1
|
Huang X, Du Z. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. J Biomol Struct Dyn 2025; 43:1566-1578. [PMID: 38095458 PMCID: PMC11176267 DOI: 10.1080/07391102.2023.2292296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Pseudoknots assume various functions including stimulation of -1 programmed ribosomal frameshifting (PRF) or stop codon readthrough (SCR) in RNA viruses. These pseudoknots vary greatly in sizes and structural complexities. Recent biochemical and structural studies confirm the three-stemmed pseudoknots as the -1 PRF stimulators in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses. We reexamined previously reported -1 PRF or SCR stimulating pseudoknots, especially those containing a relatively long connecting loop between the two pseudoknot-forming stems, for their ability to form elaborated structures. Many potential elaborated pseudoknots were identified that contain one or more of the following extra structural elements: stem-loop, embedded pseudoknot, kissing hairpins, and additional loop-loop interactions. The elaborated pseudoknots are found in several different virus families that utilize either the -1 PRF or SCR recoding mechanisms. Model-building studies were performed to not only establish the structural feasibility of the elaborated pseudoknots but also reveal potential additional structural features that cannot be readily inferred from the predicted secondary structures. Some of the structures, such as embedded double pseudoknots and compact loop-loop pseudoknots mediated by the previously established common pseudoknot motif-1 (CPK-1), represent the first of its kind in the literatures. By advancing discovery of new functional RNA structures, we significantly expand the repertoire of known elaborated pseudoknots that could potentially play a role in -1 PRF and SCR regulation. These results contribute to a better understanding of RNA structures in general, facilitating the design of engineering RNA molecules with certain desired functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL 62901, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Carmody PJ, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. Proc Natl Acad Sci U S A 2024; 121:e2414768121. [PMID: 39388263 PMCID: PMC11494300 DOI: 10.1073/pnas.2414768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick J. Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Francis J. Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Austin Tedman
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN37240
| | - Eli F. McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Nathan B. Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Ben T. Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Andrew G. McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Charles P. Kuntz
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37240
| | - Wesley D. Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Jonathan P. Schlebach
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
3
|
Carmody P, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal Frameshifting Selectively Modulates the Assembly, Function, and Pharmacological Rescue of a Misfolded CFTR Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539166. [PMID: 39091758 PMCID: PMC11290997 DOI: 10.1101/2023.05.02.539166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of cystic fibrosis (CF). The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex (EMC), which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Francis J Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Austin Tedman
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA 37240
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Nathan B Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Ben T Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Andrew G McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Charles P Kuntz
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA 37240
| | - Wesley D Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Jonathan P Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| |
Collapse
|
4
|
Huang X, Du Z. Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs. PLoS One 2024; 19:e0307541. [PMID: 39038036 PMCID: PMC11262651 DOI: 10.1371/journal.pone.0307541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL, United States of America
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, United States of America
| |
Collapse
|
5
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Newman T, Chang HFK, Jabbari H. DinoKnot: Duplex Interaction of Nucleic Acids With PseudoKnots. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:348-359. [PMID: 38345958 DOI: 10.1109/tcbb.2024.3362308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Interaction of nucleic acid molecules is essential for their functional roles in the cell and their applications in biotechnology. While simple duplex interactions have been studied before, the problem of efficiently predicting the minimum free energy structure of more complex interactions with possibly pseudoknotted structures remains a challenge. In this work, we introduce a novel and efficient algorithm for prediction of Duplex Interaction of Nucleic acids with pseudoKnots, DinoKnot follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (both homo- and hetero-dimers). DinoKnot utilizes the structure of molecules before interaction as a guide to find their duplex structure allowing for possible base pair competitions. To showcase DinoKnots's capabilities we evaluated its predicted structures against (1) experimental results for SARS-CoV-2 genome and nine primer-probe sets, (2) a clinically verified example of a mutation affecting detection, and (3) a known nucleic acid interaction involving a pseudoknot. In addition, we compared our results against our closest competition, RNAcofold, further highlighting DinoKnot's strengths. We believe DinoKnot can be utilized for various applications including screening new variants for potential detection issues and supporting existing applications involving DNA/RNA interactions, adding structural considerations to the interaction to elicit functional information.
