1
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
2
|
Mrksich K, Padilla MS, Joseph RA, Han EL, Kim D, Palanki R, Xu J, Mitchell MJ. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J Biomed Mater Res A 2024; 112:1494-1505. [PMID: 38487970 PMCID: PMC11239295 DOI: 10.1002/jbm.a.37705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 07/12/2024]
Abstract
RNA-based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP-mediated mRNA translation. Here, we optimized IL tail length for LNP-mediated delivery of three different mRNA cargos. Using C12-200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10-200, an IL with shorter tail lengths than C12-200, enhance liver transfection by over 10-fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13-200 IL led to EPO translation at levels similar to the C12-200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9-200 IL induced over three times the quantity of indels compared with the C12-200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.
Collapse
Affiliation(s)
- Kaitlin Mrksich
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marshall S. Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann A. Joseph
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily L. Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongyoon Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohan Palanki
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Junchao Xu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Pille M, Avila JM, Park SH, Le CQ, Xue H, Haerynck F, Saxena L, Lee C, Shpall EJ, Bao G, Vandekerckhove B, Davis BR. Gene editing-based targeted integration for correction of Wiskott-Aldrich syndrome. Mol Ther Methods Clin Dev 2024; 32:101208. [PMID: 38414825 PMCID: PMC10897892 DOI: 10.1016/j.omtm.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Wiskott-Aldrich syndrome (WAS) is a severe X-linked primary immunodeficiency resulting from a diversity of mutations distributed across all 12 exons of the WAS gene. WAS encodes a hematopoietic-specific and developmentally regulated cytoplasmic protein (WASp). The objective of this study was to develop a gene correction strategy potentially applicable to most WAS patients by employing nuclease-mediated, site-specific integration of a corrective WAS gene sequence into the endogenous WAS chromosomal locus. In this study, we demonstrate the ability to target the integration of WAS2-12-containing constructs into intron 1 of the endogenous WAS gene of primary CD34+ hematopoietic stem and progenitor cells (HSPCs), as well as WASp-deficient B cell lines and WASp-deficient primary T cells. This intron 1 targeted integration (TI) approach proved to be quite efficient and restored WASp expression in treated cells. Furthermore, TI restored WASp-dependent function to WAS patient T cells. Edited CD34+ HSPCs exhibited the capacity for multipotent differentiation to various hematopoietic lineages in vitro and in transplanted immunodeficient mice. This methodology offers a potential editing approach for treatment of WAS using patient's CD34+ cells.
Collapse
Affiliation(s)
- Melissa Pille
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - John M. Avila
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Cuong Q. Le
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ciaran Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Brian R. Davis
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Ha Thi HT, Than VT. Recent applications of RNA therapeutic in clinics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:115-150. [PMID: 38359994 DOI: 10.1016/bs.pmbts.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Ribonucleic acid (RNA) therapy has been extensively researched for several decades and has garnered significant attention in recent years owing to its potential in treating a broad spectrum of diseases. It falls under the domain of gene therapy, leveraging RNA molecules as a therapeutic approach in medicine. RNA can be targeted using small-molecule drugs, or RNA molecules themselves can serve as drugs by interacting with proteins or other RNA molecules. While several RNA drugs have been granted clinical approval, numerous RNA-based therapeutics are presently undergoing clinical investigation or testing for various conditions, including genetic disorders, viral infections, and diverse forms of cancer. These therapies offer several advantages, such as high specificity, enabling precise targeting of disease-related genes or proteins, cost-effectiveness, and a relatively straightforward manufacturing process. Nevertheless, successful translation of RNA therapies into widespread clinical use necessitates addressing challenges related to delivery, stability, and potential off-target effects. This chapter provides a comprehensive overview of the general concepts of various classes of RNA-based therapeutics, the mechanistic basis of their function, as well as recent applications of RNA therapeutic in clinics.
Collapse
Affiliation(s)
- Huyen Trang Ha Thi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
7
|
Valeri E, Unali G, Piras F, Abou-Alezz M, Pais G, Benedicenti F, Lidonnici MR, Cuccovillo I, Castiglioni I, Arévalo S, Spinozzi G, Merelli I, Behrendt R, Oo A, Kim B, Landau NR, Ferrari G, Montini E, Kajaste-Rudnitski A. Removal of innate immune barriers allows efficient transduction of quiescent human hematopoietic stem cells. Mol Ther 2024; 32:124-139. [PMID: 37990494 PMCID: PMC10787167 DOI: 10.1016/j.ymthe.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.
