1
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Koyyalagunta D, Ganesh K, Morris Q. Inferring cancer type-specific patterns of metastatic spread using Metient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602790. [PMID: 39282311 PMCID: PMC11398359 DOI: 10.1101/2024.07.09.602790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cancers differ in how they establish metastases. These differences can be studied by reconstructing the metastatic spread of a cancer from sequencing data of multiple tumors. Current methods to do so are limited by computational scalability and rely on technical assumptions that do not reflect current clinical knowledge. Metient overcomes these limitations using gradient-based, multi-objective optimization to generate multiple hypotheses of metastatic spread and rescores these hypotheses using independent data on genetic distance and organotropism. Unlike current methods, Metient can be used with both clinical sequencing data and barcode-based lineage tracing in preclinical models, enhancing its translatability across systems. In a reanalysis of metastasis in 169 patients and 490 tumors, Metient automatically identifies cancer type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma, and non-small cell lung cancer. Its reconstructions often align with expert analyses but frequently reveal more plausible migration histories, including those with more metastasis-to-metastasis seeding and higher polyclonal seeding, offering new avenues for targeting metastatic cells. Metient's findings challenge existing assumptions about metastatic spread, enhance our understanding of cancer type-specific metastasis, and offer insights that inform future clinical treatment strategies of metastasis.
Collapse
Affiliation(s)
- Divya Koyyalagunta
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quaid Morris
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
3
|
Tang C, Peng S, Chen Y, Cheng B, Li S, Zhou J, Wu Y, Li L, Zhong H, Guo Z, Lai Y, Huang H. SHCBP1 is a novel regulator of PLK1 phosphorylation and promotes prostate cancer bone metastasis. MedComm (Beijing) 2025; 6:e70082. [PMID: 39949984 PMCID: PMC11822462 DOI: 10.1002/mco2.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/19/2024] [Accepted: 12/09/2024] [Indexed: 02/16/2025] Open
Abstract
Prostate cancer is a common male genitourinary malignancy with bone metastasis posing challenges for prognosis and treatment. This study aimed to investigate the role of SHC protein SH2 structural domain binding protein 1 (SHCBP1) in prostate cancer bone metastasis. Whole transcriptome sequencing of prostate cancer samples was conducted to identify oncogene expression, specifically focusing on SHCBP1. In vivo and in vitro models were used to study SHCBP1's impact on bone metastasis. Through co-immunoprecipitation, mass spectrometry, and Western blot assays, the interaction between SHCBP1 and cell cycle-related proteins was elucidated, along with analysis of downstream protein partners. SHCBP1 was found to enhance prostate cancer cell development, metastasis, and mitosis, with the SHCBP1-polo-like kinase 1 (PLK1)-CDC25C axis playing a key role in promoting tumorigenesis. Therapeutic inhibition of SHCBP1 increased docetaxel sensitivity. Clinical data showed elevated SHCBP1 expression in advanced prostate cancer stages. These findings offer insights into potential therapeutic strategies for prostate cancer bone metastasis and highlight the significance of the SHCBP1-PLK1-CDC25C axis in docetaxel sensitivity.
Collapse
Affiliation(s)
- Chen Tang
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Department of UrologyShenzhen Nanshan People's HospitalShenzhenP.R. China
| | - Shengmeng Peng
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| | - Yongming Chen
- Beijing Hospital, National Center of Gerontology Institute of Geriatric MedicineChinese Academy of Medical Sciences & Peking Union MedicalCollegeBeijingP.R. China
| | - Bisheng Cheng
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Shurui Li
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Jie Zhou
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Yongxin Wu
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
| | - Lingfeng Li
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Haitao Zhong
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
| | - Zhenghui Guo
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| | - Yiming Lai
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
- Department of Urologythe Fifth Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangP.R. China
| | - Hai Huang
- Department of UrologySun Yat‐sen University, Sun Yat‐sen Memorial HospitalGuangzhouP.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouP.R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouP.R. China
| |
Collapse
|
4
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
5
|
Furlano K, Keshavarzian T, Biernath N, Fendler A, de Santis M, Weischenfeldt J, Lupien M. Epigenomics-guided precision oncology: Chromatin variants in prostate tumor evolution. Int J Cancer 2025. [PMID: 39853587 DOI: 10.1002/ijc.35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases. As cellular plasticity is largely driven by non-genetic events, complementary studies in cancer epigenomics are now being conducted to identify chromatin variants. These variants, defined as genomic loci in cancer cells that show changes in chromatin state due to the loss or gain of epigenomic marks, inclusive of histone post-translational modifications, DNA methylation and histone variants, are considered the fundamental units of epigenomic heterogeneity. In prostate cancer chromatin variants hold the promise of guiding the new era of precision oncology. In this review, we explore the role of epigenomic heterogeneity in prostate cancer, focusing on how chromatin variants contribute to tumor evolution and therapy resistance. We therefore discuss their impact on cellular plasticity and stochastic events, highlighting the value of single-cell sequencing and liquid biopsy epigenomic assays to uncover new therapeutic targets and biomarkers. Ultimately, this review aims to support a new era of precision oncology, utilizing insights from epigenomics to improve prostate cancer patient outcomes.
Collapse
Affiliation(s)
- Kira Furlano
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Nadine Biernath
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Maria de Santis
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Joachim Weischenfeldt
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Erickson A, Figiel S, Rajakumar T, Rao S, Yin W, Doultsinos D, Magnussen A, Singh R, Poulose N, Bryant RJ, Cussenot O, Hamdy FC, Woodcock D, Mills IG, Lamb AD. Clonal phylogenies inferred from bulk, single cell, and spatial transcriptomic analysis of epithelial cancers. PLoS One 2025; 20:e0316475. [PMID: 39752458 PMCID: PMC11698422 DOI: 10.1371/journal.pone.0316475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data. While these inferred SNV and CNV states can be used to resolve clonal phylogenies, however, it is still unknown how faithfully transcript-based tumour phylogenies reconstruct ground truth DNA-based tumour phylogenies. We sought to study the accuracy of inferred-transcript to recapitulate DNA-based tumour phylogenies. We first performed in-silico comparisons of inferred and directly resolved SNV and CNV status, from single cancer cells, from three different cell lines. We found that inferred SNV phylogenies accurately recapitulate DNA phylogenies (entanglement = 0.097). We observed similar results in iCNV and CNV based phylogenies (entanglement = 0.11). Analysis of published prostate cancer DNA phylogenies and inferred CNV, SNV and transcript based phylogenies demonstrated phylogenetic concordance. Finally, a comparison of pseudo-bulked spatial transcriptomic data to adjacent sections with WGS data also demonstrated recapitulation of ground truth (entanglement = 0.35). These results suggest that transcript-based inferred phylogenies recapitulate conventional genomic phylogenies. Further work will need to be done to increase accuracy, genomic, and spatial resolution.
Collapse
Affiliation(s)
- Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Sandy Figiel
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy Rajakumar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Srinivasa Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Wencheng Yin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Dimitrios Doultsinos
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Anette Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Reema Singh
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ninu Poulose
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard J. Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Olivier Cussenot
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Dan Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alastair D. Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
7
|
Goradia R, Abdollah F, Sood A. Re: Integrative Multi-Region Molecular Profiling of Primary Prostate Cancer in Men with Synchronous Lymph Node Metastasis. Eur Urol 2025; 87:90-91. [PMID: 39112304 DOI: 10.1016/j.eururo.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 12/16/2024]
Affiliation(s)
- Rajvi Goradia
- Department of Urology, James Cancer Hospital and Solove Research Institute, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Firas Abdollah
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Akshay Sood
- Department of Urology, James Cancer Hospital and Solove Research Institute, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Zhu W, Wu J, Lai W, Li F, Zeng H, Li X, Su H, Liu B, Zhao X, Zou C, Xiao H, Luo Y. Harnessing machine learning and multi-omics to explore tumor evolutionary characteristics and the role of AMOTL1 in prostate cancer. Int J Biol Macromol 2025; 286:138402. [PMID: 39643184 DOI: 10.1016/j.ijbiomac.2024.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Although recent advancements have shed light on the crucial role of coordinated evolution among cell subpopulations in influencing disease progression, the full potential of these insights has not yet been fully harnessed in the clinical application of personalized precision medicine for prostate cancer (PCa). In this study, we utilized single-cell sequencing to identify the evolutionary characteristics of tumoral cell states and employed comprehensive bulk RNA sequencing to evaluate their potential as prognostic indicators and therapeutic targets. Leveraging advancements in artificial intelligence, we integrated machine learning with multi-omics to develop and validate the tumor evolutionary characteristic predictive indicator (TECPI). TECPI not only demonstrated superior prognostic performance compared to traditional clinical predictors and 81 previously published models but also improved patient outcomes by accurately identifying individuals who would benefit from immunotherapy and targeted therapies. Furthermore, we experimentally validated the critical role of AMOTL1 in PCa pharmacodynamics through its interaction with AR, pivotal for modulating the sensitivity to AR antagonist. Additionally, we demonstrated the generalizability and applicability of TECPI across pan-cancers. In summary, this study emphasizes the importance of understanding cellular diversity and dynamics within the tumor microenvironment to predict PCa progression and to guide targeted therapy effectively.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Wenjie Lai
- Department of Urology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510317, Guangdong, China
| | - Fengao Li
- Department of Urology, Shaoxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Shaoxing 312000, Zhejiang, China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoyang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Huabin Su
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Bohao Liu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiao Zhao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Chen Zou
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
9
|
Yanai Y, Mikami S, Yasumizu Y, Takeda T, Matsumoto K, Kitano S, Oya M, Kosaka T. Loss of phosphatase and tensin homolog expression castration-sensitive prostate cancer predicts outcomes in men after prostatectomy. Int J Urol 2025; 32:39-44. [PMID: 39352063 PMCID: PMC11730643 DOI: 10.1111/iju.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES This study aimed to investigate the potential for using the phosphatase and tensin homolog (PTEN) gene as a prognostic marker in post-prostatectomy patients with castration-sensitive prostate cancer (PCa). METHODS A total of 180 patients with castration-sensitive PCa who underwent radical prostatectomy at our institution were included in this study. PTEN expression was evaluated using immunohistochemistry, and patients were classified into two groups based on the staining intensity: PTEN-Normal and PTEN-Loss. The association between PTEN expression and biochemical recurrence was analyzed using the Cox proportional hazards model. RESULTS Patients in the PTEN-Loss group had a higher risk of biochemical recurrence (hazard ratio, 4.642; 95% confidence interval, 2.137-10.083; p < 0.001) and a lower recurrence-free rate compared to the PTEN-Normal group (35% vs. 75%). In addition to clinicopathological factors, such as the serum prostate-specific antigen level, Gleason score, and T stage, evaluation of PTEN expression improved the prediction of biochemical recurrence after prostatectomy (area under the curve, 0.577 vs. 0.688). CONCLUSIONS Low PTEN expression is a significant predictor of biochemical recurrence in patients with castration-sensitive PCa who have already undergone prostatectomy.
