1
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
Migliaccio G, Morikka J, Del Giudice G, Vaani M, Möbus L, Serra A, Federico A, Greco D. Methylation and transcriptomic profiling reveals short term and long term regulatory responses in polarized macrophages. Comput Struct Biotechnol J 2024; 25:143-152. [PMID: 39257962 PMCID: PMC11385784 DOI: 10.1016/j.csbj.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Macrophage plasticity allows the adoption of distinct functional states in response to environmental cues. While unique transcriptomic profiles define these states, focusing solely on transcription neglects potential long-term effects. The investigation of epigenetic changes can be used to understand how temporary stimuli can result in lasting effects. Epigenetic alterations play an important role in the pathophysiology of macrophages, including their trained innate immunity, enabling faster and more efficient inflammatory responses upon subsequent encounters to the same pathogen or insult. In this study, we used a multi-omics approach to elucidate the interplay between gene expression and DNA-methylation, to explore the potential long-term effects of diverse polarizing environments on macrophage activity. We identified a common core set of genes that are differentially methylated regardless of exposure type, indicating a potential common fundamental mechanism for adaptation to various stimuli. Functional analysis revealed that processes requiring rapid responses displayed transcriptomic regulation, whereas functions critical for long-term adaptations exhibited co-regulation at both transcriptomic and epigenetic levels. Our study uncovers a novel set of genes linked to the long-term effects of macrophage polarization. This discovery underscores the potential of epigenetics in elucidating how macrophages establish long-term memory and influence health outcomes.
Collapse
Affiliation(s)
- Giorgia Migliaccio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Giusy Del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Reynolds LM, Houston DK, Skiba MB, Whitsel EA, Stewart JD, Li Y, Zannas AS, Assimes TL, Horvath S, Bhatti P, Baccarelli AA, Tooze JA, Vitolins MZ. Diet Quality and Epigenetic Aging in the Women's Health Initiative. J Acad Nutr Diet 2024; 124:1419-1430.e3. [PMID: 38215906 PMCID: PMC11236955 DOI: 10.1016/j.jand.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Higher diet quality scores are associated with a lower risk for many chronic diseases and all-cause mortality; however, it is unclear if diet quality is associated with aging biology. OBJECTIVE This study aimed to examine the association between diet quality and a measure of biological aging known as epigenetic aging. DESIGN A cross-sectional data analysis was used to examine the association between three diet quality scores based on self-reported food frequency questionnaire data and five measures of epigenetic aging based on DNA methylation (DNAm) data from peripheral blood. PARTICIPANTS/SETTING This study included 4,500 postmenopausal women recruited from multiple sites across the United States (1993-98), aged 50 to 79 years, with food frequency questionnaire and DNAm data available from the Women's Health Initiative baseline visit. MAIN OUTCOME MEASURES Five established epigenetic aging measures were generated from HumanMethylation450 Beadchip DNAm data, including AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim, and DunedinPACE. STATISTICAL ANALYSES PERFORMED Linear mixed models were used to test for associations between three diet quality scores (Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores) and epigenetic aging measures, adjusted for age, race and ethnicity, education, tobacco smoking, physical activity, Women's Health Initiative substudy from which DNAm data were obtained, and DNAm-based estimates of leukocyte proportions. RESULTS Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores were all inversely associated with AgeAccelPheno, AgeAccelGrim, and DunedinPACE (P < 0.05), with the largest effects with DunedinPACE. A one standard deviation increment in diet quality scores was associated with a decrement (β ± SE) in DunedinPACE z score of -0.097 ± 0.014 (P = 9.70 x 10-13) for Healthy Eating Index, -0.107 ± 0.014 (P = 1.53 x 10-14) for Dietary Approaches to Stop Hypertension, and -0.068 ± 0.013 (P = 2.31 x 10-07) for the alternate Mediterranean diet. CONCLUSIONS In postmenopausal women, diet quality scores were inversely associated with DNAm-based measures of biological aging, particularly DunedinPACE.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Denise K Houston
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Meghan B Skiba
- Division of Biobehavioral Health Science, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California; Altos Labs, San Diego, California
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Janet A Tooze
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mara Z Vitolins
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Mariner BL, McCoy BM, Greenier A, Brassington L, Slikas E, Adjangba C, Marye A, Harrison BR, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617286. [PMID: 39416178 PMCID: PMC11482827 DOI: 10.1101/2024.10.08.617286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Within a species, larger individuals often have shorter lives and higher rates of age-related disease. Despite this well-known link, we still know little about underlying age-related epigenetic differences, which could help us better understand inter-individual variation in aging and the etiology, onset, and progression of age-associated disease. Dogs exhibit this negative correlation between size, health, and longevity and thus represent an excellent system in which to test the underlying mechanisms. Here, we quantified genome-wide DNA methylation in a cohort of 864 dogs in the Dog Aging Project. Age strongly patterned the dog epigenome, with the majority (66% of age-associated loci) of regions associating age-related loss of methylation. These age effects were non-randomly distributed in the genome and differed depending on genomic context. We found the LINE1 (long interspersed elements) class of TEs (transposable elements) were the most frequently hypomethylated with age (FDR < 0.05, 40% of all LINE1 regions). This LINE1 pattern differed in magnitude across breeds of different sizes- the largest dogs lost 0.26% more LINE1 methylation per year than the smallest dogs. This suggests that epigenetic regulation of TEs, particularly LINE1s, may contribute to accelerated age and disease phenotypes within a species. Since our study focused on the methylome of immune cells, we looked at LINE1 methylation changes in golden retrievers, a breed highly susceptible to hematopoietic cancers, and found they have accelerated age-related LINE1 hypomethylation compared to other breeds. We also found many of the LINE1s hypomethylated with age are located on the X chromosome and are, when considering X chromosome inactivation, counter-intuitively more methylated in males. These results have revealed the demethylation of LINE1 transposons as a potential driver of inter-species, demographic-dependent aging variation.
