1
|
Guan Z, Wang Y, Yang J. The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development. J Genet Genomics 2025:S1673-8527(25)00003-7. [PMID: 39798667 DOI: 10.1016/j.jgg.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Mitochondria are semi-autonomous organelles present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts. Despite their recognized importance, the specific roles of mTERF proteins in maize remain largely unexplored. Here, we clone and functionally characterize the maize mTERF18 gene. Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos, resulting in abortive phenotypes. Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18. We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests. mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein. Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene, leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity. Furthermore, transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects. Collectively, these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
Collapse
Affiliation(s)
- Zhengwei Guan
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Ellison EL, Zhou P, Chu YH, Hermanson P, Gomez-Cano L, Myers ZA, Abnave A, Gray J, Hirsch CN, Grotewold E, Springer NM. Transcriptome profiling of maize transcription factor mutants to probe gene regulatory network predictions. G3 (BETHESDA, MD.) 2025; 15:jkae274. [PMID: 39566186 DOI: 10.1093/g3journal/jkae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Transcription factors play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene regulatory networks to predict the regulatory targets for each transcription factor, such as yeast-1-hybrid screens and gene co-expression network analysis. Here we identified potential transcription factor targets and used a reverse genetics approach to test the predictions of several gene regulatory networks in maize. Loss-of-function mutant alleles were isolated for 22 maize transcription factors. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on yeast-1-hybrid screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from gene co-expression network-based methods found significant enrichments for prediction sets of some transcription factors, but most predicted targets did not exhibit altered expression. This could result from false-positive gene co-expression network predictions, a transcription factor with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other transcription factors. Collectively, these findings suggest that loss-of-function for single uncharacterized transcription factors might have limited phenotypic impacts but can reveal subsets of gene regulatory network predicted targets with altered expression.
Collapse
Affiliation(s)
- Erika L Ellison
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ankita Abnave
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
3
|
Wang Q, Wang M, Xia AA, Wang JY, Wang Z, Xu T, Jia DT, Lu M, Tan WM, Luo JH, He Y. Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39757743 DOI: 10.1111/pbi.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.5. This polymorphism altered the interaction strength of ZmNRT2.5 with another transporter, ZmNPF5, thereby contributing to variation in husk leaf width. We also isolated loss-of-function mutants in ZmNRT2.5, which exhibited a substantial decrease in husk leaf width relative to their controls. We demonstrate that ZmNRT2.5 facilitates the transport of nitrate from husk leaves to maize kernels in plants grown under low-nitrogen conditions, contributing to the accumulation of proteins in maize seeds. Together, our findings uncovered a key gene controlling maize husk leaf width and nitrate transport from husk leaves to kernels. Identification of the ZmNRT2.5 loci offers direct targets for improving the protein content of maize seeds via molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Qi Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Min Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Ai-Ai Xia
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, China
| | - Jin-Yu Wang
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Zi Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Tieling Academy of Agricultural Sciences, Tieling, China
| | - De-Tao Jia
- Tieling Academy of Agricultural Sciences, Tieling, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei-Ming Tan
- College of Agronomy and Biotechnology, China Agricultural University, China
| | - Jin-Hong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan He
- College of Agronomy and Biotechnology, China Agricultural University, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Xu J, Shen E, Guo F, Wang K, Hu Y, Shen L, Chen H, Li X, Zhu QH, Fan L, Chu Q. Identification of cell-type specificity, trans- and cis-acting functions of plant lincRNAs from single-cell transcriptomes. THE NEW PHYTOLOGIST 2025; 245:698-710. [PMID: 39550625 DOI: 10.1111/nph.20269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Long noncoding RNAs, including intergenic lncRNAs (lincRNAs), play a key role in various biological processes throughout the plant life cycle, and the advent of single-cell RNA sequencing (scRNA-seq) technology has opened up a valuable avenue for scrutinizing the intricate roles of lincRNAs in cellular processes. Here, we identified a new batch of lincRNAs using scRNA-seq data from diverse tissues of plants (rice, Arabidopsis, tomato, and maize). Based on well-annotated single-cell transcriptome atlases, plant lincRNAs were found to possess the same level of cell-type specificity as mRNAs and to be involved in the differentiation of certain cell types based on pseudo-time analysis. Many lincRNAs were predicted to play a hub role in the cell-type-specific co-expression networks of lincRNAs and mRNAs, suggesting their trans-acting abilities. Besides, plant lincRNAs were revealed to have potential cis-acting properties based on their genomic distances and expression correlations with the neighboring mRNAs. Furthermore, an online platform, PscLncRNA (http://ibi.zju.edu.cn/psclncrna/), was constructed for searching and visualizing all identified plant lincRNAs with annotated potential functions. Our work provides new insights into plant lincRNAs at single-cell resolution and an important resource for understanding and further investigation of plant lincRNAs.
Collapse
Affiliation(s)
- Jiwei Xu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Kaiqiang Wang
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Yurong Hu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Leti Shen
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Hongyu Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Li
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Longjiang Fan
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qinjie Chu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Urzinger S, Avramova V, Frey M, Urbany C, Scheuermann D, Presterl T, Reuscher S, Ernst K, Mayer M, Marcon C, Hochholdinger F, Brajkovic S, Ordas B, Westhoff P, Ouzunova M, Schön CC. Embracing native diversity to enhance the maximum quantum efficiency of photosystem II in maize. PLANT PHYSIOLOGY 2024; 197:kiae670. [PMID: 39711175 PMCID: PMC11702984 DOI: 10.1093/plphys/kiae670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components. Analysis of the ndhm1 native allelic series revealed a rare allele of ndhm1 that is associated with small albeit significant improvements of Fv/Fm, photosystem II efficiency in light-adapted leaves (ΦPSII), and EPH compared with common alleles. Our work showcases the extraction of favorable alleles from locally adapted landraces, offering an efficient strategy for broadening the genetic variation of elite germplasm by breeding or genome editing.
Collapse
Affiliation(s)
- Sebastian Urzinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Viktoriya Avramova
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Monika Frey
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Claude Urbany
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | | | - Thomas Presterl
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Stefan Reuscher
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Karin Ernst
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Sarah Brajkovic
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra 36080, Spain
| | - Peter Westhoff
- Institute of Molecular and Developmental Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Milena Ouzunova
- Maize Breeding, KWS SAAT SE & Co. KGaA, Einbeck 37574, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
6
|
Han Y, Jiang S, Dong X, Dai X, Wang S, Zheng Y, Yan G, Li S, Wu L, Walbot V, Meyers BC, Zhang M. Ribosome binding of phasiRNA precursors accelerates the 24-nt phasiRNA burst in meiotic maize anthers. THE PLANT CELL 2024; 37:koae289. [PMID: 39442012 DOI: 10.1093/plcell/koae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Reproductive phasiRNAs (phased, secondary, small interfering RNAs), produced from numerous PHAS loci, are essential for plant anther development. PHAS transcripts are enriched on endoplasmic reticulum-bound ribosomes in maize (Zea mays), but the impact of ribosome binding on phasiRNA biogenesis remains elusive. Through ribosome profiling of maize anthers at 10 developmental stages, we demonstrated that 24-PHAS transcripts are bound by ribosomes, with patterns corresponding to the timing and abundance of 24-PHAS transcripts. Ribosome binding to 24-PHAS transcripts is conserved among different maize inbred lines, with ribosomes enriched upstream of the miR2275 target sites. We detected short open reading frames (sORFs) in the ribosome-binding regions of some 24-PHAS transcripts and observed a 3-nt periodicity in most sORFs, but mass spectrometry failed to detect peptides corresponding to the sORFs. Deletion of the entire ribosome-binding region of 24PHAS_NO296 locus eliminated ribosome binding and decreased 24-nt phasiRNA production, without affecting 24PHAS_NO296 transcript levels. In contrast, disrupting only the sORFs in 24PHAS_NO296 did not substantially affect the generation of 24-nt phasiRNAs. A newly formed sORF in these mutants may have re-directed ribosome binding to its transcripts. Overall, these findings demonstrate that sORFs facilitate ribosome binding to 24-PHAS transcripts, thereby promoting phasiRNA biogenesis in meiotic anthers.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xing Dai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengben Li
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang Y, Wang S, Wu Y, Cheng J, Wang H. Dynamic Chromatin Accessibility and Gene Expression Regulation During Maize Leaf Development. Genes (Basel) 2024; 15:1630. [PMID: 39766899 PMCID: PMC11675475 DOI: 10.3390/genes15121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Chromatin accessibility is closely associated with transcriptional regulation during maize (Zea mays) leaf development. However, its precise role in controlling gene expression at different developmental stages remains poorly understood. This study aimed to investigate the dynamics of chromatin accessibility and its influence on genome-wide gene expression during the BBCH_11, BBCH_13, and BBCH_17 stages of maize leaf development. METHODS Maize leaves were collected at the BBCH_11, BBCH_13, and BBCH_17 developmental stages, and chromatin accessibility was assessed using ATAC-seq. RNA-seq was performed to profile gene expression. Integrated analysis of ATAC-seq and RNA-seq data was conducted to elucidate the relationship between chromatin accessibility and transcriptional regulation. RESULTS A total of 46,808, 38,242, and 41,084 accessible chromatin regions (ACRs) were identified at the BBCH_11, BBCH_13, and BBCH_17 stages, respectively, with 23.4%, 12.2%, and 21.9% of these regions located near transcription start sites (TSSs). Integrated analyses revealed that both the number and intensity of ACRs significantly influence gene expression levels. Motif analysis identified key transcription factors associated with leaf development and potential transcriptional repressors among genes, showing divergent regulation patterns in ATAC-seq and RNA-seq datasets. CONCLUSIONS These findings demonstrate that chromatin accessibility plays a crucial role in regulating the spatial and temporal expression of key genes during maize leaf development by modulating transcription factor binding. This study provides novel insights into the regulatory mechanisms underlying maize leaf development, contributing to a deeper understanding of chromatin-mediated gene expression.
