamer MS, Randi F, Sharma AK, Linderman SW, Leifer AM. Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training. eLife 2021; 10:e66410. [PMID: 34259623 PMCID: PMC8367385 DOI: 10.7554/elife.66410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
We present an automated method to track and identify neurons in C. elegans, called 'fast Deep Neural Correspondence' or fDNC, based on the transformer network architecture. The model is trained once on empirically derived semi-synthetic data and then predicts neural correspondence across held-out real animals. The same pre-trained model both tracks neurons across time and identifies corresponding neurons across individuals. Performance is evaluated against hand-annotated datasets, including NeuroPAL (Yemini et al., 2021). Using only position information, the method achieves 79.1% accuracy at tracking neurons within an individual and 64.1% accuracy at identifying neurons across individuals. Accuracy at identifying neurons across individuals is even higher (78.2%) when the model is applied to a dataset published by another group (Chaudhary et al., 2021). Accuracy reaches 74.7% on our dataset when using color information from NeuroPAL. Unlike previous methods, fDNC does not require straightening or transforming the animal into a canonical coordinate system. The method is fast and predicts correspondence in 10 ms making it suitable for future real-time applications.
Collapse
Affiliation(s)
- Xinwei Yu
- Department of Physics, Princeton UniversityPrincetonUnited States
| | - Matthew S Creamer
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Francesco Randi
- Department of Physics, Princeton UniversityPrincetonUnited States
| | - Anuj K Sharma
- Department of Physics, Princeton UniversityPrincetonUnited States
| | - Scott W Linderman
- Department of Statistics, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| | - Andrew M Leifer
- Department of Physics, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
20
|
San-Miguel A. Optogenetics gets the worm. Sci Robot 2021; 6:6/55/eabj3937. [PMID: 34193564 DOI: 10.1126/scirobotics.abj3937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/02/2022]
Abstract
Analysis of Caenorhabditis elegans natural movement and optogenetic control of its muscle cells enable controlled locomotion.
Collapse
Affiliation(s)
- Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
21
|
Zhu ML, Herrera KJ, Vogt K, Bahl A. Navigational strategies underlying temporal phototaxis in Drosophila larvae. J Exp Biol 2021; 224:269086. [PMID: 34115116 DOI: 10.1242/jeb.242428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Navigating across light gradients is essential for survival for many animals. However, we still have a poor understanding of the algorithms that underlie such behaviors. Here, we developed a novel closed-loop phototaxis assay for Drosophila larvae in which light intensity is always spatially uniform but updates depending on the location of the animal in the arena. Even though larvae can only rely on temporal cues during runs, we find that they are capable of finding preferred areas of low light intensity. Further detailed analysis of their behavior reveals that larvae turn more frequently and that heading angle changes increase when they experience brightness increments over extended periods of time. We suggest that temporal integration of brightness change during runs is an important - and so far largely unexplored - element of phototaxis.
Collapse
Affiliation(s)
- Maxwell L Zhu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kristian J Herrera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Biology, University of Konstanz, 78464Konstanz, Germany
| | - Armin Bahl
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Biology, University of Konstanz, 78464Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
22
|
Hino T, Hirai S, Ishihara T, Fujiwara M. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals. Genes Cells 2021; 26:411-425. [PMID: 33817914 DOI: 10.1111/gtc.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Interneurons, innervated by multiple sensory neurons, need to integrate information from these sensory neurons and respond to sensory stimuli adequately. Mechanisms how sensory information is integrated to form responses of interneurons are not fully understood. In Caenorhabditis elegans, loss-of-function mutations of egl-4, which encodes a cGMP-dependent protein kinase (PKG), cause a defect in chemotaxis to odorants. Our genetic and imaging analyses revealed that the response property of AIY interneuron to an odorant is reversed in the egl-4 mutant, while the responses of two upstream olfactory neurons, AWA and AWC, are largely unchanged. Cell- ablation experiments show that AIY in the egl-4 mutant functions to suppress chemotaxis. Furthermore, the reversal of AIY response occurs only in the presence of sensory signals from both AWA and AWC. These results suggest that sensory signals are inadequately integrated in the egl-4 mutant. We also show that egl-4 expression in AWA and another sensory neuron prevents the reversed AIY response and restores chemotaxis in the egl-4 mutants. We propose that EGL-4/PKG, by suppressing aberrant integration of signals from olfactory neurons, converts the response property of an interneuron to olfactory stimuli and maintains the role of the interneuron in the circuit to execute chemotactic behavior.
