1
|
Gest AMM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024. [PMID: 39535501 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese M M Gest
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Ayse Z Sahan
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Cao X, Huang S, Wagner MM, Cho YT, Chiu DC, Wartchow KM, Lazarian A, McIntire LB, Smolka MB, Baskin JM. A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization. Nat Cell Biol 2024; 26:1804-1816. [PMID: 39209962 PMCID: PMC11559143 DOI: 10.1038/s41556-024-01495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled anchor-away/recruiter system comprises an engineered, 15 kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of the mitosis-enabled anchor-away/recruiter system include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Mateusz M Wagner
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuan-Ting Cho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Din-Chi Chiu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Benman W, Huang Z, Iyengar P, Wilde D, Mumford TR, Bugaj LJ. A temperature-inducible protein module for control of mammalian cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581019. [PMID: 38464222 PMCID: PMC10925237 DOI: 10.1101/2024.02.19.581019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inducible protein switches allow on-demand control of proteins in response to inputs including chemicals or light. However, these inputs either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. The original Melt variant switched states between 28-32°C, and state changes could be observed within minutes of temperature change. Melt was highly modular, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements, and cell death, all through straightforward end-to-end fusions. Melt was also highly tunable, giving rise to a library of variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer, demonstrating its potential for use in animals. Thus Melt represents a versatile thermogenetic module for straightforward, non-invasive, spatiotemporally-defined control of mammalian cells with broad potential for biotechnology and biomedicine.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pavan Iyengar
- Department of Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Delaney Wilde
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R. Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lukasz J. Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. Nat Methods 2024; 21:1725-1735. [PMID: 39103446 PMCID: PMC11399108 DOI: 10.1038/s41592-024-02375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Isak K Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Sruti S Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - David E Olson
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Christina K Kim
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA.
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
8
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
9
|
Vierkant V, Xie X, Huang Z, He L, Bancroft E, Wang X, Nguyen T, Srinivasan R, Zhou Y, Wang J. Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39095328 DOI: 10.1111/acer.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. METHODS Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant self-administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. RESULTS We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. CONCLUSIONS Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.
Collapse
Affiliation(s)
- Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Eric Bancroft
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Tran Nguyen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
10
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
11
|
Cao X, Huang S, Wagner MM, Cho YT, Chiu DC, Wartchow KM, Lazarian A, McIntire LB, Smolka MB, Baskin JM. A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597552. [PMID: 38895347 PMCID: PMC11185714 DOI: 10.1101/2024.06.05.597552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled Anchor-away/Recruiter System (MARS) comprises an engineered, 15-kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of MARS include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Mateusz M. Wagner
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States, 14853
| | - Yuan-Ting Cho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Din-Chi Chiu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Krista M. Wartchow
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Laura Beth McIntire
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States, 14853
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| |
Collapse
|
12
|
Vierkant V, Xie X, Huang Z, He L, Bancroft E, Wang X, Srinivisan R, Zhou Y, Wang J. Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597021. [PMID: 38853893 PMCID: PMC11160798 DOI: 10.1101/2024.06.02.597021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. Methods Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant-self administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. Results We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. Conclusions Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.
Collapse
|
13
|
Yagishita H, Sasaki T. Integrating physiological and transcriptomic analyses at the single-neuron level. Neurosci Res 2024:S0168-0102(24)00065-8. [PMID: 38821412 DOI: 10.1016/j.neures.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Neurons generate various spike patterns to execute different functions. Understanding how these physiological neuronal spike patterns are related to their molecular characteristics is a long-standing issue in neuroscience. Herein, we review the results of recent studies that have addressed this issue by integrating physiological and transcriptomic techniques. A sequence of experiments, including in vivo recording and/or labeling, brain tissue slicing, cell collection, and transcriptomic analysis, have identified the gene expression profiles of brain neurons at the single-cell level, with activity patterns recorded in living animals. Although these techniques are still in the early stages, this methodological idea is principally applicable to various brain regions and neuronal activity patterns. Accumulating evidence will contribute to a deeper understanding of neuronal characteristics by integrating insights from molecules to cells, circuits, and behaviors.