Collapse
|
8
|
He B, Liu W, Li J, Xiong S, Jia J, Lin Q, Liu H, Cui P. Evolution of Plant Genome Size and Composition. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae078. [PMID: 39499156 PMCID: PMC11630846 DOI: 10.1093/gpbjnl/qzae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
The rapid development of sequencing technology has led to an explosion of plant genome data, opening up more opportunities for research in the field of comparative evolutionary analysis of plant genomes. In this review, we focus on changes in plant genome size and composition, examining the effects of polyploidy, whole-genome duplication, and alternations in transposable elements on plant genome architecture and evolution, respectively. In addition, to address gaps in the available information, we also collected and analyzed 234 representative plant genome data as a supplement. We aim to provide a comprehensive, up-to-date summary of information on plant genome architecture and evolution in this review.
Collapse
Affiliation(s)
- Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanfei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianyang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Siwei Xiong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jing Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hailin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
9
|
Luo J, He C, Yan S, Jiang C, Chen A, Li K, Zhu Y, Gui S, Yang N, Xiao Y, Wu S, Zhang F, Liu T, Wang J, Huang W, Yang Y, Wang H, Yang W, Li W, Zhuo L, Fernie AR, Zhan J, Wang L, Yan J. A metabolic roadmap of waxy corn flavor. MOLECULAR PLANT 2024; 17:1883-1898. [PMID: 39533712 DOI: 10.1016/j.molp.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
As well as being a popular vegetable crop worldwide, waxy corn represents an important amylopectin source, but little is known about its breeding history and flavor characteristics. In this study, through comparative-omic analyses between 318 diverse waxy corn and 507 representative field corn inbred lines we revealed that many metabolic pathways and genes exhibited selection characteristics during the breeding history of waxy corn, contributing to the divergence between waxy and field corn. We showed that waxy corn is not only altered in its glutinous property but also its sweetness, aroma, and palatability are all significantly affected. A substantial proportion (43%) of flavor-related metabolites have pleiotropic effects, affecting both flavor and yield characteristics, and 27% of these metabolites are related to antagonistic outcomes on yield and flavor. Furthermore, through multiple concrete examples, we demonstrated how yield and quality are coordinately or antagonistically regulated at the genetic level. In particular, some sweet molecules, such as DIMBOA and raffinose, which do not participate in the starch biosynthesis pathway, were identified as potential targets for breeding a new type of "sweet-waxy" corn. Taken together, our findings shed light on the historical selection of waxy corn and demonstrate the genetic and metabolic basis of waxy corn flavor, collectively providing valuable resources and knowledge for future crop breeding for improved nutritional quality.
Collapse
Affiliation(s)
- Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Wuhan GrandOmics Biosciences Co., Ltd, Wuhan, China
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - An Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua Yang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Haiyan Wang
- Anhui Fengda Seed Industry Co., Ltd, Hefei, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Junpeng Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
10
|
Wang Q, Feng F, Zhang K, He Y, Qi W, Ma Z, Song R. ZmICE1a regulates the defence-storage trade-off in maize endosperm. NATURE PLANTS 2024; 10:1999-2013. [PMID: 39604637 DOI: 10.1038/s41477-024-01845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Abstract
The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function. Here we characterized the function of monocot-specific ZmICE1a, which is expressed in the entire endosperm, with a predominant expression in its peripheral regions, including the aleurone layer, subaleurone layer and basal endosperm transfer layer in maize (Zea mays). Loss of function of ZmICE1a reduced starch content and kernel weight. RNA sequencing and CUT&Tag-seq analyses revealed that ZmICE1a positively regulates genes in starch synthesis while negatively regulating genes in aleurone layer-specific defence and the synthesis of indole-3-acetic acid and jasmonic acid (JA). Exogenous indole-3-acetic acid and JA both induce the expression of numerous defence genes, which show distinct spatial-specific expression in the basal endosperm transfer layer and subaleurone layer, respectively. Moreover, we dissected a JA-ZmJAZ9-ZmICE1a-MPI signalling axis involved in JA-mediated defence regulation. Overall, our study revealed ZmICE1a as a key regulator of endosperm defence response and a coordinator of the defence-storage trade-off in endosperm development.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kechun Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yonghui He
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
11
|
Dong J, Wang Z, Si W, Xu H, Zhang Z, Cao Q, Zhang X, Peng H, Mao R, Jiang H, Cheng B, Li X, Gu L. The C 2H 2-type zinc finger transcription factor ZmDi19-7 regulates plant height and organ size by promoting cell size in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2700-2722. [PMID: 39555599 DOI: 10.1111/tpj.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The drought-induced protein 19 (Di19) gene family encodes a Cys2/His2 zinc-finger protein implicated in responses to diverse plant stressors. To date, potential roles of these proteins as transcription factors remain largely elusive in maize. Here, we show that ZmDi19-7 gene exerts pivotal functions in regulation of plant height and organ growth by modulating the cell size in maize. ZmDi19-7 physically interacts with ubiquitin receptor protein ZmDAR1b, which is indispensable in ubiquitination of ZmDi19-7 and affects its protein stability. Further genetic analysis demonstrated that ZmDAR1b act in a common pathway with ZmDi19-7 to regulate cell size in maize. ZmDi19-7, severing as a transcriptional factor, is significantly enriched in conserved DiBS element in the promoter region of ZmHSP22, ZmHSP18c, ZmSAUR25, ZmSAUR55, ZmSAUR7 and ZmXTH23 and orchestrates the expression of these genes involving in auxin-mediated cell expansion and protein processing in the endoplasmic reticulum. Thus, our findings demonstrate that ZmDi19-7 is an important newfound component of the ubiquitin-proteasome pathway in regulation of plant height and organ size in maize. These discoveries highlight potential targets for the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Jinlei Dong
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Zimeng Wang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Xu
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Zhang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyu Cao
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyuan Zhang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Peng
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Rongwei Mao
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance breeding, Anhui Agricultural University, Hefei, 230036, China
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
12
|
Win YN, Stöcker T, Du X, Brox A, Pitz M, Klaus A, Piepho H, Schoof H, Hochholdinger F, Marcon C. Expanding the BonnMu sequence-indexed repository of transposon induced maize (Zea mays L.) mutations in dent and flint germplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2253-2268. [PMID: 39453608 PMCID: PMC11629751 DOI: 10.1111/tpj.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
The BonnMu resource is a transposon tagged mutant collection designed for functional genomics studies in maize. To expand this resource, we crossed an active Mutator (Mu) stock with dent (B73, Co125) and flint (DK105, EP1, and F7) germplasm, resulting in the generation of 8064 mutagenized BonnMu F2-families. Sequencing of these Mu-tagged families revealed 425 924 presumptive heritable Mu insertions affecting 36 612 (83%) of the 44 303 high-confidence gene models of maize (B73v5). On average, we observed 12 Mu insertions per gene (425 924 total insertions/36 612 affected genes) and 53 insertions per BonnMu F2-family (425 924 total insertions/8064 families). Mu insertions and photos of seedling phenotypes from segregating BonnMu F2-families can be accessed through the Maize Genetics and Genomics Database (MaizeGDB). Downstream examination via the automated Mutant-seq Workflow Utility (MuWU) identified 94% of the presumptive germinal insertion sites in genic regions and only a small fraction of 6% inserting in non-coding intergenic sequences of the genome. Consistently, Mu insertions aligned with gene-dense chromosomal arms. In total, 42% of all BonnMu insertions were located in the 5' untranslated region of genes, corresponding to accessible chromatin. Furthermore, for 38% of the insertions (163 843 of 425 924 total insertions) Mu1, Mu8 and MuDR were confirmed to be the causal Mu elements. Our publicly accessible European BonnMu resource has archived insertions covering two major germplasm groups, thus facilitating both forward and reverse genetics studies.