Collapse
|
5
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
6
|
Hajmousa G, de Almeida RC, Bloks N, Ruiz AR, Bouma M, Slieker R, Kuipers TB, Nelissen RGHH, Ito K, Freund C, Ramos YFM, Meulenbelt I. The role of DNA methylation in chondrogenesis of human iPSCs as a stable marker of cartilage quality. Clin Epigenetics 2024; 16:141. [PMID: 39407288 PMCID: PMC11481477 DOI: 10.1186/s13148-024-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Lack of insight into factors that determine purity and quality of human iPSC (hiPSC)-derived neo-cartilage precludes applications of this powerful technology toward regenerative solutions in the clinical setting. Here, we set out to generate methylome-wide landscapes of hiPSC-derived neo-cartilages from different tissues-of-origin and integrated transcriptome-wide data to identify dissimilarities in set points of methylation with associated transcription and the respective pathways in which these genes act. METHODS We applied in vitro chondrogenesis using hiPSCs generated from two different tissue sources: skin fibroblasts and articular cartilage. Upon differentiation toward chondrocytes, these are referred to as hFiCs and hCiC, respectively. Genome-wide DNA methylation and RNA sequencing datasets were generated of the hiPSC-derived neo-cartilages, and the epigenetically regulated transcriptome was compared to that of neo-cartilage deposited by human primary articular cartilage (hPAC). RESULTS Methylome-wide landscapes of neo-cartilages of hiPSCs reprogrammed from two different somatic tissues were 85% similar to that of hPACs. By integration of transcriptome-wide data, differences in transcriptionally active CpGs between hCiC relative to hPAC were prioritized. Among the CpG-gene pairs lower expressed in hCiCs relative to hPACs, we identified genes such as MGP, GDF5, and CHAD enriched in closely related pathways and involved in cartilage development that likely mark phenotypic differences in chondrocyte states. Vice versa, among the CpG-gene pairs higher expressed, we identified genes such as KIF1A or NKX2-2 enriched in neurogenic pathways and likely reflecting off target differentiation. CONCLUSIONS We did not find significant variation between the neo-cartilages derived from hiPSCs of different tissue sources, suggesting that application of a robust differentiation protocol such as we applied here is more important as compared to the epigenetic memory of the cells of origin. Results of our study could be further exploited to improve quality, purity, and maturity of hiPSC-derived neo-cartilage matrix, ultimately to realize introduction of sustainable, hiPSC-derived neo-cartilage implantation into clinical practice.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Niek Bloks
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Marga Bouma
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Roderick Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology and Human iPSC Hotel, 2333 ZA, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Post-zone S-05-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Sawyer S, Gelabert P, Yakir B, Llanos-Lizcano A, Sperduti A, Bondioli L, Cheronet O, Neugebauer-Maresch C, Teschler-Nicola M, Novak M, Pap I, Szikossy I, Hajdu T, Moiseyev V, Gromov A, Zariņa G, Meshorer E, Carmel L, Pinhasi R. Improved detection of methylation in ancient DNA. Genome Biol 2024; 25:261. [PMID: 39390557 PMCID: PMC11465500 DOI: 10.1186/s13059-024-03405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Reconstructing premortem DNA methylation levels in ancient DNA has led to breakthrough studies such as the prediction of anatomical features of the Denisovan. These studies rely on computationally inferring methylation levels from damage signals in naturally deaminated cytosines, which requires expensive high-coverage genomes. Here, we test two methods for direct methylation measurement developed for modern DNA based on either bisulfite or enzymatic methylation treatments. Bisulfite treatment shows the least reduction in DNA yields as well as the least biases during methylation conversion, demonstrating that this method can be successfully applied to ancient DNA.
Collapse
Affiliation(s)
- Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Benjamin Yakir
- Department of Statistics, The Faculty of Social Science, The Hebrew University Mount Scopus, Jerusalem, Israel
| | - Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Alessandra Sperduti
- Museo Delle Civiltà, Servizio Di Bioarcheologia, Rome, Italy
- Dipartimento di Asia, Africa e Mediterraneo, Università degli Studi di Napoli "L'Orientale", Naples, Italy
| | - Luca Bondioli
- Università Di Padova, Dipartimento Dei Beni Culturali, Padua, Italy
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Christine Neugebauer-Maresch
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
- Institute of Prehistory and Early History, University of Vienna, Vienna, Austria
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | | | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), RAS, Saint Petersburg, Russia
| | - Andrey Gromov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), RAS, Saint Petersburg, Russia
| | - Gunita Zariņa
- Institute of Latvian History, University of Latvia, Riga, Latvia
| | - Eran Meshorer
- The Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Taryma-Leśniak O, Bińkowski J, Przybylowicz PK, Sokolowska KE, Borowski K, Wojdacz TK. Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity. Epigenetics Chromatin 2024; 17:30. [PMID: 39385277 PMCID: PMC11465701 DOI: 10.1186/s13072-024-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations. RESULTS We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation. CONCLUSIONS We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.
Collapse
Affiliation(s)
- Olga Taryma-Leśniak
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Jan Bińkowski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Patrycja Kamila Przybylowicz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Katarzyna Ewa Sokolowska
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Konrad Borowski
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland
| | - Tomasz Kazimierz Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University in Szczecin, 71-252, Szczecin, Poland.
| |
Collapse
|
9
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
10
|
Ribaud M, Labbe A, Fouda K, Oualkacha K. Fast matrix completion in epigenetic methylation studies with informative covariates. Biostatistics 2024; 25:1062-1078. [PMID: 38850151 PMCID: PMC11471954 DOI: 10.1093/biostatistics/kxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
DNA methylation is an important epigenetic mark that modulates gene expression through the inhibition of transcriptional proteins binding to DNA. As in many other omics experiments, the issue of missing values is an important one, and appropriate imputation techniques are important in avoiding an unnecessary sample size reduction as well as to optimally leverage the information collected. We consider the case where relatively few samples are processed via an expensive high-density whole genome bisulfite sequencing (WGBS) strategy and a larger number of samples is processed using more affordable low-density, array-based technologies. In such cases, one can impute the low-coverage (array-based) methylation data using the high-density information provided by the WGBS samples. In this paper, we propose an efficient Linear Model of Coregionalisation with informative Covariates (LMCC) to predict missing values based on observed values and covariates. Our model assumes that at each site, the methylation vector of all samples is linked to the set of fixed factors (covariates) and a set of latent factors. Furthermore, we exploit the functional nature of the data and the spatial correlation across sites by assuming some Gaussian processes on the fixed and latent coefficient vectors, respectively. Our simulations show that the use of covariates can significantly improve the accuracy of imputed values, especially in cases where missing data contain some relevant information about the explanatory variable. We also showed that our proposed model is particularly efficient when the number of columns is much greater than the number of rows-which is usually the case in methylation data analysis. Finally, we apply and compare our proposed method with alternative approaches on two real methylation datasets, showing how covariates such as cell type, tissue type or age can enhance the accuracy of imputed values.