Collapse
Affiliation(s)
- Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, School of Medicine, 20132 Milan, Italy
| | - Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, School of Medicine, 20132 Milan, Italy
| | - Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Monah Abou-Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Castiglioni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sergio Arévalo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Adrian Oo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, School of Medicine, 20132 Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Baik R, Cromer MK, Glenn SE, Vakulskas CA, Chmielewski KO, Dudek AM, Feist WN, Klermund J, Shipp S, Cathomen T, Dever DP, Porteus MH. Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells. Nat Commun 2024; 15:111. [PMID: 38169468 PMCID: PMC10762240 DOI: 10.1038/s41467-023-43413-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.
Collapse
Affiliation(s)
- Ron Baik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kyle Cromer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steve E Glenn
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | | | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Amanda M Dudek
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - William N Feist
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Suzette Shipp
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Daniel P Dever
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew H Porteus
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Moço PD, Dash S, Kamen AA. Enhancement of adeno-associated virus serotype 6 transduction into T cells with cell-penetrating peptides. J Gene Med 2024; 26:e3627. [PMID: 37957034 DOI: 10.1002/jgm.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Shantoshini Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
David M, Monteferrario D, Saviane G, Jeanneau C, Marchetti I, Dupont CF, Dumont C, Fontenot JD, Rosa MDL, Fenard D. Production of therapeutic levels of human FIX-R338L by engineered B cells using GMP-compatible medium. Mol Ther Methods Clin Dev 2023; 31:101111. [PMID: 37790246 PMCID: PMC10543988 DOI: 10.1016/j.omtm.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
B cells can differentiate into plasmablast and plasma cells, capable of producing antibodies for decades. Gene editing using zinc-finger nucleases (ZFN) enables the engineering of B cells capable of secreting sustained and high levels of therapeutic proteins. In this study, we established an advanced in vitro good manufacturing practice-compatible culturing system characterized by robust and consistent expansion rate, high viability, and efficient B cell differentiation. Using this process, an optimized B cell editing protocol was developed by combining ZFN/adeno-associated virus 6 technology to achieve site-specific insertion of the human factor IX R338L Padua into the silent TRAC locus. In vitro analysis revealed high levels of secreted human immunoglobulins and human factor IX-Padua. Following intravenous infusion in a mouse model, human plasma cells were detected in spleen and bone marrow, indicating successful and potentially long-term engraftment in vivo. Moreover, high levels of human immunoglobin and therapeutic levels of human factor IX-Padua were detected in mouse plasma, correlating with 15% of normal human factor IX activity. These data suggest that the proposed process promotes the production of functional and differentiated engineered B cells. In conclusion, this study represents an important step toward the development of a manufacturing platform for potential B cell-derived therapeutic products.
Collapse
Affiliation(s)
- Marion David
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Davide Monteferrario
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Gaëlle Saviane
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Caroline Jeanneau
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Irène Marchetti
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Coralie F. Dupont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Céline Dumont
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - Jason D. Fontenot
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Maurus de la Rosa
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| | - David Fenard
- Sangamo Therapeutics France, Allée de la Nertière, F-06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
11
|
Sahu S, Poplawska M, Lim SH, Dutta D. CRISPR-based precision medicine for hematologic disorders: Advancements, challenges, and prospects. Life Sci 2023; 333:122165. [PMID: 37832631 DOI: 10.1016/j.lfs.2023.122165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The development of programmable nucleases to introduce defined alterations in genomic sequences has been a powerful tool for precision medicine. While several nucleases such as zinc-finger nucleases (ZFN), transcriptor activator-like effector nucleases (TALEN), and meganucleases have been explored, the advent of CRISPR/Cas9 technology has revolutionized the field of genome engineering. In addition to disease modeling, the CRISPR/Cas9 technology has contributed to safer and more effective treatment strategies for hematologic diseases and personalized T-cell-based therapies. Here we discuss the applications of the CRISPR technology in the treatment of hematologic diseases, their efficacy, and ongoing clinical trials. We examine the obstacles to their successful use and the approaches investigated to overcome these challenges. Finally, we provide our perspectives to improve this genome editing tool for targeted therapies.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Building 560, Room 32-04, Frederick, MD 21702, USA.