Collapse
Affiliation(s)
- Yan Naing Win
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
- INRES, Institute of Crop Science and Resource Conservation, BonnMu: Reverse Genetic ResourcesUniversity of BonnBonn53113Germany
| | - Tyll Stöcker
- INRES, Institute of Crop Science and Resource Conservation, Crop BioinformaticsUniversity of BonnBonn53115Germany
| | - Xuelian Du
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
- INRES, Institute of Crop Science and Resource Conservation, BonnMu: Reverse Genetic ResourcesUniversity of BonnBonn53113Germany
| | - Alexa Brox
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
- INRES, Institute of Crop Science and Resource Conservation, BonnMu: Reverse Genetic ResourcesUniversity of BonnBonn53113Germany
| | - Marion Pitz
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
| | - Hans‐Peter Piepho
- Institute of Crop Science, BiostatisticsUniversity of HohenheimHohenheim70599Germany
| | - Heiko Schoof
- INRES, Institute of Crop Science and Resource Conservation, Crop BioinformaticsUniversity of BonnBonn53115Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional GenomicsUniversity of BonnBonn53113Germany
- INRES, Institute of Crop Science and Resource Conservation, BonnMu: Reverse Genetic ResourcesUniversity of BonnBonn53113Germany
| |
Collapse
|
13
|
Tomkowiak A, Jamruszka T, Bocianowski J, Sobiech A, Jarzyniak K, Lenort M, Mikołajczyk S, Żurek M. Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield. Genes (Basel) 2024; 15:1558. [PMID: 39766825 PMCID: PMC11675883 DOI: 10.3390/genes15121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. OBJECTIVES The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. METHODS RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. RESULTS The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1-CCR1, aspartate aminotransferase-AAT and sucrose transporter 1-SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Karolina Jarzyniak
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Maciej Lenort
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Sylwia Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Monika Żurek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
14
|
Kong J, Jiang F, Shaw RK, Bi Y, Yin X, Pan Y, Gong X, Zong H, Ijaz B, Fan X. Combined Genome-Wide Association Study and Linkage Analysis for Mining Candidate Genes for the Kernel Row Number in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3308. [PMID: 39683101 DOI: 10.3390/plants13233308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Kernel row number (KRN) is one of the key traits that significantly affect maize yield and productivity. Therefore, investigating the candidate genes and their functions in regulating KRN provides a theoretical basis and practical direction for genetic improvement in maize breeding, which is vital for increasing maize yield and understanding domestication. In this study, three recombinant inbred line (RIL) populations were developed using the parental lines AN20, YML1218, CM395, and Ye107, resulting in a multiparent population comprising a total of 490 F9 RILs. Phenotypic evaluation of the RILs for KRN was performed in three distinct environments. The heritability estimates of the RILs ranged from 81.40% to 84.16%. Genotyping-by-sequencing (GBS) of RILs identified 569,529 high-quality single nucleotide polymorphisms (SNPs). Combined genome-wide association study (GWAS) and linkage analyses revealed 120 SNPs and 22 quantitative trait loci (QTLs) which were significantly associated with KRN in maize. Furthermore, two novel candidate genes, Zm00001d042733 and Zm00001d042735, regulating KRN in maize were identified, which were located in close proximity to the significant SNP3-178,487,003 and overlapping the interval of QTL qKRN3-1. Zm00001d042733 encodes ubiquitin carboxyl-terminal hydrolase and Zm00001d042735 encodes the Arabidopsis Tóxicos en Levadura family of proteins. This study identified novel candidate loci and established a theoretical foundation for further functional validation of candidate genes. These findings deepen our comprehension of the genetic mechanisms that underpin KRN and offer potential applications of KRN-related strategies in developing maize varieties with higher yield.
Collapse
Affiliation(s)
- Jiao Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yanhui Pan
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Xiaodong Gong
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Haiyang Zong
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Babar Ijaz
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
15
|
Tran TN, Lanubile A, Marocco A, Pè ME, Dell'Acqua M, Miculan M. Transcriptome profiling of eight Zea mays lines identifies genes responsible for the resistance to Fusarium verticillioides. BMC PLANT BIOLOGY 2024; 24:1107. [PMID: 39574004 PMCID: PMC11580207 DOI: 10.1186/s12870-024-05697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The cultivation of maize (Zea mays L.), one of the most important crops worldwide for food, feed, biofuels, and industrial applications, faces significant constraints due to Fusarium verticillioides, a fungus responsible for severe diseases including seedling blights, stalk rot, and ear rot. Its impact is worsened by the fact that chemical and agronomic measures used to control the infection are often inefficient. Hence, genetic resistance is considered the most reliable resource to reduce the damage. This study aims to elucidate the genetic basis of F. verticillioides resistance in maize. RESULTS Young seedlings of eight divergent maize lines, founders of the MAGIC population, were artificially inoculated with a F. verticillioides strain. Phenotypic analysis and transcriptome sequencing of both control and treated samples identified several hundred differentially expressed genes enriched in metabolic processes associated with terpene synthesis. A WGCNA further refined the pool of genes with potential implications in disease response and found a limited set of hub genes, encoding bZIP and MYB transcription factors, or involved in carbohydrate metabolism, solute transport processes, calcium signaling, and lipid pathways. Finally, additional gene resources were provided by combining transcriptomic data with previous QTL mapping, thereby shedding light on the molecular mechanisms in the maize-F. verticillioides interaction. CONCLUSIONS The transcriptome profiling of eight divergent MAGIC maize founder lines with contrasting levels of Fusarium verticillioides resistance combined with phenotypic analysis, clarifies the molecular mechanisms underlying the maize-F. verticillioides interaction.
Collapse
Affiliation(s)
- Thi Nhien Tran
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Cuu Long Delta Rice Research Institute, Tan Thanh Commune, Can Tho City, Thoi Lai District, 94700, Vietnam
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Mario Enrico Pè
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Matteo Dell'Acqua
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Mara Miculan
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
16
|
Marchant DB, Walbot V. The establishment of the anther somatic niche with single-cell sequencing. Dev Biol 2024; 518:37-47. [PMID: 39547468 DOI: 10.1016/j.ydbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate de novo from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops. Understanding the genes that underlie the proper differentiation, developmental landmarks, and functions of each anther cell type is thus fundamental to both basic and applied plant sciences. We investigated the development of the somatic niche of the maize (Zea mays) anther using single-cell RNA-seq (scRNA-seq). Extensive background knowledge on the birth then pace and pattern of cell division of the maize anther cell types and published examples of cell-type gene expression from in situ hybridization allowed us to identify the primary cell types within the anther lobe, as well as the connective cells between the four lobes. We established the developmental trajectories of somatic cell types from pre-meiosis to post-meiosis, identified putative marker genes for the somatic cell types that previously lacked any known specific functions, and addressed the possibility that tapetal cells sequentially differentiate. This comprehensive scRNA-seq dataset of the somatic niche of the maize anther will serve as a baseline for future analyses investigating male-sterile genotypes and the impact of environmental conditions on male fertility in flowering plants.