Collapse
Affiliation(s)
- Yoshinori Yanai
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Shuji Mikami
- Department of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Yota Yasumizu
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Toshikazu Takeda
- Department of UrologyKeio University School of MedicineTokyoJapan
| | | | - Shigehisa Kitano
- Department of Advanced Medical Development, Division of Clinical ChemotherapyThe Cancer Institute Hospital of Japanese Foundation for Cancer Research, The Cancer Chemotherapy Center of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
10
|
Butler G, Amend SR, Venditti C, Pienta KJ. Punctuational evolution is pervasive in distal site metastatic colonization. Proc Biol Sci 2025; 292:20242850. [PMID: 39837515 PMCID: PMC11750355 DOI: 10.1098/rspb.2024.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025] Open
Abstract
The evolution of metastasis, the spread of cancer to distal sites within the body, represents a lethal stage of cancer progression. Yet, the evolutionary dynamics that shape the emergence of metastatic disease remain unresolved. Here, using single-cell lineage tracing data in combination with phylogenetic statistical methods, we show that the evolutionary trajectory of metastatic disease is littered with bursts of rapid molecular change as new cellular subpopulations appear, a pattern known as punctuational evolution. Next, by measuring punctuational evolution across the metastatic cascade, we show that punctuational effects are concentrated within the formation of secondary tumours at distal metastatic sites, suggesting that qualitatively different modes of evolution may drive primary and metastatic tumour progression. Taken as a whole, our findings provide empirical evidence for distinct patterns of molecular evolution at early and late stages of metastatic disease and our approach provides a framework to study the evolution of metastasis at a more nuanced level than has been previously possible.
Collapse
Affiliation(s)
- George Butler
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287, USA
| | - Chris Venditti
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, UK
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287, USA
| |
Collapse
|
11
|
Grün A, Cumaoglu S, Kluge A, Schlomm T, Böhmer D, Miller K, Heidenreich H, Zips D, Kalinauskaite G. Early and repetitive novel-tracer PET-guided stereotactic body radiotherapy for nodal oligorecurrent prostate cancer after definitive first-line therapy. Strahlenther Onkol 2025; 201:36-46. [PMID: 39331064 PMCID: PMC11739206 DOI: 10.1007/s00066-024-02304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) positron-emission tomography (PET) imaging can detect prostate cancer (PCa) nodal oligorecurrences (NOR) at very low prostate-specific antigen (PSA) levels. Prospective studies on oligorecurrent (OR) PCa have been hampered by either dated diagnostics or inhomogeneous cohorts and/or treatment approaches. We hypothesized that early and-if necessary and feasible-repetitive PSMA-PET-based metastasis-directed therapy (MDT) using stereotactic body radiotherapy (SBRT) would improve freedom from palliative (systemic) therapy at low toxicity. METHODS This study is a retrospective analysis of patients treated for OR PCa after definitive first-line therapy using PSMA-PET/CT-based SBRT. Endpoints were biochemical progression-free survival (bPFS), SBRT-free survival (SBRT-FS), androgen deprivation therapy (ADT)-free survival (ADT-FS), and toxicity. RESULTS A total of 67 patients and 248 metastases (211 nodal) were treated. Patients on concurrent ADT were excluded. Median PSA at inclusion was 2.175 ng/ml. bPFS, SBRT-FS, and ADT-FS for multiple-course SBRT were 9.5, 19.5, and 35.0 months, respectively; 32 patients had ≥ 1 course of SBRT. Median PSA nadir was 0.585 ng/ml. There was no ≥ grade 2 toxicity. CONCLUSION Modern-tracer PET/CT-based early and repetitive focal SBRT yields promising results with regard to bPFS, SBRT-FS, and ADT-FS with low toxicity. The ability of this approach to postpone initiation of palliative treatment with low toxicity should be re-evaluated prospectively.
Collapse
Affiliation(s)
- Arne Grün
- Department for Radiation Oncology, Campus Virchow-Klinikum, Charité-Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Selin Cumaoglu
- Department for Radiation Oncology, Campus Virchow-Klinikum, Charité-Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne Kluge
- MVZ Leipzig Strahlentherapie, Landsberger Straße 81, 04157, Leipzig, Germany
| | - Thorsten Schlomm
- Department for Urology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dirk Böhmer
- Department for Radiation Oncology, Campus Virchow-Klinikum, Charité-Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kurt Miller
- Department for Urology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Heidenreich
- Department for Urology, Bundeswehr Krankenhaus Berlin, Scharnhorststraße 13, 10115, Berlin, Germany
| | - Daniel Zips
- Department for Radiation Oncology, Campus Virchow-Klinikum, Charité-Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Goda Kalinauskaite
- Department for Radiation Oncology, Campus Virchow-Klinikum, Charité-Universitaetsmedizin Berlin, Corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
12
|
Malhotra K, Malik A, Almalki WH, Sahebkar A, Kesharwani P. Reactive Oxygen Species and its Manipulation Strategies in Cancer Treatment. Curr Med Chem 2025; 32:55-73. [PMID: 37303173 DOI: 10.2174/0929867330666230609110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Cancer is one of the serious diseases of modern times, occurring in all parts of the world and shows a wide range of effects on the human body. Reactive Oxygen Species (ROS) such as oxide and superoxide ions have both advantages and disadvantages during the progression of cancer, dependent on their concentration. It is a necessary part of the normal cellular mechanisms. Changes in its normal level can cause oncogenesis and other relatable problems. Metastasis can also be controlled by ROS levels in the tumor cells, which can be prevented by the use of antioxidants. However, ROS is also used for the initiation of apoptosis in cells by different mediators. There exists a cycle between the production of oxygen reactive species, their effect on the genes, role of mitochondria and the progression of tumors. ROS levels cause DNA damage by the oxidation process, gene damage, altered expression of the genes and signalling mechanisms. They finally lead to mitochondrial disability and mutations, resulting in cancer. This review summarizes the important role and activity of ROS in developing different types of cancers like cervical, gastric, bladder, liver, colorectal and ovarian cancers.