| | - Maria Poplawska
- Department of Medicine (Division of Hematology and Oncology), State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Seah H Lim
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA
| | - Dibyendu Dutta
- Department of Medicine (Division of Hematology and Oncology), State University of New York Upstate Medical University, 750 E Adams, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
Ceglie G, Lecis M, Canciani G, Algeri M, Frati G. Genome editing for sickle cell disease: still time to correct? Front Pediatr 2023; 11:1249275. [PMID: 38027257 PMCID: PMC10652763 DOI: 10.3389/fped.2023.1249275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder, due to a single point mutation in the β-globin gene (HBB) leading to multisystemic manifestations and it affects millions of people worldwide. The monogenic nature of the disease and the availability of autologous hematopoietic stem cells (HSCs) make this disorder an ideal candidate for gene modification strategies. Notably, significant advances in the field of gene therapy and genome editing that took place in the last decade enabled the possibility to develop several strategies for the treatment of SCD. These curative approaches were firstly based on the correction of disease-causing mutations holding the promise for a specific, effective and safe option for patients. Specifically, gene-editing approaches exploiting the homology directed repair pathway were investigated, but soon their limited efficacy in quiescent HSC has curbed their wider development. On the other hand, a number of studies on globin gene regulation, led to the development of several genome editing strategies based on the reactivation of the fetal γ-globin gene (HBG) by nuclease-mediated targeting of HBG-repressor elements. Although the efficiency of these strategies seems to be confirmed in preclinical and clinical studies, very little is known about the long-term consequences of these modifications. Moreover, the potential genotoxicity of these nuclease-based strategies must be taken into account, especially when associated with high targeting rates. The recent introduction of nuclease-free genome editing technologies brought along the potential for safer strategies for SCD gene correction, which may also harbor significant advantages over HBG-reactivating ones. In this Review, we discuss the recent advances in genome editing strategies for the correction of SCD-causing mutations trying to recapitulate the promising strategies currently available and their relative strengths and weaknesses.
Collapse
Affiliation(s)
- Giulia Ceglie
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Lecis
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Unit, Modena University Hospital, Modena, Italy
| | - Gabriele Canciani
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Algeri
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giacomo Frati
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
13
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
14
|
Moço PD, Farnós O, Sharon D, Kamen AA. Targeted Delivery of Chimeric Antigen Receptor into T Cells via CRISPR-Mediated Homology-Directed Repair with a Dual-AAV6 Transduction System. Curr Issues Mol Biol 2023; 45:7705-7720. [PMID: 37886930 PMCID: PMC10605174 DOI: 10.3390/cimb45100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
CAR-T cell therapy involves genetically engineering T cells to recognize and attack tumour cells by adding a chimeric antigen receptor (CAR) to their surface. In this study, we have used dual transduction with AAV serotype 6 (AAV6) to integrate an anti-CD19 CAR into human T cells at a known genomic location. The first viral vector expresses the Cas9 endonuclease and a guide RNA (gRNA) targeting the T cell receptor alpha constant locus, while the second vector carries the DNA template for homology-mediated CAR insertion. We evaluated three gRNA candidates and determined their efficiency in generating indels. The AAV6 successfully delivered the CRISPR/Cas9 machinery in vitro, and molecular analysis of the dual transduction showed the integration of the CAR transgene into the desired location. In contrast to the random integration methods typically used to generate CAR-T cells, targeted integration into a known genomic locus can potentially lower the risk of insertional mutagenesis and provide more stable levels of CAR expression. Critically, this method also results in the knockout of the endogenous T cell receptor, allowing target cells to be derived from allogeneic donors. This raises the exciting possibility of "off-the-shelf" universal immunotherapies that would greatly simplify the production and administration of CAR-T cells.
Collapse
Affiliation(s)
| | | | | | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (P.D.M.)
| |
Collapse
|
15
|
Björnson Y, Huang CY, Rollins JL, Castañeda G, Kaur N, Yamamoto E, Johnston JM. The effect of histone deacetylase inhibitors on the efficiency of the CRISPR/Cas9 system. Biochem Biophys Rep 2023; 35:101513. [PMID: 37521376 PMCID: PMC10372373 DOI: 10.1016/j.bbrep.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
The CRISPR/Cas9 technology is a prominent genome-editing tool capable of producing a double-strand break in the genome. However, the modification of hematopoietic stem cells via the homology-directed repair pathway is still inefficient. Therefore, we hypothesize that histone deacetylase inhibitors, such as valproic acid (VPA) and sodium butyrate (NaB), could enhance HDR efficiency by increasing the accessibility of the genome-editing machinery. To address the potential utilization of HDAC inhibitors therapeutically, we began by assessing the effect of VPA and NaB on two cell lines representative of the two hematopoietic stem cell lineages. No statistically significant effect on cell growth or viability was observed at concentrations as high as 5 mM. At a concentration as low as 0.005 mM NaB, an enhancement in CRISPR cutting efficiency was evidenced in both cell lines. This enhancement did not appear to be locus-specific. However, an enhancement in cutting efficiency following VPA treatment does appear to be. HDR efficiency was enhanced greater than two-fold with the use of 0.005 mM VPA. These results are promising and suggest the consideration of treatment with an HDAC inhibitor in CRISPR/Cas9 genome editing protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer M. Johnston
- 1 Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| |
Collapse
|
16
|
Srivastava A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:949-959. [PMID: 37293185 PMCID: PMC10244667 DOI: 10.1016/j.omtn.2023.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recombinant adeno-associated virus (AAV) vectors have been, or are currently in use, in 332 phase I/II/III clinical trials in a number of human diseases, and in some cases, remarkable clinical efficacy has also been achieved. There are now three US Food and Drug Administration (FDA)-approved AAV "drugs," but it has become increasingly clear that the first generation of AAV vectors are not optimal. In addition, relatively large vector doses are needed to achieve clinical efficacy, which has been shown to provoke host immune responses culminating in serious adverse events and, more recently, in the deaths of 10 patients to date. Thus, there is an urgent need for the development of the next generation of AAV vectors that are (1) safe, (2) effective, and (3) human tropic. This review describes the strategies to potentially overcome each of the limitations of the first generation of AAV vectors and the rationale and approaches for the development of the next generation of AAV serotype vectors. These vectors promise to be efficacious at significant reduced doses, likely to achieve clinical efficacy, thereby increasing the safety as well as reducing vector production costs, ensuring translation to the clinic with higher probability of success, without the need for the use of immune suppression, for gene therapy of a wide variety of diseases in humans.