Collapse
Affiliation(s)
- Takahiro Hino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shota Hirai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Ikeda M, Matsumoto H, Izquierdo EJ. Persistent thermal input controls steering behavior in Caenorhabditis elegans. PLoS Comput Biol 2021; 17:e1007916. [PMID: 33417596 PMCID: PMC7819614 DOI: 10.1371/journal.pcbi.1007916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/21/2021] [Accepted: 11/17/2020] [Indexed: 11/23/2022] Open
Abstract
Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues. A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and steers toward the remembered temperature on a thermal gradient. How does the C. elegans nervous system, consisting of 302 neurons, achieve the thermotactic steering behavior? Here, we address this question through neuroanatomical modeling and simulation analyses. We find that persistent thermal input modulates steering curvature of model worms; worms run straight when they move up to a destination temperature, whereas run crookedly when move away from the destination. As a result, worms steer toward the destination temperature as observed in experiments. Our analysis also shows that persistent thermal signals are transmitted from a thermosensory neuron to dorsal and ventral neck motor neurons, regulating the balance of dorsoventral muscle contractions of model worms and generating steering behavior. This study indicates that C. elegans can steer toward a destination temperature without processing acute thermal input that informs to which direction it should steer. Such indirect mechanism of steering behavior is potentially employed in other motile organisms.
Collapse
Affiliation(s)
- Muneki Ikeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Hirotaka Matsumoto
- Laboratory for Bioinformatics Research RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Eduardo J. Izquierdo
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
24
|
Fieseler C, Zimmer M, Kutz JN. Unsupervised learning of control signals and their encodings in Caenorhabditis elegans whole-brain recordings. J R Soc Interface 2020; 17:20200459. [PMID: 33292096 PMCID: PMC7811586 DOI: 10.1098/rsif.2020.0459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
A major goal of computational neuroscience is to understand the relationship between synapse-level structure and network-level functionality. Caenorhabditis elegans is a model organism to probe this relationship due to the historic availability of the synaptic structure (connectome) and recent advances in whole brain calcium imaging techniques. Recent work has applied the concept of network controllability to neuronal networks, discovering some neurons that are able to drive the network to a certain state. However, previous work uses a linear model of the network dynamics, and it is unclear if the real neuronal network conforms to this assumption. Here, we propose a method to build a global, low-dimensional model of the dynamics, whereby an underlying global linear dynamical system is actuated by temporally sparse control signals. A key novelty of this method is discovering candidate control signals that the network uses to control itself. We analyse these control signals in two ways, showing they are interpretable and biologically plausible. First, these control signals are associated with transitions between behaviours, which were previously annotated via expert-generated features. Second, these signals can be predicted both from neurons previously implicated in behavioural transitions but also additional neurons previously unassociated with these behaviours. The proposed mathematical framework is generic and can be generalized to other neurosensory systems, potentially revealing transitions and their encodings in a completely unsupervised way.