Collapse
Affiliation(s)
- Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| |
Collapse
|
14
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.06.556431. [PMID: 38798353 PMCID: PMC11118534 DOI: 10.1101/2023.09.06.556431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across all biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely-behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated Split-TurboID (CaST) labels activated cells within 10 minutes with an exogenously-delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST read-out can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Isak K. Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Sruti S. Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - David E. Olson
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Chemistry, University of California, Davis, Davis, CA 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
15
|
Eom K, Jung J, Kim B, Hyun JH. Molecular tools for recording and intervention of neuronal activity. Mol Cells 2024; 47:100048. [PMID: 38521352 PMCID: PMC11021360 DOI: 10.1016/j.mocell.2024.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
Observing the activity of neural networks is critical for the identification of learning and memory processes, as well as abnormal activities of neural circuits in disease, particularly for the purpose of tracking disease progression. Methodologies for describing the activity history of neural networks using molecular biology techniques first utilized genes expressed by active neurons, followed by the application of recently developed techniques including optogenetics and incorporation of insights garnered from other disciplines, including chemistry and physics. In this review, we will discuss ways in which molecular biological techniques used to describe the activity of neural networks have evolved along with the potential for future development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jinhwan Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byungsoo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
16
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Martinusen SG, Denard CA. Leveraging yeast sequestration to study and engineer posttranslational modification enzymes. Biotechnol Bioeng 2024; 121:903-914. [PMID: 38079116 PMCID: PMC11229454 DOI: 10.1002/bit.28621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024]
Abstract
Enzymes that catalyze posttranslational modifications (PTMs) of peptides and proteins (PTM-enzymes)-proteases, protein ligases, oxidoreductases, kinases, and other transferases-are foundational to our understanding of health and disease and empower applications in chemical biology, synthetic biology, and biomedicine. To fully harness the potential of PTM-enzymes, there is a critical need to decipher their enzymatic and biological mechanisms, develop molecules that can probe and modulate them, and endow them with improved and novel functions. These objectives are contingent upon implementation of high-throughput functional screens and selections that interrogate large sequence libraries to isolate desired PTM-enzyme properties. This review discusses the principles of Saccharomyces cerevisiae organelle sequestration to study and engineer PTM-enzymes. These include outer membrane sequestration, specifically methods that modify yeast surface display, and cytoplasmic sequestration based on enzyme-mediated transcription activation. Furthermore, we present a detailed discussion of yeast endoplasmic reticulum sequestration for the first time. Where appropriate, we highlight the major features and limitations of different systems, specifically how they can measure and control enzyme catalytic efficiencies. Taken together, yeast-based high-throughput sequestration approaches significantly lower the barrier to understanding how PTM-enzymes function and how to reprogram them.
Collapse
Affiliation(s)
- Samantha G Martinusen
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Carl A Denard
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Huppertz MC, Wilhelm J, Grenier V, Schneider MW, Falt T, Porzberg N, Hausmann D, Hoffmann DC, Hai L, Tarnawski M, Pino G, Slanchev K, Kolb I, Acuna C, Fenk LM, Baier H, Hiblot J, Johnsson K. Recording physiological history of cells with chemical labeling. Science 2024; 383:890-897. [PMID: 38386755 DOI: 10.1126/science.adg0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Recordings of the physiological history of cells provide insights into biological processes, yet obtaining such recordings is a challenge. To address this, we introduce a method to record transient cellular events for later analysis. We designed proteins that become labeled in the presence of both a specific cellular activity and a fluorescent substrate. The recording period is set by the presence of the substrate, whereas the cellular activity controls the degree of the labeling. The use of distinguishable substrates enabled the recording of successive periods of activity. We recorded protein-protein interactions, G protein-coupled receptor activation, and increases in intracellular calcium. Recordings of elevated calcium levels allowed selections of cells from heterogeneous populations for transcriptomic analysis and tracking of neuronal activities in flies and zebrafish.