Collapse
Affiliation(s)
- Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics, Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
18
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
20
|
Wolff JH, Mikkelsen JG. Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Front Genome Ed 2023; 5:1148650. [PMID: 36969373 PMCID: PMC10036844 DOI: 10.3389/fgeed.2023.1148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo. In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.
Collapse
|
21
|
Foßelteder J, Pabst G, Sconocchia T, Schlacher A, Auinger L, Kashofer K, Beham-Schmid C, Trajanoski S, Waskow C, Schöll W, Sill H, Zebisch A, Wölfler A, Thomas D, Reinisch A. Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities. Leukemia 2023; 37:843-853. [PMID: 36813992 PMCID: PMC10079532 DOI: 10.1038/s41375-023-01848-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.
Collapse
Affiliation(s)
- Johannes Foßelteder
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Gabriel Pabst
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Angelika Schlacher
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Lisa Auinger
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Claudia Waskow
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Wolfgang Schöll
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Daniel Thomas
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Andreas Reinisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Nyberg WA, Ark J, To A, Clouden S, Reeder G, Muldoon JJ, Chung JY, Xie WH, Allain V, Steinhart Z, Chang C, Talbot A, Kim S, Rosales A, Havlik LP, Pimentel H, Asokan A, Eyquem J. An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell 2023; 186:446-460.e19. [PMID: 36638795 PMCID: PMC10540678 DOI: 10.1016/j.cell.2022.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.
Collapse
Affiliation(s)
- William A Nyberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jonathan Ark
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela To
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Sylvanie Clouden
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabriella Reeder
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Joseph J Muldoon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Jing-Yi Chung
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - William H Xie
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Vincent Allain
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Université de Paris Cité, INSERM UMR976, Hôpital St-Louis, Paris, France
| | - Zachary Steinhart
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Christopher Chang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Alexis Talbot
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Université de Paris Cité, INSERM UMR976, Hôpital St-Louis, Paris, France
| | - Sandy Kim
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - L Patrick Havlik
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Harold Pimentel
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Sloan Foundation, Departments of Computational Medicine, Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Justin Eyquem
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
24
|
Crippa S, Conti A, Vavassori V, Ferrari S, Beretta S, Rivis S, Bosotti R, Scala S, Pirroni S, Jofra-Hernandez R, Santi L, Basso-Ricci L, Merelli I, Genovese P, Aiuti A, Naldini L, Di Micco R, Bernardo ME. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Mol Ther 2023; 31:230-248. [PMID: 35982622 PMCID: PMC9840125 DOI: 10.1016/j.ymthe.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, VIB-KULeuven, 3000 Leuven, Belgium
| | - Roberto Bosotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Raisa Jofra-Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20132 Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
25
|
Radtke S, Kiem HP. Identification of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:87-98. [PMID: 36255696 DOI: 10.1007/978-1-0716-2679-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The preclinical development of hematopoietic stem cell (HSC) gene therapy/editing and transplantation protocols is frequently performed in large animal models such as nonhuman primates (NHPs). Similarity in physiology, size, and life expectation as well as cross-reactivity of most reagents and medications allows for the development of treatment strategies with rapid translation to clinical applications. Especially after the adverse events of HSC gene therapy observed in the late 1990s, the ability to perform autologous transplants and follow the animals long-term make the NHP a very attractive model to test the efficiency, feasibility, and safety of new HSC-mediated gene-transfer/editing and transplantation approaches.This protocol describes a method to phenotypically characterize functionally distinct NHP HSPC subsets within specimens or stem cell products from three different NHP species. Procedures are based on the flow-cytometric assessment of cell surface markers that are cross-reactive in between human and NHP to allow for immediate clinical translation. This protocol has been successfully used for the quality control of enriched, cultured, and gene-modified NHP CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as sort-purified CD34 subsets for transplantation in the pig-tailed, cynomolgus, and rhesus macaque. It further allows the longitudinal assessment of primary specimens taken during the long-term follow-up post-transplantation in order to monitor homing, engraftment, and reconstitution of the bone marrow stem cell compartment.