Collapse
Affiliation(s)
- Kabil Malhotra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arzoo Malik
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
13
|
Lu B. Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data. CANCER PATHOGENESIS AND THERAPY 2025; 3:16-29. [PMID: 39872371 PMCID: PMC11764021 DOI: 10.1016/j.cpt.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 01/30/2025]
Abstract
Cancer is an evolutionary process involving the accumulation of diverse somatic mutations and clonal evolution over time. Phylogenetic inference from samples obtained from an individual patient offers a powerful approach to unraveling the intricate evolutionary history of cancer and provides insights that can inform cancer treatment. Somatic copy number alterations (CNAs) are important in cancer evolution and are often used as markers, alone or with other somatic mutations, for phylogenetic inferences, particularly in low-coverage DNA sequencing data. Many phylogenetic inference methods using CNAs detected from bulk or single-cell DNA sequencing data have been developed over the years. However, there have been no systematic reviews on these methods. To summarize the state-of-the-art of the field and inform future development, this review presents a comprehensive survey on the major challenges in inference, different types of methods, and applications of these methods. The challenges are discussed from the aspects of input data, models of evolution, and inference algorithms. The different methods are grouped according to the markers used for inference and the types of the reconstructed trees. The applications include using phylogenetic inference to understand intra-tumor heterogeneity, metastasis, treatment resistance, and early cancer development. This review also sheds light on future directions of cancer phylogenetic inference using CNAs, including the improvement of scalability, the utilization of new types of data, and the development of more realistic models of evolution.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
14
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
15
|
Quan Y, Wang M, Zhang H, Lu D, Ping H. Spatial transcriptomics identifies RBM39 as a gene a ssociated with Gleason score progression in prostate cancer. iScience 2024; 27:111351. [PMID: 39650727 PMCID: PMC11625293 DOI: 10.1016/j.isci.2024.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Prostate cancer (PCa) exhibits significant intratumor heterogeneity, frequently manifesting as a multifocal disease. This study utilized Visium spatial transcriptomics (ST) to explore transcriptome patterns in PCa regions with varying Gleason scores (GSs). Principal component analysis (PCA) and Louvain clustering analysis revealed transcriptomic classifications aligned with the histology of different GSs. The increasing degree of tumor malignancy during GS progression was validated using inferred copy number variation (inferCNV) analysis. Diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA) analyses predicted the developmental trajectories among distinct clusters. Differentially expressed gene (DEG) analysis through pairwise comparisons of various GSs identified genes associated with GS progression. Validation with The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset confirmed the differential expression of RBM39, a finding further supported by cytological and histological experiments. These findings enhance our understanding of GS evolution through spatial transcriptomics and highlight RBM39 as a gene associated with GS progression.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
16
|
Persson AE, Hallqvist A, Bjørn Larsen L, Rasmussen M, Scherman J, Nilsson P, Tønnesen H, Gunnlaugsson A. Stereotactic body radiotherapy as metastasis-directed therapy in oligometastatic prostate cancer: a systematic review and meta-analysis of randomized controlled trials. Radiat Oncol 2024; 19:173. [PMID: 39690404 DOI: 10.1186/s13014-024-02559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The use of stereotactic body radiotherapy (SBRT) to definitively treat oligometastases in prostate cancer has drawn large clinical and research interests within radiation oncology. However, the evidence is considered in its early stages and there is currently no systematic review of randomized controlled trials (RCTs) in this field. We aimed to evaluate the efficacy and safety of SBRT as metastasis-directed therapy (MDT) in oligometastatic prostate cancer (OMPC) compared to no MDT reported in RCTs. METHODS MEDLINE, Embase, CINAHL Complete, and Cochrane Library were searched on October 28, 2023. Eligible studies were RCTs comparing SBRT as MDT with no MDT in extracranial OMPC, without restrictions on follow-up time, publication status, language, or year. Participant subsets fulfilling the eligibility criteria were included. Critical outcomes were overall survival and grade ≥ 3 toxicity, and additional important outcomes were progression-free survival (PFS), local control, grade 5 toxicity, health-related quality of life, and systemic therapy-free survival. Meta-analyses were planned. Risk of bias was assessed using the Cochrane risk-of-bias tool version 2, and the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation. RESULTS In total, 1825 unique study reports were identified and seven phase II RCTs with 559 eligible participants were included. Four trials included multiple types of primary cancer. Outcome definitions were heterogeneous except for overall survival and toxicity. For overall survival, only one study reported events in both arms. Meta-analysis of the grade ≥ 3 toxicity results from two trials showed no difference (pooled risk ratio 0.78, 95% confidence interval 0.37-1.65, p = 0.52). Four trials reported significantly longer PFS, with a pooled hazard ratio of 0.31 (95% confidence interval 0.21-0.45, p < 0.00001). Risk of bias was of some concerns or high. Quality of evidence was low or moderate. CONCLUSIONS Phase II trials have shown promising improvements in PFS for several OMPC states without excess toxicity. Overall survival comparisons are immature. In future confirmatory phase III trials, adequately large sample sizes, blinding of outcome assessors, and/or increased adherence to assigned intervention could improve the quality of evidence. PROSPERO registration number: CRD42021230131.
Collapse
Affiliation(s)
- Astrid E Persson
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden.
| | - Andreas Hallqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Bjørn Larsen
- Department of Oncology, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark
| | - Mette Rasmussen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Clinical Health Promotion Centre, Department of Health Sciences, Lund University, Lund, Sweden
| | - Jonas Scherman
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Per Nilsson
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Hanne Tønnesen
- Clinical Health Promotion Centre, Department of Health Sciences, Lund University, Lund, Sweden
- Clinical Health Promotion Centre, WHO Collaborating Centre, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Frederiksberg, Denmark
| | - Adalsteinn Gunnlaugsson
- Division of Oncology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Pan J, Wu J, Wang B, Zhu B, Liu X, Gan H, Wei Y, Jin S, Hu X, Wang Q, Song S, Liu C, Ye D, Zhu Y. Interlesional response heterogeneity is associated with the prognosis of abiraterone treatment in metastatic castration-resistant prostate cancer. MED 2024; 5:1475-1484.e3. [PMID: 39151419 DOI: 10.1016/j.medj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Interlesional response heterogeneity (ILRH) poses challenges to the treatment of metastatic castration-resistant prostate cancer (mCRPC). Currently, there are no prospective clinical trials exploring the prognostic significance of ILRH on paired positron emission tomography/computed tomography (PET/CT) in the context of abiraterone therapy. METHODS In this prospective study, we enrolled patients with mCRPC treated with abiraterone (ClinicalTrials.gov: NCT05188911; ChiCTR.org.cn: ChiCTR2000034708). 68Ga-prostate-specific membrane antigen (PSMA)+18F-fluorodeoxyglucose (FDG) PET/CT and circulating tumor DNA (ctDNA) monitoring were performed at baseline and week 13. Patients were grouped by their early ILRH measurement. The primary endpoint was to evaluate the predictive role of ILRH for conventional progression-free survival (PFS) through the concordance index (C-index) assessment. Conventional PFS was defined as the time from medication to conventional radiographic progression, clinical progression, or death. FINDINGS Ultimately, 33 patients were included with a median follow-up of 28.7 months. Baseline+week 13 PSMA PET/CT revealed that 33.3% of patients showed ILRH. Those patients with hetero-responding disease had significantly different PFS compared to the responding and non-responding groups (hazard ratio: responding group = reference, hetero-responding group = 4.0, non-responding group = 5.8; p < 0.0001). The C-index of ILRH on paired PSMA PET/CT (0.742 vs. 0.660) and FDG PET/CT (0.736 vs. 0.668) for conventional PFS was higher than that of PSA response. In an exploratory analysis, PSMA-/FDG+ lesions at week 13 were identified as a strong surrogate for poor conventional PFS (p = 0.039). CONCLUSIONS ILRH on both baseline+week 13 PSMA and FDG PET/CT strongly associated with conventional PFS. FUNDING This study was funded by the Ministry of Science and Technology of China and Shanghai.
Collapse
Affiliation(s)
- Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Beihe Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qifeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Chang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Genitourinary Cancer Institute, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Suzuki H, Akamatsu S, Shiota M, Kakiuchi H, Kimura T. Triplet therapy for metastatic castration-sensitive prostate cancer: Rationale and clinical evidence. Int J Urol 2024. [PMID: 39651632 DOI: 10.1111/iju.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Prostate cancer (PC) growth is hormone-dependent and it frequently develops distant metastases as disease progresses. Patients with metastatic castration-sensitive prostate cancer (mCSPC) initially respond to androgen deprivation therapy (ADT) but eventually become refractory and develop metastatic castration-resistant prostate cancer (mCRPC). Castration-resistance is associated with high lethality and metastases confer poor prognosis, therefore unmet needs in treatment for mCSPC remain high. So far, improvements in survival in mCSPC have been achieved by doublet combination therapy such as docetaxel or an androgen-receptor signaling inhibitor (ARSI) in addition to ADT. Further, recent phase 3 trials have shown that triplet therapy-a combination of ARSI, docetaxel, and ADT improves prognosis compared with docetaxel plus ADT in mCSPC. PC tumors manifest intra- and inter-tumoral heterogeneity at both the genetic and phenotypic level. As heterogeneity increases during sequential treatment and disease progression, it is reasonable to initiate combination therapy using drugs with different mechanisms of action early in the course of disease, such as mCSPC. Previous research about tumor heterogeneity and drug resistant mechanism support this rationale, as well as preclinical studies and real-world data provide the scientific evidence of benefit by combining ARSI and docetaxel. Here, we review the rationale and clinical evidence for triplet therapy in patients with mCSPC.