Collapse
Affiliation(s)
- Charles Fieseler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Manuel Zimmer
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1F030 Vienna, Austria
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
26
|
Tadres D, Louis M. PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior. PLoS Biol 2020; 18:e3000712. [PMID: 32663220 PMCID: PMC7360024 DOI: 10.1371/journal.pbio.3000712] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Tools enabling closed-loop experiments are crucial to delineate causal relationships between the activity of genetically labeled neurons and specific behaviors. We developed the Raspberry Pi Virtual Reality (PiVR) system to conduct closed-loop optogenetic stimulation of neural functions in unrestrained animals. PiVR is an experimental platform that operates at high temporal resolution (70 Hz) with low latencies (<30 milliseconds), while being affordable (
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
27
|
Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. eNeuro 2020; 7:ENEURO.0414-19.2020. [PMID: 32253198 PMCID: PMC7322292 DOI: 10.1523/eneuro.0414-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023] Open
Abstract
Animals are capable to modify sensory preferences according to past experiences. Surrounded by ever-changing environments, they continue assigning a hedonic value to a sensory stimulus. It remains to be elucidated however how such alteration of sensory preference is encoded in the nervous system. Here we show that past experiences alter temporal interaction between the calcium responses of sensory neurons and their postsynaptic interneurons in the nematode Caenorhabditis elegans. C. elegans exhibits thermotaxis, in which its temperature preference is modified by the past feeding experience: well-fed animals are attracted toward their past cultivation temperature on a thermal gradient, whereas starved animals lose that attraction. By monitoring calcium responses simultaneously from both AFD thermosensory neurons and their postsynaptic AIY interneurons in well-fed and starved animals under time-varying thermal stimuli, we found that past feeding experiences alter phase shift between AFD and AIY calcium responses. Furthermore, the difference in neuronal activities between well-fed and starved animals observed here are able to explain the difference in the behavioral output on a thermal gradient between well-fed and starved animals. Although previous studies have shown that C. elegans executes thermotaxis by regulating amplitude or frequency of the AIY response, our results proposed a new mechanism by which thermal preference is encoded by phase shift between AFD and AIY activities. Given these observations, thermal preference is likely to be computed on synapses between AFD and AIY neurons. Such a neural strategy may enable animals to enrich information processing within defined connectivity via dynamic alterations of synaptic communication.
Collapse
|
28
|
Demir E, Yaman YI, Basaran M, Kocabas A. Dynamics of pattern formation and emergence of swarming in Caenorhabditis elegans. eLife 2020; 9:52781. [PMID: 32250243 PMCID: PMC7202895 DOI: 10.7554/elife.52781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/05/2020] [Indexed: 01/10/2023] Open
Abstract
Many animals collectively form complex patterns to tackle environmental difficulties. Several biological and physical factors, such as animal motility, population densities, and chemical cues, play significant roles in this process. However, very little is known about how sensory information interplays with these factors and controls the dynamics of pattern formation. Here, we study the direct relation between oxygen sensing, pattern formation, and emergence of swarming in active Caenorhabditis elegans aggregates. We find that when thousands of animals gather on food, bacteria-mediated decrease in oxygen level slows down the animals and triggers motility-induced phase separation. Three coupled factors—bacterial accumulation, aerotaxis, and population density—act together and control the entire dynamics. Furthermore, we find that biofilm-forming bacterial lawns including Bacillus subtilis and Pseudomonas aeruginosa strongly alter the collective dynamics due to the limited diffusibility of bacteria. Additionally, our theoretical model captures behavioral differences resulting from genetic variations and oxygen sensitivity.
Collapse
Affiliation(s)
- Esin Demir
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Y Ilker Yaman
- Department of Physics, Koç University, Sarıyer, Istanbul, Turkey
| | - Mustafa Basaran
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Askin Kocabas
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey.,Department of Physics, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Surface Science and Technology Center, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul, Turkey
| |
Collapse
|
29
|