Collapse
Affiliation(s)
- Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
26
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
28
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
30
|
Ferrari S, Jacob A, Cesana D, Laugel M, Beretta S, Varesi A, Unali G, Conti A, Canarutto D, Albano L, Calabria A, Vavassori V, Cipriani C, Castiello MC, Esposito S, Brombin C, Cugnata F, Adjali O, Ayuso E, Merelli I, Villa A, Di Micco R, Kajaste-Rudnitski A, Montini E, Penaud-Budloo M, Naldini L. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022; 29:1428-1444.e9. [PMID: 36206730 PMCID: PMC9550218 DOI: 10.1016/j.stem.2022.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Cesana
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianne Laugel
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Stefano Beretta
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Unali
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniele Canarutto
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luisa Albano
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Carlo Cipriani
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Carmina Castiello
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Simona Esposito
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate 20090, Italy
| | - Anna Villa
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Raffaella Di Micco
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luigi Naldini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Corresponding author
| |
Collapse
|
31
|
Pervasive donor DNA integration defies precision gene editing of hematopoietic stem cells. Cell Stem Cell 2022; 29:1426-1427. [DOI: 10.1016/j.stem.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang Y, Xi X, Yu H, Yang L, Lin J, Yang W, Liu J, Fan X, Xu Y. Chemically modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates thrombopoiesis in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:657-671. [PMID: 36090760 PMCID: PMC9440273 DOI: 10.1016/j.omtn.2022.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The use of messenger RNA (mRNA) enables the transient production of therapeutic proteins with stable and predictable translational kinetics and without the risk of insertional mutagenesis. Recent findings highlight the enormous potential of mRNA-based therapeutics. Here, we describe the synthesis of chemically modified thrombopoietin (TPO) mRNA through in vitro transcription and in vivo delivery via lipid nanoparticles (LNPs). After delivery of TPO mRNA in mice, compared with normal physiological values, plasma TPO protein levels increased over 1000-fold in a dose-dependent manner. Moreover, through a single intravenous dose of TPO mRNA-loaded LNPs, both reticulated and total platelet count increased significantly in mice, demonstrating that TPO protein derived from the exogenous mRNA was able to maintain normal activity. Submicrogram quantity of N1-methylpseudouridine-modified TPO mRNA showed a similar effect in promoting thrombopoiesis as that by the TPO receptor agonist romiplostim. In addition, a therapeutic value was established in anti-GPIbα (CD42b) antibody-induced thrombocytopenia mouse models that showed a fast recovery of platelet count. Our study demonstrated chemically modified in-vitro-transcribed TPO mRNA as a potentially safe therapeutic intervention to stimulate thrombopoiesis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, P.R. China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, P.R. China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education; Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
33
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
34
|
Porteus MH, Pavel-Dinu M, Pai SY. A Curative DNA Code for Hematopoietic Defects: Novel Cell Therapies for Monogenic Diseases of the Blood and Immune System. Hematol Oncol Clin North Am 2022; 36:647-665. [PMID: 35773054 PMCID: PMC9365196 DOI: 10.1016/j.hoc.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3040B, MC 5462, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3045, MC 5175, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1102, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
36
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Peterson CW, Venkataraman R, Reddy SS, Pande D, Enstrom MR, Radtke S, Humbert O, Kiem HP. Intracellular RNase activity dampens zinc finger nuclease-mediated gene editing in hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev 2022; 24:30-39. [PMID: 34977270 PMCID: PMC8671732 DOI: 10.1016/j.omtm.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Over the past decade, numerous gene-editing platforms which alter host DNA in a highly specific and targeted fashion have been described. Two notable examples are zinc finger nucleases (ZFNs), the first gene-editing platform to be tested in clinical trials, and more recently, CRISPR/Cas9. Although CRISPR/Cas9 approaches have become arguably the most popular platform in the field, the therapeutic advantages and disadvantages of each strategy are only beginning to emerge. We have established a nonhuman primate (NHP) model that serves as a strong predictor of successful gene therapy and gene-editing approaches in humans; our recent work shows that ZFN-edited hematopoietic stem and progenitor cells (HSPCs) engraft at lower levels than CRISPR/Cas9-edited cells. Here, we investigate the mechanisms underlying this difference. We show that optimized culture conditions, including defined serum-free media, augment engraftment of gene-edited NHP HSPCs in a mouse xenograft model. Furthermore, we identify intracellular RNases as major barriers for mRNA-encoded nucleases relative to preformed enzymatically active CRISPR/Cas9 ribonucleoprotein (RNP) complexes. We conclude that CRISPR/Cas9 RNP gene editing is more stable and efficient than ZFN mRNA-based delivery and identify co-delivered RNase inhibitors as a strategy to enhance the expression of gene-editing proteins from mRNA intermediates.