Collapse
Affiliation(s)
- Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | | | - Masaki Shiota
- Department of Urology, Kyushu University, Fukuoka, Japan
| | - Haruka Kakiuchi
- Oncology Medical Affairs, Medical Affairs and Pharmacovigilance, Bayer Yakuhin Ltd., Osaka, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Dunaj P, Żukowska E, Czarnecka AM, Krotewicz M, Borkowska A, Chmiel P, Świtaj T, Rutkowski P. Lymphadenectomy in the treatment of sarcomas - indications and technique. Oncol Rev 2024; 18:1413734. [PMID: 39737200 PMCID: PMC11683405 DOI: 10.3389/or.2024.1413734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Sarcomas are a rare type of malignancy with limited treatment options so far. This analysis aimed to describe the impact of lymphadenectomy on treating sarcoma patients. Sarcomas characterized by lymphatic spread are rare. For this reason, lymphadenectomy is not a procedure that is performed frequently. However, there are histological subtypes that spread more frequently through lymphatic vessels, such as rhabdomyosarcoma (RMS), epithelioid sarcoma (ES), clear cell sarcoma (CCS), and angiosarcoma. On the other hand, synovial sarcoma (SS) is not characterized by an increased tendency to lymphogenous metastases. In our study, we focus on these subtypes of sarcomas. The relationship between lymphadenectomy results and the subsequent prognosis of the patients was investigated. Metastases in the lymph nodes are diagnosed synchronously with distant metastases or when the primary tumor is detected. At the same time, despite lymphadenectomy, sarcoma patients developed further distant metastases. Currently, lymphadenectomy is not a routinely recommended method of treatment for patients with sarcomas. Most often, its potential use is indicated in the case of epithelioid sarcoma, clear cell sarcoma, and rhabdomyosarcoma after a previous positive sentinel lymph node biopsy (SLNB) result. Multicenter randomized prospective clinical trials on the role of lymphadenectomy in the treatment of sarcomas are needed.
Collapse
Affiliation(s)
- Piotr Dunaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Żukowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Krotewicz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Chmiel
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Świtaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
20
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Quan Y, Zhang H, Wang M, Ping H. UQCRB and LBH are correlated with Gleason score progression in prostate cancer: Spatial transcriptomics and experimental validation. Comput Struct Biotechnol J 2024; 23:3315-3326. [PMID: 39310280 PMCID: PMC11414276 DOI: 10.1016/j.csbj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| |
Collapse
|
22
|
Schmidt H, Raphael BJ. A regression based approach to phylogenetic reconstruction from multi-sample bulk DNA sequencing of tumors. PLoS Comput Biol 2024; 20:e1012631. [PMID: 39630782 DOI: 10.1371/journal.pcbi.1012631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
MOTIVATION DNA sequencing of multiple bulk samples from a tumor provides the opportunity to investigate tumor heterogeneity and reconstruct a phylogeny of a patient's cancer. However, since bulk DNA sequencing of tumor tissue measures thousands of cells from a heterogeneous mixture of distinct sub-populations, accurate reconstruction of the tumor phylogeny requires simultaneous deconvolution of cancer clones and inference of ancestral relationships, leading to a challenging computational problem. Many existing methods for phylogenetic reconstruction from bulk sequencing data do not scale to large datasets, such as recent datasets containing upwards of ninety samples with dozens of distinct sub-populations. RESULTS We develop an approach to reconstruct phylogenetic trees from multi-sample bulk DNA sequencing data by separating the reconstruction problem into two parts: a structured regression problem for a fixed tree [Formula: see text], and an optimization over tree space. We derive an algorithm for the regression sub-problem by exploiting the unique, combinatorial structure of the matrices appearing within the problem. This algorithm has both asymptotic and empirical improvements over linear programming (LP) approaches to the problem. Using our algorithm for this regression sub-problem, we develop fastBE, a simple method for phylogenetic inference from multi-sample bulk DNA sequencing data. We demonstrate on simulated data with hundreds of samples and upwards of a thousand distinct sub-populations that fastBE outperforms existing approaches in terms of reconstruction accuracy, sample efficiency, and runtime. Owing to its scalability, fastBE enables both phylogenetic reconstruction directly from indvidual mutations without requiring the clustering of mutations into clones, as well as a new phylogeny constrained mutation clustering algorithm. On real data from fourteen B-progenitor acute lymphoblastic leukemia patients, fastBE infers mutation phylogenies with fewer violations of a widely used evolutionary constraint and better agreement to the observed mutational frequencies. Using our phylogeny constrained mutation clustering algorithm, we also find mutation clusters with lower distortion compared to state-of-the-art approaches. Finally, we show that on two patient-derived colorectal cancer models, fastBE infers mutation phylogenies with less violation of a widely used evolutionary constraint compared to existing methods.
Collapse
Affiliation(s)
- Henri Schmidt
- Department of Computer Science, Princeton University, New Jersey, United States of America
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, New Jersey, United States of America
| |
Collapse
|
23
|
Yang YJ, Lee YS, Tae JH, Choi J, Kim JH, Yang EJ, Nguyen TT, Choi SY. Salvage lymphadenectomy or radiation therapy in prostate cancer patients with biochemical recurrence and PET positive lymph nodes after radical prostatectomy: A systematic review and pooled analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108704. [PMID: 39326304 DOI: 10.1016/j.ejso.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE To analyze the oncologic outcomes of biochemical recurrence (BCR) patients who received salvage treatment of lymph node dissection (LND) or radiation therapy (RT) for positron emission tomography (PET)-positive lymph node recurrences following radical prostatectomy (RP). METHODS Research using the MEDLINE, Cochrane, and Web of Science databases was conducted until June 2023. Inclusion criteria were BCR patients that received salvage LND or RT for PET-positive lymph node recurrence following primary RP for prostate cancer. Studies with a follow-up period of less than 12 months were excluded. RESULTS This study included 2476 patients (995 LND, 1481 RT) from 19 publications. The pooled incidences were 51.1 % and 74.3 % in PSA response, 69.8 % and 26.9 % in PSA progression, 41.5 % and 26.9 % in image progression, 41.5 % and 32.0 % in systemic progression, 0.9 % and 0.5 % in overall mortality, and 6.5 % and 1.3 % in cancer-specific mortality in LND and RT, respectively. Limitations include high heterogeneity. CONCLUSION Although heterogeneity is high across all studies, the pooled rates of PSA, image, and systemic progressions are higher in LND than in RT concerning BCR patients with PET-positive lymph nodes. For future trial designs in BCR, assessing the optimal timing of PSMA PET scans, concurrent systemic therapy, and salvage therapy type is imperative.
Collapse
Affiliation(s)
- Yun-Jung Yang
- Institute of Biomedical Science, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea.
| | - Yong Seong Lee
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Jong Hyun Tae
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| | - Joongwon Choi
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Jung Hoon Kim
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Tuan Thanh Nguyen
- Department of Urology, Cho Ray Hospital, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam.
| | - Se Young Choi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Udovicich C, Loblaw A. Prostate radiotherapy in the era of intensified systemic treatment of metastatic prostate cancer. Lancet 2024; 404:2023-2026. [PMID: 39580189 DOI: 10.1016/s0140-6736(24)01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Cristian Udovicich
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Loblaw
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Kiviaho A, Eerola SK, Kallio HML, Andersen MK, Hoikka M, Tiihonen AM, Salonen I, Spotbeen X, Giesen A, Parker CTA, Taavitsainen S, Hantula O, Marttinen M, Hermelo I, Ismail M, Midtbust E, Wess M, Devlies W, Sharma A, Krossa S, Häkkinen T, Afyounian E, Vandereyken K, Kint S, Kesseli J, Tolonen T, Tammela TLJ, Viset T, Størkersen Ø, Giskeødegård GF, Rye MB, Murtola T, Erickson A, Latonen L, Bova GS, Mills IG, Joniau S, Swinnen JV, Voet T, Mirtti T, Attard G, Claessens F, Visakorpi T, Rautajoki KJ, Tessem MB, Urbanucci A, Nykter M. Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer. Nat Commun 2024; 15:9949. [PMID: 39550375 PMCID: PMC11569175 DOI: 10.1038/s41467-024-54364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Prostate cancer treatment resistance is a significant challenge facing the field. Genomic and transcriptomic profiling have partially elucidated the mechanisms through which cancer cells escape treatment, but their relation toward the tumor microenvironment (TME) remains elusive. Here we present a comprehensive transcriptomic landscape of the prostate TME at multiple points in the standard treatment timeline employing single-cell RNA-sequencing and spatial transcriptomics data from 120 patients. We identify club-like cells as a key epithelial cell subtype that acts as an interface between the prostate and the immune system. Tissue areas enriched with club-like cells have depleted androgen signaling and upregulated expression of luminal progenitor cell markers. Club-like cells display a senescence-associated secretory phenotype and their presence is linked to increased polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) activity. Our results indicate that club-like cells are associated with myeloid inflammation previously linked to androgen deprivation therapy resistance, providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Antti Kiviaho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Sini K Eerola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Heini M L Kallio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Maria K Andersen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Miina Hoikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Aliisa M Tiihonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Iida Salonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Alexander Giesen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Sinja Taavitsainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Olli Hantula
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Mikael Marttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Ismaïl Hermelo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | | | - Elise Midtbust
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Maximilian Wess
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Molecular Endocrinology Laboratory, Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhibhav Sharma
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Central staff, St. Olavs Hospital HF, 7006, Trondheim, Norway
| | - Tomi Häkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Ebrahim Afyounian
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sam Kint
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Juha Kesseli
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Teemu Tolonen
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- Department of Pathology, Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Trond Viset
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Guro F Giskeødegård
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten B Rye
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Teemu Murtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Andrew Erickson
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- ICAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - G Steven Bova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- ICAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Pathology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Gerhardt Attard
- University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alfonso Urbanucci
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland.