Kaplan HS, Zimmer M. Brain-wide representations of ongoing behavior: a universal principle? Curr Opin Neurobiol 2020; 64:60-69. [PMID: 32203874 DOI: 10.1016/j.conb.2020.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Recent neuronal activity recordings of unprecedented breadth and depth in worms, flies, and mice have uncovered a surprising common feature: brain-wide behavior-related signals. These signals pervade, and even dominate, neuronal populations thought to function primarily in sensory processing. Such convergent findings across organisms suggest that brain-wide representations of behavior might be a universal neuroscientific principle. What purpose(s) do these representations serve? Here we review these findings along with suggested functions, including sensory prediction, context-dependent sensory processing, and, perhaps most speculatively, distributed motor command generation. It appears that a large proportion of the brain's energy and coding capacity is used to represent ongoing behavior; understanding the function of these representations should therefore be a major goal in neuroscience research.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
30
|
Context-dependent operation of neural circuits underlies a navigation behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:6178-6188. [PMID: 32123108 PMCID: PMC7084152 DOI: 10.1073/pnas.1918528117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and migrates toward the remembered temperature on a thermal gradient by switching movement up or down the gradient. How does the C. elegans brain, consisting of 302 neurons, achieve this memory-dependent thermotaxis behavior? Here, we addressed this question through large-scale single-cell ablation, high-resolution behavioral analysis, and computational modeling. We found that depending on whether the environmental temperature is below or above the remembered temperature, distinct sets of neurons are responsible to generate opposing motor biases, thereby switching the movement up or down the thermal gradient. Our study indicates that such a context-dependent operation in neural circuits is essential for flexible execution of animal behavior. The nervous system evaluates environmental cues and adjusts motor output to ensure navigation toward a preferred environment. The nematode Caenorhabditis elegans navigates in the thermal environment and migrates toward its cultivation temperature by moving up or down thermal gradients depending not only on absolute temperature but on relative difference between current and previously experienced cultivation temperature. Although previous studies showed that such thermal context-dependent opposing migration is mediated by bias in frequency and direction of reorientation behavior, the complete neural pathways—from sensory to motor neurons—and their circuit logics underlying the opposing behavioral bias remain elusive. By conducting comprehensive cell ablation, high-resolution behavioral analyses, and computational modeling, we identified multiple neural pathways regulating behavioral components important for thermotaxis, and demonstrate that distinct sets of neurons are required for opposing bias of even single behavioral components. Furthermore, our imaging analyses show that the context-dependent operation is evident in sensory neurons, very early in the neural pathway, and manifested by bidirectional responses of a first-layer interneuron AIB under different thermal contexts. Our results suggest that the contextual differences are encoded among sensory neurons and a first-layer interneuron, processed among different downstream neurons, and lead to the flexible execution of context-dependent behavior.
Collapse
|
31
|
Presynaptic MAST kinase controls opposing postsynaptic responses to convey stimulus valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:1638-1647. [PMID: 31911469 PMCID: PMC6983413 DOI: 10.1073/pnas.1909240117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Animals need to quickly extract the valence information of sensory stimulus and assess whether the stimulus is attractive or aversive. Deciphering the molecular and circuit mechanisms that determine the stimulus valence is fundamental to understand how the nervous system generates the animal behaviors. Here we report that the AFD thermosensory neurons of C. elegans evoke in its postsynaptic AIY interneurons opposing neuronal responses that correlate with the valence of thermal stimuli. The C. elegans homologs of MAST kinase, Stomatin, and Diacylglycerol kinase function in AFD and regulate the opposing AIY responses. Our results further suggest that the alteration between excitatory and inhibitory AIY responses is mediated by controlling the balance of two opposing signals released from the AFD neurons. Presynaptic plasticity is known to modulate the strength of synaptic transmission. However, it remains unknown whether regulation in presynaptic neurons can evoke excitatory and inhibitory postsynaptic responses. We report here that the Caenorhabditis elegans homologs of MAST kinase, Stomatin, and Diacylglycerol kinase act in a thermosensory neuron to elicit in its postsynaptic neuron an excitatory or inhibitory response that correlates with the valence of thermal stimuli. By monitoring neural activity of the valence-coding interneuron in freely behaving animals, we show that the alteration between excitatory and inhibitory responses of the interneuron is mediated by controlling the balance of two opposing signals released from the presynaptic neuron. These alternative transmissions further generate opposing behavioral outputs necessary for the navigation on thermal gradients. Our findings suggest that valence-encoding interneuronal activity is determined by a presynaptic mechanism whereby MAST kinase, Stomatin, and Diacylglycerol kinase influence presynaptic outputs.