Collapse
Affiliation(s)
- Mélina Ribaud
- Department of Decision Science, HEC Montreal, 3000 chemin de la Cote Ste Catherine Montréal, QC H3T 2A7 Montreal, Canada
| | - Aurélie Labbe
- Department of Decision Science, HEC Montreal, 3000 chemin de la Cote Ste Catherine Montréal, QC H3T 2A7 Montreal, Canada
| | - Khaled Fouda
- Department of Decision Science, HEC Montreal, 3000 chemin de la Cote Ste Catherine Montréal, QC H3T 2A7 Montreal, Canada
| | - Karim Oualkacha
- Department of Mathematics, Université du Québec à Montreal, 201, Ave Président-Kennedy Montreal (QC), H2X 3Y7 Montreal, Canada
| |
Collapse
|
11
|
de la Calle-Fabregat C, Calafell-Segura J, Gardet M, Dunsmore G, Mulder K, Ciudad L, Silvin A, Moreno-Càceres J, Corbí ÁL, Muñoz-Pinedo C, Michels J, Gouy S, Dutertre CA, Rodríguez-Ubreva J, Ginhoux F, Ballestar E. NF-κB and TET2 promote macrophage reprogramming in hypoxia that overrides the immunosuppressive effects of the tumor microenvironment. SCIENCE ADVANCES 2024; 10:eadq5226. [PMID: 39292770 PMCID: PMC11409945 DOI: 10.1126/sciadv.adq5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Macrophages orchestrate tissue homeostasis and immunity. In the tumor microenvironment (TME), macrophage presence is largely associated with poor prognosis because of their reprogramming into immunosuppressive cells. We investigated the effects of hypoxia, a TME-associated feature, on the functional, epigenetic, and transcriptional reprogramming of macrophages and found that hypoxia boosts their immunogenicity. Hypoxic inflammatory macrophages are characterized by a cluster of proinflammatory genes undergoing ten-eleven translocation-mediated DNA demethylation and overexpression. These genes are regulated by NF-κB, while HIF1α dominates the transcriptional reprogramming, demonstrated through ChIP-seq and pharmacological inhibition. In bladder and ovarian carcinomas, hypoxic inflammatory macrophages are enriched in immune-infiltrated tumors, correlating with better patient prognoses. Coculture assays and cell-cell communication analyses support that hypoxic-activated macrophages enhance T cell-mediated responses. The NF-κB-associated hypomethylation signature is displayed by a subset of hypoxic inflammatory macrophages, isolated from ovarian tumors. Our results challenge paradigms regarding the effects of hypoxia on macrophages and highlight actionable target cells to modulate anticancer immune responses.
Collapse
Affiliation(s)
- Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Margaux Gardet
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Garett Dunsmore
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Kevin Mulder
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Aymeric Silvin
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Joaquim Moreno-Càceres
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Cristina Muñoz-Pinedo
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Michels
- INSERM UMR1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Saclay, 94805 Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, 94805 Villejuif, France
| | - Sébastien Gouy
- Department of Surgical Oncology, Gustave Roussy, 94805 Villejuif, France
| | | | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Florent Ginhoux
- INSERM UMR1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| |
Collapse
|
12
|
De Velasco MA, Sakai K, Mitani S, Kura Y, Minamoto S, Haeno T, Hayashi H, Nishio K. A machine learning-based method for feature reduction of methylation data for the classification of cancer tissue origin. Int J Clin Oncol 2024:10.1007/s10147-024-02617-w. [PMID: 39292320 DOI: 10.1007/s10147-024-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Genome DNA methylation profiling is a promising yet costly method for cancer classification, involving substantial data. We developed an ensemble learning model to identify cancer types using methylation profiles from a limited number of CpG sites. METHODS Analyzing methylation data from 890 samples across 10 cancer types from the TCGA database, we utilized ANOVA and Gain Ratio to select the most significant CpG sites, then employed Gradient Boosting to reduce these to just 100 sites. RESULTS This approach maintained high accuracy across multiple machine learning models, with classification accuracy rates between 87.7% and 93.5% for methods including Extreme Gradient Boosting, CatBoost, and Random Forest. This method effectively minimizes the number of features needed without losing performance, helping to classify primary organs and uncover subgroups within specific cancers like breast and lung. CONCLUSIONS Using a gradient boosting feature selector shows potential for streamlining methylation-based cancer classification.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Seiichiro Mitani
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Shuji Minamoto
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Takahiro Haeno
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan.
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan.
| |
Collapse
|
13
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
14
|
Tivey A, Lee RJ, Clipson A, Hill SM, Lorigan P, Rothwell DG, Dive C, Mouliere F. Mining nucleic acid "omics" to boost liquid biopsy in cancer. Cell Rep Med 2024; 5:101736. [PMID: 39293399 PMCID: PMC11525024 DOI: 10.1016/j.xcrm.2024.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Treatments for cancer patients are becoming increasingly complex, and there is a growing desire from clinicians and patients for biomarkers that can account for this complexity to support informed decisions about clinical care. To achieve precision medicine, the new generation of biomarkers must reflect the spatial and temporal heterogeneity of cancer biology both between patients and within an individual patient. Mining the different layers of 'omics in a multi-modal way from a minimally invasive, easily repeatable, liquid biopsy has increasing potential in a range of clinical applications, and for improving our understanding of treatment response and resistance. Here, we detail the recent developments and methods allowing exploration of genomic, epigenomic, transcriptomic, and fragmentomic layers of 'omics from liquid biopsy, and their integration in a range of applications. We also consider the specific challenges that are posed by the clinical implementation of multi-omic liquid biopsies.
Collapse
Affiliation(s)
- Ann Tivey
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rebecca J Lee
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Steven M Hill
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Paul Lorigan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Gurven MD, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Roberson J, Ng KS, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612068. [PMID: 39314398 PMCID: PMC11419010 DOI: 10.1101/2024.09.09.612068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
|
16
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02735-x. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
18
|
Bizzarri D, Reinders MJT, Kuiper L, Beekman M, Deelen J, van Meurs JBJ, van Dongen J, Pool R, Boomsma DI, Ghanbari M, Franke L, Slagboom PE, van den Akker EB. NMR metabolomics-guided DNA methylation mortality predictors. EBioMedicine 2024; 107:105279. [PMID: 39154540 PMCID: PMC11378104 DOI: 10.1016/j.ebiom.2024.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND 1H-NMR metabolomics and DNA methylation in blood are widely known biomarkers predicting age-related physiological decline and mortality yet exert mutually independent mortality and frailty signals. METHODS Leveraging multi-omics data in four Dutch population studies (N = 5238, ∼40% of which male) we investigated whether the mortality signal captured by 1H-NMR metabolomics could guide the construction of DNA methylation-based mortality predictors. FINDINGS We trained DNA methylation-based surrogates for 64 metabolomic analytes and found that analytes marking inflammation, fluid balance, or HDL/VLDL metabolism could be accurately reconstructed using DNA-methylation assays. Interestingly, a previously reported multi-analyte score indicating mortality risk (MetaboHealth) could also be accurately reconstructed. Sixteen of our derived surrogates, including the MetaboHealth surrogate, showed significant associations with mortality, independent of relevant covariates. INTERPRETATION The addition of our metabolic analyte-derived surrogates to the well-established epigenetic clock GrimAge demonstrates that our surrogates potentially represent valuable mortality signal. FUNDING BBMRI-NL, X-omics, VOILA, Medical Delta, NWO, ERC.