Collapse
Affiliation(s)
- D Blaine Marchant
- Department of Biology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Pan Y, Jiang F, Shaw RK, Sun J, Li L, Yin X, Bi Y, Kong J, Zong H, Gong X, Ijaz B, Fan X. QTL mapping and genome-wide association analysis reveal genetic loci and candidate gene for resistance to gray leaf spot in tropical and subtropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:266. [PMID: 39532720 PMCID: PMC11557642 DOI: 10.1007/s00122-024-04764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Using QTL mapping and GWAS, two candidate genes (Zm00001d051039 and Zm00001d051147) were consistently identified across the three different environments and BLUP values. GWAS analysis identified the candidate gene, Zm00001d044845. These genes were subsequently validated to exhibit a significant association with maize gray leaf spot (GLS) resistance. Gray leaf spot (GLS) is a major foliar disease of maize (Zea mays L.) that causes significant yield losses worldwide. Understanding the genetic mechanisms underlying gray leaf spot resistance is crucial for breeding high-yielding and disease-resistant varieties. In this study, eight tropical and subtropical germplasms were crossed with the temperate germplasm Ye107 to develop a nested association mapping (NAM) population comprising 1,653 F2:8 RILs, consisting of eight recombinant inbred line (RIL) subpopulations, using the single-seed descent method. The NAM population was evaluated for GLS resistance in three different environments, and genotyping by sequencing of the NAM population generated 593,719 high-quality single-nucleotide polymorphisms (SNPs). Linkage analysis and genome-wide association studies (GWASs) were conducted to identify candidate genes regulating GLS resistance in maize. Both analyses identified 25 QTLs and 149 SNPs that were significantly associated with GLS resistance. Candidate genes were screened 20 Kb upstream and downstream of the significant SNPs, and three novel candidate genes (Zm00001d051039, Zm00001d051147, and Zm00001d044845) were identified. Zm00001d051039 and Zm00001d051147 were located on chromosome 4 and co-localized in both linkage (qGLS4-1 and qGLS4-2) and GWAS analyses. SNP-138,153,206 was located 0.499 kb downstream of the candidate gene Zm00001d051039, which encodes the protein IN2-1 homolog B, a homolog of glutathione S-transferase (GST). GSTs and protein IN2-1 homolog B scavenge reactive oxygen species under various stress conditions, and GSTs are believed to protect plants from a wide range of biotic and abiotic stresses by detoxifying reactive electrophilic compounds. Zm00001d051147 encodes a probable beta-1,4-xylosyltransferase involved in the biosynthesis of xylan in the cell wall, enhancing resistance. SNP-145,813,215 was located 2.69 kb downstream of the candidate gene. SNP-5,043,412 was consistently identified in three different environments and BLUP values and was located 8.788 kb downstream of the candidate gene Zm00001d044845 on chromosome 9. Zm00001d044845 encodes the U-box domain-containing protein 4 (PUB4), which is involved in regulating plant immunity. qRT-PCR analysis showed that the relative expression levels of the three candidate genes were significantly upregulated in the leaves of the TML139 (resistant) parent, indicating that these three candidate genes could be associated with resistance to GLS. The findings of this study are significant for marker-assisted breeding aimed at enhancing resistance to GLS in maize and lay the foundation for further elucidation of the genetic mechanisms underlying resistance to gray leaf spot in maize and breeding of new disease-resistant varieties.
Collapse
Affiliation(s)
- Yanhui Pan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jiachen Sun
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Linzhuo Li
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jiao Kong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiyang Zong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Xiaodong Gong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Babar Ijaz
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
18
|
Khan M, Uhse S, Bindics J, Kogelmann B, Nagarajan N, Tabassum R, Ingole KD, Djamei A. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. THE NEW PHYTOLOGIST 2024; 244:949-961. [PMID: 39021059 DOI: 10.1111/nph.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors. Here, we screened 297 U. maydis effector candidates for their ability to interact with maize TPL protein RAMOSA 1 ENHANCER LOCUS 2 LIKE 2 (RELK2) and their ability to induce auxin signaling and thereby identified three novel TPL-interacting protein effectors (Tip6, Tip7, and Tip8). Structural modeling and mutational analysis allowed the identification of TPL-interaction motifs of Tip6 and Tip7. In planta interaction between Tip6 and Tip7 with RELK2 occurs mainly in nuclear compartments, whereas Tip8 colocalizes with RELK2 in a compartment outside the nucleus. Overexpression of Tip8 in nonhost plants leads to cell death, indicating recognition of the effector or its activity. By performing infection assays with single and multideletion mutants of U. maydis, we demonstrate a positive role of Tip6 and Tip7 in U. maydis virulence. Transcriptional profiling of maize leaves infected with Tip effector mutants in comparison with SG200 strain suggests Tip effector activities are not merely redundant.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Nithya Nagarajan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Riaz Tabassum
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| |
Collapse
|
19
|
Zai X, Cordovez V, Zhu F, Zhao M, Diao X, Zhang F, Raaijmakers JM, Song C. C4 cereal and biofuel crop microbiomes. Trends Microbiol 2024; 32:1119-1131. [PMID: 38772810 DOI: 10.1016/j.tim.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.
Collapse
Affiliation(s)
- Xiaoyu Zai
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China.
| |
Collapse
|
20
|
Zhang X, Zhang Z, Peng H, Wang Z, Li H, Duan Y, Chen S, Chen X, Dong J, Si W, Gu L. GPCR-like Protein ZmCOLD1 Regulate Plant Height in an ABA Manner. Int J Mol Sci 2024; 25:11755. [PMID: 39519308 PMCID: PMC11546568 DOI: 10.3390/ijms252111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are sensors for the G protein complex to sense changes in environmental factors and molecular switches for G protein complex signal transduction. In this study, the homologous gene of GPCR-like proteins was identified from maize and named as ZmCOLD1. Subcellular analysis showed that the ZmCOLD1 protein is localized to the cell membrane and endoplasmic reticulum. A CRISPR/Cas9 knock-out line of ZmCOLD1 was further created and its plant height was significantly lower than the wild-type maize at both the seedling and adult stages. Histological analysis showed that the increased cell number but significantly smaller cell size may result in dwarfing of zmcold1, indicating that the ZmCOLD1 gene could regulate plant height development by affecting the cell division process. Additionally, ZmCOLD1 was verified to interact with the maize Gα subunit, ZmCT2, though the central hydrophilic loop domain by in vivo and in vitro methods. Abscisic acid (ABA) sensitivity analysis by seed germination assays exhibited that zmcold1 were hypersensitive to ABA, indicating its important roles in ABA signaling. Finally, transcriptome analysis was performed to investigate the transcriptional change in zmcold1 mutant. Overall, ZmCOLD1 functions as a GPCR-like protein and an important regulator to plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| |
Collapse
|
21
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
22
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
23
|
Chen K, Bhunia RK, Wendt MM, Campidilli G, McNinch C, Hassan A, Li L, Nikolau BJ, Yandeau-Nelson MD. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6500-6522. [PMID: 39031128 PMCID: PMC11522977 DOI: 10.1093/jxb/erae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. This study investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data revealed that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks associated with the deposition of different elements of the cuticle: cuticular waxes; monomers of lipidized cell wall biopolymers, including cutin and suberin; and both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g. transcription factors, post-translational regulators, and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating the properties of this protective barrier.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Rupam Kumar Bhunia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Matthew M Wendt
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
| | - Grace Campidilli
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Genetics Major, Iowa State University, Ames, IA, USA
| | - Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Ahmed Hassan
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Data Science Major, Iowa State University, Ames, IA, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
24
|
Bertolini E, Manjunath M, Ge W, Murphy MD, Inaoka M, Fliege C, Eveland AL, Lipka AE. Genomic prediction of cereal crop architectural traits using models informed by gene regulatory circuitries from maize. Genetics 2024:iyae162. [PMID: 39441092 DOI: 10.1093/genetics/iyae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction models for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
Collapse
Affiliation(s)
| | - Mohith Manjunath
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weihao Ge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew D Murphy
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mirai Inaoka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christina Fliege