Collapse
|
8
|
Stefanov BA, Ajuh E, Allen S, Nowacki M. Eukaryotic release factor 1 from Euplotes promotes frameshifting at premature stop codons in human cells. iScience 2024; 27:109413. [PMID: 38510117 PMCID: PMC10952039 DOI: 10.1016/j.isci.2024.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Human physiology is highly susceptible to frameshift mutations within coding regions, and many hereditary diseases and cancers are caused by such indels. Presently, therapeutic options to counteract them are limited and, in the case of direct genome editing, risky. Here, we show that release factor 1 (eRF1) from Euplotes, an aquatic protist known for frequent +1 frameshifts in its coding regions, can enhance +1 ribosomal frameshifting at slippery heptameric sequences in human cells without an apparent requirement for an mRNA secondary structure. We further show an increase in frameshifting rate at the premature termination sequence found in the HEXA gene of Tay-Sachs disease patients, or a breast cancer cell line that harbors a tumor-driving frameshift mutation in GATA3. Although the overall increase in frameshifting would need further improvement for clinical applications, our results underscore the potential of exogenous factors, such as Eu eRF1, to increase frameshifting in human cells.
Collapse
Affiliation(s)
| | - Elvis Ajuh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Sarah Allen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Ren G, Gu X, Zhang L, Gong S, Song S, Chen S, Chen Z, Wang X, Li Z, Zhou Y, Li L, Yang J, Lai F, Dang Y. Ribosomal frameshifting at normal codon repeats recodes functional chimeric proteins in human. Nucleic Acids Res 2024; 52:2463-2479. [PMID: 38281188 PMCID: PMC10954444 DOI: 10.1093/nar/gkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Ribosomal frameshifting refers to the process that ribosomes slip into +1 or -1 reading frame, thus produce chimeric trans-frame proteins. In viruses and bacteria, programmed ribosomal frameshifting can produce essential trans-frame proteins for viral replication or regulation of other biological processes. In humans, however, functional trans-frame protein derived from ribosomal frameshifting is scarcely documented. Combining multiple assays, we show that short codon repeats could act as cis-acting elements that stimulate ribosomal frameshifting in humans, abbreviated as CRFS hereafter. Using proteomic analyses, we identified many putative CRFS events from 32 normal human tissues supported by trans-frame peptides positioned at codon repeats. Finally, we show a CRFS-derived trans-frame protein (HDAC1-FS) functions by antagonizing the activities of HDAC1, thus affecting cell migration and apoptosis. These data suggest a novel type of translational recoding associated with codon repeats, which may expand the coding capacity of mRNA and diversify the regulation in human.
Collapse
Affiliation(s)
- Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoqian Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shimin Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shuang Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhenjing Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Xiaoyan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Zhanbiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yingshui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Longxi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650021, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
10
|
Xiao Y, Wang R, Han X, Wang W, Liang A. The Deficiency of Hypusinated eIF5A Decreases the Putrescine/Spermidine Ratio and Inhibits +1 Programmed Ribosomal Frameshifting during the Translation of Ty1 Retrotransposon in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:1766. [PMID: 38339043 PMCID: PMC10855120 DOI: 10.3390/ijms25031766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Xiaxia Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (Y.X.); (R.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
11
|
Huang SH, Chen SC, Wu TY, Chen CY, Yu CH. Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system. iScience 2023; 26:108492. [PMID: 38125012 PMCID: PMC10730746 DOI: 10.1016/j.isci.2023.108492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Minus 1 programmed ribosomal frameshifting (-1 PRF) is a conserved translational regulation event essential for critical biological processes, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Efficient trans-modulation of the structured RNA element crucial to -1 PRF will endow the therapeutic application. Here, we demonstrate that CRISPR RNA can stimulate efficient -1 PRF. Assembled CRISPR-Cas12a, but not CRISPR-Cas9, complex further enhances -1 PRF efficiency through its higher capacity to stall translating ribosomes. We additionally perform CRISPR-Cas12a targeting to impair the SARS-CoV-2 frameshifting pseudoknot structure via a focused screening. We demonstrate that targeting CRISPR-Cas12a results in more than 70% suppression of -1 PRF in vitro and about 50% suppression in mammalian cells. Our results show the expanded function of the CRISPR-Cas12 system in modulating -1 PRF efficiency through stalling ribosomes and deforming frameshifting stimulatory signals, which could serve as a new strategy for future coronavirus pandemics.