Collapse
Affiliation(s)
- Daniele Bizzarri
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - Lieke Kuiper
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; Center for Nutrition, Prevention and Health Services, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Max Planck Institute for the Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Orthopaedics & Sports, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieternella E Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Erik B van den Akker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands.
| |
Collapse
|
19
|
Yusipov I, Kalyakulina A, Trukhanov A, Franceschi C, Ivanchenko M. Map of epigenetic age acceleration: A worldwide analysis. Ageing Res Rev 2024; 100:102418. [PMID: 39002646 DOI: 10.1016/j.arr.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.
Collapse
Affiliation(s)
- Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, Moscow 124489, Russia.
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
20
|
Chen T, Mahdadi S, Vidal M, Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol Res 2024; 207:107328. [PMID: 39079576 DOI: 10.1016/j.phrs.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
DNA methylation can deactivate tumor suppressor genes thus causing cancers. Two DNA methylation inhibitors have been approved by the Food and Drug Administration (FDA) and have entered clinical use. However, these inhibitors are nucleoside analogues that can be incorporated into DNA or RNA and induce significant side effects. DNMT1 and DNMT3 are key enzymes involved in DNA methylation. In the acute myeloid leukemia model, a non-nucleoside DNMT1-specific inhibitor has shown lower toxicity and improved pharmacokinetics compared to traditional nucleoside drugs. DNMT3 is also implicated in certain specific cancers. Thus, developing non-nucleoside inhibitors for DNMT1 or DNMT3 can help in understanding their roles in carcinogenesis and provide targeted treatment options in certain cancers. Although no non-nucleoside inhibitors have yet entered clinical trials, in this review, we focus on DNMT1 or DNMT3 selective inhibitors. For DNMT1 selective inhibitors, we have compiled information on the repurposed drugs, derivative compounds and selective inhibitors identified through virtual screening. Additionally, we have outlined potential targets for DNMT1, including protein-protein complex, RNA mimics and aptamers. Compared to DNMT1, research on DNMT3-specific inhibitors has been less extensive. In this context, our exploration has identified a limited number of molecular inhibitors, and we have proposed specific long non-coding RNAs (lncRNAs) as potential contributors to the selective inhibition of DNMT3. This collective effort aims to offer valuable insights into the development of non-nucleoside inhibitors that selectively target DNMT1 or DNMT3.
Collapse
Affiliation(s)
- Ting Chen
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Syrine Mahdadi
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Michel Vidal
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France; Toxicology, Cochin Hospital, HUPC, APHP, Paris 75014, France
| | | |
Collapse
|
21
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
22
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short and long-term enhancer regulation during cell fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609789. [PMID: 39253426 PMCID: PMC11383056 DOI: 10.1101/2024.08.27.609789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N. Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J. Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacqueline A. Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Sen T, Takahashi N, Chakraborty S, Takebe N, Nassar AH, Karim NA, Puri S, Naqash AR. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol 2024; 21:610-627. [PMID: 38965396 DOI: 10.1038/s41571-024-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoko Takebe
- Developmental Therapeutics Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Amin H Nassar
- Division of Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagla A Karim
- Inova Schar Cancer Institute Virginia, Fairfax, VA, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/ TSET Phase 1 program, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Stefansson OA, Sigurpalsdottir BD, Rognvaldsson S, Halldorsson GH, Juliusson K, Sveinbjornsson G, Gunnarsson B, Beyter D, Jonsson H, Gudjonsson SA, Olafsdottir TA, Saevarsdottir S, Magnusson MK, Lund SH, Tragante V, Oddsson A, Hardarson MT, Eggertsson HP, Gudmundsson RL, Sverrisson S, Frigge ML, Zink F, Holm H, Stefansson H, Rafnar T, Jonsdottir I, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Thorsteinsdottir U, Stefansson K. The correlation between CpG methylation and gene expression is driven by sequence variants. Nat Genet 2024; 56:1624-1631. [PMID: 39048797 PMCID: PMC11319203 DOI: 10.1038/s41588-024-01851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Gene promoter and enhancer sequences are bound by transcription factors and are depleted of methylated CpG sites (cytosines preceding guanines in DNA). The absence of methylated CpGs in these sequences typically correlates with increased gene expression, indicating a regulatory role for methylation. We used nanopore sequencing to determine haplotype-specific methylation rates of 15.3 million CpG units in 7,179 whole-blood genomes. We identified 189,178 methylation depleted sequences where three or more proximal CpGs were unmethylated on at least one haplotype. A total of 77,789 methylation depleted sequences (~41%) associated with 80,503 cis-acting sequence variants, which we termed allele-specific methylation quantitative trait loci (ASM-QTLs). RNA sequencing of 896 samples from the same blood draws used to perform nanopore sequencing showed that the ASM-QTL, that is, DNA sequence variability, drives most of the correlation found between gene expression and CpG methylation. ASM-QTLs were enriched 40.2-fold (95% confidence interval 32.2, 49.9) among sequence variants associating with hematological traits, demonstrating that ASM-QTLs are important functional units in the noncoding genome.
Collapse
Affiliation(s)
| | - Brynja Dogg Sigurpalsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Gisli Hreinn Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Thorunn Asta Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Helga Lund
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Marteinn Thor Hardarson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
26
|
Górczak K, Burzykowski T, Claesen J. A varying-coefficient model for the analysis of methylation sequencing data. Comput Biol Chem 2024; 111:108094. [PMID: 38781748 DOI: 10.1016/j.compbiolchem.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
DNA methylation is an important epigenetic modification involved in gene regulation. Advances in the next generation sequencing technology have enabled the retrieval of DNA methylation information at single-base-resolution. However, due to the sequencing process and the limited amount of isolated DNA, DNA-methylation-data are often noisy and sparse, which complicates the identification of differentially methylated regions (DMRs), especially when few replicates are available. We present a varying-coefficient model for detecting DMRs by using single-base-resolved methylation information. The model simultaneously smooths the methylation profiles and allows detection of DMRs, while accounting for additional covariates. The proposed model takes into account possible overdispersion by using a beta-binomial distribution. The overdispersion itself can be modeled as a function of the genomic region and explanatory variables. We illustrate the properties of the proposed model by applying it to two real-life case studies.
