1
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 PMCID: PMC11988232 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jiang J, Kan X. A smartphone-enabled colorimetric tumor-derived exosomes sensing based on multi-enzyme catalysis and dual-recognition triggered CRISPR/Cas12a trans-cleavage. Biosens Bioelectron 2025; 286:117644. [PMID: 40466420 DOI: 10.1016/j.bios.2025.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/25/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025]
Abstract
Detection of protein profiling on exosomes exhibits great promise for early non-invasive and accurate diagnosis of tumor in clinical diagnostics. However, it still faces multiple challenges, such as expensive instruments requirement and weak specificity by single biomarker. Herein, based on a dual-recognition strategy, a ternary hybrid of a trigger DNA (TDNA), EpCAM aptamer, and CD63 aptamer was used to capture A549 cells-derived exosomes to release TDNA, which initiated the trans-cleavage activity of CRISPR/Cas12a to nonspecifically cleave single-stranded DNA (ssNDA) and then resulted in the isolating of ssDNA linked nanozyme of Zr/Fe-CeO2@Ir@CaO2@HA (ZFCIrCH). ZFCIrCH not only achieved H2O2/O2 self-supply, but also possessed high peroxidase-like, oxidase-like, and superoxide dismutase-like activities, thereby generating a sensitive colorimetric signal for A549 cells-derived exosomes detection with a low limit of detection (LOD) of 31 particles/mL. Using a smartphone to analyze colorimetric images, exosome concentration also can be precisely quantified with a LOD of 29 particles/mL, which could also successfully distinguish healthy people from lung cancer patients. With the advantages of high sensitivity, good specificity, low cost, and convenient on-site detection of tumor-derived exosomes, the present colorimetric sensor has great promise in the accurate diagnosis of diseases.
Collapse
Affiliation(s)
- Jing Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Xianwen Kan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, People's Republic of China.
| |
Collapse
|
3
|
Woo HK, Nam Y, Park HG, Lee H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens Bioelectron 2025; 282:117475. [PMID: 40300344 PMCID: PMC12076185 DOI: 10.1016/j.bios.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers for various diseases. Encapsulating biomolecules reflective of their parental cells, EVs are readily accessible in bodily fluids. The prospect for minimally invasive, repeatable molecular testing has stimulated significant research; however, challenges persist in isolating EVs from complex biological matrices and characterizing their limited molecular cargo. Technical advances have been pursued to address these challenges, producing innovative EV-specific platforms. This review highlights recent technological developments, focusing on EV isolation and molecular detection methodologies. Furthermore, it explores the translation of these laboratory innovations to clinical applications through the analysis of patient samples, providing insights into the potential diagnostic and prognostic utility of EV-based technologies.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Ge W, Mu Z, Yang S, Zeng Y, Deng Y, Lin Y, Xie P, Li G. Biosensor-based methods for exosome detection with applications to disease diagnosis. Biosens Bioelectron 2025; 279:117362. [PMID: 40157151 DOI: 10.1016/j.bios.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) secreted by most eukaryotic cells and can be found in nearly all human body fluids. Increasing evidence has revealed their pivotal roles in intercellular communication, and their active participation in myriad physiological and pathological activities. Exosomes' functions rely on their contents that are closely correlated with the biological characteristics of parental cells, which may provide a rich resource of molecular information for accurate and detailed diagnosis of a diverse array of diseases, such as differential diagnosis of Alzheimer's disease, early detection and subtyping of various tumors. As a category of sensitive detection devices, biosensors can fully reveal the molecular information and convert them into actionable clinical information. In this review, recent advances in biosensor-based methods for the detection of exosomes are summarized. We have described the fabrication of various biosensors based on the analysis of exosomal proteins, RNAs or glycans for accurate diagnosis, with respect to their elaborate recognition designs, signal amplification strategies, sensing properties, as well as their application potential. The challenges along with corresponding technologies in the future development and clinical translation of these biosensors are also discussed.
Collapse
Affiliation(s)
- Weikang Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yujing Zeng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yifan Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
6
|
Yu H, Xin C, Zhou Y, Ding X. Advances in the application of extracellular vesicles in precise diagnosis of pancreatic cancer. Eur J Med Res 2025; 30:478. [PMID: 40514731 DOI: 10.1186/s40001-025-02739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Pancreatic cancer is a highly malignant tumor with poor prognosis, emphasizing the need for accurate early diagnosis. EVs, as mediators of intercellular communication, carry DNA, RNA, and proteins that show differential but not tumor-specific expression patterns in pancreatic cancer. Studies have shown that combining RNA markers in EVs (such as miRNA, circRNA, and lncRNA) with serum CA 19-9 testing can significantly enhance diagnostic accuracy for pancreatic cancer. EV-associated proteins have exhibited favorable diagnostic performance in early-stage pancreatic cancer in preliminary studies, though their clinical applicability remains to be further validated. Furthermore, mutations in KRAS, TP53, and SMAD4 genes within EVs offer a promising avenue for non-invasive liquid biopsy. However, challenges such as standardization, low sensitivity, and specificity still hinder the clinical application of EVs. Future research should focus on strategies including multi-omics integration, AI-assisted analysis, multi-marker combined detection, and large-scale clinical validation to further improve the diagnostic capability for pancreatic cancer. Overcoming these obstacles may position EVs as a vital tool in the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Congling Xin
- Department of Gynecology, Fudan University Shanghai Cancer Center Minhang District, Shanghai, 200240, China
| | - Yu Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Lu H, Gu Z, Zou Y, Wang H, Lu S, Wang H, Ye BC, Xu H. Tri-Recognition-Mediated Proximity Ligation for Quantitative Analysis of Exosomal Protein-Specific Sialylation and Application on a Microfluidic Platform. Anal Chem 2025; 97:11883-11895. [PMID: 40449020 DOI: 10.1021/acs.analchem.5c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Overexpression of sialylated glycoprotein is a stage-specific process and is regarded as a common manifestation of tumor progression. Accurate quantification of protein-specific sialylation on biological membranes contributes to a thorough comprehension of cellular signal transduction as well as the search for sialylated glycan-related biomarkers. Herein, we propose triple recognition-mediated proximity ligation coupled with rolling-circle amplification to examine protein-specific sialylation on living cell membranes and their derived exosomes. Multiple recognitions in spatial proximity provide three key advantages: (1) significantly improved identification precision, (2) flexible and scalable target options, and (3) minimized off-target effects. Using this approach, we successfully visualize sialylation-dependent interactions between exosomes and cells. By converting certain recognition sites and combining duplex calculations, we establish a quantitation method of exosomal protein-specific sialylation capping ratio, which could act as a useful noninvasive indicator in a customizable 3D-printed microfluidic chip (ExoTRAP) for exosome-based cancer discrimination. This platform enables multiplexed profiling of protein-specific sialylation with high sensitivity (e.g., the LOD of sialylated MUC1-positive MCF-7 exosomes is 2.81 × 106 particles/mL), thus providing new insights into the role of sialylated glycoproteins in exosome functions, as well as a promising strategy for clinical diagnosis.
Collapse
Affiliation(s)
- Hongfeng Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Gu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yilin Zou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Siyu Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huifeng Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Xu LL, Wang M, Wang YK, Chen YJ, Zhang YX, Zhang YQ, Cheng SB, Xie M, Huang WH. Vessel-Like Microtunnels with Biomimetic Octopus Tentacles for Seizing and Detecting Exosomes to Diagnose Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502763. [PMID: 40424013 DOI: 10.1002/smll.202502763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/17/2025] [Indexed: 05/28/2025]
Abstract
Microchip-based exosome analysis has emerged as a promising approach for liquid biopsy in cancer diagnosis, treatment monitoring, and prognostic evaluation. However, current microchips for exosome analysis typically rely on planar, 2D channel structures with affinity properties, which require complex fabrication but deliver suboptimal separation and detection performance. This study presents a novel vessel-like microtunnel chip, integrated with biomimetic octopus tentacles, achieving an exosome isolation efficiency of 90.4%. The innovative design incorporates interwoven, 3D micropathways, enhancing fluid dynamics and promoting efficient mixing between exosomes and microchannels. Nanofiber-coated silicon microspheres, functionalized with synthetic peptides, mimic octopus tentacles to anchor the microtunnels, dynamically extending under fluid shear forces to specifically recognize lipid bilayer structures for exosome capture. This platform incorporates enzyme-catalyzed signal amplification using Au nanoprobes for colorimetric detection to sensitively analyze four protein markers on plasma-derived exosomes from 60 clinical samples. Machine learning is used to develop a diagnostic model, achieving an area under the curve (AUC) of 0.9888 in distinguishing pancreatic cancer from pancreatitis and healthy controls. This approach provides a rapid, sensitive, accurate, and user-friendly method for pancreatic cancer diagnosis, addressing the clinical challenges of early detection and the frequent misdiagnosis of pancreatic cancer as pancreatitis.