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Zhang M, Wang Y, Wu Q, Sun Y, Zhao C, Ge M, Zhou L, Zhang T, Zhang W, Qian Y, Ruan L, Zhao H. Time-course transcriptomic analysis reveals transcription factors involved in modulating nitrogen sensibility in maize. J Genet Genomics 2024:S1673-8527(24)00259-5. [PMID: 39395686 DOI: 10.1016/j.jgg.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Nitrogen (N) serves both as a vital macronutrient and a signaling molecule for plants. Unveiling key regulators involved in N metabolism helps dissect the mechanisms underlying N metabolism, which is essential for developing maize with high N use efficiency. Two maize lines, B73 and Ki11, show differential chlorate and low-N tolerance. Time-course transcriptomic analysis reveals that the expression of NUGs in B73 and Ki11 have distinct responsive patterns to nitrate variation. By the coexpression networks, significant differences in the number of N response modules and regulatory networks of transcription factors (TFs) are revealed between B73 and Ki11. There are 23 unique TFs in B73 and 41 unique TFs in Ki11. MADS26 is a unique TF in the B73 N response network, with different expression levels and N response patterns in B73 and Ki11. Overexpression of MADS26 enhances the sensitivity to chlorate and the utilization of nitrate in maize, at least partially explaining the differential chlorate tolerance and low-N sensitivity between B73 and Ki11. The findings in this work provide unique insights and promising candidates for maize breeding to reduce unnecessary N overuse.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuancong Wang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Qi Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yangming Sun
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Chenxu Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wei Zhang
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Yiliang Qian
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Long Ruan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Han Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
26
|
Moon K, Basnet P, Um T, Choi IY. Review of the technology used for structural characterization of the GMO genome using NGS data. Genomics Inform 2024; 22:14. [PMID: 39358775 PMCID: PMC11445869 DOI: 10.1186/s44342-024-00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting. While both methods provide high reproducibility and accuracy, Southern blotting is labor-intensive and time-consuming due to the need for repetitive probe design and analyses for each target, resulting in low throughput. Conversely, NGS facilitates rapid and comprehensive analysis by mapping whole-genome sequencing (WGS) data to plasmid sequences, accurately identifying T-DNA insertion sites and flanking regions. This advantage allows for efficient detection of T-DNA presence, copy number, and unintended gene insertions without additional probe work. This paper reviews the current status of GMO genome characterization using NGS and proposes more efficient strategies for this purpose.
Collapse
Affiliation(s)
- Kahee Moon
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
27
|
Huang S, Guo S, Dai L, Mi L, Li W, Xing J, Hu Z, Wu W, Duan Z, Li B, Sun T, Wang B, Zhang Y, Xiao T, Xue Y, Tang N, Li H, Zhang C, Song CP. Tubulin participates in establishing protoxylem vessel reinforcement patterns and hydraulic conductivity in maize. PLANT PHYSIOLOGY 2024; 196:931-947. [PMID: 38850036 DOI: 10.1093/plphys/kiae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.
Collapse
Affiliation(s)
- Shiquan Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Liufeng Dai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenrao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baojie Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Han Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Changqing Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| |
Collapse
|
28
|
He C, Washburn JD, Schleif N, Hao Y, Kaeppler H, Kaeppler SM, Zhang Z, Yang J, Liu S. Trait association and prediction through integrative k-mer analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:833-850. [PMID: 39259496 DOI: 10.1111/tpj.17012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) has been widely used to explore genetic controls of phenotypic traits. Alternatively, GWAS can use counts of substrings of length k from longer sequencing reads, k-mers, as genotyping data. Using maize cob and kernel color traits, we demonstrated that k-mer GWAS can effectively identify associated k-mers. Co-expression analysis of kernel color k-mers and genes directly found k-mers from known causal genes. Analyzing complex traits of kernel oil and leaf angle resulted in k-mers from both known and candidate genes. A gene encoding a MADS transcription factor was functionally validated by showing that ectopic expression of the gene led to less upright leaves. Evolution analysis revealed most k-mers positively correlated with kernel oil were strongly selected against in maize populations, while most k-mers for upright leaf angle were positively selected. In addition, genomic prediction of kernel oil, leaf angle, and flowering time using k-mer data resulted in a similarly high prediction accuracy to the standard SNP-based method. Collectively, we showed k-mer GWAS is a powerful approach for identifying trait-associated genetic elements. Further, our results demonstrated the bridging role of k-mers for data integration and functional gene discovery.
Collapse
Affiliation(s)
- Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri, 65211, USA
| | - Nathaniel Schleif
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Heidi Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583-0915, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, USA
| |
Collapse
|
29
|
Zeng Y, Somers J, Bell HS, Vejlupkova Z, Kelly Dawe R, Fowler JE, Nelms B, Gent JI. Potent pollen gene regulation by DNA glycosylases in maize. Nat Commun 2024; 15:8352. [PMID: 39333110 PMCID: PMC11436724 DOI: 10.1038/s41467-024-52620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.
Collapse
Affiliation(s)
- Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Julian Somers
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Harrison S Bell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
30
|
Sidhu JS, Lopez-Valdivia I, Strock CF, Schneider HM, Lynch JP. Cortical parenchyma wall width regulates root metabolic cost and maize performance under suboptimal water availability. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5750-5767. [PMID: 38661441 PMCID: PMC11427841 DOI: 10.1093/jxb/erae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
We describe how increased root cortical parenchyma wall width (CPW) can improve tolerance to drought stress in maize by reducing the metabolic costs of soil exploration. Significant variation (1.0-5.0 µm) for CPW was observed in maize germplasm. The functional-structural model RootSlice predicts that increasing CPW from 2 µm to 4 µm is associated with a ~15% reduction in root cortical cytoplasmic volume, respiration rate, and nitrogen content. Analysis of genotypes with contrasting CPW grown with and without water stress in the field confirms that increased CPW is correlated with an ~32-42% decrease in root respiration. Under water stress in the field, increased CPW is correlated with 125% increased stomatal conductance, 325% increased leaf CO2 assimilation rate, 73-78% increased shoot biomass, and 92-108% increased yield. CPW was correlated with leaf mesophyll midrib parenchyma wall width, indicating pleiotropy. Genome-wide association study analysis identified candidate genes underlying CPW. OpenSimRoot modeling predicts that a reduction in root respiration due to increased CPW would also benefit maize growth under suboptimal nitrogen, which requires empirical testing. We propose CPW as a new phene that has utility under edaphic stress meriting further investigation.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ivan Lopez-Valdivia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466 Seeland, Germany
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Luo Z, Wu L, Miao X, Zhang S, Wei N, Zhao S, Shang X, Hu H, Xue J, Zhang T, Yang F, Xu S, Li L. A dynamic regulome of shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize. Genome Biol 2024; 25:245. [PMID: 39300560 DOI: 10.1186/s13059-024-03391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The shoot apical meristem (SAM), from which all above-ground tissues of plants are derived, is critical to plant morphology and development. In maize (Zea mays), loss-of-function mutant studies have identified several SAM-related genes, most encoding homeobox transcription factors (TFs), located upstream of hierarchical networks of hundreds of genes. RESULTS Here, we collect 46 transcriptome and 16 translatome datasets across 62 different tissues or stages from the maize inbred line B73. We construct a dynamic regulome for 27 members of three SAM-related homeobox subfamilies (KNOX, WOX, and ZF-HD) through machine-learning models for the detection of TF targets across different tissues and stages by combining tsCUT&Tag, ATAC-seq, and expression profiling. This dynamic regulome demonstrates the distinct binding specificity and co-factors for these homeobox subfamilies, indicative of functional divergence between and within them. Furthermore, we assemble a SAM dynamic regulome, illustrating potential functional mechanisms associated with plant architecture. Lastly, we generate a wox13a mutant that provides evidence that WOX13A directly regulates Gn1 expression to modulate plant height, validating the regulome of SAM-related homeobox genes. CONCLUSIONS The SAM-related homeobox transcription-factor regulome presents an unprecedented opportunity to dissect the molecular mechanisms governing SAM maintenance and development, thereby advancing our understanding of maize growth and shoot architecture.