Collapse
|
32
|
Ashida K, Hotta K, Oka K. The Input-Output Relationship of AIY Interneurons in Caenorhabditis elegans in Noisy Environment. iScience 2019; 19:191-203. [PMID: 31377664 PMCID: PMC6698291 DOI: 10.1016/j.isci.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Determining how neurotransmitter input causes various neuronal activities is crucial to understanding neuronal information processing. In Caenorhabditis elegans, AIY interneurons receive several sources of sensory information as glutamate inputs and regulate behavior by integrating these inputs. However, the relationship between glutamate input and the Ca2+ response in AIY under environmental noise, in other words, without explicit stimulation, remains unknown. Here, we show that glutamate-input fluctuations evoke a sporadic Ca2+ response in AIY without stimulation. To ensure that Ca2+ response can be considered AIY output, we show that the membrane-potential depolarization precedes Ca2+ responses in AIY. We used an odor as model stimulation to modulate the sensory inputs. Simultaneous imaging of glutamate input and Ca2+ response, together with glutamate transmission mutants, showed that glutamate-input fluctuations evoke sporadic Ca2+ responses. We identified the input-output relationships under environmental noise in vivo, and our results address the relationship between sensory-input fluctuations and behavioral variability.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
33
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
34
|
Hong F, Li Y. [Application of mechanosensitive channels in sonogenetics]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:34-38. [PMID: 31102355 PMCID: PMC8800646 DOI: 10.3785/j.issn.1008-9292.2019.02.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Abstract
As a non-invasive approach, sonogenetics is applied to control neuronal activity. The mechanosensitive channel(MSC), which has low threshold of responding to ultrasound, may be the alternative solution. Sonogenetics is the technique that activates the MSC expressed in targeted neurons by low intensity ultrasound, thus achieve the neuromodulation. In this review, we introduce the mechanosensitive channel of large conductance, transient receptor potential, channels of the two-pore-domain potassium family, Piezo and the recent progress on their application in sonogenetics.
Collapse
Affiliation(s)
- Feifan Hong
- 1. Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuezhou Li
- 1. Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
35
|
|
36
|
|
37
|
Soh Z, Sakamoto K, Suzuki M, Iino Y, Tsuji T. A computational model of internal representations of chemical gradients in environments for chemotaxis of Caenorhabditis elegans. Sci Rep 2018; 8:17190. [PMID: 30464313 PMCID: PMC6249258 DOI: 10.1038/s41598-018-35157-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and weathervane, which are closely related to the internal representation of chemical gradients parallel and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients must be calculated from the chemical information obtained at a single point, because the sensory neurons are located close to each other at the nose tip. To formulate the relationship between this sensory input and internal representations of the chemical gradient, this study proposes a simple computational model derived from the directional decomposition of the chemical concentration at the nose tip that can generate internal representations of the chemical gradient. The ability of the computational model was verified by using a chemotaxis simulator that can simulate the body motions of pirouette and weathervane, which confirmed that the computational model enables the conversion of the sensory input and head-bending angles into both types of gradients with high correlations of approximately r > 0.90 (p < 0.01) with the true gradients. In addition, the chemotaxis index of the model was 0.64, which is slightly higher than that in the actual animal (0.57). In addition, simulation using a connectome-based neural network model confirmed that the proposed computational model is implementable in the actual network structure.
Collapse
Affiliation(s)
- Zu Soh
- Department of System Cybernetics, Institute of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | - Kazuma Sakamoto
- Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Sony Corporation, Minato-ku, Tokyo, Japan
| | - Michiyo Suzuki
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshio Tsuji
- Department of System Cybernetics, Institute of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
38
|
Tanimoto Y, Kimura KD. Neuronal, mathematical, and molecular bases of perceptual decision-making in C. elegans. Neurosci Res 2018; 140:3-13. [PMID: 30389573 DOI: 10.1016/j.neures.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022]
Abstract
Animals process sensory information from the environment to make behavioral decisions. Although environmental information may be ambiguous or gradually changing, animals can still choose one behavioral option among several through perceptual decision-making. Perceptual decision-making has been intensively studied in primates and rodents, and neural activity that accumulates sensory information has been shown to be crucial. However, it remains unclear how the accumulating neural activity is generated, and whether such activity is a conserved decision-making strategy across the animal kingdom. Here, we review the previous perceptual decision-making studies in vertebrates and invertebrates and our recent achievement in an invertebrate model animal, the nematode Caenorhabditis elegans. In the study, we analyzed temporal dynamics of neuronal activity during perceptual decision-making in navigational behavior of C. elegans. We identified neural activity that accumulates sensory information and elucidated the molecular mechanism for the accumulating activity, which may be relevant to decision-making across the animal kingdom.