Collapse
Affiliation(s)
- Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rasika Venkataraman
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Sowmya S. Reddy
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Dnyanada Pande
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Mark R. Enstrom
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Gray DH, Santos J, Keir AG, Villegas I, Maddock S, Trope EC, Long JD, Kuo CY. A comparison of DNA repair pathways to achieve a site-specific gene modification of the Bruton's tyrosine kinase gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:505-516. [PMID: 35036061 PMCID: PMC8728535 DOI: 10.1016/j.omtn.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023]
Abstract
Gene editing utilizing homology-directed repair has advanced significantly for many monogenic diseases of the hematopoietic system in recent years but has also been hindered by decreases between in vitro and in vivo gene integration rates. Homology-directed repair occurs primarily in the S/G2 phases of the cell cycle, whereas long-term engrafting hematopoietic stem cells are typically quiescent. Alternative methods for a targeted integration have been proposed including homology-independent targeted integration and precise integration into target chromosome, which utilize non-homologous end joining and microhomology-mediated end joining, respectively. Non-homologous end joining occurs throughout the cell cycle, while microhomology-mediated end joining occurs predominantly in the S phase. We compared these pathways for the integration of a corrective DNA cassette at the Bruton's tyrosine kinase gene for the treatment of X-linked agammaglobulinemia. Homology-directed repair generated the most integration in K562 cells; however, synchronizing cells into G1 resulted in the highest integration rates with homology-independent targeted integration. Only homology-directed repair produced seamless junctions, making it optimal for targets where insertions and deletions are impermissible. Bulk CD34+ cells were best edited by homology-directed repair and precise integration into the target chromosome, while sorted hematopoietic stem cells contained similar integration rates using all corrective donors.
Collapse
Affiliation(s)
- David H. Gray
- Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, CA 90095, USA
| | - Jasmine Santos
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Alexandra Grace Keir
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Isaac Villegas
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte MDCC 12-430, Los Angeles, CA 90095, USA
| | - Simon Maddock
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Edward C. Trope
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte MDCC 12-430, Los Angeles, CA 90095, USA
| | - Joseph D. Long
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte MDCC 12-430, Los Angeles, CA 90095, USA
| | - Caroline Y. Kuo
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte MDCC 12-430, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Abstract
Retrons are bacterial genetic elements involved in anti-phage defense. They have the unique ability to reverse transcribe RNA into multicopy single-stranded DNA (msDNA) that remains covalently linked to their template RNA. Retrons coupled with CRISPR-Cas9 in yeast have been shown to improve the efficiency of precise genome editing via homology-directed repair (HDR). In human cells, HDR editing efficiency has been limited by challenges associated with delivering extracellular donor DNA encoding the desired mutation. In this study, we tested the ability of retrons to produce msDNA as donor DNA and facilitate HDR by tethering msDNA to guide RNA in HEK293T and K562 cells. Through heterologous reconstitution of retrons from multiple bacterial species with the CRISPR-Cas9 system, we demonstrated HDR rates of up to 11.4%. Overall, our findings represent the first step in extending retron-based precise gene editing to human cells.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jiwoo Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
41
|
Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. The Role of Recombinant AAV in Precise Genome Editing. Front Genome Ed 2022; 3:799722. [PMID: 35098210 PMCID: PMC8793687 DOI: 10.3389/fgeed.2021.799722] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The replication-defective, non-pathogenic, nearly ubiquitous single-stranded adeno-associated viruses (AAVs) have gained importance since their discovery about 50 years ago. Their unique life cycle and virus-cell interactions have led to the development of recombinant AAVs as ideal genetic medicine tools that have evolved into effective commercialized gene therapies. A distinctive property of AAVs is their ability to edit the genome precisely. In contrast to all current genome editing platforms, AAV exclusively utilizes the high-fidelity homologous recombination (HR) pathway and does not require exogenous nucleases for prior cleavage of genomic DNA. Together, this leads to a highly precise editing outcome that preserves genomic integrity without incorporation of indel mutations or viral sequences at the target site while also obviating the possibility of off-target genotoxicity. The stem cell-derived AAV (AAVHSCs) were found to mediate precise and efficient HR with high on-target accuracy and at high efficiencies. AAVHSC editing occurs efficiently in post-mitotic cells and tissues in vivo. Additionally, AAV also has the advantage of an intrinsic delivery mechanism. Thus, this distinctive genome editing platform holds tremendous promise for the correction of disease-associated mutations without adding to the mutational burden. This review will focus on the unique properties of direct AAV-mediated genome editing and their potential mechanisms of action.