Collapse
Affiliation(s)
- Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leiming Wu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Shiya Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Tifu Zhang
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
32
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
33
|
Zhao S, Wang Y, Zhu Z, Chen P, Liu W, Wang C, Lu H, Xiang Y, Liu Y, Qian Q, Chang Y. Streamlined whole-genome genotyping through NGS-enhanced thermal asymmetric interlaced (TAIL)-PCR. PLANT COMMUNICATIONS 2024; 5:100983. [PMID: 38845197 DOI: 10.1016/j.xplc.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
Whole-genome genotyping (WGG) stands as a pivotal element in genomic-assisted plant breeding. Nevertheless, sequencing-based approaches for WGG continue to be costly, primarily owing to the high expenses associated with library preparation and the laborious protocol. During prior development of foreground and background integrated genotyping by sequencing (FBI-seq), we discovered that any sequence-specific primer (SP) inherently possesses the capability to amplify a massive array of stable and reproducible non-specific PCR products across the genome. Here, we further improved FBI-seq by replacing the adapter ligated by Tn5 transposase with an arbitrary degenerate (AD) primer. The protocol for the enhanced FBI-seq unexpectedly mirrors a simplified thermal asymmetric interlaced (TAIL)-PCR, a technique that is widely used for isolation of flanking sequences. However, the improved TAIL-PCR maximizes the primer-template mismatched annealing capabilities of both SP and AD primers. In addition, leveraging of next-generation sequencing enhances the ability of this technique to assay tens of thousands of genome-wide loci for any species. This cost-effective, user-friendly, and powerful WGG tool, which we have named TAIL-PCR by sequencing (TAIL-peq), holds great potential for widespread application in breeding programs, thereby facilitating genome-assisted crop improvement.
Collapse
Affiliation(s)
- Sheng Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhenghang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wuge Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
34
|
van Wijk KJ, Leppert T, Sun Z, Guzchenko I, Debley E, Sauermann G, Routray P, Mendoza L, Sun Q, Deutsch EW. The Zea mays PeptideAtlas: A New Maize Community Resource. J Proteome Res 2024; 23:3984-4004. [PMID: 39101213 DOI: 10.1021/acs.jproteome.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
This study presents the Maize PeptideAtlas resource (www.peptideatlas.org/builds/maize) to help solve questions about the maize proteome. Publicly available raw tandem mass spectrometry (MS/MS) data for maize collected from ProteomeXchange were reanalyzed through a uniform processing and metadata annotation pipeline. These data are from a wide range of genetic backgrounds and many sample types and experimental conditions. The protein search space included different maize genome annotations for the B73 inbred line from MaizeGDB, UniProtKB, NCBI RefSeq, and for the W22 inbred line. 445 million MS/MS spectra were searched, of which 120 million were matched to 0.37 million distinct peptides. Peptides were matched to 66.2% of proteins in the most recent B73 nuclear genome annotation. Furthermore, most conserved plastid- and mitochondrial-encoded proteins (NCBI RefSeq annotations) were identified. Peptides and proteins identified in the other B73 genome annotations will improve maize genome annotation. We also illustrate the high-confidence detection of unique W22 proteins. N-terminal acetylation, phosphorylation, ubiquitination, and three lysine acylations (K-acetyl, K-malonyl, and K-hydroxyisobutyryl) were identified and can be inspected through a PTM viewer in PeptideAtlas. All matched MS/MS-derived peptide data are linked to spectral, technical, and biological metadata. This new PeptideAtlas is integrated in MaizeGDB with a peptide track in JBrowse.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Isabell Guzchenko
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Erica Debley
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Georgia Sauermann
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Pratyush Routray
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
35
|
Chu YH, Lee YS, Gomez-Cano F, Gomez-Cano L, Zhou P, Doseff AI, Springer N, Grotewold E. Molecular mechanisms underlying gene regulatory variation of maize metabolic traits. THE PLANT CELL 2024; 36:3709-3728. [PMID: 38922302 PMCID: PMC11371180 DOI: 10.1093/plcell/koae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis- and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of widely used maize (Zea mays) inbreds, B73 and A632. By combining transcriptomics and cistromics, we identified 1,338 silk direct targets of the maize R2R3-MYB TF Pericarp color1 (P1), consistent with it being a regulator of maysin and chlorogenic acid biosynthesis. Among these P1 targets, 464 showed allele-specific expression (ASE) between B73 and A632 silks. Allelic DNA-affinity purification sequencing identified 34 examples in which P1 allelic specific binding (ASB) correlated with cis-expression variation. From previous yeast one-hybrid studies, we identified 9 TFs potentially implicated in the control of P1 targets, with ASB to 83 out of 464 ASE genes (cis) and differential expression of 4 out of 9 TFs between B73 and A632 silks (trans). These results provide a molecular framework for understanding universal mechanisms underlying natural variation of gene expression levels, and how the regulation of metabolic diversity is established.
Collapse
Affiliation(s)
- Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Schlegel L, Bhardwaj R, Shahryary Y, Demirtürk D, Marand A, Schmitz R, Johannes F. GenomicLinks: deep learning predictions of 3D chromatin interactions in the maize genome. NAR Genom Bioinform 2024; 6:lqae123. [PMID: 39318505 PMCID: PMC11420838 DOI: 10.1093/nargab/lqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.
Collapse
Affiliation(s)
- Luca Schlegel
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Rohan Bhardwaj
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Yadollah Shahryary
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Defne Demirtürk
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Alexandre P Marand
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Frank Johannes
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
37
|
Klein SP, Kaeppler SM, Brown KM, Lynch JP. Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize. THE PLANT GENOME 2024; 17:e20489. [PMID: 39034891 DOI: 10.1002/tpg2.20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Collapse
Affiliation(s)
- Stephanie P Klein
- Interdepartmental Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
38
|
Vidal-Villarejo M, Dößelmann B, Kogler B, Hammerschmidt M, Oppliger B, Oppliger H, Schmid K. Regional diversity and leaf microbiome interactions of the fungal maize pathogen Exserohilum turcicum in Switzerland: A metagenomic analysis. Mol Ecol 2024; 33:e17482. [PMID: 39082382 DOI: 10.1111/mec.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
The spread and adaptation of fungal plant pathogens in agroecosystems are facilitated by environmental homogeneity. Metagenomic sequencing of infected tissues allowed us to monitor eco-evolutionary dynamics and interactions between host, pathogen and plant microbiome. Exserohilum turcicum, the causal agent of northern corn leaf blight (NCLB) in maize, is distributed in multiple clonal lineages throughout Europe. To characterize regional pathogen diversity, we conducted metagenomic DNA sequencing on 241 infected leaf samples from the highly susceptible Swiss maize landrace Rheintaler Ribelmais, collected over 3 years (2016-2018) from an average of 14 agricultural farms within the Swiss Rhine Valley. All major European clonal lineages of E. turcicum were identified. Lineages differ by their mating types which indicates potential for sexual recombination and rapid evolution of new pathogen strains, although we found no evidence of recent recombination. The associated eukaryotic and prokaryotic leaf microbiome exhibited variation in taxonomic diversity between years and locations and is likely influenced by local weather conditions. A network analysis revealed distinct clusters of eukaryotic and prokaryotic taxa that correlates with the frequency of E. turcicum sequencing reads, suggesting causal interactions. Notably, the yeast genus Metschnikowia exhibited a strongly negative association with E. turcicum, supporting its known potential as biological control agent against fungal pathogens. Our findings show that metagenomic sequencing is a useful tool for analysing the role of environmental factors and potential pathogen-microbiome interactions in shaping pathogen dynamics and evolution, suggesting their potential for effective pathogen management strategies.