Collapse
Affiliation(s)
- Li-Li Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Yi-Ke Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yi-Jing Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu-Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yan-Qiu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Bo Cheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjia Lake West Road, Wuhan, 430065, P. R. China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
9
|
Sharma R, Komal K, Kumar S, Ghosh R, Pandey P, Gupta GD, Kumar M. Advances in pancreatic cancer diagnosis: from DNA methylation to AI-assisted imaging. Expert Rev Mol Diagn 2025:1-13. [PMID: 40388321 DOI: 10.1080/14737159.2025.2509022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/22/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
INTRODUCTION Pancreatic Cancer (PC) is a highly aggressive tumor that is mainly diagnosed at later stages. Various imaging technologies, such as CT, MRI, and EUS, possess limitations in early PC diagnosis. Therefore, this review article explores the various innovative biomarkers for PC detection, such as DNA methylation, Noncoding RNAs, and proteomic biomarkers, and the role of AI in PC detection at early stages. AREA COVERED Innovative biomarkers, such as DNA methylation genes, show higher specificity and sensitivity in PC diagnosis. Additionally, various non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs, show high diagnostic accuracy and serve as diagnostic and prognostic biomarkers. Additionally, proteomic biomarkers retain higher diagnostic accuracy in different body fluids. Apart from this, the utilization of AI showed that AI surpassed the radiologist's diagnostic performance in PC detection. EXPERT OPINION The combination of AI and advanced biomarkers can revolutionize early PC detection. However, large-scale, prospective studies are needed to validate its clinical utility. Further. standardization of biomarker panels and AI algorithms is a vital step toward their reliable applications in early PC detection, ultimately improving patient outcomes. [Figure: see text].
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | - Prachi Pandey
- Department of Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
10
|
Huang C, Li H, Zhang Z, Mou T, Wang D, Li C, Tian L, Zong C. From Mechanism to Therapy: The Role of MSC-EVs in Alleviating Radiation-Induced Injuries. Pharmaceutics 2025; 17:652. [PMID: 40430942 PMCID: PMC12114651 DOI: 10.3390/pharmaceutics17050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Radiation injury is a severe issue in both nuclear accidents and cancer radiotherapy. Ionizing radiation impairs the regenerative and repair capabilities of tissues and organs, resulting in a scarcity of effective therapeutic approaches to prevent or mitigate such injuries. Mesenchymal stem cells (MSCs) possess favorable biological characteristics and have emerged as ideal candidates for the treatment of radiation injury. However, the use of MSCs as therapeutic agents is associated with uncertainties in therapeutic efficacy, transient effects, and the risk of immune rejection. Recent advances in research have revealed that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) exhibit similar beneficial properties to MSCs and represent a promising cell-free therapy for mitigating radiation injuries. MSC-EVs are enriched with microRNAs (miRNAs), proteins, and lipids, which can modulate immune responses, inflammatory reactions, cell survival, and proliferation in irradiated tissues. This review synthesizes recent studies on the application of MSC-EVs in radiation injury, focusing on the therapeutic effects and mechanisms of MSC-EVs derived from various sources in radiation-induced diseases of different organs. The therapeutic potential of MSC-EVs for radiation injury provides valuable insights for addressing ionizing radiation-induced injuries and offers a reference for future clinical applications.
Collapse
Affiliation(s)
- Chong Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Heng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Zhiyue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Ting Mou
- School of Stomatology, Jiamusi University, Jiamusi 154007, China;
| | - Dandan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Chenlu Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| | - Chunlin Zong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (C.H.); (H.L.); (Z.Z.); (D.W.); (C.L.)
| |
Collapse
|
11
|
Liu J, Gao S, Liu X, Dong J, Zhen D, Liu T. Exosomes: their role and therapeutic potential in overcoming drug resistance of gastrointestinal cancers. Front Oncol 2025; 15:1540643. [PMID: 40432919 PMCID: PMC12106034 DOI: 10.3389/fonc.2025.1540643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Gastrointestinal cancers are prevalent malignant neoplasms in clinical medicine. The development of drug resistance in gastrointestinal cancers result in tumor recurrence and metastasis and greatly diminish the efficacy of treatment. Exosomes, as the shuttle of intercellular molecular cargoes in tumor micro-environment, secreted from tumor and stromal cells mediate drug resistance by regulating epithelial-mesenchymal transition, drug efflux, stem-like phenotype and cell metabolism. Meanwhile, exosomes have already received tremendous attention in biomedical study as potential drug resistant biomarkers as well as treatment strategy in gastrointestinal cancers. Primary challenge to implement this potential is the ability to obtain high-grade exosomes efficiently; however, exosomes lack standard protocols for their processing and characterization. Furthermore, this field suffers from insufficient standardized reference materials and workflow for purification, detection and analysis of exosomes with defined biological properties. This review summarize the unique biogenesis, composition and novel detection methods of exosomes and informed the underlying correlation between exosomes and drug resistance of gastrointestinal cancers. Moreover, the clinical applications of exosomes are also summarized, might providing novel therapy for the individual treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiulian Liu
- Department of Anorectal Surgery, The Fourth People’s Hospital of Jinan, Jinan, China
| | - Shanyu Gao
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Liu
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxin Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dingwei Zhen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| |
Collapse
|
12
|
Zhao T, Chen Y, Liu W, Mo X, Qin X, Yang Y, Fang M, Li X, Liu W, Yang F. Ultrasensitive Profiling of Plasma Extracellular Vesicles for Breast Cancer Subtyping with a High-Curvature Antifouling Nanoarray. NANO LETTERS 2025. [PMID: 40350620 DOI: 10.1021/acs.nanolett.5c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Profiling of plasma extracellular vesicles (EVs) has long been hampered by their insufficient capture and assay sensitivity due to the high background of complex matrices. To address this challenge, we develop a high-curvature antifouling nanoarray electrochemical assay (eCAN) to enable ultrasensitive and specific profiling of plasma EVs for the accurate subtyping of breast cancer. This assay leverages a three-in-one multifunctional hierarchical antifouling nanofilm to improve EV capture, minimize nonspecific adsorption, and facilitate three-dimensional deposition of tyramine for signal amplification. These advantages allow the eCAN to achieve a sensitivity of up to 56 particles/mL (near a single-EV level), showing high specificity and anti-interference. The eCAN can differentiate EV subpopulations across different breast cancer cells and monitor their phenotypic changes. This assay allows accurate diagnosis and subtyping of breast cancer (AUC = 1.000) through direct profiling of EVs in undiluted plasma from a pilot cohort and provides a promising tool for precise diagnosis of cancers in clinical settings.
Collapse
Affiliation(s)
- Tanglian Zhao
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Weifeng Liu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xifeng Mo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Min Fang
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Wei Liu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- Yulin Campus of Guangxi Medical University, Yulin 537000, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
13
|
Balic N, Nikolac Perkovic M, Milos T, Vuic B, Kurtovic Kodzoman M, Svob Strac D, Nedic Erjavec G. Extracellular vesicles as a promising tool in neuropsychiatric pharmacotherapy application and monitoring. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111393. [PMID: 40340017 DOI: 10.1016/j.pnpbp.2025.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
This review deals with the application of extracellular vesicles (EVs) in the treatment of various neuropsychiatric disorders, including mood disorders, neurodegeneration, psychosis, neurological insults and injuries, epilepsy and substance use disorders. The main challenges of most neuropsychiatric pharmaceuticals nowadays are how to reach the central nervous system at therapeutic concentration and maintain it long enough and how to avoid undesirable side effects caused by unsatisfying toxicity. Extracellular vesicles, as very important mediators of intercellular communication, can have a variety of therapeutic qualities. They can act neuroprotective, regenerative and anti-inflammatory, but they also have characteristics of a good drug delivery system, including their nano- scale size, biological safety and abilities to cross BBB, to pack drugs within the lipid bilayer, and not to trigger an immunological response. Besides, due to their presence in readily accessible biofluids, they are good candidates for biomarkers of the disease, its progression and therapy response monitoring. Alternations in EVs' cargo profiles can reflect the pathogenesis of neuropsychiatric disorders, but they could also affect the disease outcomes. In the future, EVs could help physicians to tailor treatment strategies for individual patients, however, more extensive studies are needed to standardize isolation, purification and production procedures, increase efficacy of drug loading and limit unwanted effects of innate EVs' content.