Collapse
Affiliation(s)
- Yuki Tanimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | - Koutarou D Kimura
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
39
|
Baker KL, Dickinson M, Findley TM, Gire DH, Louis M, Suver MP, Verhagen JV, Nagel KI, Smear MC. Algorithms for Olfactory Search across Species. J Neurosci 2018; 38:9383-9389. [PMID: 30381430 PMCID: PMC6209839 DOI: 10.1523/jneurosci.1668-18.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.
Collapse
Affiliation(s)
- Keeley L Baker
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Michael Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena 91125, California
| | - Teresa M Findley
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon
- Department of Biology, University of Oregon, Eugene 97403, Oregon
| | - David H Gire
- Department of Psychology, University of Washington, Seattle 98195, Washington
| | - Matthieu Louis
- Neuroscience Research Institute, University of Santa Barbara, Santa Barbara 93106, California
- Department of Molecular, Cellular, and Developmental Biology, University of Santa Barbara, Santa Barbara 93106, California
- Department of Physics, University of Santa Barbara, Santa Barbara 93106, California
| | - Marie P Suver
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Justus V Verhagen
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon,
- Department of Psychology, University of Oregon, Eugene 97403, Oregon
| |
Collapse
|
40
|
C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell 2018; 175:57-70.e17. [PMID: 30220455 DOI: 10.1016/j.cell.2018.08.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022]
Abstract
Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.
Collapse
|
41
|
Kaplan HS, Nichols ALA, Zimmer M. Sensorimotor integration in Caenorhabditis elegans: a reappraisal towards dynamic and distributed computations. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170371. [PMID: 30201836 PMCID: PMC6158224 DOI: 10.1098/rstb.2017.0371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/03/2022] Open
Abstract
The nematode Caenorhabditis elegans is a tractable model system to study locomotion, sensory navigation and decision-making. In its natural habitat, it is thought to navigate complex multisensory environments in order to find food and mating partners, while avoiding threats like predators or toxic environments. While research in past decades has shed much light on the functions and mechanisms of selected sensory neurons, we are just at the brink of understanding how sensory information is integrated by interneuron circuits for action selection in the worm. Recent technological advances have enabled whole-brain Ca2+ imaging and Ca2+ imaging of neuronal activity in freely moving worms. A common principle emerging across multiple studies is that most interneuron activities are tightly coupled to the worm's instantaneous behaviour; notably, these observations encompass neurons receiving direct sensory neuron inputs. The new findings suggest that in the C. elegans brain, sensory and motor representations are integrated already at the uppermost sensory processing layers. Moreover, these results challenge a perhaps more intuitive view of sequential feed-forward sensory pathways that converge onto premotor interneurons and motor neurons. We propose that sensorimotor integration occurs rather in a distributed dynamical fashion. In this perspective article, we will explore this view, discuss the challenges and implications of these discoveries on the interpretation and design of neural activity experiments, and discuss possible functions. Furthermore, we will discuss the broader context of similar findings in fruit flies and rodents, which suggest generalizable principles that can be learnt from this amenable nematode model organism.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Harris S Kaplan
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Annika L A Nichols
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
42
|
Itskovits E, Ruach R, Kazakov A, Zaslaver A. Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans. Nat Commun 2018; 9:2866. [PMID: 30030432 PMCID: PMC6054637 DOI: 10.1038/s41467-018-05151-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
The ability of animals to effectively locate and navigate toward food sources is central for survival. Here, using C. elegans nematodes, we reveal the neural mechanism underlying efficient navigation in chemical gradients. This mechanism relies on the activity of two types of chemosensory neurons: one (AWA) coding gradients via stochastic pulsatile dynamics, and the second (AWCON) coding the gradients deterministically in a graded manner. The pulsatile dynamics of the AWA neuron adapts to the magnitude of the gradient derivative, allowing animals to take trajectories better oriented toward the target. The robust response of AWCON to negative derivatives promotes immediate turns, thus alleviating the costs incurred by erroneous turns dictated by the AWA neuron. This mechanism empowers an efficient navigation strategy that outperforms the classical biased-random walk strategy. This general mechanism thus may be applicable to other sensory modalities for efficient gradient-based navigation. Finding one’s way to a food source along a complex gradient is central to survival for many animals. Here, the authors report that in C. elegans, the distinct response dynamics of two sensory neurons to odor gradients can support a navigation model more efficient than the biased-random walk.