Collapse
Affiliation(s)
- Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jonas Wilhelm
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Vincent Grenier
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Martin W Schneider
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tjalda Falt
- Active Sensing, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nicola Porzberg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - David Hausmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Krasimir Slanchev
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ilya Kolb
- GENIE Project Team, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Lisa M Fenk
- Active Sensing, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Benisch M, Aoki SK, Khammash M. Unlocking the potential of optogenetics in microbial applications. Curr Opin Microbiol 2024; 77:102404. [PMID: 38039932 DOI: 10.1016/j.mib.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
Collapse
Affiliation(s)
- Moritz Benisch
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Stephanie K Aoki
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| |
Collapse
|
20
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
22
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Jung JH, Wang Y, Rashid AJ, Zhang T, Frankland PW, Josselyn SA. Examining memory linking and generalization using scFLARE2, a temporally precise neuronal activity tagging system. Cell Rep 2023; 42:113592. [PMID: 38103203 PMCID: PMC10842737 DOI: 10.1016/j.celrep.2023.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
How memories are organized in the brain influences whether they are remembered discretely versus linked with other experiences or whether generalized information is applied to entirely novel situations. Here, we used scFLARE2 (single-chain fast light- and activity-regulated expression 2), a temporally precise tagging system, to manipulate mouse lateral amygdala neurons active during one of two 3 min threat experiences occurring close (3 h) or further apart (27 h) in time. Silencing scFLARE2-tagged neurons showed that two threat experiences occurring at distal times are dis-allocated to orthogonal engram ensembles and remembered discretely, whereas the same two threat experiences occurring in close temporal proximity are linked via co-allocation to overlapping engram ensembles. Moreover, we found that co-allocation mediates memory generalization applied to a completely novel stimulus. These results indicate that endogenous temporal evolution of engram ensemble neuronal excitability determines how memories are organized and remembered and that this would not be possible using conventional immediate-early gene-based tagging methods.
Collapse
Affiliation(s)
- Jung Hoon Jung
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Ying Wang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Tao Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
24
|
Crespo EL, Pal A, Prakash M, Silvagnoli AD, Zaidi Z, Gomez-Ramirez M, Tree MO, Shaner NC, Lipscombe D, Moore C, Hochgeschwender U. A Bioluminescent Activity Dependent (BLADe) Platform for Converting Neuronal Activity to Photoreceptor Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546469. [PMID: 37425742 PMCID: PMC10327117 DOI: 10.1101/2023.06.25.546469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We developed a platform that utilizes a calcium-dependent luciferase to convert neuronal activity into activation of light sensing domains within the same cell. The platform is based on a Gaussia luciferase variant with high light emission split by calmodulin-M13 sequences that depends on influx of calcium ions (Ca2+) for functional reconstitution. In the presence of its luciferin, coelenterazine (CTZ), Ca2+ influx results in light emission that drives activation of photoreceptors, including optogenetic channels and LOV domains. Critical features of the converter luciferase are light emission low enough to not activate photoreceptors under baseline condition and high enough to activate photosensing elements in the presence of Ca2+ and luciferin. We demonstrate performance of this activity-dependent sensor and integrator for changing membrane potential and driving transcription in individual and populations of neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Emmanuel L. Crespo
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Akash Pal
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mansi Prakash
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Alexander D. Silvagnoli
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Zohair Zaidi