| |
Collapse
|
27
|
Beyatlı M, Duvarci M, Uzel T, Aybal HÇ, Hamidi N, Ceylan O, Çağlar E, Basar H. Comparison of Complications and Mid-term Results for Patients who Underwent Open Radical Prostatectomy for High-Risk and Oligometastatic Prostate Cancer: A Cross-Sectional Study from a Tertiary Reference Center. Ann Surg Oncol 2024; 31:8438-8443. [PMID: 39196474 DOI: 10.1245/s10434-024-16104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND This study aimed to evaluate perioperative complications and oncologic results for high-risk and oligometastatic prostate cancer patients. METHODS The data of patients who underwent surgery for prostate cancer in the authors' clinic between January 2012 and March 2022 were analyzed retrospectively. According to D'amico classification, 28 patients with high-risk prostate cancer and 23 patients in the oligometastatic stage were included in the study. The patients were divided into two groups: group 1 (high-risk prostate cancers) and group 2 (oligometastatic cancer). Demographic characteristics, oncologic data, pathologic data, and complications of the patients were recorded. RESULTS The mean age of the patients was 67.84 years (range, 52-79 years). The average follow-up period was 45.48 months for group 1 and 46.36 months for group 2 (p = 0.84). The mean hemoglobin decrease was 1.53 g/dL in group 1 and 0.69 g/dL in group 2 (p = 0.046). Five patients (17.8%) in group 1 had biochemical recurrence at 14.55 months, whereas three patients (13%) in group 2 had biochemical recurrence at 9.87 months (p = 0.646). According to Clavien-Dindo classification, major complications developed in 7.2% of the group 1 patients and in 8.6% of the group 2 patients. Surgical margin positivity was detected in 6 group 1 patients (21.4%) and 12 group 2 patients (52.2%) (p = 0.023). During the follow-up period, four patients died. Only one of the patients died of cancer. CONCLUSION The authors think that oligometastatic and high-risk prostate cancer surgeries do not differ significantly in terms of complications.
Collapse
Affiliation(s)
- Murat Beyatlı
- Department of Urology, University of Health Sciences, Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Mehmet Duvarci
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey.
| | - Tuncel Uzel
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Halil Çağrı Aybal
- Department of Urology, Ankara Polatlı Duatepe State Hospital, Ankara, Turkey
| | - Nurullah Hamidi
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Oğuzhan Ceylan
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Emrah Çağlar
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Halil Basar
- Department of Urology, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
28
|
Pouliot F, Saad F, Rousseau E, Richard PO, Zamanian A, Probst S, Lévesque É, Castonguay V, Marcoux N, Lodde M, Juneau D, Hamilou Z, Lattouf JB, Buteau FA, Pavic M, Castilloux JF, Neveu B, Bouvet GF, Allard C, Tétu A, Guérin B, Beauregard JM. Intrapatient Intermetastatic Heterogeneity Determined by Triple-Tracer PET Imaging in mCRPC Patients and Correlation to Survival: The 3TMPO Cohort Study. J Nucl Med 2024; 65:1710-1717. [PMID: 39327017 PMCID: PMC11533914 DOI: 10.2967/jnumed.124.268020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Intrapatient intermetastatic heterogeneity (IIH) has been demonstrated in metastatic castration-resistant prostate cancer (mCRPC) patients and is of the utmost importance for radiopharmaceutical therapy (RPT) eligibility. This study was designed to determine the prevalence of IIH and RPT eligibility in mCRPC patients through a triple-tracer PET imaging strategy. Methods: This was a multisite prospective observational study in which mCRPC patients underwent both 18F-FDG and 68Ga-prostate-specific membrane antigen (PSMA)-617 PET/CT scans. A third scan with 68Ga-DOTATATE, a potential biomarker of neuroendocrine differentiation, was performed if an 18F-FDG-positive/68Ga-PSMA-negative lesion was found. Per-tracer lesion positivity was defined as having an uptake at least 50% above that of the liver. IIH prevalence was defined as the percentage of participants having at least 2 lesions with discordant features on multitracer PET. Results: IIH was observed in 81 patients (82.7%), and at least 1 18F-FDG-positive/68Ga-PSMA-negative lesion was found in 45 patients (45.9%). Of the 37 participants who also underwent 68Ga-DOTATATE PET/CT, 6 (16.2%) had at least 1 68Ga-DOTATATE-positive lesion. In total, 12 different combinations of lesion imaging phenotypes were observed. On the basis of our prespecified criteria, 52 (53.1%) participants were determined to be eligible for PSMA RPT, but none for DOTATATE RPT. Patients with IIH had a significantly shorter median overall survival than patients without IIH (9.5 mo vs. not reached; log-rank P = 0.03; hazard ratio, 2.7; 95% CI, 1.1-6.8). Conclusion: Most mCRPC patients showed IIH, which was associated with shorter overall survival. On the basis of a triple-tracer PET approach, multiple phenotypic combinations were found. Correlation of these imaging phenotypes with genomics and treatment response will be relevant for precision medicine.
Collapse
Affiliation(s)
- Frédéric Pouliot
- Oncology Axis, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada;
- Division of Urology, Department of Surgery, Université Laval, Quebec City, Quebec, Canada
| | - Fred Saad
- Division of Urology, Department of Surgery, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Sherbrooke Molecular Imaging Centre, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick O Richard
- Division of Urology, Department of Surgery, Centre Hospitalier Universitaire de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Atefeh Zamanian
- Oncology Axis, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
- Department of Radiology and Nuclear Medicine, and Cancer Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Stephan Probst
- Division of Nuclear Medicine, Faculty of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Éric Lévesque
- Division of Hemato-Oncology, Department of Medicine, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Vincent Castonguay
- Division of Hemato-Oncology, Department of Medicine, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Marcoux
- Division of Hemato-Oncology, Department of Medicine, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Michele Lodde
- Surgery Urology Department, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Daniel Juneau
- Nuclear Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Zineb Hamilou
- Hemato-Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Division of Urology, Department of Surgery, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - François-Alexandre Buteau
- Department of Radiology and Nuclear Medicine, and Cancer Research Centre, Université Laval, Quebec City, Quebec, Canada
- Division of Nuclear Medicine, Department of Medical Imaging, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Michel Pavic
- Medical Oncology, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Jean-François Castilloux
- Medical Oncology, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Bertrand Neveu
- Oncology Axis, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Guillaume F Bouvet
- Oncology Axis, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Catherine Allard
- Unité de Recherche Clinique et Épidémiologique, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Amélie Tétu
- Unité de Recherche Clinique et Épidémiologique, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada;
- Sherbrooke Molecular Imaging Centre, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Mathieu Beauregard
- Oncology Axis, CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
- Department of Radiology and Nuclear Medicine, and Cancer Research Centre, Université Laval, Quebec City, Quebec, Canada
- Division of Nuclear Medicine, Department of Medical Imaging, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
29
|
Serio RN, Scheben A, Lu B, Gargiulo DV, Patruno L, Buckholtz CL, Chaffee RJ, Jibilian MC, Persaud SG, Staklinski SJ, Hassett R, Brault LM, Ramazzotti D, Barbieri CE, Siepel AC, Nowak DG. Clonal Lineage Tracing with Somatic Delivery of Recordable Barcodes Reveals Migration Histories of Metastatic Prostate Cancer. Cancer Discov 2024; 14:1990-2009. [PMID: 38969342 DOI: 10.1158/2159-8290.cd-23-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The patterns by which primary tumors spread to metastatic sites remain poorly understood. Here, we define patterns of metastatic seeding in prostate cancer using a novel injection-based mouse model-EvoCaP (Evolution in Cancer of the Prostate), featuring aggressive metastatic cancer to bone, liver, lungs, and lymph nodes. To define migration histories between primary and metastatic sites, we used our EvoTraceR pipeline to track distinct tumor clones containing recordable barcodes. We detected widespread intratumoral heterogeneity from the primary tumor in metastatic seeding, with few clonal populations instigating most migration. Metastasis-to-metastasis seeding was uncommon, as most cells remained confined within the tissue. Migration patterns in our model were congruent with human prostate cancer seeding topologies. Our findings support the view of metastatic prostate cancer as a systemic disease driven by waves of aggressive clones expanding their niche, infrequently overcoming constraints that otherwise keep them confined in the primary or metastatic site. Significance: Defining the kinetics of prostate cancer metastasis is critical for developing novel therapeutic strategies. This study uses CRISPR/Cas9-based barcoding technology to accurately define tumor clonal patterns and routes of migration in a novel somatically engineered mouse model (EvoCaP) that recapitulates human prostate cancer using an in-house developed analytical pipeline (EvoTraceR).