Collapse
Affiliation(s)
- Nikola Balic
- Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | - Tina Milos
- Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Barbara Vuic
- Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
14
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4913-4931. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
15
|
Jin Y, Wu O, Chen Z, Chen L, Zhang K, Chen Q, Tian H, Wang X, Jones M, Kwan KYH, Li YM, Makvandi P, Wang X, Hai X, Zhang J, Wu A. Exploring extracellular vesicles as novel therapeutic agents for intervertebral disc degeneration: delivery, applications, and mechanisms. Stem Cell Res Ther 2025; 16:221. [PMID: 40312404 PMCID: PMC12044939 DOI: 10.1186/s13287-025-04299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Intervertebral disc degeneration is a multifactorial degenerative disease that poses a significant threat to the health of the elderly population. Current treatments primarily focus on physical therapy, medication, and surgery to alleviate symptoms associated with disc compression but do not address the progression of degeneration. Therefore, this review aimed to explore the potential of extracellular vesicle therapy as a novel preventive strategy to delay degeneration and enhance tissue repair in intervertebral discs. We cover the pathogenic mechanisms underlying intervertebral disc degeneration, including inflammation, apoptosis, pyroptosis, ferroptosis, autophagy dysregulation, and the roles of non-coding RNAs. Subsequently, we discussed the therapeutic potential of extracellular vesicles and their molecular components, such as proteins, RNAs, and lipids, in modulating these pathways to counter intervertebral disc degeneration. We provides a comprehensive review of the significant role of extracellular vesicle cargo in mediating repair mechanisms. It discusses the functional enhancement advantages exhibited by extracellular vesicles under current bioengineering modifications and drug loading. The challenges and future prospects of utilizing extracellular vesicle therapy to treat this degenerative condition are also summarized.
Collapse
Affiliation(s)
- Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhihua Chen
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Haijun Tian
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, China
| | - Yan Michael Li
- Department of Neurosurgery, University of Rochester Medical Center, 601 Elm-Wood Ave, Rochester, NY, 14642, USA
| | - Pooyan Makvandi
- University Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiang Hai
- Ecological-Environment & Health College (EEHC), Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China.
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
16
|
Wagner V, Morton M, Dorayappan KDP, Gonzalez A, Yu L, Sakaue T, Conrads T, Maxwell GL, Cosgrove C, Backes F, Wang QE, Cohn DE, O'Malley DM, Selvendiran K. Circulating extracellular vesicles protein expression for early prediction of platinum-resistance in high-grade serous ovarian cancer. Oncogene 2025; 44:1197-1203. [PMID: 40210758 PMCID: PMC12015105 DOI: 10.1038/s41388-025-03382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Platinum resistance in high-grade serous ovarian carcinoma (HGSOC) portends a poor prognosis. Although initial platinum-based chemotherapy response rates are high, 15-20% of patients demonstrate primary resistance to platinum therapy and almost all patients will develop platinum resistance in the recurrent setting. No predictive or diagnostic biomarkers have been utilized specific to platinum resistance. This study aimed to identify candidate biomarkers for platinum resistance in HGSOC using an extracellular vesicle (EV) based approach. We found differentially expressed and distinct EV proteins, namely TMEM205 and CFH, in patients with platinum-resistant (PR) HGSOC compared to those of platinum-sensitive (PS) patients, utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS). Expression of these EV proteins were validated in patient-derived PR cell lines as well as in clinically relevant mouse models of HGSOC post-platinum therapy. We corroborated these findings using serum samples from patients with PS and PR-HGSOC. Both EV CFH and EV TMEM205 exhibited excellent diagnostic capability for PR as noted by receiver operating characteristic curves with area under the curve values of 0.95 and 0.84, respectively. The high diagnostic performance of TMEM205 and CFH within EVs compared to the relatively poor performance of conventional serum proteins such as Ca125 suggests their robust potential as non-invasive biomarkers for detecting platinum resistance in HGSOC. Furthermore, the ROC curve for the combined biomarker demonstrated excellent diagnostic performance, with an AUC of 0.973, a true positive rate (TPR) of 0.938, and a false positive rate (FPR) of 0.062. Incorporating this multi-protein biomarker panel alongside established biomarkers further enhances diagnostic accuracy. Serum EV CFH and TMEM205 are promising biomarkers for early detection of platinum resistance in HGSOC and may highlight underlying chemoresistance mechanisms, offering potential future therapeutic targets.
Collapse
Affiliation(s)
- Vincent Wagner
- Division of Gynecologic Oncology, Holden Comprehensive Cancer Center, The University of Iowa Health Care, Iowa City, IA, USA
| | - Molly Morton
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Anna Gonzalez
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Thomas Conrads
- Inova Women's Service Line and the Inova Schar Cancer Institute, Falls Church, VA, USA
| | - G Larry Maxwell
- Inova Women's Service Line and the Inova Schar Cancer Institute, Falls Church, VA, USA
| | - Casey Cosgrove
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Floor Backes
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David E Cohn
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David M O'Malley
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
He W, Cui J, Wang XY, Siu RHP, Tanner JA. Early-Stage Pancreatic Cancer Diagnosis: Serum Biomarkers and the Potential for Aptamer-Based Biosensors. Molecules 2025; 30:2012. [PMID: 40363817 PMCID: PMC12073606 DOI: 10.3390/molecules30092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Pancreatic cancer has a high mortality rate, and both the incidence and mortality are continuing to increase in many countries globally. The poor prognosis of pancreatic cancer is in part due to the challenges in early diagnosis. Improving early-stage pancreatic cancer diagnosis would improve survival outcomes. Aptamer-based biosensors provide an alternative technological approach for the analysis of serum biomarkers with several potential advantages. This review summarizes the major pancreatic cancer serum biomarkers, as well as discusses recent progress in biomarker exploration and aptasensor development. Here, we review both established and novel serum biomarkers identified recently, emphasizing their potential for early-stage pancreatic cancer diagnosis. We also propose strategies for further expanding multiplex biomarker panels beyond the established CA19-9 biomarker to enhance diagnostic performance. We discuss technological advancements in aptamer-based sensors for pancreatic cancer-related biomarkers over the last decade. Optical and electrochemical sensors are highlighted as two primary modalities in aptasensor design, each offering unique advantages. Finally, we propose steps towards clinical application using aptamer-based sensors with multiplexed biomarker detection for improved pancreatic cancer diagnostics.
Collapse
Affiliation(s)
- Weisi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Jingyu Cui
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Xue-Yan Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (W.H.); (J.C.); (X.-Y.W.); (R.H.P.S.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
18
|
Liu S, Su J, Zhao H, Bai R, Zeng L, Xue C, Deng S, Liu S, Chen Z, Xu Z, Zhou Y, Zhao S, Wu X, Peng X, Zhang J, Huang X, Zheng J, Zhao C, Zheng L. Identification of novel plasma proteins as promising noninvasive biomarker for early diagnosis and surveillance of pancreatic ductal adenocarcinoma. J Gastroenterol 2025:10.1007/s00535-025-02252-w. [PMID: 40285860 DOI: 10.1007/s00535-025-02252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Although cancer antigen 19-9 (CA 19-9) is the only FDA-approved biomarker for pancreatic ductal adenocarcinoma (PDAC), its diagnostic effectiveness is limited, as it may not be elevated in 15-25% of patients. This study aims to explore novel plasma proteins associated with PDAC as potential biomarkers for early diagnosis and clinical surveillance. METHODS Novel plasma protein biomarkers potentially causally associated with PDAC were identified using Mendelian randomization (MR). These biomarkers were validated in a multicenter study encompassing 230 tissue and 1,011 plasma samples to establish a diagnostic model for PDAC. Furthermore, their pre- and post-operative levels were compared to evaluate their potential as clinical surveillance biomarkers. RESULTS Genetically predicted expression of seven proteins potentially causally associated with an increased risk of PDAC. In a multicenter, large-scale study, Keratin 5 (KRT5) and Versican (VCAN) were identified as promising biomarkers for PDAC, with an area under the curve (AUC) of 0.90, and a combined panel including CA 19-9 achieved an AUC of 0.95. Additionally, plasma KRT5 and VCAN demonstrated superior diagnostic performance for early-stage PDAC with CA 19-9 levels below 37 U/mL (Stage I, AUC 0.85; Stage II, AUC 0.85). The specificity of plasma KRT5 and VCAN for PDAC was further validated by comparing their expression levels across various digestive cancers. Moreover, a significant decrease in plasma KRT5 and VCAN levels was observed post-surgery (P < 0.05), supporting their potential as biomarkers for clinical surveillance of PDAC. CONCLUSIONS Plasma KRT5 and VCAN proteins may serve as promising valuable biomarkers for the early diagnosis and clinical surveillance of PDAC.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiachun Su
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chunling Xue
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shuang Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoqiu Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ziming Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zilan Xu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yifan Zhou
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Sihan Zhao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Wu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyi Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Chongyu Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Freise C, Metzkow S, Zappe A, Ebert M, Stolzenburg N, Hahndorf J, Schnorr J, Pagel K, Taupitz M. The Uremic Toxins Inorganic Phosphate, Indoxylsulphate, p-Cresylsulphate, and TMAO Induce the Generation of Sulphated Glycosaminoglycans in Aortic Tissue and Vascular Cells via pAKT Signaling: A Missing Link in the "Gut-Matrix Axis". Toxins (Basel) 2025; 17:217. [PMID: 40423300 DOI: 10.3390/toxins17050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Gut-derived uremic toxins (UTs) contribute to cardiovascular disorders like atherosclerosis and cardiomyopathy in patients with chronic kidney disease (CKD), causing increased cardiovascular morbidity and mortality. The intermediate steps between higher concentrations of gut-derived UTs and organ damage caused by UTs are still insufficiently understood. Glycosaminoglycans (GAGs) as components of the extracellular matrix are known to interact with various ligands such as growth factors or receptors, thereby influencing (patho)physiological processes. We previously found that the UT inorganic phosphate (Pi) induces the synthesis and sulphation of the GAGs heparan sulphate and chondroitin sulphate in the rat vascular smooth muscle cell (VSMC) line A7r5 and in the human endothelial cell (EC) line EA.Hy926. The aim of this study was to investigate if other organic UTs modulate GAGs in vascular cells as well. We treated ex vivo cultures of rat aortic rings as well as primary rat VSMCs and human ECs with the UTs Pi, indoxylsulphate (IS), p-cresylsulphate (pCS), trimethylamine N-oxide (TMAO), and urea, and analyzed the samples by histological staining, qPCR, western blot, HPLC, and colorimetric assays. The UT treatment of aortic rings and cells increased contents of sulphated GAGs and hyaluronic acid. UT-treated cells contained higher amounts of 4S- and 6S-sulphated GAGs compared to controls. This was accompanied by altered expressions of genes and proteins relevant for GAG metabolism. Mechanistically, the effects of the UTs on GAGs involve the activation of the PI3K/Akt pathway and of the transcription factor NF-κB. In conclusion, the UT-induced remodeling of the cardiovascular matrix by upregulation of sulphated GAGs and hyaluronic acid in aortic tissue and vascular cells might be a missing link between gut-derived UT and pathophysiological alterations in the cardiovascular system in the sense of a gut-matrix axis.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Susanne Metzkow
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Ebert
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Julia Hahndorf
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Juthani R, Manne A. Blood-based biomarkers in pancreatic ductal adenocarcinoma: developments over the last decade and what holds for the future- a review. Front Oncol 2025; 15:1555963. [PMID: 40330826 PMCID: PMC12052548 DOI: 10.3389/fonc.2025.1555963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) accounts for a significant burden of global cancer deaths worldwide. The dismal outcomes associated with PDAC can be overcome by detecting the disease early and developing tools that predict response to treatment, allowing the selection of the most optimal treatment. Over the last couple of years, significant progress has been made in the development of novel biomarkers that aid in diagnosis, prognosis, treatment selection, and monitoring response. Blood-based biomarkers offer an alternative to tissue-based diagnosis and offer immense potential in managing PDAC. In this review, we have discussed the advances in blood-based biomarkers in PDAC, such as DNA (mutations and methylations), RNA, protein biomarkers and circulating tumor cells (CTC) over the last decade and also elucidated all aspects of practical implementation of these biomarkers in clinical practice. We have also discussed implementing multiomics utilizing more than one biomarker and targeted therapies that have been developed using these biomarkers.