Collapse
Affiliation(s)
- Katarzyna Górczak
- Data Science Institute, Hasselt University, Belgium; Open Analytics NV, Antwerp, Belgium
| | - Tomasz Burzykowski
- Data Science Institute, Hasselt University, Belgium; Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Poland; International Drug Development Institute (IDDI), Belgium
| | - Jürgen Claesen
- Data Science Institute, Hasselt University, Belgium; Department of Epidemiology and Data Science, Amsterdam UMC, VU Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Zhu L, Sun L, Liu W, Han W, Huang G, Li J. Long-term storage does not affect the DNA methylation profiles of vitrified-warmed human embryos. Mol Reprod Dev 2024; 91:e23713. [PMID: 37882215 DOI: 10.1002/mrd.23713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/27/2023]
Abstract
With the widespread application of embryo cryopreservation in assisted reproductive techniques, it is necessary to assess the safety of long-term cryopreservation of human embryos and it is unclear whether storage time has an impact on the DNA methylation profiles of human embryos. Nine women who received IVF treatment were recruited for this study. The retrieved eight-cell human embryos were classified into three groups including fresh embryos, cryopreserved embryos stored for 3 years, and cryopreserved embryos stored for 8 years. Single-cell whole-genome bisulfite sequencing (scWGBS) was conducted. The genome-wide methylation pattern of the fresh and two cryopreserved groups were similar. In addition, the methylation level in different genomic regions showed comparable patterns and no significant differences were observed in the methylation level of imprinted genes among the three groups. A total of 587 differentially methylated regions (DMRs) in the 3-year group and 540 DMRs in the 8-year group were identified comparing to fresh group. However, they were not enriched in promoters and had a similar genome-wide distributions, suggesting that these DMRs may not contribute to the changes in corresponding gene expressions. Our study illustrated that long-term cryopreservation will not affect the DNA methylation profiles of human eight-cell embryos at single-cell level.
Collapse
Affiliation(s)
- Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Liwei Sun
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
28
|
Liu X, Pang Y, Shan J, Wang Y, Zheng Y, Xue Y, Zhou X, Wang W, Sun Y, Yan X, Shi J, Wang X, Gu H, Zhang F. Beyond the base pairs: comparative genome-wide DNA methylation profiling across sequencing technologies. Brief Bioinform 2024; 25:bbae440. [PMID: 39256199 PMCID: PMC11387064 DOI: 10.1093/bib/bbae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Deoxyribonucleic acid (DNA) methylation plays a key role in gene regulation and is critical for development and human disease. Techniques such as whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) allow DNA methylation analysis at the genome scale, with Illumina NovaSeq 6000 and MGI Tech DNBSEQ-T7 being popular due to their efficiency and affordability. However, detailed comparative studies of their performance are not available. In this study, we constructed 60 WGBS and RRBS libraries for two platforms using different types of clinical samples and generated approximately 2.8 terabases of sequencing data. We systematically compared quality control metrics, genomic coverage, CpG methylation levels, intra- and interplatform correlations, and performance in detecting differentially methylated positions. Our results revealed that the DNBSEQ platform exhibited better raw read quality, although base quality recalibration indicated potential overestimation of base quality. The DNBSEQ platform also showed lower sequencing depth and less coverage uniformity in GC-rich regions than did the NovaSeq platform and tended to enrich methylated regions. Overall, both platforms demonstrated robust intra- and interplatform reproducibility for RRBS and WGBS, with NovaSeq performing better for WGBS, highlighting the importance of considering these factors when selecting a platform for bisulfite sequencing.
Collapse
Affiliation(s)
- Xin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Junqi Shan
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunfei Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanhua Zheng
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Yuhang Xue
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Wenjun Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanlai Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaojing Yan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| |
Collapse
|
29
|
Sharma R, Bisht P, Kesharwani A, Murti K, Kumar N. Epigenetic modifications in Parkinson's disease: A critical review. Eur J Pharmacol 2024; 975:176641. [PMID: 38754537 DOI: 10.1016/j.ejphar.2024.176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder expected to increase by over 50% by 2030 due to increasing life expectancy. The disease's hallmarks include slow movement, tremors, and postural instability. Impaired protein processing is a major factor in the pathophysiology of PD, leading to the buildup of aberrant protein aggregates, particularly misfolded α-synuclein, also known as Lewy bodies. These Lewy bodies lead to inflammation and further death of dopaminergic neurons, leading to imbalances in excitatory and inhibitory neurotransmitters, causing excessive uncontrollable movements called dyskinesias. It was previously suggested that a complex interplay involving hereditary and environmental variables causes the specific death of neurons in PD; however, the exact mechanism of the association involving the two primary modifiers is yet unknown. An increasing amount of research points to the involvement of epigenetics in the onset and course of several neurological conditions, such as PD. DNA methylation, post-modifications of histones, and non-coding RNAs are the primary examples of epigenetic alterations, that is defined as alterations to the expression of genes and functioning without modifications in DNA sequence. Epigenetic modifications play a significant role in the development of PD, with genes such as Parkin, PTEN-induced kinase 1 (PINK1), DJ1, Leucine-Rich Repeat Kinase 2 (LRRK2), and alpha-synuclein associated with the disease. The aberrant epigenetic changes implicated in the pathophysiology of PD and their impact on the design of novel therapeutic approaches are the primary focus of this review.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
30
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
31
|
Jing T, Wei D, Xu X, Wu C, Yuan L, Huang Y, Liu Y, Jiang Y, Wang B. Transposable elements-mediated recruitment of KDM1A epigenetically silences HNF4A expression to promote hepatocellular carcinoma. Nat Commun 2024; 15:5631. [PMID: 38965210 PMCID: PMC11224304 DOI: 10.1038/s41467-024-49926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Transposable elements (TEs) contribute to gene expression regulation by acting as cis-regulatory elements that attract transcription factors and epigenetic regulators. This research aims to explore the functional and clinical implications of transposable element-related molecular events in hepatocellular carcinoma, focusing on the mechanism through which liver-specific accessible TEs (liver-TEs) regulate adjacent gene expression. Our findings reveal that the expression of HNF4A is inversely regulated by proximate liver-TEs, which facilitates liver cancer cell proliferation. Mechanistically, liver-TEs are predominantly occupied by the histone demethylase, KDM1A. KDM1A negatively influences the methylation of histone H3 Lys4 (H3K4) of liver-TEs, resulting in the epigenetic silencing of HNF4A expression. The suppression of HNF4A mediated by KDM1A promotes liver cancer cell proliferation. In conclusion, this study uncovers a liver-TE/KDM1A/HNF4A regulatory axis that promotes liver cancer growth and highlights KDM1A as a promising therapeutic target. Our findings provide insight into the transposable element-related molecular mechanisms underlying liver cancer progression.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yanyi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
32
|
Xiao M, Wei R, Yu J, Gao C, Yang F, Zhang L. CpG Island Definition and Methylation Mapping of the T2T-YAO Genome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae009. [PMID: 39142816 DOI: 10.1093/gpbjnl/qzae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 08/16/2024]
Abstract
Precisely defining and mapping all cytosine (C) positions and their clusters, known as CpG islands (CGIs), as well as their methylation status, are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here, we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, by mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7%-5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also shows more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.