- Duke University, Undergraduate Neuroscience Program, Durham, NC 27710
| | | | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Nathan C. Shaner
- University of California, San Diego, School of Medicine, Department of Neuroscience, 9500 Gilman Drive La Jolla, CA 92093-0662, USA
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA
| | - Ute Hochgeschwender
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
25
|
Onodera K, Tsuno Y, Hiraoka Y, Tanaka K, Maejima T, Mieda M. In vivo recording of the circadian calcium rhythm in Prokineticin 2 neurons of the suprachiasmatic nucleus. Sci Rep 2023; 13:16974. [PMID: 37813987 PMCID: PMC10562406 DOI: 10.1038/s41598-023-44282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Prokineticin 2 (Prok2) is a small protein expressed in a subpopulation of neurons in the suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals. Prok2 has been implicated as a candidate output molecule from the SCN to control multiple circadian rhythms. Genetic manipulation specific to Prok2-producing neurons would be a powerful approach to understanding their function. Here, we report the generation of Prok2-tTA knock-in mice expressing the tetracycline transactivator (tTA) specifically in Prok2 neurons and an application of these mice to in vivo recording of Ca2+ rhythms in these neurons. First, the specific and efficient expression of tTA in Prok2 neurons was verified by crossing the mice with EGFP reporter mice. Prok2-tTA mice were then used to express a fluorescent Ca2+ sensor protein to record the circadian Ca2+ rhythm in SCN Prok2 neurons in vivo. Ca2+ in these cells showed clear circadian rhythms in both light-dark and constant dark conditions, with their peaks around midday. Notably, the hours of high Ca2+ nearly coincided with the rest period of the behavioral rhythm. These observations fit well with the predicted function of Prok2 neurons as a candidate output pathway of the SCN by suppressing locomotor activity during both daytime and subjective daytime.
Collapse
Affiliation(s)
- Kaito Onodera
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
26
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Sadowski B, Kaliszewska M, Clermont G, Poronik YM, Blanchard-Desce M, Piątkowski P, Gryko DT. Realization of nitroaromatic chromophores with intense two-photon brightness. Chem Commun (Camb) 2023; 59:11708-11711. [PMID: 37700732 DOI: 10.1039/d3cc03347c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Strong fluorescence is a general feature of dipyrrolonaphthyridinediones bearing two nitrophenyl substituents. Methyl groups simultaneously being weakly electron-donating and inducing steric hindrance appear to be a key structural parameter that allows for significant emission enhancement, whereas Et2N groups cause fluorescence quenching. The magnitude of two-photon absorption increases if 4-nitrophenyl substituents are present while the contribution of Et2N groups is detrimental.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw 02-097, Poland.
| | - Marzena Kaliszewska
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Guillaume Clermont
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Piotr Piątkowski
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
28
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
29
|
Kim CK. Tagging neurons with light. Science 2023; 381:495. [PMID: 37535725 DOI: 10.1126/science.adj1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Molecular circuits for activity-guided optogenetics.
Collapse
Affiliation(s)
- Christina K Kim
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
30
|
Tsuno Y, Peng Y, Horike SI, Wang M, Matsui A, Yamagata K, Sugiyama M, Nakamura TJ, Daikoku T, Maejima T, Mieda M. In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLoS Biol 2023; 21:e3002281. [PMID: 37643163 PMCID: PMC10465001 DOI: 10.1371/journal.pbio.3002281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yubo Peng
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shin-ichi Horike
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Mohan Wang
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayako Matsui
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mizuki Sugiyama
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takahiro J. Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
31
|
Phelps SM, Tutol JN, Advani D, Peng W, Dodani SC. Unlocking chloride sensing in the red at physiological pH with a fluorescent rhodopsin-based host. Chem Commun (Camb) 2023; 59:8460-8463. [PMID: 37337864 PMCID: PMC11136539 DOI: 10.1039/d3cc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.