Collapse
|
42
|
Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metab Pharmacokinet 2022; 44:100447. [DOI: 10.1016/j.dmpk.2022.100447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023]
|
43
|
Zakaria NA, Bahar R, Abdullah WZ, Mohamed Yusoff AA, Shamsuddin S, Abdul Wahab R, Johan MF. Genetic Manipulation Strategies for β-Thalassemia: A Review. Front Pediatr 2022; 10:901605. [PMID: 35783328 PMCID: PMC9240386 DOI: 10.3389/fped.2022.901605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Thalassemias are monogenic hematologic diseases that are classified as α- or β-thalassemia according to its quantitative abnormalities of adult α- or β-globin chains. β-thalassemia has widely spread throughout the world especially in Mediterranean countries, the Middle East, Central Asia, India, Southern China, and the Far East as well as countries along the north coast of Africa and in South America. The one and the only cure for β-thalassemia is allogenic hematopoietic stem cell transplantations (HSCT). Nevertheless, the difficulty to find matched donors has hindered the availability of this therapeutic option. Therefore, this present review explored the alternatives for β-thalassemia treatment such as RNA manipulation therapy, splice-switching, genome editing and generation of corrected induced pluripotent stem cells (iPSCs). Manipulation of β-globin RNA is mediated by antisense oligonucleotides (ASOs) or splice-switching oligonucleotides (SSOs), which redirect pre-mRNA splicing to significantly restore correct β-globin pre-mRNA splicing and gene product in cultured erythropoietic cells. Zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) are designer proteins that can alter the genome precisely by creating specific DNA double-strand breaks. The treatment of β-thalassemia patient-derived iPSCs with TALENs have been found to correct the β-globin gene mutations, implying that TALENs could be used as a therapy option for β-thalassemia. Additionally, CRISPR technologies using Cas9 have been used to fix mutations in the β-globin gene in cultured cells as well as induction of hereditary persistence of fetal hemoglobin (HPFH), and α-globin gene deletions have proposed a possible therapeutic option for β-thalassemia. Overall, the accumulated research evidence demonstrated the potential of ASOs-mediated aberrant splicing correction of β-thalassemia mutations and the advancements of genome therapy approaches using ZFNs, TALENs, and CRISPR/Cas9 that provided insights in finding the permanent cure of β-thalassemia.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rosnah Bahar
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Universiti Sains Malaysia (USM)-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Penang, Malaysia
| | - Ridhwan Abdul Wahab
- International Medical School, Management and Science University, Shah Alam, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
44
|
Rogers GL, Huang C, Clark RDE, Seclén E, Chen HY, Cannon PM. Optimization of AAV6 transduction enhances site-specific genome editing of primary human lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:198-209. [PMID: 34703842 PMCID: PMC8517001 DOI: 10.1016/j.omtm.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus serotype 6 (AAV6) is a valuable reagent for genome editing of hematopoietic cells due to its ability to serve as a homology donor template. However, a comprehensive study of AAV6 transduction of hematopoietic cells in culture, with the goal of maximizing ex vivo genome editing, has not been reported. Here, we evaluated how the presence of serum, culture volume, transduction time, and electroporation parameters could influence AAV6 transduction. Based on these results, we identified an optimized protocol for genome editing of human lymphocytes based on a short, highly concentrated AAV6 transduction in the absence of serum, followed by electroporation with a targeted nuclease. In human CD4+ T cells and B cells, this protocol improved editing rates up to 7-fold and 21-fold, respectively, when compared to standard AAV6 transduction protocols described in the literature. As a result, editing frequencies could be maintained using 50- to 100-fold less AAV6, which also reduced cellular toxicity. Our results highlight the important contribution of cell culture conditions for ex vivo genome editing with AAV6 vectors and provide a blueprint for improving AAV6-mediated homology-directed editing of human T and B cells.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D E Clark
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eduardo Seclén
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Coons B, Peranteau WH. Prenatal Gene Therapy for Metabolic Disorders. Clin Obstet Gynecol 2021; 64:904-916. [PMID: 34652302 PMCID: PMC8713251 DOI: 10.1097/grf.0000000000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy has traditionally involved the delivery of exogenous genetic material to a cell-most commonly to replace defective genes causing monogenic disorders. This allows cells to produce proteins that are otherwise absent in sufficient quantities, ideally for a therapeutic purpose. Since its inception over 40 years ago, the field of gene therapy has significantly expanded and now includes targeted gene editing strategies, including, but not limited to, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs).