Collapse
Affiliation(s)
- Mireia Vidal-Villarejo
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Bianca Dößelmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | - Barbara Oppliger
- Rhytop GmbH, Salez, Switzerland
- Landwirtschaftliches Zentrum Sankt Gallen, Salez, Switzerland
- Verein Rheintaler Ribelmais e.V, Salez, Switzerland
| | - Hans Oppliger
- Rhytop GmbH, Salez, Switzerland
- Landwirtschaftliches Zentrum Sankt Gallen, Salez, Switzerland
- Verein Rheintaler Ribelmais e.V, Salez, Switzerland
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
39
|
Mangal V, Verma LK, Singh SK, Saxena K, Roy A, Karn A, Rohit R, Kashyap S, Bhatt A, Sood S. Triumphs of genomic-assisted breeding in crop improvement. Heliyon 2024; 10:e35513. [PMID: 39170454 PMCID: PMC11336775 DOI: 10.1016/j.heliyon.2024.e35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Conventional breeding approaches have played a significant role in meeting the food demand remarkably well until now. However, the increasing population, yield plateaus in certain crops, and limited recombination necessitate using genomic resources for genomics-assisted crop improvement programs. As a result of advancements in the next-generation sequence technology, GABs have developed dramatically to characterize allelic variants and facilitate their rapid and efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has played an important role in harnessing the potential of modern genomic tools, exploiting allelic variation from genetic resources and developing cultivars over the past decade. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of completeness. Even though adopting these technologies is essentially determined on economic grounds and cost-effective assays, which create a wealth of information that can be successfully used to exploit the latent potential of crops. GAB has been instrumental in harnessing the potential of modern genomic resources and exploiting allelic variation for genetic enhancement and cultivar development. GAB strategies will be indispensable for designing future crops and are expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional value.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| | | | - Sandeep Kumar Singh
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Kanak Saxena
- Department of Genetics and Plant Breeding, Rabindranath Tagore University, Raisen, Madhya Pradesh, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Narendrapur, Kolkata, 700103, India
| | - Anandi Karn
- Plant Breeding & Graduate Program, IFAS - University of Florida, Gainesville, USA
| | - Rohit Rohit
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Shruti Kashyap
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Ashish Bhatt
- Department of Genetics and Plant Breeding, GBPUA&T, Pantnagar, Uttarakhand, 263145, India
| | - Salej Sood
- ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
40
|
Kim T, Egesa A, Qin C, Mather H, Sandoya G, Begcy K. Global identification of LIM genes in response to different heat stress regimes in Lactuca sativa. BMC PLANT BIOLOGY 2024; 24:751. [PMID: 39103763 DOI: 10.1186/s12870-024-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND LIM (Lineage-11 (LIN-11), Insulin-1 (ISL-1), and Mechanotransduction-3 (MEC-3)) genes belong to a family that hold ubiquitous properties contributing to organ, seed, and pollen development as well as developmental and cellular responses to biotic and abiotic stresses. Lettuce (Lactuca sativa) is a highly consumed vegetable crop susceptible heat stress. High temperatures limit lettuce's overall yield, quality and marketability. Lettuce LIM genes have not been identified and their role in response to high temperatures is not known. Aiming to identify potential new targets for thermoresilience, we searched for LIM genes in lettuce and compared them with orthologous of several dicotyledons and monocotyledons plant species. RESULTS We identified fourteen lettuce LIM genes distributed into eight different subgroups using a genome-wide analysis strategy. Three belonging to DAR (DA means "large" in Chinese) class I, two DAR class II, one in the WLIM1, two in the WLIM2, one in the PLIM1, two in the PLIM2 class, one ßLIM and two δLIMs. No DAR-like were identified in any of the species analyzed including lettuce. Interestingly, unlike other gene families in lettuce which underwent large genome tandem duplications, LIM genes did not increase in number compared to other plant species. The response to heat stress induced a dynamic transcriptional response on LsLIM genes. All heat stress regimes, including night stress, day stress and day and night stress were largely responsible for changes in LIM transcriptional expression. CONCLUSIONS Our global analysis at the genome level provides a detailed identification of LIM genes in lettuce and other dicotyledonous and monocotyledonous plant species. Gene structure, physical and chemical properties as well as chromosomal location and Cis-regulatory element analysis together with our gene expression analysis under different temperature regimes identified LsWLIM1, LsWLIM2b, LsDAR3 and LsDAR5 as candidate genes that could be used by breeding programs aiming to produce lettuce varieties able to withstand high temperatures.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew Egesa
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Claire Qin
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
- Student Science Training Program, University of Florida, Gainesville, FL, 32611, USA
| | - Hannah Mather
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Germán Sandoya
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
- Everglades Research and Education Center, Horticultural Sciences Department, University of Florida IFAS, Belle Glade, FL, 33430, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
41
|
Liu L, Zhan J, Yan J. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J Genet Genomics 2024; 51:781-789. [PMID: 38531485 DOI: 10.1016/j.jgg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
42
|
Liu B, Liu X, Sun M, Sun Y, Liu D, Hao L, Tao Y. Analysis of the 5' Untranslated Region Length-Dependent Control of Gene Expression in Maize: A Case Study with the ZmLAZ1 Gene Family. Genes (Basel) 2024; 15:994. [PMID: 39202355 PMCID: PMC11353600 DOI: 10.3390/genes15080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The untranslated regions (UTRs) within plant mRNAs play crucial roles in regulating gene expression and the functionality of post-translationally modified proteins by various mechanisms. These regions are vital for plants' ability to sense to multiple developmental and environmental stimuli. In this study, we conducted a genome-wide analysis of UTRs and UTR-containing genes in maize (Zea mays). Using the ZmLAZ1 family as a case study, we demonstrated that the length of 5' UTRs could influence gene expression levels by employing GUS reporter gene assays. Although maize and arabidopsis (Arabidopsis thaliana), as well as rice (Oryza sativa), have distinct functional categories of UTR-containing genes, we observed a similar lengthwise distribution of UTRs and a recurring appearance of certain gene ontology (GO) terms between maize and rice. These suggest a potentially conserved mechanism within the Poaceae species. Furthermore, the analysis of cis-acting elements in these 5' UTRs of the ZmLAZ1 gene family further supports the hypothesis that UTRs confer functional specificity to genes in a length-dependent manner. Our findings offer novel insights into the role of UTRs in maize, contributing to the broader understanding of gene expression regulation in plants.
Collapse
Affiliation(s)
- Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.S.); (D.L.); (L.H.)
| | - Xiaowei Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China;
| | - Min Sun
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Yanxia Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.S.); (D.L.); (L.H.)
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.S.); (D.L.); (L.H.)
| | - Li Hao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.S.); (D.L.); (L.H.)
| | - Yang Tao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
43
|
Guan Y, Zhou M, Zhang C, Han Z, Zhang Y, Wu Z, Zhu Y. Actively Expressed Intergenic Genes Generated by Transposable Element Insertions in Gossypium hirsutum Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:2079. [PMID: 39124197 PMCID: PMC11314067 DOI: 10.3390/plants13152079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The genomes and annotated genes of allotetraploid cotton Gossypium hirsutum have been extensively studied in recent years. However, the expression, regulation, and evolution of intergenic genes (ITGs) have not been completely deciphered. In this study, we identified a novel set of actively expressed ITGs in G. hirsutum cotton, through transcriptome profiling based on deep sequencing data, as well as chromatin immunoprecipitation, followed by sequencing (ChIP-seq) of histone modifications and how the ITGs evolved. Totals of 17,567 and 8249 ITGs were identified in G. hirsutum and Gossypium arboreum, respectively. The expression of ITGs in G. hirsutum was significantly higher than that in G. arboreum. Moreover, longer exons were observed in G. hirsutum ITGs. Notably, 42.3% of the ITGs from G. hirsutum were generated by the long terminal repeat (LTR) insertions, while their proportion in genic genes was 19.9%. The H3K27ac and H3K4me3 modification proportions and intensities of ITGs were equivalent to genic genes. The H3K4me1 modifications were lower in ITGs. Additionally, evolution analyses revealed that the ITGs from G. hirsutum were mainly produced around 6.6 and 1.6 million years ago (Mya), later than the pegged time for genic genes, which is 7.0 Mya. The characterization of ITGs helps to elucidate the evolution of cotton genomes and shed more light on their biological functions in the transcriptional regulation of eukaryotic genes, along with the roles of histone modifications in speciation and diversification.