Collapse
Affiliation(s)
- Ronit Juthani
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
21
|
Liu K, Wang Y, Li Q, Wang Y, Liu J, Zhou J, Song F, Cong Z, Wang Z, Kong N. Hypoxia LUAD H1975 cell-derived exosomal miR-671-3p promotes angiogenesis via regulating KLF2-VEGFR2 axis. Sci Rep 2025; 15:13148. [PMID: 40240492 PMCID: PMC12003721 DOI: 10.1038/s41598-025-97488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
For solid tumors, hypoxia is associated with disease aggressiveness and poor outcomes. In addition to undergoing broad intracellular molecular and metabolic adaptations, hypoxic tumor cells extensively communicate with their microenvironments to facilitate conditions favorable for their survival, growth, and metastasis. This communication is mediated by diverse secretory factors, including exosomes (extracellular vesicles of endosomal origin). Exosomal cargo is altered considerably by hypoxia, with significant impacts on tumor-cell communication with both local and distant microenvironments. Exosomes released by cancer cells influence the tumor environment to accelerate metastasis. While tumor-derived exosomes have been identified as a major driver of premetastatic niche formation at distant sites, this mechanism in lung adenocarcinoma (LUAD) remains unclear. We found that miR-671-3p in exosomes derived from H1975 under hypoxic conditions target Krüppel-like factor 2 (KLF2) to regulate VEGFR2 expression in endothelial cells to promote angiogenesis. In addition, miR-671-3p is expressed at high levels in circulating exosomes isolated from patients with LUAD. Our study suggests that exosome miR-671-3p is involved in the formation of premetastatic niche and may serve as a blood-based biomarker for LUAD metastasis.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| | - Qisen Li
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yujue Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jinrui Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jintao Zhou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Company, Changchun, China
| | - Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Zhe Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| |
Collapse
|
22
|
Feng W, Lin Y, Zhang L, Hu W. Proteomic profiles screening identified novel exosomal protein biomarkers for diagnosis of lung cancer. Clin Proteomics 2025; 22:12. [PMID: 40229672 PMCID: PMC11998344 DOI: 10.1186/s12014-025-09535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Exosomes play important role in biological functions, including both normal and disease process. Multiple cell types can secret exosomes, which act as message carriers. Increased evidences reveal that exosomes are promising diagnosis biomarkers in malignant tumors. METHODS In this study, we enrolled 78 participants, including 20 lung adenocarcinoma (LUAD), 18 lung squamous carcinoma (LUSC), 20 lung benign diseases (LUBN) and 20 healthy controls (NL) and we performed parallel reaction-monitoring (PRM)-mass spectrometry to screening the proteomic variation by label free analysis in exosomes from all groups, which has been widely used to quantify and detect target proteins. RESULTS Total 14 protein were identified as candidate biomarkers, complement components C9, apolipoprotein B (APOB), filamin A (FLNA), guanine nucleotide binding protein G subunit 2 (GNB2), fermitin family homolog 3 (FERMT3) showed significantly differentiation in total lung cancer (LUAD and LUSC together), we then obtained combination analysis of 5 proteins and the area under the curve (AUC), sensitivity (SN) and specificity (SP) were 63.0%, 65.0%, and 75.0%, respectively, in comparison to NL group. And the LUAD combination panel, peroxiredoxin 6 (PRDX6), integrin alpha-IIb (ITGA2B) and hemoglobin subunit delta (HBD) revealed AUC was 95.0%, SN was 90.0% and SP was 95.0% in comparison to NL controls. In LUSC analysis, combination analysis of fibronectin 1 (FN1), pregnancy zone protein (PZP) and complement C1q tumor necrosis factor related protein 3 (C1QTNF3) showed that AUC was 88.1%, SN was 75.0%, SP was 100% in paralleled with NL group. Finally C9, FLNA, PZP were overexpressed in lung cancer H1299 and A549 cell lines and the results indicated that C9 acted as oncogenic role by increasing proliferation, migration and invasion of lung cancer cells, while FLNA and PZP played tumor-suppression by inhibition biological functions of lung cancer cells. CONCLUSION Taken together, our study revealed multiple exosomal proteins which could be applied as candidate biomarkers in diagnosis of lung cancer.
Collapse
Affiliation(s)
- Weiyan Feng
- Department of Pancreas Surgery, West China Hospital, Sichuan University, Chengdu, 610051, People's Republic of China
| | - Ying Lin
- Department of Pancreas Surgery, West China Hospital, Sichuan University, Chengdu, 610051, People's Republic of China
| | - Ling Zhang
- Division III of General Surgery, West China Hospital-Chengdu Shangjin Nanfu, West China Hospital, Sichuan University, Chengdu, 611730, Sichuan, China
| | - Weiming Hu
- Department of Pancreas Surgery, West China Hospital, Sichuan University, Chengdu, 610051, People's Republic of China.
| |
Collapse
|
23
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [PMID: 40235899 PMCID: PMC11995328 DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
24
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
25
|
Mafakheri A, Fathi F, Majidpoor J, Moayeri H, Mortezaee K. Secretory exosomes from modified immune cells against cancer. Med Oncol 2025; 42:159. [PMID: 40208472 DOI: 10.1007/s12032-025-02706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) play significant roles in cancer progression through mediating inter/intra cellular communications within tumor microenvironment (TME). EVs are used as non-invasive diagnostic tools, drug delivery systems, and cancer vaccines, considering the anti-tumor potential, safety, biocompatibility and physiochemical stability of endogenous EVs. Modification of immune cells, either genetically or epigenetically, is a growing field of cancer research with the goal of enhancing efficacy of immunotherapy. This review focuses on the possibility of manipulating immune cells including dendritic cells (DCs), natural killer (NK) cells and T cells to secrete EVs that exert immune function either by activating immune responses or altering immune cell behavior to enhance anti-tumor efficacy, and discusses potential obstacles and recommendations for improved functionality of this therapeutic method.