Collapse
Affiliation(s)
- Barbara Coons
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
46
|
Rogers GL, Cannon PM. Genome edited B cells: a new frontier in immune cell therapies. Mol Ther 2021; 29:3192-3204. [PMID: 34563675 PMCID: PMC8571172 DOI: 10.1016/j.ymthe.2021.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022] Open
Abstract
Cell therapies based on reprogrammed adaptive immune cells have great potential as "living drugs." As first demonstrated clinically for engineered chimeric antigen receptor (CAR) T cells, the ability of such cells to undergo clonal expansion in response to an antigen promotes both self-renewal and self-regulation in vivo. B cells also have the potential to be developed as immune cell therapies, but engineering their specificity and functionality is more challenging than for T cells. In part, this is due to the complexity of the immunoglobulin (Ig) locus, as well as the requirement for regulated expression of both cell surface B cell receptor and secreted antibody isoforms, in order to fully recapitulate the features of natural antibody production. Recent advances in genome editing are now allowing reprogramming of B cells by site-specific engineering of the Ig locus with preformed antibodies. In this review, we discuss the potential of engineered B cells as a cell therapy, the challenges involved in editing the Ig locus and the advances that are making this possible, and envision future directions for this emerging field of immune cell engineering.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
47
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Ferrari S, Vavassori V, Canarutto D, Jacob A, Castiello MC, Javed AO, Genovese P. Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Front Genome Ed 2021; 3:618378. [PMID: 34713250 PMCID: PMC8525369 DOI: 10.3389/fgeed.2021.618378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), Milano-Bicocca University, Monza, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Pavani G, Amendola M. Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 2:609650. [PMID: 34713234 PMCID: PMC8525409 DOI: 10.3389/fgeed.2020.609650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.
Collapse
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
50
|
Gutierrez-Guerrero A, Abrey Recalde MJ, Mangeot PE, Costa C, Bernadin O, Périan S, Fusil F, Froment G, Martinez-Turtos A, Krug A, Martin F, Benabdellah K, Ricci EP, Giovannozzi S, Gijsbers R, Ayuso E, Cosset FL, Verhoeyen E. Baboon Envelope Pseudotyped "Nanoblades" Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34 + Cells and Knock-in of AAV6-Encoded Donor DNA in CD34 + Cells. Front Genome Ed 2021; 3:604371. [PMID: 34713246 PMCID: PMC8525375 DOI: 10.3389/fgeed.2021.604371] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into human blood cells can be challenging. Here, we have utilized "nanoblades," a new technology that delivers a genomic cleaving agent into cells. These are modified murine leukemia virus (MLV) or HIV-derived virus-like particle (VLP), in which the viral structural protein Gag has been fused to Cas9. These VLPs are thus loaded with Cas9 protein complexed with the guide RNAs. Highly efficient gene editing was obtained in cell lines, IPS and primary mouse and human cells. Here, we showed that nanoblades were remarkably efficient for entry into human T, B, and hematopoietic stem and progenitor cells (HSPCs) thanks to their surface co-pseudotyping with baboon retroviral and VSV-G envelope glycoproteins. A brief incubation of human T and B cells with nanoblades incorporating two gRNAs resulted in 40 and 15% edited deletion in the Wiskott-Aldrich syndrome (WAS) gene locus, respectively. CD34+ cells (HSPCs) treated with the same nanoblades allowed 30-40% exon 1 drop-out in the WAS gene locus. Importantly, no toxicity was detected upon nanoblade-mediated gene editing of these blood cells. Finally, we also treated HSPCs with nanoblades in combination with a donor-encoding rAAV6 vector resulting in up to 40% of stable expression cassette knock-in into the WAS gene locus. Summarizing, this new technology is simple to implement, shows high flexibility for different targets including primary immune cells of human and murine origin, is relatively inexpensive and therefore gives important prospects for basic and clinical translation in the area of gene therapy.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Maria Jimena Abrey Recalde
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Lentiviral Vectors and Gene Therapy, University Institute of Italian Hospital, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Philippe E Mangeot
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Caroline Costa
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Séverine Périan
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Floriane Fusil
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Gisèle Froment
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Adrien Krug
- Université Côte d'Azur, INSERM, Nice, France
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Emiliano P Ricci
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon (ENS de Lyon), Université Claude Bernard, Inserm, U1210, CNRS, UMR5239, Lyon, France
| | - Simone Giovannozzi
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, Nice, France
| |
Collapse
|