Collapse
Affiliation(s)
- Ryan N Serio
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Billy Lu
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | | | - Lucrezia Patruno
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | | | - Ryan J Chaffee
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | | | - Stephen J Staklinski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lise M Brault
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Christopher E Barbieri
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Adam C Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| |
Collapse
|
30
|
Lopez-Valcarcel M, Valcarcel FJ, Velasco J, Zapata I, Rodriguez R, Cardona J, Gil B, Cordoba S, Benlloch R, Hernandez M, Santana S, Gomez R, De la Fuente C, Garcia-Berrocal MI, Regueiro C, Romero J. Stereotactic ablative radiotherapy (SABR) for pelvic nodal oligorecurrence in prostate cancer. Rep Pract Oncol Radiother 2024; 29:445-453. [PMID: 39895963 PMCID: PMC11785391 DOI: 10.5603/rpor.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 02/04/2025] Open
Abstract
Background This study evaluated the clinical outcomes of stereotactic ablative radiotherapy (SABR) in the treatment of oligometastatic pelvic node prostate cancer to delay androgen deprivation therapy (ADT). Materials and methods Pelvic lymph node metastases were identified by 11C-choline positron emission tomography (PET)-computed tomography (CT), and patients were not receiving ADT. SABR was administered using linear accelerators with intensity-modulated and image-guided radiotherapy, at a prescribed dose of 35 Gy in 5 fractions over 2 weeks. Response was assessed using Response Evaluation Criteria in Solid Tumours (RECIST) v1.1 criteria, and prostate-specific antigen (PSA) levels were monitored post-SABR. Toxicity and quality of life were assessed by the Common Terminology Criteria for Adverse Events Toxicity (CTCAE) v.5.0 and European Organisation for Research and Treatment of Cancer (EORTC) quality of life questionnaires QLQ-C30/QLQ-PR25, respectively. Kaplan-Meier and T-test were used for statistical analysis. Results Between June 2015 and November 2023, 56 patients with 85 lesions were treated at our institution. Median follow-up was 30 months [95% confidence interval (CI): 24-33.6]. Prostatectomy was the radical treatment in 85.7% of patients, and radiotherapy in 14.3%. Response rates were 67.1% for complete response, 27.4% for partial response, and 1.4% for stable disease. In-field progression was observed in only 3 lesions (3.5%). The median time to biochemical relapse post-SABR was 15 months (95% CI: 11.4-18.6). Three-year pelvic nodal and distant progression-free survival were 62.5% and 80%, respectively. There was a significant decrease in PSA levels after SABR compared to pretreatment levels (0.77 vs. 2.16 ng/mL respectively, p = 0.001). No grade ≥ 2 genitourinary or gastrointestinal toxicities. The median global health status score was 83.33 points at both time points analysed. Conclusion SABR can delay the ADT and provide excellent local control while preserving quality of life.
Collapse
Affiliation(s)
- Marta Lopez-Valcarcel
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco J Valcarcel
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Joaquin Velasco
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Irma Zapata
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ruth Rodriguez
- Medical Physics, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Jorge Cardona
- Department of Nuclear Medicine, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Beatriz Gil
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sofia Cordoba
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Raquel Benlloch
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Maria Hernandez
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Sofia Santana
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ricardo Gomez
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cristina De la Fuente
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M Isabel Garcia-Berrocal
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Carlos Regueiro
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Jesus Romero
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Schiffman JS, D'Avino AR, Prieto T, Pang Y, Fan Y, Rajagopalan S, Potenski C, Hara T, Suvà ML, Gawad C, Landau DA. Defining heritability, plasticity, and transition dynamics of cellular phenotypes in somatic evolution. Nat Genet 2024; 56:2174-2184. [PMID: 39317739 PMCID: PMC11527590 DOI: 10.1038/s41588-024-01920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/21/2024] [Indexed: 09/26/2024]
Abstract
Single-cell sequencing has characterized cell state heterogeneity across diverse healthy and malignant tissues. However, the plasticity or heritability of these cell states remains largely unknown. To address this, we introduce PATH (phylogenetic analysis of trait heritability), a framework to quantify cell state heritability versus plasticity and infer cell state transition and proliferation dynamics from single-cell lineage tracing data. Applying PATH to a mouse model of pancreatic cancer, we observed heritability at the ends of the epithelial-to-mesenchymal transition spectrum, with higher plasticity at more intermediate states. In primary glioblastoma, we identified bidirectional transitions between stem- and mesenchymal-like cells, which use the astrocyte-like state as an intermediary. Finally, we reconstructed a phylogeny from single-cell whole-genome sequencing in B cell acute lymphoblastic leukemia and delineated the heritability of B cell differentiation states linked with genetic drivers. Altogether, PATH replaces qualitative conceptions of plasticity with quantitative measures, offering a framework to study somatic evolution.
Collapse
Affiliation(s)
- Joshua S Schiffman
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Andrew R D'Avino
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Yilin Fan
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Srinivas Rajagopalan
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Toshiro Hara
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Charles Gawad
- Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Chen R, Tang L, Melendy T, Yang L, Goodison S, Sun Y. Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States. CANCER RESEARCH COMMUNICATIONS 2024; 4:2783-2798. [PMID: 39347576 PMCID: PMC11500312 DOI: 10.1158/2767-9764.crc-24-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Prostate cancer is a significant health concern and the most commonly diagnosed cancer in men worldwide. Understanding the complex process of prostate tumor evolution and progression is crucial for improved diagnosis, treatments, and patient outcomes. Previous studies have focused on unraveling the dynamics of prostate cancer evolution using phylogenetic or lineage analysis approaches. However, those approaches have limitations in capturing the complete disease process or incorporating genomic and transcriptomic variations comprehensively. In this study, we applied a novel computational approach to derive a prostate cancer progression model using multidimensional data from 497 prostate tumor samples and 52 tumor-adjacent normal samples obtained from The Cancer Genome Atlas study. The model was validated using data from an independent cohort of 545 primary tumor samples. By integrating transcriptomic and genomic data, our model provides a comprehensive view of prostate tumor progression, identifies crucial signaling pathways and genetic events, and uncovers distinct transcription signatures associated with disease progression. Our findings have significant implications for cancer research and hold promise for guiding personalized treatment strategies in prostate cancer. SIGNIFICANCE We developed and validated a progression model of prostate cancer using >1,000 tumor and normal tissue samples. The model provided a comprehensive view of prostate tumor evolution and progression.
Collapse
Affiliation(s)
- Runpu Chen
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thomas Melendy
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Le Yang
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Steve Goodison
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
33
|
Ludwig ML, Moline D, Horrmann A, Boytim E, Larson G, Arafa AT, Sayeda M, Lozada JR, Bergom HE, Day A, Dasaraju S, Dehm SM, Murugan P, Hwang J, Drake JM, Antonarakis ES. Integrated multi-omics assessment of lineage plasticity in a prostate cancer patient with brain and dural metastases. NPJ Precis Oncol 2024; 8:215. [PMID: 39349591 PMCID: PMC11443004 DOI: 10.1038/s41698-024-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Metastases to the brain are rare in prostate cancer. Here, we describe a patient with two treatment-emergent metastatic lesions, one to the brain with neuroendocrine prostate cancer (NEPC) histology and one to the dural membrane of adenocarcinoma histology. We performed genomic, transcriptomic, and proteomic characterization of these lesions and the primary tumor to investigate molecular features promoting these metastases. The two metastatic lesions had high genomic similarity, including TP53 mutation and PTEN deletion, with the most striking difference being the additional loss of RB1 in the NEPC lesion. Interestingly, the dural lesion expressed both androgen receptor and neuroendocrine markers, suggesting amphicrine carcinoma (AMPC). When analyzing pioneer transcription factors, the AMPC lesion exhibited elevated FOXA1 activity while the brain NEPC lesion showed elevated HOXC10, NFYB, and OTX2 expression suggesting novel roles in NEPC formation or brain tropism. Our results highlight the utility of performing multi-omic characterization, especially in rare cancer subtypes.