Collapse
Affiliation(s)
- Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Moayeri
- Department of General Surgery, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
26
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 PMCID: PMC11908897 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
27
|
Ma J, Li K, Duan Z, Yang X, Zhou G, Ye S. On-Chip Isolation and Reciprocal Signal Amplification Detection of Tumor-Derived Exosomes in Dual-Control Microfluidic Device. Anal Chem 2025; 97:7483-7489. [PMID: 40152743 DOI: 10.1021/acs.analchem.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The detection of exosomes is critical for health monitoring and disease diagnosis. However, their small size and low concentration present significant challenges. In this study, we designed a dual-control microchip integrated with a surface-enhanced Raman scattering (SERS) signal amplification detection method. By employing separate chambers for isolation and detection, this method achieves magnetic separation control and DNA cascade signal amplification with electrokinetic enrichment detection. The magnetic separation step captures and isolates exosomes in a magnetic-controlled reaction chamber, releasing a signal-switching strand that translates exosome recognition into a DNA signal amplification process. The DNA cascade reciprocal signal amplification reaction is performed in an electrokinetic enrichment reaction chamber, significantly improving detection efficiency and signal intensity. In addition, absolute-value coupled data processing reduces background interference. These unique merits enable precise and highly efficient assay of exosomes. This dual-control microchip signal amplification sensor exhibits remarkable sensitivity, rapid detection times, with a detection limit of 10.9 particles/μL and a reaction time of 35 min, and successful application to real sample analysis. The platform offers a viable, accurate, and portable solution for medical point-of-care testing.
Collapse
Affiliation(s)
- Junhe Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kexin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhaofan Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuexin Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guodong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
28
|
Wu Y, Wang C, Guo Y, Zhang Y, Zhang X, Wang P, Yue W, Zhu X, Liu Z, Zhang Y, Guo H, Han L, Li M. Small extracellular vesicle-based one-step high-throughput microfluidic platform for epithelial ovarian cancer diagnosis. J Nanobiotechnology 2025; 23:278. [PMID: 40189497 PMCID: PMC11974170 DOI: 10.1186/s12951-025-03348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is diagnosed at advanced stages, resulting in limited treatment options for patients. While early detection of OC has been investigated, the invasiveness of approaches, high sample requirements, or false-positive rates undermined its benefits. Here, we present a "one-step" high-throughput microfluidic platform for epithelial ovarian cancer (EOC) detection that integrates small extracellular vesicle (sEV) capture, in situ lysis, and protein biomarker detection. RESULTS We identified 1,818 differentially expressed proteins (DEPs) through proteomic analysis of sEVs from patients' serum, combined with cell lines. Through multi-step screening of DEPs, we identified EOC biomarkers to customize the microfluidic platform. We used the microfluidic platform to test the expression of EOC biomarkers with 2 µL of serum from 209 participants in a prospective cohort. Based on the test results, an EOC detection model (P9) was constructed, which achieved a sensitivity of 92.3% (95% CI, 75.9-97.9%) for stage I, 90.0% (95% CI, 69.9-97.2%) for stage II at a specificity of 98.8% (95% CI, 93.6-99.8%) in the training set. The specificities reached 98.8% (95% CI, 93.6-99.8%) in the training set and 100.0% (95% CI, 91.6-100.0%) in the validation set of a held-out group of 105 participants. A model combining the P9 and patient's CA125 value exhibited 100.0% (95% CI, 95.6-100%) specificity in both training and validation, without compromising sensitivity. CONCLUSIONS We developed a non-invasive high-throughput microfluidic platform for EOC sEV-derived biomarker detection. It significantly reduced false positives and sample volume. Given its convenience and low cost, this platform could advance OC early detection to benefit of women.
Collapse
Affiliation(s)
- Yu Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yuhan Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Xue Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Pan Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, China.
| | - Hongyan Guo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, China.
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, 100191, China.
| |
Collapse
|
29
|
Zhao Y, Wen C, Wang Q, Qing Y, Tondi S, Reina C, Šabanović B, Chang CY, Lai C, Wang H, Agerbaek MØ, Clausen TM, Gustavsson T, Theander TG, Salanti A, Meny CC, Shen B, Aicher A, Tang J, Heeschen C. Use of the Malaria Protein VAR2CSA for the Detection of Small Extracellular Vesicles to Diagnose Adenocarcinoma. J Extracell Vesicles 2025; 14:e70067. [PMID: 40241173 PMCID: PMC12003099 DOI: 10.1002/jev2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge for early diagnosis due to the lack of sensitive and specific biomarkers. This encouraged us to explore the diagnostic value of cancer-derived small extracellular vesicles (sEVs) as early detection biomarkers. We previously showed that the recombinant malaria protein VAR2CSA (rVAR2) selectively binds to oncofetal chondroitin sulfate (ofCS) on the surfaces of cancer cells, which might be useful for identifying cancer-derived sEVs. Indeed, flow cytometry revealed strong ofCS expression in PDAC cell-derived sEVs, as evidenced by the presence of mutant KRAS, a common genetic alteration in PDAC. Plasma from PDAC patients showed significantly higher ofCS+ sEV levels compared to healthy donors and patients with benign gastrointestinal diseases. ROC analysis for ofCS+ sEVs revealed an AUC of 0.9049 for the detection of all-stage and 0.9222 for early-stage PDAC. Notably, mutant KRAS was also detected in these patient-derived sEVs. Most intriguingly, combining ofCS+ sEVs and CA19-9 resulted in an AUC of 0.9707 for the detection of early PDAC. Our study demonstrates that rVAR2 is suitable for detecting ofCS+ cancer-derived sEVs in plasma, thereby providing high efficiency for identifying PDAC patients among a diverse population. These findings suggest that rVAR2-based sEV detection could serve as a powerful diagnostic tool to improve patient survival through early detection.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenlei Wen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Pancreatic Disease Center, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Wang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yue Qing
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Serena Tondi
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Chiara Reina
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Berina Šabanović
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Cherry Yin‐Yi Chang
- Department of Medicine, School of MedicineChina Medical UniversityTaichungTaiwan
- Department of Obstetrics and GynecologyChina Medical University HospitalTaichungTaiwan
| | - Chu‐Hu Lai
- Precision Immunotherapy, Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Huimin Wang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mette Ø. Agerbaek
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- VarCT DiagnosticsCopenhagenDenmark
| | - Thomas M. Clausen
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- VAR2 PharmaceuticalsCopenhagenDenmark
| | - Thor G. Theander
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Clara Csilla Meny
- 2 Institute for Pathology and Experimental Oncology ResearchSemmelweis UniversityBudapestHungary
| | - Baiyong Shen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Pancreatic Disease Center, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Jiajia Tang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Christopher Heeschen
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| |
Collapse
|
30
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
31
|
Tsao HE, Ho M. Structural Features of Glypicans and their Impact on Wnt Signaling in Cancer. PROTEOGLYCAN RESEARCH 2025; 3:e70029. [PMID: 40416340 PMCID: PMC12101617 DOI: 10.1002/pgr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Glypicans (GPCs) are a family of cell surface proteoglycans involved in multiple signaling pathways that regulate cell fate and proliferation. They share a characteristic structure composed of a core protein with two or more heparan sulfate chains and a glycosyl-phosphatidylinositol anchor that attaches them to the cell membrane. Aberrant expression of certain glypicans such as GPC1, GPC2, and GPC3 has been found in multiple types of cancer and causes the dysregulation of Wnt, hedgehog, and other signaling pathways, making them emerging targets for cancer immunotherapy. The molecular mechanism by which glypicans interact with signaling factors will provide insights for the development of cancer therapeutics. However, the structural complexes of human glypicans with Wnt and other key signaling factors remain unsolved. In this brief review, we analyze the current protein structural evidence for glypicans, with an emphasis on their interaction with Wnt, in an effort to provide insights to understand the molecular mechanisms by which glypicans play positive or negative roles in Wnt signaling in cancer and to discuss their translational potentials.
Collapse
Affiliation(s)
- Hsi-En Tsao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, United States of America
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, United States of America
| |
Collapse
|
32
|
Wu D, Ma W, Wang L, Long C, Chen S, Liu J, Qian Y, Zhao J, Zhou C, Jia R. Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury. Mater Today Bio 2025; 31:101528. [PMID: 39980630 PMCID: PMC11840549 DOI: 10.1016/j.mtbio.2025.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
Acute kidney injury (AKI) resulting from ischemia-reperfusion injury (IRI) is a common challenge in various clinical practices, yet effective therapies remain elusive. Endothelial injury plays a crucial role in the pathogenesis of renal IRI. Endothelial progenitor cells (EPCs) derived extracellular vesicles (EVs) hold promise as cell-free therapies for treating renal IRI; however, their efficacy is limited by low delivery efficiency. In this study, we developed neutrophils (NEs) membrane-modified EVs (N-EVs) by exploiting the natural properties of NEs to target damaged endothelium. N-EVs inherited the characteristic membrane proteins of NEs along with the biological functions of EPCs-EVs. Results from in vitro and in vivo experiments demonstrated that N-EVs significantly enhanced the targeting efficiency of EVs towards IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, N-EVs effectively promoted the proliferation, migration, and tube-formation abilities of injured endothelial cells (ECs) and contributed to overall renal function improvement in IRI kidneys through targeted delivery of miR-21-5p. Additionally, N-EVs could restore damaged endothelial integrity, reduce cytokine release, and inhibit leukocyte infiltration, hence alleviating renal inflammation. In conclusion, our accessible engineering approach represents a promising strategy for treating renal IRI. Furthermore, this membrane hybrid modification can be tailored and optimized for broader applications in treating other diseases.