Collapse
Affiliation(s)
- Eyal Itskovits
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Ruach
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.,School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Kazakov
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Zaslaver
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
43
|
Metaxakis A, Petratou D, Tavernarakis N. Multimodal sensory processing in Caenorhabditis elegans. Open Biol 2018; 8:180049. [PMID: 29925633 PMCID: PMC6030117 DOI: 10.1098/rsob.180049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Multisensory integration is a mechanism that allows organisms to simultaneously sense and understand external stimuli from different modalities. These distinct signals are transduced into neuronal signals that converge into decision-making neuronal entities. Such decision-making centres receive information through neuromodulators regarding the organism's physiological state and accordingly trigger behavioural responses. Despite the importance of multisensory integration for efficient functioning of the nervous system, and also the implication of dysfunctional multisensory integration in the aetiology of neuropsychiatric disease, little is known about the relative molecular mechanisms. Caenorhabditis elegans is an appropriate model system to study such mechanisms and elucidate the molecular ways through which organisms understand external environments in an accurate and coherent fashion.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 71110, Crete, Greece
| |
Collapse
|
44
|
Roll maneuvers are essential for active reorientation of Caenorhabditis elegans in 3D media. Proc Natl Acad Sci U S A 2018; 115:E3616-E3625. [PMID: 29618610 DOI: 10.1073/pnas.1706754115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Locomotion of the nematode Caenorhabditis elegans is a key observable used in investigations ranging from behavior to neuroscience to aging. However, while the natural environment of this model organism is 3D, quantitative investigations of its locomotion have been mostly limited to 2D motion. Here, we present a quantitative analysis of how the nematode reorients itself in 3D media. We identify a unique behavioral state of C. elegans-a roll maneuver-which is an essential component of 3D locomotion in burrowing and swimming. The rolls, associated with nonzero torsion of the nematode body, result in rotation of the plane of dorsoventral body undulations about the symmetry axis of the trajectory. When combined with planar turns in a new undulation plane, the rolls allow the nematode to reorient its body in any direction, thus enabling complete exploration of 3D space. The rolls observed in swimming are much faster than the ones in burrowing; we show that this difference stems from a purely hydrodynamic enhancement mechanism and not from a gait change or an increase in the body torsion. This result demonstrates that hydrodynamic viscous forces can enhance 3D reorientation in undulatory locomotion, in contrast to known hydrodynamic hindrance of both forward motion and planar turns.
Collapse
|
45
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
46
|
Bergs A, Schultheis C, Fischer E, Tsunoda SP, Erbguth K, Husson SJ, Govorunova E, Spudich JL, Nagel G, Gottschalk A, Liewald JF. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS One 2018; 13:e0191802. [PMID: 29389997 PMCID: PMC5794093 DOI: 10.1371/journal.pone.0191802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
In optogenetics, rhodopsins were established as light-driven tools to manipulate neuronal activity. However, during long-term photostimulation using channelrhodopsin (ChR), desensitization can reduce effects. Furthermore, requirement for continuous presence of the chromophore all-trans retinal (ATR) in model systems lacking sufficient endogenous concentrations limits its applicability. We tested known, and engineered and characterized new variants of de- and hyperpolarizing rhodopsins in Caenorhabditis elegans. ChR2 variants combined previously described point mutations that may synergize to enable prolonged stimulation. Following brief light pulses ChR2(C128S;H134R) induced muscle activation for minutes or even for hours (‘Quint’: ChR2(C128S;L132C;H134R;D156A;T159C)), thus featuring longer open state lifetime than previously described variants. Furthermore, stability after ATR removal was increased compared to the step-function opsin ChR2(C128S). The double mutants C128S;H134R and H134R;D156C enabled increased effects during repetitive stimulation. We also tested new hyperpolarizers (ACR1, ACR2, ACR1(C102A), ZipACR). Particularly ACR1 and ACR2 showed strong effects in behavioral assays and very large currents with fast kinetics. In sum, we introduce highly light-sensitive optogenetic tools, bypassing previous shortcomings, and thus constituting new tools that feature high effectiveness and fast kinetics, allowing better repetitive stimulation or investigating prolonged neuronal activity states in C. elegans and, possibly, other systems.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Christian Schultheis
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Elisabeth Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Satoshi P. Tsunoda