Collapse
Affiliation(s)
- Megan L Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - David Moline
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Alec Horrmann
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ella Boytim
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ali T Arafa
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Masooma Sayeda
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannah E Bergom
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Abderrahman Day
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Sandhyarani Dasaraju
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Justin Hwang
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| | - Emmanuel S Antonarakis
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
34
|
Wassenaar ECE, Gorelick AN, Hung WT, Cheek DM, Kucukkose E, Lee IH, Blohmer M, Degner S, Giunta P, Wiezer RMJ, Raicu MG, Ubink I, Klaasen SJ, Lansu N, Watson EV, Corcoran RB, Boland G, Getz G, Kops GJPL, Juric D, Lennerz JK, Boerma D, Kranenburg O, Naxerova K. A unique interplay of access and selection shapes peritoneal metastasis evolution in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614736. [PMID: 39386634 PMCID: PMC11463674 DOI: 10.1101/2024.09.25.614736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Whether metastasis in humans can be accomplished by most primary tumor cells or requires the evolution of a specialized trait remains an open question. To evaluate whether metastases are founded by non-random subsets of primary tumor lineages requires extensive, difficult-to-implement sampling. We have realized an unusually dense multi-region sampling scheme in a cohort of 26 colorectal cancer patients with peritoneal metastases, reconstructing the evolutionary history of on average 28.8 tissue samples per patient with a microsatellite-based fingerprinting assay. To assess metastatic randomness, we evaluate inter- and intra-metastatic heterogeneity relative to the primary tumor and find that peritoneal metastases are more heterogeneous than liver metastases but less diverse than locoregional metastases. Metachronous peritoneal metastases exposed to systemic chemotherapy show significantly higher inter-lesion diversity than synchronous, untreated metastases. Projection of peritoneal metastasis origins onto a spatial map of the primary tumor reveals that they often originate at the deep-invading edge, in contrast to liver and lymph node metastases which exhibit no such preference. Furthermore, peritoneal metastases typically do not share a common subclonal origin with distant metastases in more remote organs. Synthesizing these insights into an evolutionary portrait of peritoneal metastases, we conclude that the peritoneal-metastatic process imposes milder selective pressures onto disseminating cancer cells than the liver-metastatic process. Peritoneal metastases' unique evolutionary features have potential implications for staging and treatment.
Collapse
Affiliation(s)
- Emma CE Wassenaar
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander N Gorelick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Present address: Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - David M Cheek
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emre Kucukkose
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I-Hsiu Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Martin Blohmer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Degner
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Giunta
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Rene MJ Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Mihaela G Raicu
- Department of Pathology, St. Antonius Hospital, Nieuwegein, the Netherlands
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Inge Ubink
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emma V. Watson
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Ryan B. Corcoran
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gad Getz
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Geert JPL Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Dejan Juric
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Bok S, Sun J, Greenblatt MB. Are osteoblasts multiple cell types? A new diversity in skeletal stem cells and their derivatives. J Bone Miner Res 2024; 39:1386-1392. [PMID: 39052334 PMCID: PMC11425698 DOI: 10.1093/jbmr/zjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
- Skeletal Health and Orthopedic Research Program, Hospital for Special Surgery, New York NY 10065, United States
| |
Collapse
|
36
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Lancia A, Ingrosso G, Detti B, Festa E, Bonzano E, Linguanti F, Camilli F, Bertini N, La Mattina S, Orsatti C, Francolini G, Abenavoli EM, Livi L, Aristei C, de Jong D, Al Feghali KA, Siva S, Becherini C. Biology-guided radiotherapy in metastatic prostate cancer: time to push the envelope? Front Oncol 2024; 14:1455428. [PMID: 39314633 PMCID: PMC11417306 DOI: 10.3389/fonc.2024.1455428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The therapeutic landscape of metastatic prostate cancer has undergone a profound revolution in recent years. In addition to the introduction of novel molecules in the clinics, the field has witnessed a tremendous development of functional imaging modalities adding new biological insights which can ultimately inform tailored treatment strategies, including local therapies. The evolution and rise of Stereotactic Body Radiotherapy (SBRT) have been particularly notable in patients with oligometastatic disease, where it has been demonstrated to be a safe and effective treatment strategy yielding favorable results in terms of disease control and improved oncological outcomes. The possibility of debulking all sites of disease, matched with the ambition of potentially extending this treatment paradigm to polymetastatic patients in the not-too-distant future, makes Biology-guided Radiotherapy (BgRT) an attractive paradigm which can be used in conjunction with systemic therapy in the management of patients with metastatic prostate cancer.
Collapse
Affiliation(s)
- Andrea Lancia
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Beatrice Detti
- Radiotherapy Unit Prato, Usl Centro Toscana, Presidio Villa Fiorita, Prato, Italy
| | - Eleonora Festa
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Federico Camilli
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Niccolò Bertini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Salvatore La Mattina
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | - Carolina Orsatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | | | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Dorine de Jong
- Medical Affairs, RefleXion Medical, Inc., Hayward, CA, United States
| | | | - Shankar Siva
- Department of Radiation Oncology, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carlotta Becherini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
39
|
Baumgartner W, Aceto N, Lifka S. Simulating the Effect of Removing Circulating Tumor Cells (CTCs) from Blood Reveals That Only Implantable Devices Can Significantly Reduce Metastatic Burden of Patients. Cancers (Basel) 2024; 16:3078. [PMID: 39272936 PMCID: PMC11394430 DOI: 10.3390/cancers16173078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Circulating tumor cells (CTCs) are cells that have separated from a solid cancerous lesion and entered the bloodstream. They play a crucial role in driving the metastatic spread to distant organs, which is the leading cause of cancer-related deaths. Various concepts for blood purification devices aiming to remove CTCs from the blood and prevent metastases have been developed. Until now, it is not clear if such devices can indeed reduce new metastasis formation in a significant way. Here, we present a simple theoretical model of CTCs in the bloodstream that can be used to predict a reduction in metastatic burden using an extracorporeal or intracorporeal blood purification device. The model consists of a system of ordinary differential equations that was numerically solved and simulated. Various simulations with different parameter settings of extracorporeal and intracorporeal devices revealed that only devices implanted directly in tumor-draining vessels can reduce the metastatic burden significantly. Even if an extracorporeal device is used permanently, the reduction in metastases is only 82%, while a permanently operating implanted device in the tumor-draining vessel would achieve a reduction of 99.8%. These results are mainly due to the fact that only a small fraction of CTCs reaches peripheral circulation, resulting in a proportionally small amount of purified blood in extracorporeal devices.
Collapse
Affiliation(s)
- Werner Baumgartner
- Institute of Biomedical Mechatronics, Johannes Kepler University of Linz, 4040 Linz, Austria
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zurich, Switzerland
| | - Sebastian Lifka
- Institute of Biomedical Mechatronics, Johannes Kepler University of Linz, 4040 Linz, Austria
| |
Collapse
|
40
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
41
|
Simhal RK, Wang KR, Shah YB, Lallas CD, Shah MS, Chandrasekar T. Peri-operative outcomes following radical prostatectomy in the setting of advanced prostate cancer. BJU Int 2024; 134:465-472. [PMID: 38653516 DOI: 10.1111/bju.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To compare the peri-operative outcomes of radical prostatectomy (RP) for locally advanced, node-positive, and metastatic prostate cancer (PCa), as determined through pathological staging, using the American College of Surgeons National Surgical Quality Improvement Project. METHODS We identified RP procedures performed between 2019 and 2021. Patients were stratified by pathological staging to compare the effect of locally advanced disease (T3-4), node positivity (N+) and metastasis (M+) vs localised PCa (T1-2 N0 M0). Baseline demographics and 30-day outcomes, including operating time, length of hospital stay (LOS), 30-day mortality, readmissions, reoperations, major complications, minor complications and surgery-specific complications, were compared between groups. RESULTS Pathological staging data were available for 9276 RPs. Baseline demographics were comparable. There was a slightly higher rate of minor complications in the locally advanced cohort, but no significant difference in major complications, 30-day mortality, readmissions, or rectal injuries. Node positivity was associated with longer operating time, LOS, and some slightly increased rates of 30-day complications. RP in patients with metastatic disease appeared to be similarly safe to RP in patients with M0 disease, although it was associated with a longer LOS and slightly increased rates of certain complications. CONCLUSIONS For patients with pathologically determined locally advanced, node-positive, and metastatic PCa, RP appears to be safe, and is not associated with significantly higher rates of 30-day mortality or major complications compared to RP for localised PCa. This study adds to the growing body of literature investigating the role of RP for advanced PCa; further studies are needed to better characterise the risks and benefits of surgery in such patients.
Collapse
Affiliation(s)
- Rishabh K Simhal
- Department of Urology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Kerith R Wang
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yash B Shah
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Costas D Lallas
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mihir S Shah
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
43
|
Fernandez-Mateos J, Cresswell GD, Trahearn N, Webb K, Sakr C, Lampis A, Stuttle C, Corbishley CM, Stavrinides V, Zapata L, Spiteri I, Heide T, Gallagher L, James C, Ramazzotti D, Gao A, Kote-Jarai Z, Acar A, Truelove L, Proszek P, Murray J, Reid A, Wilkins A, Hubank M, Eeles R, Dearnaley D, Sottoriva A. Tumor evolution metrics predict recurrence beyond 10 years in locally advanced prostate cancer. NATURE CANCER 2024; 5:1334-1351. [PMID: 38997466 PMCID: PMC11424488 DOI: 10.1038/s43018-024-00787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution.