Collapse
Affiliation(s)
- Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Liucheng Wang
- Department of Urology, Lianshui People's Hospital, Kangda College Affiliated to Nanjing Medical University, Jiang Su, 223400, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Silin Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
33
|
Feng X, Shen A, Zhang W, Jia S, Iliuk A, Wang Y, Zhang W, Zhang Y, Tao WA, Hu L. High-throughput capture and in situ protein analysis of extracellular vesicles by chemical probe-based array. Nat Protoc 2025; 20:1057-1081. [PMID: 39438698 DOI: 10.1038/s41596-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are small particles with phospholipid bilayers that carry a diverse range of cargoes including nucleic acids, proteins and metabolites. EVs have important roles in various cellular processes and are increasingly recognized for their ubiquitous role in cell-cell communications and potential applications in therapeutics and diagnostics. Although many methods have been developed for the characterization and measurement of EVs, analyzing them from biofluids remains a challenge with regard to throughput and sensitivity. Recently, we introduced an approach to facilitate high-throughput analysis of EVs from trace amounts of sample. In this method, an amphiphile-dendrimer supramolecular probe (ADSP) is coated onto a nitrocellulose membrane for array-based capture and to enable an in situ immunoblotting assay. Here, we describe the protocol for our array-based method of EV profiling. We describe an enhanced version of the method that incorporates an automated printing workstation, ensuring high throughput and reproducibility. We further demonstrate the use of our array to profile specific glycosylations on the EV surface using click chemistry of an azide group introduced by metabolic labeling. In this protocol, the synthesis of ADSP and the fabrication of ADSP nitrocellulose membrane array can be completed on the same day. EVs are efficiently captured from biological or clinical samples through a 30-min incubation, followed by an immunoblotting assay within a 3-h window, thus providing a high-throughput platform for EV isolation and in situ targeted analysis of EV proteins and their modifications.
Collapse
Affiliation(s)
- Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Ao Shen
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Shengnan Jia
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Wenke Zhang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Cao Y, Qin Y, Cheng Q, Zhong J, Han B, Li Y. Bifunctional nanomaterial enabled high-specific isolation of urinary exosomes for cervical cancer metabolomics analysis and biomarker discovery. Talanta 2025; 285:127280. [PMID: 39613490 DOI: 10.1016/j.talanta.2024.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Cervical cancer (CC) remains a critical public health issue, highlighting the importance of early detection. However, current methods such as cytological and HPV testing face challenges of invasiveness and low patient compliance. Exosomes, emerging as crucial in cancer diagnosis, offer promise due to their noninvasive, highly specificity, and abundant biomarkers. However, isolating exosomes efficiently remains challenging. In this study, we designed and synthesized a bifunctional affinity nanomaterial Fe3O4 @CD63-CLIKKPF, based on the synergistic interaction between its modified aptamer CD63 and peptide CLIKKPF, and CD63 protein and PS of exosomes which can achieve high specificity and high yield separation of urinary exosomes. Notably, the co-modified aptamer CD63 and peptide CLIKKPF not only enable efficient exosome isolation by leveraging dual-affinity mechanisms through a synergistic "AND" logic analysis, but also could be achieved on the Fe3O4 in one-step reaction at room temperature via Fe-S bonding. Combined with LC-MS/MS, we conducted exosome metabolomics analysis in healthy individuals and CC patients across various stages, and machine learning models demonstrated accurate classification (accuracy >0.822) and prediction capabilities for CC. Furthermore, six key metabolites indicative of CC progression were identified and validated in additional patient samples, highlighting their potential as biomarkers. Overall, this study establishes a novel method for exosome metabolomics in CC, offering insights for non-invasive early diagnosis and progression prediction on a large scale.
Collapse
Affiliation(s)
- Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Qunxian Cheng
- Department of Gynecology and Obstetrics, Minhang Hospital, Fudan University, Shanghai, China
| | - Jialiang Zhong
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
35
|
Wang Y, Qin C, Zhao Y, Zhao B, Li Z, Li T, Zhang X, Wang W. Extracellular vesicles-miR-205-5p inhibits lymphatic metastasis in pancreatic cancer through diffusely downregulating VEGFA. J Cancer 2025; 16:2197-2211. [PMID: 40302796 PMCID: PMC12036096 DOI: 10.7150/jca.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is to become the second leading cause of cancer-related death by 2040. Many factors contribute to this dilemma, including lymphatic metastasis, which is the primary cause of PDAC metastasis. The inhibition of early lymph node metastasis, including the lymphangiogenic process, may be a novel strategy for PDAC treatment. Through miRNA sequencing of plasma extracellular vesicles (EVs) from PDAC patients, for the first time, we identified that plasma EV-miR-205-5p served as a non-invasive biomarker distinguishing lymphatic metastasis status (N0 vs. N2) in PDAC patients. Using tissue microarray and in situ hybridization, we discovered that miR-205-5p was highly expressed in PDAC, but negatively correlated with lymph node metastasis. By in vivo and in vitro experiments, we demonstrated its unique mechanism of action via EV-mediated transfer to human lymphatic endothelial cells (HLECs), leading to systematic downregulation of VEGFA and inhibition of the Akt/Erk pathway, which suppressed lymphangiogenesis. Delivering miR-205-5p via engineered EVs might be a promising strategy to eliminate PDAC lymphatic metastasis and improve prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
36
|
Gu R, Jiang L, Dai S, Yue Y, Li S, Zheng S, Wu L, Zhao S. Identification of exosome-related SERPINB1 as a novel predictor for tumor immune microenvironment and clinical outcomes in ovarian cancer. J Ovarian Res 2025; 18:65. [PMID: 40155942 PMCID: PMC11954311 DOI: 10.1186/s13048-025-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND With a high global incidence of over three million new cases in 2020 and a high mortality of over two million fatalities, ovarian cancer is one of the most common malignant tumors in gynecology. Exosomes can control the immunological condition of the tumor microenvironment (TME) by participating in intercellular interactions. Therefore, we aimed to construct an exosome-related prognostic model to predict the clinical outcomes of ovarian cancer patients. METHODS In this research, expression patterns of exosome-related genes were examined in multiple single-cell RNA-sequencing and bulk RNA-sequencing datasets. In addition, a novel exosome-related prognostic model was established by the least absolute shrinkage and selection operator (LASSO) regression method. Then, the correlations between risk score and immunological characteristics of the TME were explored. Moreover, SERPINB1, a gene in the prognostic signature, was further analyzed to reveal its value as a novel biomarker. RESULTS In the current study, combined with single-cell and bulk omics datasets, we constructed an exosome-related prognostic model of four genes (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3). Moreover, the risk score was associated with worse overall survival (OS) in ovarian cancer patients. Further analysis found that patients with high-risk score tended to shape a desert TME with hardly infiltration of immune cells. Then, SERPINB1, positively correlated with the favorable OS and negatively with the risk score, was chosen as the representative biomarker of the model. Moreover, SERPINB1 was positively correlated with the infiltration of immune subpopulations in both public and in-house cohort. In addition, the high-resolution analysis found that SERPINB1+ tumor cells communicated with microenvironment cells frequently, further explaining the potential reason for shaping an inflamed TME. CONCLUSION To sum up, we established a novel exosome-related prognostic model (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3) to predict the prognosis of patients with ovarian cancer and identify the immunological characteristics of the TME. In addition, SERPINB1 was identified as a promising biomarker for prognostic prediction in ovarian cancer.
Collapse
Affiliation(s)
- Rui Gu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liping Jiang
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shuqin Dai
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Yajie Yue
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shangjin Li
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shudan Zheng
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liwei Wu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| | - Shaojie Zhao
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| |
Collapse
|
37
|
Bi W, Cao X, Li J, Gao Y, Song Y, He B. Ultrasensitive Detection of Extracellular Vesicles Based on Metal-Organic Framework DNA Biobarcodes Triggered G-Quadruplex Coupled with Rolling Circle Amplification Assay. ACS Sens 2025; 10:2136-2146. [PMID: 40048560 DOI: 10.1021/acssensors.4c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Extracellular vesicles (EVs), as liquid biopsy markers for accurate tumor diagnosis, are considered to hold great promise. However, effectively isolating and sensitively detecting EVs with convenience still face challenges. Herein, we propose a highly sensitive and specific platform for EV detection by integrating a metal-organic framework (MOF)-based DNA biobarcodes strategy with a rolling circle amplification (RCA)/G-quadruplex system. In this study, first, Zr-MOFs act as signal converters by comodification with DNA barcodes and antibodies, converting and amplifying the abundance of EVs into DNA barcodes. Second, the released DNA can trigger RCA, followed by G-quadruplex formation to further amplify the signal. Consequently, this approach significantly enhances the sensitivity for EV biomarker detection, achieving a low limit of detection of 100 EVs mL-1. Furthermore, the strategy offers high sensitivity, specificity, accuracy, and simplicity, highlighting its potential for clinical applications in noninvasive EV detection.