Collapse
Affiliation(s)
- Ming Xiao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Rui Wei
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chujie Gao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Fengyi Yang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
33
|
Lietz CE, Newman ET, Kelly AD, Xiang DH, Zhang Z, Ramavenkat N, Bowers JJ, Lozano-Calderon SA, Ebb DH, Raskin KA, Cote GM, Choy E, Nielsen GP, Vlachos IS, Haibe-Kains B, Spentzos D. A dynamic microRNA profile that tracks a chemotherapy resistance phenotype in osteosarcoma. Implications for novel therapeutics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309087. [PMID: 38946948 PMCID: PMC11213079 DOI: 10.1101/2024.06.19.24309087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Osteosarcoma is a rare primary bone tumor for which no significant therapeutic advancement has been made since the late 1980s despite ongoing efforts. Overall, the five-year survival rate remains about 65%, and is much lower in patients with tumors unresponsive to methotrexate, doxorubicin, and cisplatin therapy. Genetic studies have not revealed actionable drug targets, but our group, and others, have reported that epigenomic biomarkers, including regulatory RNAs, may be useful prognostic tools for osteosarcoma. We tested if microRNA (miRNA) transcriptional patterns mark the transition from a chemotherapy sensitive to resistant tumor phenotype. Small RNA sequencing was performed using 14 patient matched pre-chemotherapy biopsy and post-chemotherapy resection high-grade osteosarcoma frozen tumor samples. Independently, small RNA sequencing was performed using 14 patient matched biopsy and resection samples from untreated tumors. Separately, miRNA specific Illumina DASL arrays were used to assay an independent cohort of 65 pre-chemotherapy biopsy and 26 patient matched post-chemotherapy resection formalin fixed paraffin embedded (FFPE) tumor samples. mRNA specific Illumina DASL arrays were used to profile 37 pre-chemotherapy biopsy and five post-chemotherapy resection FFPE samples, all of which were also used for Illumina DASL miRNA profiling. The National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatments dataset, including PCR based miRNA profiling and RNA-seq data for 86 and 93 pre-chemotherapy tumor samples, respectively, was also used. Paired differential expression testing revealed a profile of 17 miRNAs with significantly different transcriptional levels following chemotherapy. Genes targeted by the miRNAs were differentially expressed following chemotherapy, suggesting the miRNAs may regulate transcriptional networks. Finally, an in vitro pharmacogenomic screen using miRNAs and their target transcripts predicted response to a set of candidate small molecule therapeutics which potentially reverse the chemotherapy resistance phenotype and synergize with chemotherapy in otherwise treatment resistant tumors. Importantly, these novel therapeutic targets are distinct from targets identified by a similar pharmacogenomic analysis of previously published prognostic miRNA profiles from pre chemotherapy biopsy specimens.
Collapse
Affiliation(s)
- Christopher E Lietz
- Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Erik T Newman
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - David H Xiang
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ziying Zhang
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Nikhil Ramavenkat
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Joshua J Bowers
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Santiago A Lozano-Calderon
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David H Ebb
- Division of Pediatric Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin A Raskin
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gregory M Cote
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ioannis S Vlachos
- Harvard Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto M5G 2M9, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1L7, Ontario, Canada
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
35
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
36
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
37
|
Christiansen C, Potier L, Martin TC, Villicaña S, Castillo-Fernandez JE, Mangino M, Menni C, Tsai PC, Campbell PJ, Mullin S, Ordoñana JR, Monteagudo O, Sachdev PS, Mather KA, Trollor JN, Pietilainen KH, Ollikainen M, Dalgård C, Kyvik K, Christensen K, van Dongen J, Willemsen G, Boomsma DI, Magnusson PKE, Pedersen NL, Wilson SG, Grundberg E, Spector TD, Bell JT. Enhanced resolution profiling in twins reveals differential methylation signatures of type 2 diabetes with links to its complications. EBioMedicine 2024; 103:105096. [PMID: 38574408 PMCID: PMC11004697 DOI: 10.1016/j.ebiom.2024.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING Funding acknowledgements for each cohort can be found in the Supplementary Note.
Collapse
Affiliation(s)
| | - Louis Potier
- APHP, Paris Cité University, INSERM, Paris, France
| | | | | | | | | | | | - Pei-Chien Tsai
- King's College London, UK; Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | | | | | | - Kirsi H Pietilainen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; HealthyWeightHub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Miina Ollikainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Finland
| | | | | | | | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | | | | | - Scott G Wilson
- King's College London, UK; Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
38
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
39
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
40
|
Ryan CP, Lee NR, Carba DB, MacIsaac JL, Lin DTS, Atashzay P, Belsky DW, Kobor MS, Kuzawa CW. Pregnancy is linked to faster epigenetic aging in young women. Proc Natl Acad Sci U S A 2024; 121:e2317290121. [PMID: 38588424 PMCID: PMC11032455 DOI: 10.1073/pnas.2317290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
A central prediction of evolutionary theory is that energy invested into reproduction comes at the expense of somatic maintenance and repair, accelerating biological aging. Supporting this prediction are findings that high fertility among women predicts shorter lifespan and poorer health later in life. However, biological aging is thought to begin before age-related health declines, limiting the applicability of morbidity and mortality for studying the aging process earlier in life. Here, we examine the relationship between reproductive history and biological aging in a sample of young (20 to 22yo) men and women from the Cebu Longitudinal Health and Nutrition Survey, located in the Philippines (n = 1,735). We quantify biological aging using six measures, collectively known as epigenetic clocks, reflecting various facets of cellular aging, health, and mortality risk. In a subset of women, we test whether longitudinal changes in gravidity between young and early-middle adulthood (25 to 31yo) are associated with changes in epigenetic aging during that time. Cross-sectionally, gravidity was associated with all six measures of accelerated epigenetic aging in women (n = 825). Furthermore, longitudinal increases in gravidity were linked to accelerated epigenetic aging in two epigenetic clocks (n = 331). In contrast, the number of pregnancies a man reported fathering was not associated with epigenetic aging among same-aged cohort men (n = 910). These effects were robust to socioecological, environmental, and immunological factors, consistent with the hypothesis that pregnancy accelerates biological aging and that these effects can be detected in young women in a high-fertility context.