Collapse
Affiliation(s)
- Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - Cheng-Yao Chen
- YD BioLabs, Inc., Hsinchu, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Kelly JA, Dinman JD. Shiftless Is a Novel Member of the Ribosome Stress Surveillance Machinery That Has Evolved to Play a Role in Innate Immunity and Cancer Surveillance. Viruses 2023; 15:2296. [PMID: 38140537 PMCID: PMC10747187 DOI: 10.3390/v15122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A longstanding paradox in molecular biology has centered on the question of how very long proteins are synthesized, despite numerous measurements indicating that ribosomes spontaneously shift reading frame at rates that should preclude their ability completely translate their mRNAs. Shiftless (SFL; C19orf66) was originally identified as an interferon responsive gene encoding an antiviral protein, indicating that it is part of the innate immune response. This activity is due to its ability to bind ribosomes that have been programmed by viral sequence elements to shift reading frame. Curiously, Shiftless is constitutively expressed at low levels in mammalian cells. This study examines the effects of altering Shiftless homeostasis, revealing how it may be used by higher eukaryotes to identify and remove spontaneously frameshifted ribosomes, resolving the apparent limitation on protein length. Data also indicate that Shiftless plays a novel role in the ribosome-associated quality control program. A model is proposed wherein SFL recognizes and arrests frameshifted ribosomes, and depending on SFL protein concentrations, either leads to removal of frameshifted ribosomes while leaving mRNAs intact, or to mRNA degradation. We propose that SFL be added to the growing pantheon of proteins involved in surveilling translational fidelity and controlling gene expression in higher eukaryotes.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
13
|
Mikkelsen AA, Gao F, Carino E, Bera S, Simon A. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. Nucleic Acids Res 2023; 51:10700-10718. [PMID: 37742076 PMCID: PMC10602861 DOI: 10.1093/nar/gkad744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.
Collapse
Affiliation(s)
- Anna A Mikkelsen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
15
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
16
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
17
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
18
|
Rodriguez W, Mehrmann T, Hatfield D, Muller M. Shiftless Restricts Viral Gene Expression and Influences RNA Granule Formation during Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2022; 96:e0146922. [PMID: 36326276 PMCID: PMC9682979 DOI: 10.1128/jvi.01469-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.
Collapse
Affiliation(s)
- William Rodriguez
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy Mehrmann
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Hatfield
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
19
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
20
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Loughran G, Fedorova AD, Khan YA, Atkins JF, Baranov PV. Lack of evidence for ribosomal frameshifting in ATP7B mRNA decoding. Mol Cell 2022; 82:3745-3749.e2. [PMID: 36115342 PMCID: PMC9548414 DOI: 10.1016/j.molcel.2022.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
The research article describing the discovery of ribosomal frameshifting in the bacterial CopA gene also reported the occurrence of frameshifting in the expression of the human ortholog ATP7B based on assays using dual luciferase reporters. An examination of the publicly available ribosome profiling data and the phylogenetic analysis of the proposed frameshifting site cast doubt on the validity of this claim and prompted us to reexamine the evidence. We observed similar apparent frameshifting efficiencies as the original authors using the same type of vector that synthesizes both luciferases as a single polyprotein. However, we noticed anomalously low absolute luciferase activities from the N-terminal reporter that suggests interference of reporter activity or levels by the ATP7B test cassette. When we tested the same proposed ATP7B frameshifting cassette in a more recently developed reporter system in which the reporters are released without being included in a polyprotein, no frameshifting was detected above background levels.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Science Foundation Center for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
23
|
Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, Barsur V, Ivanova MI, Koutmou KS, Barmada SJ, Todd PK. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins. Nucleic Acids Res 2022; 50:8674-8689. [PMID: 35904811 PMCID: PMC9410890 DOI: 10.1093/nar/gkac626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
CGG repeat expansions in the FMR1 5’UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 84305, USA
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiazheng Xing
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkatesha Barsur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Abstract
The constrained nature of viral genomes has allowed a translational sleight of hand known as −1 Programmed Ribosomal Frameshifting (−1 PRF) to flourish. Numerous studies have sought to tease apart the mechanisms and implications of −1PRF utilizing a few techniques. The dual-luciferase assay and ribosomal profiling have driven the PRF field to make great advances; however, the use of these assays means that the full impact of the genomic and cellular context on −1 PRF is often lost. Here, we discuss how the Minimal Frameshifting Element (MFE) and its constraints can hide contextual effects on −1 PRF. We review how sequence elements proximal to the traditionally defined MFE, such as the coronavirus attenuator sequence, can affect the observed rates of −1 PRF. Further, the MFE-based approach fully obscured −1 PRF in Barley yellow dwarf virus and would render the exploration of −1 PRF difficult in Porcine reproductive and respiratory syndrome virus, Encephalomyocarditis virus, Theiler’s murine encephalomyelitis virus, and Sindbis virus. Finally, we examine how the cellular context of tRNA abundance, miRNAs, and immune response elements can affect −1 PRF. The use of MFE was instrumental in establishing the basic foundations of PRF; however, it has become clear that the contextual impact on −1 PRF is no longer the exception so much as it is the rule and argues for new approaches to study −1PRF that embrace context. We therefore urge our field to expand the strategies and methods used to explore −1 PRF.