Collapse
Affiliation(s)
- Wen Bi
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
38
|
Chen H, Ma M, Zhang L, Wang Z, Sun H, Liu C, Zhang L, Zhang W. An effective strategy based on electrostatic interaction for the simultaneous sequential purification and isolation of exosomes. Mikrochim Acta 2025; 192:259. [PMID: 40138024 DOI: 10.1007/s00604-025-07125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
A material-based strategy was developed to achieve the simultaneous purification and isolation of exosomes from serum and urine. Based on the combination of electrostatic interaction and hydrophobic interaction, polyacrylic acid (PAA)-coated anionic nanoparticles (Fe3O4@PAA) were used to remove positively charged contaminant proteins and neutral proteins, and polyethyleneimine (PEI)-functionalized cationic nanoparticles (Fe3O4@PEI) were applied to remove negatively charged contaminant proteins as well as capture and mild release of negatively charged exosome. By employing this strategy (denoted as PAA-PEI), a high recovery (> 95%) of serum exosomes was achieved with a high removal efficiency of protein contaminants (87%). The strategy was further applied to purify and isolate urinary exosomes, followed by downstream proteomics analysis. Compared with the standard isolation method of ultracentrifugation (UC), the PAA-PEI strategy shows high contaminant protein removal efficiency (98.6%) and obtains a higher concentration of exosomes. Using the PAA-PEI strategy, more urinary exosomal proteins (124) than UC (92) were identified. These results indicate that the PAA-PEI strategy is not only excellent in exosome capture but also effectively mitigates the interference of protein contamination. Given that the PAA-PEI strategy demonstrates a high protein contaminant removal efficiency and requires less cost and time (1 h) than UC (3 h), it would be a promising candidate method for efficiently purifying and isolating exosomes from complex biological samples for early discovery and diagnosis diseases. Furthermore, this study provides a new direction for emphasizing the issue of protein interference in the development of biological sample isolation methods.
Collapse
Affiliation(s)
- Haihong Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| | - Miaoxia Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China.
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| | - Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Chenyu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, P. R. China
| |
Collapse
|
39
|
Gao Y, Wei D, Zhong L, Liao D, Zheng X, Lin Y, Fang D, Chang B, Kang T. Extracellular vesicles in cancer progression: mechanisms and significance. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2852-9. [PMID: 40146455 DOI: 10.1007/s11427-024-2852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Tumor recurrence, metastasis, clinical drug resistance, and immune evasion are critical events in cancer progression, characterized by significant spatiotemporal heterogeneity and plasticity. Intercellular communication between tumor cells and other cells within the tumor microenvironment plays a pivotal role in these processes. Extracellular vesicles (EVs), heterogeneous secretory messengers carrying bioactive molecules, facilitate this cell-to-cell communication, thereby dynamically influencing cancer progression. Deciphering the mechanisms of EV formation and regulatory pathways and identifying key networks and targets in tumor metastasis, drug resistance, and immune response mediated by EVs will provide new insights into the understanding of cancer progression patterns and offer innovative strategies for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li Zhong
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dongmei Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Boyang Chang
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
40
|
Yeat NY, Liu LH, Chang YH, Lai CPK, Chen RH. Bro1 proteins determine tumor immune evasion and metastasis by controlling secretion or degradation of multivesicular bodies. Dev Cell 2025:S1534-5807(25)00155-8. [PMID: 40185104 DOI: 10.1016/j.devcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Exosomes play pleiotropic tumor-promoting functions and are secreted by fusion of multivesicular bodies (MVBs) with the plasma membrane. However, MVBs are also directed to lysosomes for degradation, and the mechanism controlling different fates of MVBs remains elusive. Here, we show that the pro-tumor protein WDR4 enhances exosome secretion from mouse and human cancer cells through degrading the endosomal sorting complex required for transport (ESCRT)-associated Bro1-family protein PTPN23. Mechanistically, PTPN23 and ALIX compete for binding to syntenin, thereby directing MVBs toward degradation and secretion, respectively. ALIX, but not PTPN23, recruits actin-capping proteins CAPZA1/CAPZB to prevent branched filamentous actin (F-actin) accumulation around MVBs, thus enabling MVBs trafficking to the cell periphery for secretion. Functionally, WDR4/ALIX-dependent exosomes load a set of pro-tumor proteins through LAMP2A, thereby potentiating metastasis and immune evasion in mice. Our study highlights a previously unappreciated coupling between the biogenesis mechanism and the fate decision of MVBs and its importance in determining exosomal cargos, which have a profound impact on tumor progression.
Collapse
Affiliation(s)
- Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Heng Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Hsuan Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
41
|
Li C, Chen M, Guo L, Yu D, Xu Z, Chen B, Xiao Z. Bone marrow mesenchymal stem cell exosomes improve fracture union via remodeling metabolism in nonunion rat model. J Orthop Surg Res 2025; 20:308. [PMID: 40128748 PMCID: PMC11934688 DOI: 10.1186/s13018-025-05721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Nonunion of fractures is a major unsolved problem in clinical treatment and prognosis of orthopedics. Bone marrow mesenchymal stem cell (BMSC) exosomes have been proven to be involved in mediating tissue and bone regeneration in a variety of diseases. However, the role of BMSC exosomes in fracture nonunion is unclear. METHODS BMSC exosomes were injected into a rat model of nonunion fracture, and the fracture-healing site was detected by micro-CT and the serum metabolites were analyzed by LC-MS/MS. RESULTS The results showed that the exosomes could be successfully isolated from rat BMSCs cultured in an exosome-free medium. Compared with the model group, the fracture site of the exosome-treated rats were healing obviously. Compared with the PBS group, there were 158 up-regulated differential abundance metabolites (DAMs) and 79 down-regulated DAMs in the BMSC-exo group. The DAMs were enriched in 'Th1 and Th2 cell differentiation', 'ErbB signaling pathway', 'PPAR signaling pathway' and 'HIF-1 signaling pathway' that were related to the function of cell proliferation and differentiation. DAMs-PE in HIF-1 signaling pathway were the major metabolite to promote fracture healing. CONCLUSIONS Our study reveals the mechanism by which BMSC-exosome improves the fracture healing process through metabolic reprogramming and provides a reference for the treatment of fracture nonunion.
Collapse
Affiliation(s)
- Cheng Li
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Ming Chen
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Lijun Guo
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Dadong Yu
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Zhonghai Xu
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Bin Chen
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China
| | - Zhijian Xiao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
42
|
Dahiya DS, Malik S, Paladiya R, Ahsan S, Wasim H, Bharadwaj HR, Goel A, Jaan A, Hayat U, Hasan F, Sonaiya S, Ali H. Advances in Non-Invasive Screening Methods for Gastrointestinal Cancers: How Continued Innovation Has Revolutionized Early Cancer Detection. Cancers (Basel) 2025; 17:1085. [PMID: 40227568 PMCID: PMC11987734 DOI: 10.3390/cancers17071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
The early diagnosis of gastrointestinal cancers is essential for better survival and to reduce the burden of malignancies worldwide [...].
Collapse
Affiliation(s)
- Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Sheza Malik
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Ruchir Paladiya
- Department of Internal Medicine, University of Connecticut Health Center, Farmington, CT 06269, USA
| | - Sidra Ahsan
- Department of Internal Medicine, Ochsner LSU Health—Fairfield Medical Office Building, 1801 Fairfield Ave, Shreveport, LA 71101, USA
| | - Haniya Wasim
- Department of Internal Medicine, AdventHealth West Florida, Altamonte Springs, FL 32701, USA
| | | | - Abhishek Goel
- Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville, NC 23804, USA
| | - Ali Jaan
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Umar Hayat
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, PA 18711, USA
| | - Fariha Hasan
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ 08103, USA
| | - Sneh Sonaiya
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Hassam Ali
- Division of Gastroenterology, Hepatology & Nutrition, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
43
|
Chi H, Shi L, Gan S, Fan G, Dong Y. Innovative Applications of Nanopore Technology in Tumor Screening: An Exosome-Centric Approach. BIOSENSORS 2025; 15:199. [PMID: 40277513 PMCID: PMC12024935 DOI: 10.3390/bios15040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Its complex pathogenesis and metastasis pose significant challenges for early diagnosis, underscoring the urgent need for innovative and non-invasive tumor screening methods. Exosomes, small extracellular vesicles that reflect the physiological and pathological states of their parent cells, are uniquely suited for cancer liquid biopsy due to their molecular cargo, including RNA, DNA, and proteins. However, traditional methods for exosome isolation and detection are often limited by inadequate sensitivity, specificity, and efficiency. Nanopore technology, characterized by high sensitivity and single-molecule resolution, offers powerful tools for exosome analysis. This review highlights its diverse applications in tumor screening, such as magnetic nanopores for high-throughput sorting, electrochemical sensing for real-time detection, nanomaterial-based assemblies for efficient capture, and plasmon resonance for ultrasensitive analysis. These advancements have enabled precise exosome detection and demonstrated promising potential in the early diagnosis of breast, pancreatic, and prostate cancers, while also supporting personalized treatment strategies. Additionally, this review summarizes commercialized products for exosome-based cancer diagnostics and examines the technical and translational challenges in clinical applications. Finally, it discusses the future prospects of nanopore technology in advancing liquid biopsy toward clinical implementation. The continued progress of nanopore technology not only accelerates exosome-based precision medicine but also represents a significant step forward in next-generation liquid biopsy and tumor screening.