Collapse
Affiliation(s)
- Javier Fernandez-Mateos
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - George D Cresswell
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Nicholas Trahearn
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Katharine Webb
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Chirine Sakr
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Andrea Lampis
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Christine Stuttle
- The Royal Marsden NHS Foundation Trust, London, UK
- Oncogenetics Team, The Institute of Cancer Research, London, UK
| | - Catherine M Corbishley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- St. George's Hospital Healthcare NHS Trust, London, UK
| | | | - Luis Zapata
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Timon Heide
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Lewis Gallagher
- Molecular Pathology Section, The Institute of Cancer Research, London, UK
- Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Chela James
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | | | - Annie Gao
- Bob Champion Cancer Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ahmet Acar
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Lesley Truelove
- Bob Champion Cancer Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Paula Proszek
- Molecular Pathology Section, The Institute of Cancer Research, London, UK
- Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Julia Murray
- The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Alison Reid
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Anna Wilkins
- The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Michael Hubank
- Molecular Pathology Section, The Institute of Cancer Research, London, UK
- Clinical Genomics, The Royal Marsden NHS Foundation, London, UK
| | - Ros Eeles
- The Royal Marsden NHS Foundation Trust, London, UK
- Oncogenetics Team, The Institute of Cancer Research, London, UK
| | - David Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
- Academic Urology Unit, The Royal Marsden NHS Foundation Trust, London, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
44
|
Sheikh GT, Trapp C, Schmidt-Hegemann NS, Buchner A, Stief CG, Unterrainer M, Kunz WG, Cyran CC, Grawe F, Delker A, Zacherl MJ, Holzgreve A, Unterrainer LM, Brendel M, Belka C, Li M, Rogowski P. PSMA-PET/CT response after metastasis-directed radiotherapy of bone oligometastases in prostate cancer. EJNMMI REPORTS 2024; 8:25. [PMID: 39155339 PMCID: PMC11330950 DOI: 10.1186/s41824-024-00212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Bone metastases are very common in advanced prostate cancer and can sensitively be detected utilizing PSMA-PET/CT. Therefore, our goal was to evaluate the suitability of PSMA-PET/CT-guided metastasis-directed external beam radiotherapy (MDT) as treatment option for patients with biochemical recurrence and oligometastatic bone lesions. MATERIALS & METHODS We retrospectively examined 32 prostate cancer patients with biochemical recurrence and PSMA-positive oligometastatic disease limited to the bone (n = 1-3). A total of 49 bone lesions were treated with MDT. All patients received a post-radiotherapy PSMA-PET/CT-Scan. Changes in SUVmax, PSMA-positive tumor volume per lesion and PSA, as well as the correlation between the PET/CT-interval and SUVmax response were calculated. RESULTS MDT lead to a SUVmax decrease in 46/49 (94%) of the lesions. The median relative decline of SUVmax was 60.4%, respectively. Based on PSMA-positive lesion volume with a SUV cut-off of 4, 46/49 (94%) of lesions showed complete response, two (4%) partial response and one lesion (2%) was stable on PSMA-PET/CT after MDT. Most of the treated patients (56.3%) showed an initial PSA decline at three months and a PSA nadir of median 0.14 ng/ml after a median time of 3.6 months after MDT. The median relative PSA change at three months after MDT was 3.9%. CONCLUSION MDT is a very effective treatment modality for prostate cancer bone oligometastases and lesion response to MDT can be assessed using the (semi-)quantitative parameters SUVmax and PSMA-positive lesion volume with established SUV cut-offs.
Collapse
Affiliation(s)
- Gabriel T Sheikh
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Christian Trapp
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Alexander Buchner
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Freba Grawe
- German Cancer Research Center (DKFZ), Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Minglun Li
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paul Rogowski
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
45
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
46
|
Boire A, Burke K, Cox TR, Guise T, Jamal-Hanjani M, Janowitz T, Kaplan R, Lee R, Swanton C, Vander Heiden MG, Sahai E. Why do patients with cancer die? Nat Rev Cancer 2024; 24:578-589. [PMID: 38898221 PMCID: PMC7616303 DOI: 10.1038/s41568-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Cancer is a major cause of global mortality, both in affluent countries and increasingly in developing nations. Many patients with cancer experience reduced life expectancy and have metastatic disease at the time of death. However, the more precise causes of mortality and patient deterioration before death remain poorly understood. This scarcity of information, particularly the lack of mechanistic insights, presents a challenge for the development of novel treatment strategies to improve the quality of, and potentially extend, life for patients with late-stage cancer. In addition, earlier deployment of existing strategies to prolong quality of life is highly desirable. In this Roadmap, we review the proximal causes of mortality in patients with cancer and discuss current knowledge about the interconnections between mechanisms that contribute to mortality, before finally proposing new and improved avenues for data collection, research and the development of treatment strategies that may improve quality of life for patients.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katy Burke
- University College London Hospitals NHS Foundation Trust and Central and North West London NHS Foundation Trust Palliative Care Team, London, UK
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Theresa Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
| | - Tobias Janowitz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
| | - Rosandra Kaplan
- Paediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lee
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles Swanton
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
47
|
Ban GI, Puviindran V, Xiang Y, Nadesan P, Tang J, Ou J, Guardino N, Nakagawa M, Browne M, Wallace A, Ishikawa K, Shimada E, Martin JT, Diao Y, Kirsch DG, Alman BA. The COMPASS complex maintains the metastatic capacity imparted by a subpopulation of cells in UPS. iScience 2024; 27:110187. [PMID: 38989451 PMCID: PMC11233968 DOI: 10.1016/j.isci.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Intratumoral heterogeneity is common in cancer, particularly in sarcomas like undifferentiated pleomorphic sarcoma (UPS), where individual cells demonstrate a high degree of cytogenic diversity. Previous studies showed that a small subset of cells within UPS, known as the metastatic clone (MC), as responsible for metastasis. Using a CRISPR-based genomic screen in-vivo, we identified the COMPASS complex member Setd1a as a key regulator maintaining the metastatic phenotype of the MC in murine UPS. Depletion of Setd1a inhibited metastasis development in the MC. Transcriptome and chromatin sequencing revealed COMPASS complex target genes in UPS, such as Cxcl10, downregulated in the MC. Deleting Cxcl10 in non-MC cells increased their metastatic potential. Treating mice with human UPS xenografts with a COMPASS complex inhibitor suppressed metastasis without affecting tumor growth in the primary tumor. Our data identified an epigenetic program in a subpopulation of sarcoma cells that maintains metastatic potential.
Collapse
Affiliation(s)
- Ga I. Ban
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Vijitha Puviindran
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Puvi Nadesan
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jackie Tang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jianhong Ou
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Guardino
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Makoto Nakagawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - MaKenna Browne
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Asjah Wallace
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Koji Ishikawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Eijiro Shimada
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - John T. Martin
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yarui Diao
- Department of Cell Biology and Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
- The Princes Margaret Cancer Centre, Department of Radiation Oncology, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Benjamin A. Alman
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
48
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Salcedo A, Tarabichi M, Buchanan A, Espiritu SMG, Zhang H, Zhu K, Ou Yang TH, Leshchiner I, Anastassiou D, Guan Y, Jang GH, Mootor MFE, Haase K, Deshwar AG, Zou W, Umar I, Dentro S, Wintersinger JA, Chiotti K, Demeulemeester J, Jolly C, Sycza L, Ko M, Wedge DC, Morris QD, Ellrott K, Van Loo P, Boutros PC. Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction. Nat Biotechnol 2024:10.1038/s41587-024-02250-y. [PMID: 38862616 DOI: 10.1038/s41587-024-02250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors. Algorithms were scored on seven independent tasks, leading to 12,061 total runs. Algorithm choice influenced performance substantially more than tumor features but purity-adjusted read depth, copy-number state and read mappability were associated with the performance of most algorithms on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble strategies were unable to outperform the best individual methods, highlighting a key research need. All containerized methods, evaluation code and datasets are available to support further assessment of the determinants of subclonal reconstruction accuracy and development of improved methods to understand tumor evolution.
Collapse
Affiliation(s)
- Adriana Salcedo
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium.
| | - Alex Buchanan
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kaiyi Zhu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Tai-Hsien Ou Yang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | - Dimitris Anastassiou
- Department of Systems Biology, Columbia University, New York, NY, USA
- Center for Cancer Systems Therapeutics, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Electronic Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mohammed F E Mootor
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | | | - Amit G Deshwar
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - William Zou
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Imaad Umar
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stefan Dentro
- The Francis Crick Institute, London, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Jeff A Wintersinger
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Kami Chiotti
- Oregon Health and Sciences University, Portland, OR, USA
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Lesia Sycza
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Minjeong Ko
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David C Wedge
- Big Data Institute, University of Oxford, Oxford, UK
- Manchester Cancer Research Center, University of Manchester, Manchester, UK
| | - Quaid D Morris
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle Ellrott
- Oregon Health and Sciences University, Portland, OR, USA.
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|