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Karen Erbguth
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Steven J. Husson
- Systemic Physiological & Ecotoxicological Research (SPHERE), University of Antwerp, Antwerp, Belgium
| | - Elena Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| |
Collapse
|
47
|
Fouad AD, Teng S, Mark JR, Liu A, Alvarez-Illera P, Ji H, Du A, Bhirgoo PD, Cornblath E, Guan SA, Fang-Yen C. Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 2018; 7:e29913. [PMID: 29360037 PMCID: PMC5780042 DOI: 10.7554/elife.29913] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
Coordinated rhythmic movements are ubiquitous in animal behavior. In many organisms, chains of neural oscillators underlie the generation of these rhythms. In C. elegans, locomotor wave generation has been poorly understood; in particular, it is unclear where in the circuit rhythms are generated, and whether there exists more than one such generator. We used optogenetic and ablation experiments to probe the nature of rhythm generation in the locomotor circuit. We found that multiple sections of forward locomotor circuitry are capable of independently generating rhythms. By perturbing different components of the motor circuit, we localize the source of secondary rhythms to cholinergic motor neurons in the midbody. Using rhythmic optogenetic perturbation, we demonstrate bidirectional entrainment of oscillations between different body regions. These results show that, as in many other vertebrates and invertebrates, the C. elegans motor circuit contains multiple oscillators that coordinate activity to generate behavior.
Collapse
Affiliation(s)
- Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Shelly Teng
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Julian R Mark
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Alice Liu
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Pilar Alvarez-Illera
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Hongfei Ji
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Angelica Du
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Priya D Bhirgoo
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Eli Cornblath
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
48
|
Hawk JD, Calvo AC, Liu P, Almoril-Porras A, Aljobeh A, Torruella-Suárez ML, Ren I, Cook N, Greenwood J, Luo L, Wang ZW, Samuel ADT, Colón-Ramos DA. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory. Neuron 2018; 97:356-367.e4. [PMID: 29307713 PMCID: PMC5806692 DOI: 10.1016/j.neuron.2017.12.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/24/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Josh D Hawk
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ana C Calvo
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ahmad Aljobeh
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - María Luisa Torruella-Suárez
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ivy Ren
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Nathan Cook
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Joel Greenwood
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Linjiao Luo
- Key Laboratory of Modern Acoustics, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Blvd del Valle, San Juan, Puerto Rico.
| |
Collapse
|
49
|
Gomez-Marin A, Stephens GJ, Brown AEX. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour. J R Soc Interface 2017; 13:rsif.2016.0466. [PMID: 27581484 PMCID: PMC5014070 DOI: 10.1098/rsif.2016.0466] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023] Open
Abstract
Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante, Spain
| | - Greg J Stephens
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands Okinawa Institute of Science and Technology, Okinawa, Japan
| | - André E X Brown
- MRC Clinical Sciences Centre, London, UK Institute of Clinical Sciences, Imperial College London, London, UK
| |
Collapse
|
50
|
Itskovits E, Levine A, Cohen E, Zaslaver A. A multi-animal tracker for studying complex behaviors. BMC Biol 2017; 15:29. [PMID: 28385158 PMCID: PMC5383998 DOI: 10.1186/s12915-017-0363-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data. Results Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies, zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal that worms’ directional changes are biased, rather than random – a strategy that significantly enhances chemotaxis performance. Next, we show that worms can integrate environmental information and that directional changes mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated locomotion deficits, enabling large-scale drug and genetic screens. Conclusions Together, our tracker provides a powerful and simple system to study complex behaviors in a quantitative, high-throughput, and accurate manner. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0363-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eyal Itskovits
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Amir Levine
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ehud Cohen
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alon Zaslaver
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|