Collapse
Affiliation(s)
- Heng Chi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | - Liuxin Shi
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
| | | | | | - Yuliang Dong
- BGI Research, Shenzhen 518083, China; (H.C.); (L.S.)
- BGI Research, Hangzhou 310030, China;
| |
Collapse
|
44
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
45
|
Yu D, Gu J, Zhang J, Wang M, Ji R, Feng C, Santos HA, Zhang H, Zhang X. Integrated Microfluidic Chip for Neutrophil Extracellular Vesicle Analysis and Gastric Cancer Diagnosis. ACS NANO 2025; 19:10078-10092. [PMID: 40059332 PMCID: PMC11924328 DOI: 10.1021/acsnano.4c16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Neutrophil-derived extracellular vesicles (NEVs) are critically involved in disease progression and are considered potential biomarkers. However, the tedious processes of NEV separation and detection restrain their use. Herein, we presented an integrated microfluidic chip for NEV (IMCN) analysis, which achieved immune-separation of CD66b+ NEVs and multiplexed detection of their contained miRNAs (termed NEV signatures) by using 10 μL serum samples. The optimized microchannel and flow rate of the IMCN chip enabled efficient capture of NEVs (>90%). After recognition of the captured NEVs by a specific CD63 aptamer, on-chip rolling circle amplification (RCA) reaction was triggered by the released aptamers and miRNAs from heat-lysed NEVs. Then, the RCA products bound to molecular beacons (MBs), initiating allosteric hairpin structures and amplified "turn on" fluorescence signals (RCA-MB assay). Clinical sample analysis showed that NEV signatures had a high area under curve (AUC) in distinguishing between healthy control (HC) and gastric cancer (GC) (0.891), benign gastric diseases (BGD) and GC (0.857). Notably, the AUC reached 0.912 with a combination of five biomarkers (NEV signatures, CEA, and CA199) to differentiate GC from HC, and the diagnostic accuracy was further increased by using a machine learning (ML)-based ensemble classification system. Therefore, the developed IMCN chip is a valuable platform for NEV analysis and may have potential use in GC diagnosis.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianmei Gu
- Department
of Clinical Laboratory Medicine, Affiliated
Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China
| | - Jiahui Zhang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Maoye Wang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Runbi Ji
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School
of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University
Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Hongbo Zhang
- Pharmaceutical
Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
- Turku Biosciences
Center, University of Turku and Åbo
Akademi University, Turku 20520, Finland
| | - Xu Zhang
- Jiangsu
Key Laboratory of Medical Science and Laboratory Medicine, School
of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
46
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
47
|
Mak CH, Wang GR, Li ZZ, Cao LM, Zhang CX, Zhu ZQ, Liu B, Bu LL. Hidden messages in fluids: A review of clinical and fundamental perspectives on post-lymph node dissection drains. Int J Cancer 2025; 156:1103-1113. [PMID: 39470623 DOI: 10.1002/ijc.35240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
In recent years, there has been a growing interest in liquid biopsy due to its non-invasive diagnostic value. Postoperative drainage fluid (PDF) is the fluid exudate from the wound site following lymph node dissection. PDF is regarded as a medical waste with no specific clinical significance. Nevertheless, the liquid biopsy of PDF may enable the reuse of this fluid. PDF contains a variety of body fluids, including blood and lymph. PDF contains a variety of biological components, including cytokines, extracellular vesicles (EVs), proteins, nucleic acids, cells and bacteria. These components are indicative of the postoperative inflammatory response, the immune response and the therapeutic response. In this review, we examine the current state of research in the field of liquid biopsy in PDF, elucidating how the analysis of its components can assess the prognosis of patients after lymph node dissection, monitor real-time changes in patient status, and identify new biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Chon-Hou Mak
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen-Xi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhao-Qi Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Odehnalová N, Šandriková V, Hromadka R, Skaličková M, Dytrych P, Hoskovec D, Kejík Z, Hajduch J, Vellieux F, Vašáková MK, Martásek P, Jakubek M. The potential of exosomes in regenerative medicine and in the diagnosis and therapies of neurodegenerative diseases and cancer. Front Med (Lausanne) 2025; 12:1539714. [PMID: 40182844 PMCID: PMC11966052 DOI: 10.3389/fmed.2025.1539714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes, nanosized extracellular vesicles released by various cell types, are intensively studied for the diagnosis and treatment of cancer and neurodegenerative diseases, and they also display high usability in regenerative medicine. Emphasizing their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers, enabling non-invasive early detection and personalized medicine. The cargo loading of exosomes with therapeutic agents presents an innovative strategy for targeted drug delivery, minimizing off-target effects and optimizing therapeutic interventions. In regenerative medicine, exosomes play a crucial role in intercellular communication, facilitating tissue regeneration through the transmission of bioactive molecules. While acknowledging existing challenges in standardization and scalability, ongoing research efforts aim to refine methodologies and address regulatory considerations. In summary, this review underscores the transformative potential of exosomes in reshaping the landscape of medical interventions, with a particular emphasis on cancer, neurodegenerative diseases, and regenerative medicine.
Collapse
Affiliation(s)
- Nikola Odehnalová
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Viera Šandriková
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
| | - Róbert Hromadka
- NEXARS Research and Development Center C2P s.r.o, Chlumec nad Cidlinou, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Petr Dytrych
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - David Hoskovec
- Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- The Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Martina Koziar Vašáková
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
49
|
Zhao X, Liu X, Chen T, Xie H, Li S, Zhang Y, Zhang H, Cao Y, Du W, Feng X, Liu X, Li Y, Chen P, Li Q, Liu BF. Fully Integrated Centrifugal Microfluidics for Rapid Exosome Isolation, Glycan Analysis, and Point-of-Care Diagnosis. ACS NANO 2025; 19:8948-8965. [PMID: 40014808 DOI: 10.1021/acsnano.4c16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Exosomes present in the circulatory system demonstrate considerable promise for the diagnosis and treatment of diseases. Nevertheless, the complex nature of blood samples and the prevalence of highly abundant proteins pose a significant obstacle to prompt and effective isolation and functional evaluation of exosomes from blood. Here, we present a fully integrated lab-on-a-disc equipped with two nanofilters, also termed iExoDisc, which facilitates automated isolation of exosomes from 400 μL blood samples within 45 min. By integrating the plasma separation module, highly abundant protein removal module, and nanopore membrane-based total isolation module, the resulting exosomes exhibited significantly increased purity (∼3-6-fold) compared to conventional ultracentrifugation and polymer precipitation. Additionally, we then successfully performed nontargeted and targeted glycan profiling on exosomes derived from clinical triple-negative breast cancer (TNBC) patients using MALDI-TOF-MS and lectin microarray containing 56 kinds of lectins. The findings from both methodologies indicated that galactosylation and sialylation exhibit potential as diagnostic indicators for TNBC. Finally, by utilizing the exosome-specific glycosylated protein CD63 as a proof-of-concept, we successfully realized the integration of point-of-care on-chip exosome separation and in situ detection with 2 h. Thus, the iExoDisc provides a potential approach to early cancer detection, liquid biopsy, and point-of-care diagnosis.
Collapse
Affiliation(s)
- Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Tucan Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
50
|
Zhang Y, Qin X, Xu Z, Liu W, Lu H, Yang Y, Yang J, Li X, Zhang Y, Yang F. Electric Field-Resistant Bubble-Enhanced Wash-Free Profiling of Extracellular Vesicle Surface Markers. ACS NANO 2025; 19:8093-8107. [PMID: 39985473 DOI: 10.1021/acsnano.4c16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Efficient profiling of circulating extracellular vesicles (EVs) benefits noninvasive cancer diagnosis and therapeutic monitoring, but is technically hampered by tedious isolation, multistep washing, and poor sensitivity. Here, we report multifunctional bubbles that enable self-separation, wash-free, single-step, and ultrasensitive profiling of EV surface markers in plasma samples for early diagnosis and treatment monitoring of lung cancer. In this assay, the buoyancy-dominated bubble is electric field-resistant, allowing EV-responsive release of electroactive probes for electrohydrodynamic nanoshearing force-enhanced hybridization, self-separation from the electrode interface for minimizing noise in electrochemical measurements, and one-step wash-free EV profiling. This assay achieves sensitivity near a single-EV level, shows high specificity against nontarget EVs, and tracks EV phenotypic changes induced by drugs. We further show that this technology can classify plasma samples (n = 111) between cancer patients and noncancer controls with accuracies >95%, enable accurate early diagnosis via machine learning, and monitor pre/post-surgery efficacy with higher accuracy over routine clinical serum markers. This bubble-driven one-step EV assay provides a promising wash-free quantitative tool to enable clinical precision liquid biopsies.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weifeng Liu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Jie Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|