Collapse
|
25
|
Rodriguez W, Muller M. Shiftless, a Critical Piece of the Innate Immune Response to Viral Infection. Viruses 2022; 14:1338. [PMID: 35746809 PMCID: PMC9230503 DOI: 10.3390/v14061338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Since its initial characterization in 2016, the interferon stimulated gene Shiftless (SHFL) has proven to be a critical piece of the innate immune response to viral infection. SHFL expression stringently restricts the replication of multiple DNA, RNA, and retroviruses with an extraordinary diversity of mechanisms that differ from one virus to the next. These inhibitory strategies include the negative regulation of viral RNA stability, translation, and even the manipulation of RNA granule formation during viral infection. Even more surprisingly, SHFL is the first human protein found to directly inhibit the activity of the -1 programmed ribosomal frameshift, a translation recoding strategy utilized across nearly all domains of life and several human viruses. Recent literature has shown that SHFL expression also significantly impacts viral pathogenesis in mouse models, highlighting its in vivo efficacy. To help reconcile the many mechanisms by which SHFL restricts viral replication, we provide here a comprehensive review of this complex ISG, its influence over viral RNA fate, and the implications of its functions on the virus-host arms race for control of the cell.
Collapse
Affiliation(s)
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
26
|
Hepatitis B Virus Variants with Multiple Insertions and/or Deletions in the X Open Reading Frame 3′ End: Common Members of Viral Quasispecies in Chronic Hepatitis B Patients. Biomedicines 2022; 10:biomedicines10051194. [PMID: 35625929 PMCID: PMC9139148 DOI: 10.3390/biomedicines10051194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Deletions in the 3′ end region of the hepatitis B virus (HBV) X open reading frame (HBX) may affect the core promoter (Cp) and have been frequently associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the presence of variants with deletions and/or insertions (Indels) in this region in the quasispecies of 50 chronic hepatitis B (CHB) patients without HCC. We identified 103 different Indels in 47 (94%) patients, in a median of 3.4% of their reads (IQR, 1.3–8.4%), and 25% (IQR, 13.1–40.7%) of unique sequences identified in each quasispecies (haplotypes). Of those Indels, 101 (98.1%) caused 44 different altered stop codons, the most commonly observed were at positions 128, 129, 135, and 362 (putative position). Moreover, 39 (37.9%) Indels altered the TATA-like box (TA) sequences of Cp; the most commonly observed caused TA2 + TA3 fusion, creating a new putative canonical TATA box. Four (8%) patients developed negative clinical outcomes after a median follow-up of 9.4 (8.7–12) years. In conclusion, we observed variants with Indels in the HBX 3′ end in the vast majority of our CHB patients, some of them encoding alternative versions of HBx with potential functional roles, and/or alterations in the regulation of transcription.
Collapse
|
27
|
Khan YA, Loughran G, Steckelberg AL, Brown K, Kiniry SJ, Stewart H, Baranov PV, Kieft JS, Firth AE, Atkins JF. Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature 2022; 604:E16-E23. [PMID: 35444316 PMCID: PMC9248028 DOI: 10.1038/s41586-022-04627-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Yousuf A Khan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Genetics, Denver School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Denver School of Medicine, Aurora, CO, USA.