Collapse
Affiliation(s)
- Calen P. Ryan
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City6000, Philippines
| | - Delia B. Carba
- USC-Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City6000, Philippines
| | - Julie L. MacIsaac
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - David T. S. Lin
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Parmida Atashzay
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BCV5Z 4H4, Canada
| | - Daniel W. Belsky
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY10032
- Department of Epidemiology, Columbia University Mailman School of Public Health, Columbia University, New York, NY10032
- Child and Brain Development Program, Canadian Institute for Advanced Research, TorontoONM5G 1M1, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BCV5Z 4H4, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, TorontoONM5G 1M1, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BCV5Z 4H4, Canada
| | | |
Collapse
|
41
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
42
|
Caggiano C, Morselli M, Qian X, Celona B, Thompson M, Wani S, Tosevska A, Taraszka K, Heuer G, Ngo S, Steyn F, Nestor P, Wallace L, McCombe P, Heggie S, Thorpe K, McElligott C, English G, Henders A, Henderson R, Lomen-Hoerth C, Wray N, McRae A, Pellegrini M, Garton F, Zaitlen N. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305503. [PMID: 38645132 PMCID: PMC11030489 DOI: 10.1101/2024.04.08.24305503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific disease context or are too expensive to be clinically practical. Here, we address these challenges through a new approach combining advances in molecular and computational technologies. First, we develop statistical tools to select tissue-informative DNA methylation sites relevant to a disease process of interest. We then employ a capture protocol to select these sites and perform targeted methylation sequencing. Multi-modal information about the DNA methylation patterns are then utilized in machine learning algorithms trained to predict disease status and disease progression. We applied our method to two independent cohorts of ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted ALS status and replicated between cohorts. Additionally, we identified epigenetic features associated with ALS phenotypes, including disease severity. These findings highlight the potential of cfDNA as a non-invasive biomarker for ALS.
Collapse
Affiliation(s)
- C Caggiano
- Department of Neurology, UCLA, Los Angeles, California
- Institute of Genomic Health, Icahn School of Medicine at Mt Sinai, New York, New York
| | - M Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - X Qian
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - B Celona
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - M Thompson
- Department of Neurology, UCLA, Los Angeles, California
- Systems and Synthetic Biology, Centre for Genomic Regulation, Barcelona, Spain
| | - S Wani
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - A Tosevska
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - K Taraszka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - G Heuer
- Computational and Systems Biology Interdepartmental Program, UCLA, Los Angeles, California
| | - S Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - F Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - P Nestor
- Queensland Brain Institute, Unviversity of Queensland, Brisbane, Australia
- Mater Public Hospital, Brisbane, Australia
| | - L Wallace
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - P McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - K Thorpe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - G English
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A Henders
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - R Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - C Lomen-Hoerth
- Department of Neurology, UCSF, San Francisco, California
| | - N Wray
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A McRae
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - M Pellegrini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - F Garton
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - N Zaitlen
- Department of Neurology, UCLA, Los Angeles, California
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
43
|
Che H, Jiang P, Choy LYL, Cheng SH, Peng W, Chan RWY, Liu J, Zhou Q, Lam WKJ, Yu SCY, Lau SL, Leung TY, Wong J, Wong VWS, Wong GLH, Chan SL, Chan KCA, Lo YMD. Genomic origin, fragmentomics, and transcriptional properties of long cell-free DNA molecules in human plasma. Genome Res 2024; 34:189-200. [PMID: 38408788 PMCID: PMC10984381 DOI: 10.1101/gr.278556.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.
Collapse
Affiliation(s)
- Huiwen Che
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Hang Cheng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Liu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephanie C Y Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - So Ling Lau
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Grace L H Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
44
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Sirard MA, Ibeagha-Awemu EM. DNA methylation haplotype block signatures responding to Staphylococcus aureus subclinical mastitis and association with production and health traits. BMC Biol 2024; 22:65. [PMID: 38486242 PMCID: PMC10941392 DOI: 10.1186/s12915-024-01843-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - David Gagné
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.
| |
Collapse
|
45
|
Dubath C, Porcu E, Delacrétaz A, Grosu C, Laaboub N, Piras M, von Gunten A, Conus P, Plessen KJ, Kutalik Z, Eap CB. DNA methylation may partly explain psychotropic drug-induced metabolic side effects: results from a prospective 1-month observational study. Clin Epigenetics 2024; 16:36. [PMID: 38419113 PMCID: PMC10903022 DOI: 10.1186/s13148-024-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Metabolic side effects of psychotropic medications are a major drawback to patients' successful treatment. Using an epigenome-wide approach, we aimed to investigate DNA methylation changes occurring secondary to psychotropic treatment and evaluate associations between 1-month metabolic changes and both baseline and 1-month changes in DNA methylation levels. Seventy-nine patients starting a weight gain inducing psychotropic treatment were selected from the PsyMetab study cohort. Epigenome-wide DNA methylation was measured at baseline and after 1 month of treatment, using the Illumina Methylation EPIC BeadChip. RESULTS A global methylation increase was noted after the first month of treatment, which was more pronounced (p < 2.2 × 10-16) in patients whose weight remained stable (< 2.5% weight increase). Epigenome-wide significant methylation changes (p < 9 × 10-8) were observed at 52 loci in the whole cohort. When restricting the analysis to patients who underwent important early weight gain (≥ 5% weight increase), one locus (cg12209987) showed a significant increase in methylation levels (p = 3.8 × 10-8), which was also associated with increased weight gain in the whole cohort (p = 0.004). Epigenome-wide association analyses failed to identify a significant link between metabolic changes and methylation data. Nevertheless, among the strongest associations, a potential causal effect of the baseline methylation level of cg11622362 on glycemia was revealed by a two-sample Mendelian randomization analysis (n = 3841 for instrument-exposure association; n = 314,916 for instrument-outcome association). CONCLUSION These findings provide new insights into the mechanisms of psychotropic drug-induced weight gain, revealing important epigenetic alterations upon treatment, some of which may play a mediatory role.