Collapse
Affiliation(s)
- Yongzhuo Guan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingao Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Congyu Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zixuan Han
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yinbao Zhang
- Xinjiang Jinfengyuan Seed Co., Ltd., Aksu City 843100, China
| | - Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Gomez-Cano F, Rodriguez J, Zhou P, Chu YH, Magnusson E, Gomez-Cano L, Krishnan A, Springer NM, de Leon N, Grotewold E. Prioritizing Maize Metabolic Gene Regulators through Multi-Omic Network Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582075. [PMID: 38464086 PMCID: PMC10925184 DOI: 10.1101/2024.02.26.582075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elucidating gene regulatory networks is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. Here, we integrated 46 co-expression networks, 283 protein-DNA interaction (PDI) assays, and 16 million SNPs used to identify expression quantitative trait loci (eQTL) to construct TF-target networks. In total, we analyzed ∼4.6M interactions to generate four distinct types of TF-target networks: co-expression, PDI, trans -eQTL, and cis -eQTL combined with PDIs. To functionally annotate TFs based on their target genes, we implemented three different network integration strategies. We evaluated the effectiveness of each strategy through TF loss-of function mutant inspection and random network analyses. The multi-network integration allowed us to identify transcriptional regulators of several biological processes. Using the topological properties of the fully integrated network, we identified potential functionally redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems. GRAPHICAL ABSTRACT
Collapse
|
45
|
Li Z, Li Z, Ji Y, Wang C, Wang S, Shi Y, Le J, Zhang M. The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. THE PLANT CELL 2024; 36:2652-2667. [PMID: 38573521 PMCID: PMC11218781 DOI: 10.1093/plcell/koae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Temperature shapes the geographical distribution and behavior of plants. Understanding the regulatory mechanisms underlying the plant heat stress response is important for developing climate-resilient crops, including maize (Zea mays). To identify transcription factors (TFs) that may contribute to the maize heat stress response, we generated a dataset of short- and long-term transcriptome changes following a heat treatment time course in the inbred line B73. Co-expression network analysis highlighted several TFs, including the class B2a heat shock factor (HSF) ZmHSF20. Zmhsf20 mutant seedlings exhibited enhanced tolerance to heat stress. Furthermore, DNA affinity purification sequencing and Cleavage Under Targets and Tagmentation assays demonstrated that ZmHSF20 binds to the promoters of Cellulose synthase A2 (ZmCesA2) and three class A Hsf genes, including ZmHsf4, repressing their transcription. We showed that ZmCesA2 and ZmHSF4 promote the heat stress response, with ZmHSF4 directly activating ZmCesA2 transcription. In agreement with the transcriptome analysis, ZmHSF20 inhibited cellulose accumulation and repressed the expression of cell wall-related genes. Importantly, the Zmhsf20 Zmhsf4 double mutant exhibited decreased thermotolerance, placing ZmHsf4 downstream of ZmHsf20. We proposed an expanded model of the heat stress response in maize, whereby ZmHSF20 lowers seedling heat tolerance by repressing ZmHsf4 and ZmCesA2, thus balancing seedling growth and defense.
Collapse
Affiliation(s)
- Ze Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zerui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Ji
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shufang Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
47
|
Gao Z, Lu Y, Chong Y, Li M, Hong J, Wu J, Wu D, Xi D, Deng W. Beef Cattle Genome Project: Advances in Genome Sequencing, Assembly, and Functional Genes Discovery. Int J Mol Sci 2024; 25:7147. [PMID: 39000250 PMCID: PMC11240973 DOI: 10.3390/ijms25137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Beef is a major global source of protein, playing an essential role in the human diet. The worldwide production and consumption of beef continue to rise, reflecting a significant trend. However, despite the critical importance of beef cattle resources in agriculture, the diversity of cattle breeds faces severe challenges, with many breeds at risk of extinction. The initiation of the Beef Cattle Genome Project is crucial. By constructing a high-precision functional annotation map of their genome, it becomes possible to analyze the genetic mechanisms underlying important traits in beef cattle, laying a solid foundation for breeding more efficient and productive cattle breeds. This review details advances in genome sequencing and assembly technologies, iterative upgrades of the beef cattle reference genome, and its application in pan-genome research. Additionally, it summarizes relevant studies on the discovery of functional genes associated with key traits in beef cattle, such as growth, meat quality, reproduction, polled traits, disease resistance, and environmental adaptability. Finally, the review explores the potential of telomere-to-telomere (T2T) genome assembly, structural variations (SVs), and multi-omics techniques in future beef cattle genetic breeding. These advancements collectively offer promising avenues for enhancing beef cattle breeding and improving genetic traits.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
48
|
Leduque B, Edera A, Vitte C, Quadrana L. Simultaneous profiling of chromatin accessibility and DNA methylation in complete plant genomes using long-read sequencing. Nucleic Acids Res 2024; 52:6285-6297. [PMID: 38676941 PMCID: PMC11194078 DOI: 10.1093/nar/gkae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Epigenetic regulations, including chromatin accessibility, nucleosome positioning and DNA methylation intricately shape genome function. However, current chromatin profiling techniques relying on short-read sequencing technologies fail to characterise highly repetitive genomic regions and cannot detect multiple chromatin features simultaneously. Here, we performed Simultaneous Accessibility and DNA Methylation Sequencing (SAM-seq) of purified plant nuclei. Thanks to the use of long-read nanopore sequencing, SAM-seq enables high-resolution profiling of m6A-tagged chromatin accessibility together with endogenous cytosine methylation in plants. Analysis of naked genomic DNA revealed significant sequence preference biases of m6A-MTases, controllable through a normalisation step. By applying SAM-seq to Arabidopsis and maize nuclei we obtained fine-grained accessibility and DNA methylation landscapes genome-wide. We uncovered crosstalk between chromatin accessibility and DNA methylation within nucleosomes of genes, TEs, and centromeric repeats. SAM-seq also detects DNA footprints over cis-regulatory regions. Furthermore, using the single-molecule information provided by SAM-seq we identified extensive cellular heterogeneity at chromatin domains with antagonistic chromatin marks, suggesting that bivalency reflects cell-specific regulations. SAM-seq is a powerful approach to simultaneously study multiple epigenetic features over unique and repetitive sequences, opening new opportunities for the investigation of epigenetic mechanisms.
Collapse
Affiliation(s)
- Basile Leduque
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institute National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, Orsay, France
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institute National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, Orsay, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institute National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, Orsay, France
| |
Collapse
|
49
|
Sidhu JS, Lynch JP. Cortical cell size regulates root metabolic cost. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1343-1357. [PMID: 38340035 DOI: 10.1111/tpj.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
It has been hypothesized that vacuolar occupancy in mature root cortical parenchyma cells regulates root metabolic cost and thereby plant fitness under conditions of drought, suboptimal nutrient availability, and increased soil mechanical impedance. However, the mechanistic role of vacuoles in reducing root metabolic cost was unproven. Here we provide evidence to support this hypothesis. We first show that root cortical cell size is determined by both cortical cell diameter and cell length. Significant genotypic variation for both cortical cell diameter (~1.1- to 1.5-fold) and cortical cell length (~ 1.3- to 7-fold) was observed in maize and wheat. GWAS and QTL analyses indicate cortical cell diameter and length are heritable and under independent genetic control. We identify candidate genes for both phenes. Empirical results from isophenic lines contrasting for cortical cell diameter and length show that increased cell size, due to either diameter or length, is associated with reduced root respiration, nitrogen content, and phosphorus content. RootSlice, a functional-structural model of root anatomy, predicts that an increased vacuolar: cytoplasmic ratio per unit cortical volume causes reduced root respiration and nutrient content. Ultrastructural imaging of cortical parenchyma cells with varying cortical diameter and cortical cell length confirms the in silico predictions and shows that an increase in cell size is correlated with increased vacuolar volume and reduced cytoplasmic volume. Vacuolar occupancy and its relationship with cell size merits further investigation as a phene for improving crop adaptation to edaphic stress.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
50
|
Ren RC, Kong LG, Zheng GM, Zhao YJ, Jiang X, Wu JW, Liu C, Chu J, Ding XH, Zhang XS, Wang GF, Zhao XY. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. PLANT PHYSIOLOGY 2024; 195:1642-1659. [PMID: 38431524 DOI: 10.1093/plphys/kiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ling Guang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xin Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Cuimei Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research (Beijing), Beijing 100101, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research (Beijing), Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Hua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guan Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|