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Arévalo DM, Anokhina VS, Swart OLR, Miller BL. Expanding the known structure space for RNA binding: a test of 2,5-diketopiperazine. Org Biomol Chem 2022; 20:606-612. [PMID: 34927652 PMCID: PMC8900054 DOI: 10.1039/d1ob01976g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the importance of RNA as a therapeutic target has become increasingly recognized, the need for new chemotypes able to bind RNA has grown in significance. We hypothesized that diketopiperazines (DKPs), common substructures in natural products and protein-targeting therapeutic agents, could serve as effective scaffolds for targeting RNA. To confirm this hypothesis, we designed and synthesized two analogs, one incorporating a DKP and one not, of compounds previously demonstrated to bind an RNA critical to the life cycle of HIV-1 with high affinity and specificity. Prior to compound synthesis, calculations employing density functional methods and molecular mechanics conformational searches were used to confirm that the DKP could present functionality in a similar (albeit not identical) orientation to the non DKP-containing compound. We found that both the DKP-containing and parent compound had similar affinities to the target RNA as measured by surface plasmon resonance (SPR). Both compounds were found to have modest but equal anti-HIV activity. These results establish the feasibility of using DKPs to target RNA.
Collapse
Affiliation(s)
- Diego M. Arévalo
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
| | - Viktoriya S. Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Oliver L. R. Swart
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA,Department of Dermatology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
30
|
Zimmer MM, Kibe A, Rand U, Pekarek L, Ye L, Buck S, Smyth RP, Cicin-Sain L, Caliskan N. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nat Commun 2021; 12:7193. [PMID: 34893599 PMCID: PMC8664833 DOI: 10.1038/s41467-021-27431-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is a fundamental gene expression event in many viruses, including SARS-CoV-2. It allows production of essential viral, structural and replicative enzymes that are encoded in an alternative reading frame. Despite the importance of PRF for the viral life cycle, it is still largely unknown how and to what extent cellular factors alter mechanical properties of frameshift elements and thereby impact virulence. This prompted us to comprehensively dissect the interplay between the SARS-CoV-2 frameshift element and the host proteome. We reveal that the short isoform of the zinc-finger antiviral protein (ZAP-S) is a direct regulator of PRF in SARS-CoV-2 infected cells. ZAP-S overexpression strongly impairs frameshifting and inhibits viral replication. Using in vitro ensemble and single-molecule techniques, we further demonstrate that ZAP-S directly interacts with the SARS-CoV-2 RNA and interferes with the folding of the frameshift RNA element. Together, these data identify ZAP-S as a host-encoded inhibitor of SARS-CoV-2 frameshifting and expand our understanding of RNA-based gene regulation.
Collapse
Affiliation(s)
- Matthias M Zimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Ulfert Rand
- Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Lukas Pekarek
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Liqing Ye
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Stefan Buck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
- Medical Faculty, Julius-Maximilians University Würzburg, 97074, Würzburg, Germany
| | - Luka Cicin-Sain
- Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
- Medical Faculty, Julius-Maximilians University Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
31
|
Deogharia M, Gurha P. The "guiding" principles of noncoding RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1704. [PMID: 34856642 DOI: 10.1002/wrna.1704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
The human genome is pervasively transcribed and yet only a small fraction of these RNAs (less than 2%) are known to code for proteins. The vast majority of the RNAs are classified as noncoding RNAs (ncRNAs) and are further subgrouped as small (shorter than 200 bases) and long noncoding RNAs. The ncRNAs have been identified in all three domains of life and regulate diverse cellular processes through transcriptional and posttranscriptional gene regulation. Most of these RNAs work in conjunction with proteins forming a wide array of base pairing interactions. The determinants of these base pairing interactions are now becoming more evident and show striking similarities among the diverse group of ncRNAs. Here we present a mechanistic overview of pairing between RNA-RNA or RNA-DNA that dictates the function of ncRNAs; we provide examples to illustrate that ncRNAs work through shared evolutionary mechanisms that encompasses a guide-target interaction, involving not only classical Watson-Crick but also noncanonical Wobble and Hoogsteen base pairing. We also highlight the similarities in target selection, proofreading, and the ruler mechanism of ncRNA-protein complexes that confers target specificity and target site selection. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA-Based Catalysis > RNA-Mediated Cleavage RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Zhuo B, Ou X, Li J. Structure and Mechanical Stabilities of the Three-Way Junction Motifs in Prohead RNA. J Phys Chem B 2021; 125:12125-12134. [PMID: 34719230 DOI: 10.1021/acs.jpcb.1c04681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The core structure of phi29 prohead RNA (pRNA) is composed of three major helices organized into three-way junction pRNA (3WJ-pRNA) and has stout structural rigidity along the coaxial helices. Prohead RNAs of the other Bacillus subtilis bacteriophages such as GA1 and SF5 share similar secondary structure and function with phi29; whether these pRNAs have similar mechanical rigidity remains to be elucidated. In this study, we constructed the tertiary structures of GA1 and SF5 3WJ-pRNAs by comparative modeling. Both GA1 and SF5 3WJ-pRNAs adopt a similar structure, in which three helices are organized as the three-way junction and two of the three helices are stacked coaxially. Moreover, detailed structural features of GA1 and SF5 3WJ-pRNAs are also similar to those of phi29 3WJ-pRNA: all of the bases of the coaxial helices are paired, and all of the adenines in the junction region are paired, which eliminates the interference of A-minor tertiary interactions. Hence, the coaxial helices tightly join to each other, and the major groove between them is very narrow. Two Mg2+ ions can thus fit into this major groove and form double Mg clamps. A steered molecular dynamics simulation was used to study the mechanical properties of these 3WJ-pRNAs. Both GA1 and SF5 3WJ-pRNAs show strong resistance to applied force in the direction of their coaxial helices. Such mechanical stability can be attributed to the Mg clamps.
Collapse
Affiliation(s)
- Boyang Zhuo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
34
|
Bao C, Ermolenko DN. Ribosome as a Translocase and Helicase. BIOCHEMISTRY (MOSCOW) 2021; 86:992-1002. [PMID: 34488575 PMCID: PMC8294220 DOI: 10.1134/s0006297921080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During protein synthesis, ribosome moves along mRNA to decode one codon after the other. Ribosome translocation is induced by a universally conserved protein, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. EF-G-induced translocation results in unwinding of the intramolecular secondary structures of mRNA by three base pairs at a time that renders the translating ribosome a processive helicase. Professor Alexander Sergeevich Spirin has made numerous seminal contributions to understanding the molecular mechanism of translocation. Here, we review Spirin's insights into the ribosomal translocation and recent advances in the field that stemmed from Spirin's pioneering work. We also discuss key remaining challenges in studies of translocase and helicase activities of the ribosome.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
35
|
Napthine S, Hill CH, Nugent HCM, Brierley I. Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless. Viruses 2021; 13:v13071230. [PMID: 34202160 PMCID: PMC8310280 DOI: 10.3390/v13071230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.
Collapse
Affiliation(s)
| | | | | | - Ian Brierley
- Correspondence: ; Tel.: +44-12-2333-6914; Fax: +44-12-2333-6926
| |
Collapse
|
36
|
Chang KC, Wen JD. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput Struct Biotechnol J 2021; 19:3580-3588. [PMID: 34257837 PMCID: PMC8246090 DOI: 10.1016/j.csbj.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/01/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote -1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics.
Collapse
Affiliation(s)
- Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, CA 94158, United States
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
37
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
38
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
39
|
Transcript Regulation of the Recoded Archaeal α-l-Fucosidase In Vivo. Molecules 2021; 26:molecules26071861. [PMID: 33806142 PMCID: PMC8037382 DOI: 10.3390/molecules26071861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.