Collapse
Affiliation(s)
- Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Chin Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
46
|
Tiedemann RL, Hrit J, Du Q, Wiseman AK, Eden HE, Dickson BM, Kong X, Chomiak AA, Vaughan RM, Hebert JM, David Y, Zhou W, Baylin SB, Jones PA, Clark SJ, Rothbart SB. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580169. [PMID: 38405904 PMCID: PMC10888769 DOI: 10.1101/2024.02.13.580169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
Collapse
|
47
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
48
|
Kurokawa S, Kobori T, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Identification of differentially methylated regions associated with both liver fibrosis and hepatocellular carcinoma. BMC Gastroenterol 2024; 24:57. [PMID: 38302914 PMCID: PMC10832174 DOI: 10.1186/s12876-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Liver fibrosis is a major risk factor for hepatocellular carcinoma (HCC). We have previously reported that differentially methylated regions (DMRs) are correlated with the fibrosis stages of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the methylation levels of those DMRs in liver fibrosis and subsequent HCC were examined. METHODS The methylation levels of DMRs were investigated using alcoholic cirrhosis and HCC (GSE60753). The data of hepatitis C virus-infected cirrhosis and HCC (GSE60753), and two datasets (GSE56588 and GSE89852) were used for replication analyses. The transcriptional analyses were performed using GSE114564, GSE94660, and GSE142530. RESULTS Hypomethylated DMR and increased transcriptional level of zinc finger and BTB domain containing 38 (ZBTB38) were observed in HCC. Hypermethylated DMRs, and increased transcriptional levels of forkhead box K1 (FOXK1) and zinc finger CCCH-type containing 3 (ZC3H3) were observed in HCC. The methylation levels of DMR of kazrin, periplakin interacting protein (KAZN) and its expression levels were gradually decreased as cirrhosis progressed to HCC. CONCLUSIONS Changes in the methylation and transcriptional levels of ZBTB38, ZC3H3, FOXK1, and KAZN are important for the development of fibrosis and HCC; and are therefore potential therapeutic targets and diagnostic tools for cirrhosis and HCC.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Takuro Kobori
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajyuku, Totsuka, Yokohama, 245-8675, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Palliative Medicine, International University of Health and Welfare Narita Hospital, 852, Hatakeda, Narita, 286-8520, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shin-yurigaoka General Hospital, 255 Furusawatsuko, Asao, Kawasaki, 2150-0026, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kikuko Hotta
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
49
|
Crombach A, Rukundo-Zeller AC, Vukojevic V, Nandi C, Bambonye M, de Quervain DJF, Papassotiropoulos A, Elbert T. Differential methylation of linoleic acid pathway genes is associated with PTSD symptoms - a longitudinal study with Burundian soldiers returning from a war zone. Transl Psychiatry 2024; 14:32. [PMID: 38238325 PMCID: PMC10796347 DOI: 10.1038/s41398-024-02757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Soldiers may be exposed to traumatic stress during combat deployment and thus are at risk for developing posttraumatic stress disorder (PTSD). Genetic and epigenetic evidence suggests that PTSD is linked to forming stress-related memories. In the current study, we investigated post-deployment associations of PTSD symptoms with differential DNA methylation in a sample of Burundian soldiers returning from the African Union Mission in Somalia's war zone. We used a matched longitudinal study design to explore epigenetic changes associated with PTSD symptoms in N = 191 participants. PTSD symptoms and saliva samples were collected at 1-3 (t1) and 9-14 months (t2) after the return of the soldiers to their home base. Individuals with either worsening or improving PTSD symptoms were matched for age, stressful, traumatic and self-perpetrated events prior to the post-assessment, traumatic and violent experiences between the post- and the follow-up assessment, and violence experienced during childhood. A mixed model analysis was conducted to identify top nominally significantly differentially methylated genes, which were then used to perform a gene enrichment analysis. The linoleic acid metabolism pathway was significantly associated with post-deployment PTSD symptoms, after accounting for multiple comparisons. Linoleic acid has been linked to memory and immune related processes in previous research. Our findings suggest that differential methylation of linoleic acid pathway genes is associated with PTSD and thus may merit closer inspection as a possible mediator of resilience.
Collapse
Affiliation(s)
- Anselm Crombach
- Department of Psychology, Clinical Child and Adolescent Psychology and Psychotherapy, Saarland University,, Saarbrücken, Germany.
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi.
| | - Anja C Rukundo-Zeller
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Vanja Vukojevic
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Corina Nandi
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| | - Manassé Bambonye
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi
| | - Dominique J-F de Quervain
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Andreas Papassotiropoulos
- Department of Biomedicine, Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Thomas Elbert
- Department of Psychology, Université Lumière de Bujumbura, Bujumbura, Burundi
- Department of Psychology, Clinical Psychology and Neuropsychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
50
|
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, Turcsányiová Z, Minárik G. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med (Lausanne) 2024; 11:1291429. [PMID: 38314203 PMCID: PMC10835804 DOI: 10.3389/fmed.2024.1291429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background The mode of delivery represents an epigenetic factor with potential to affect further development of the individual by multiple mechanisms. DNA methylation may be one of them, representing a major epigenetic mechanism involving direct chemical modification of the individual's DNA. This pilot study aims to examine whether a specific mode of delivery induces changes of DNA methylation by comparing the umbilical cord blood and peripheral blood of the newborns. Methods Blood samples from infants born by vaginal delivery and caesarean section were analysed to prepare the Methylseq library according to NEBNext enzymatic Methyl-seq Methylation Library Preparation Kit with further generation of target-enriched DNA libraries using the Twist Human Methylome Panel. DNA methylation status was determined using Illumina next-generation sequencing (NGS). Results We identified 168 differentially methylated regions in umbilical cord blood samples and 157 regions in peripheral blood samples. These were associated with 59 common biological, metabolic and signalling pathways for umbilical cord and peripheral blood samples. Conclusion Caesarean section is likely to represent an important epigenetic factor with the potential to induce changes in the genome that could play an important role in development of a broad spectrum of disorders. Our results could contribute to the elucidation of how epigenetic factors, such as a specific mode of delivery, could have adverse impact on health of an individual later in their life.
Collapse
Affiliation(s)
| | - Dominik Kodada
- Medirex Group Academy n.o., Nitra, Slovakia
- Department of Clinical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | | | | | - Erik Dosedla
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Zuzana Turcsányiová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | | |
Collapse
|