Collapse
|
40
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
41
|
Wang Y, Yang Y, Liu H, Kong L, Yu H, Liu S, Li Q. Phylogeny of Veneridae (Bivalvia) based on mitochondrial genomes. ZOOL SCR 2020. [DOI: 10.1111/zsc.12454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Wang
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Yi Yang
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Hongyue Liu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
42
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
43
|
Mikl M, Pilpel Y, Segal E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 2020; 11:3061. [PMID: 32546731 PMCID: PMC7297798 DOI: 10.1038/s41467-020-16961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
44
|
Bao C, Loerch S, Ling C, Korostelev AA, Grigorieff N, Ermolenko DN. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife 2020; 9:e55799. [PMID: 32427100 PMCID: PMC7282821 DOI: 10.7554/elife.55799] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single-molecule Förster resonance energy transfer (smFRET) experiments, we studied how frameshift-inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can modulate gene expression by sterically hindering tRNA binding and inhibiting translation elongation.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Sarah Loerch
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Clarence Ling
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| | - Andrei A Korostelev
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
45
|
The Complex Relationship between HTLV-1 and Nonsense-Mediated mRNA Decay (NMD). Pathogens 2020; 9:pathogens9040287. [PMID: 32326562 PMCID: PMC7238105 DOI: 10.3390/pathogens9040287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Before the establishment of an adaptive immune response, retroviruses can be targeted by several cellular host factors at different stages of the viral replication cycle. This intrinsic immunity relies on a large diversity of antiviral processes. In the case of HTLV-1 infection, these active innate host defense mechanisms are debated. Among these mechanisms, we focused on an RNA decay pathway called nonsense-mediated mRNA decay (NMD), which can target multiple viral RNAs, including HTLV-1 unspliced RNA, as has been recently demonstrated. NMD is a co-translational process that depends on the RNA helicase UPF1 and regulates the expression of multiple types of host mRNAs. RNA sensitivity to NMD depends on mRNA organization and the ribonucleoprotein (mRNP) composition. HTLV-1 has evolved several means to evade the NMD threat, leading to NMD inhibition. In the early steps of infection, NMD inhibition favours the production of HTLV-1 infectious particles, which may contribute to the survival of the fittest clones despite genome instability; however, its direct long-term impact remains to be investigated.
Collapse
|
46
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|
47
|
Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ, Senyushkina T, Belardinelli R, Maracci C, Wohlgemuth I, Samatova E, Peske F. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res 2020; 48:1056-1067. [PMID: 31511883 PMCID: PMC7026636 DOI: 10.1093/nar/gkz783] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, –1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
48
|
Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD, Miller TF, Mukhopadhyay S, Schlebach JP. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J Biol Chem 2020; 295:6798-6808. [PMID: 32169904 DOI: 10.1074/jbc.ra120.012706] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
Viruses maximize their genetic coding capacity through a variety of biochemical mechanisms, including programmed ribosomal frameshifting (PRF), which facilitates the production of multiple proteins from a single mRNA transcript. PRF is typically stimulated by structural elements within the mRNA that generate mechanical tension between the transcript and ribosome. However, in this work, we show that the forces generated by the cotranslational folding of the nascent polypeptide chain can also enhance PRF. Using an array of biochemical, cellular, and computational techniques, we first demonstrate that the Sindbis virus structural polyprotein forms two competing topological isomers during its biosynthesis at the ribosome-translocon complex. We then show that the formation of one of these topological isomers is linked to PRF. Coarse-grained molecular dynamics simulations reveal that the translocon-mediated membrane integration of a transmembrane domain upstream from the ribosomal slip site generates a force on the nascent polypeptide chain that scales with observed frameshifting. Together, our results indicate that cotranslational folding of this viral protein generates a tension that stimulates PRF. To our knowledge, this constitutes the first example in which the conformational state of the nascent polypeptide chain has been linked to PRF. These findings raise the possibility that, in addition to RNA-mediated translational recoding, a variety of cotranslational folding or binding events may also stimulate PRF.
Collapse
Affiliation(s)
| | - Matthew H Zimmer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Veronica Nash
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | | | |
Collapse
|
49
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 467] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
50
|
Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting. Cell 2019; 176:625-635.e14. [PMID: 30682371 DOI: 10.1016/j.cell.2018.12.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/21/2018] [Accepted: 12/19/2018] [Indexed: 01/26/2023]
Abstract
Programmed -1 ribosomal frameshifting (-1PRF) is a widely used translation recoding mechanism. HIV-1 expresses Gag-Pol protein from the Gag-coding mRNA through -1PRF, and the ratio of Gag to Gag-Pol is strictly maintained for efficient viral replication. Here, we report that the interferon-stimulated gene product C19orf66 (herein named Shiftless) is a host factor that inhibits the -1PRF of HIV-1. Shiftless (SFL) also inhibited the -1PRF of a variety of mRNAs from both viruses and cellular genes. SFL interacted with the -1PRF signal of target mRNA and translating ribosomes and caused premature translation termination at the frameshifting site. Downregulation of translation release factor eRF3 or eRF1 reduced SFL-mediated premature translation termination. We propose that SFL binding to target mRNA and the translating ribosome interferes with the frameshifting process. These findings identify SFL as a broad-spectrum inhibitor of -1PRF and help to further elucidate the mechanisms of -1PRF.
Collapse
|