Collapse
Affiliation(s)
- Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Deeya Advani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
32
|
Nagasawa Y, Ueda HH, Kawabata H, Murakoshi H. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics. Biophys Physicobiol 2023; 20:e200027. [PMID: 38496236 PMCID: PMC10941968 DOI: 10.2142/biophysico.bppb-v20.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 03/19/2024] Open
Abstract
Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
Collapse
Affiliation(s)
- Yutaro Nagasawa
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hiromi H Ueda
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruka Kawabata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
33
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. Nat Methods 2023; 20:908-917. [PMID: 37188954 PMCID: PMC10539039 DOI: 10.1038/s41592-023-01880-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joleen S Cheah
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Boxuan Zhao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heegwang Roh
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Amgen Research, South San Francisco, CA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang R, Zhang C, Park D, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains. Nat Biotechnol 2023; 41:640-651. [PMID: 36593405 PMCID: PMC10188365 DOI: 10.1038/s41587-022-01586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.
Collapse
Affiliation(s)
- Changyang Linghu
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Cell and Developmental Biology, Program in Single Cell Spatial Analysis, and Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bobae An
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Orhan T Celiker
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Nava Shmoel
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Ruihan Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chi Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Demian Park
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Won Min Park
- Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Edward S Boyden
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Biological Engineering, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
35
|
Maity S, Price BD, Wilson CB, Mukherjee A, Starck M, Parker D, Wilson MZ, Lovett JE, Han S, Sherwin MS. Triggered Functional Dynamics of AsLOV2 by Time-Resolved Electron Paramagnetic Resonance at High Magnetic Fields. Angew Chem Int Ed Engl 2023; 62:e202212832. [PMID: 36638360 DOI: 10.1002/anie.202212832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C-terminus and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light-activated long-range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.
Collapse
Affiliation(s)
- Shiny Maity
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Brad D Price
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| | - C Blake Wilson
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA.,Laboratory of Chemical Physics, Nat. Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520, USA
| | - Arnab Mukherjee
- Dept. of Chemical Engineering, Univ. of California, Santa Barbara, CA 93106, USA
| | | | - David Parker
- Dept. of Chemistry, Univ. of Durham, Durham, DH1 3LE, UK
| | - Maxwell Z Wilson
- Dept. of Molecular, Cellular, and Developmental Biology, Univ. of California, Santa Barbara, CA 93106, USA
| | - Janet E Lovett
- School of Physics and Astronomy and the Biomedical Sciences Research Complex, Univ. of St. Andrews, St. Andrews, KY16 9SS, UK
| | - Songi Han
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Mark S Sherwin
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
36
|
Lee SY, Cheah JS, Zhao B, Xu C, Roh H, Kim CK, Cho KF, Udeshi ND, Carr SA, Ting AY. Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531939. [PMID: 36945504 PMCID: PMC10028978 DOI: 10.1101/2023.03.09.531939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions, and function with light. We integrated optogenetic control into proximity labeling (PL), a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the PL enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. "LOV-Turbo" works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffick between endoplasmic reticulum, nuclear, and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by BRET from luciferase, enabling interaction-dependent PL. Overall, LOV-Turbo increases the spatial and temporal precision of PL, expanding the scope of experimental questions that can be addressed with PL.
Collapse
|
37
|
Zhou Q, Fu X, Xu J, Dong S, Liu C, Cheng D, Gao C, Huang M, Liu Z, Ni X, Hua R, Tu H, Sun H, Shen Q, Chen B, Zhang J, Zhang L, Yang H, Hu J, Yang W, Pei W, Yao Q, Sheng X, Zhang J, Yang WZ, Shen WL. Hypothalamic warm-sensitive neurons require TRPC4 channel for detecting internal warmth and regulating body temperature in mice. Neuron 2023; 111:387-404.e8. [PMID: 36476978 DOI: 10.1016/j.neuron.2022.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/28/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.
Collapse
Affiliation(s)
- Qian Zhou
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Shiming Dong
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Changhao Liu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Dali Cheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Cuicui Gao
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhua Huang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiduo Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xinyan Ni
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongqing Tu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Baoting Chen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Liye Zhang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yang
- Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, China.
| | - Wen Z Yang
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Wei L Shen
- School of Life Science and Technology, Shanghai Clinical Research and Trial Center, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
38
|
Kwon HB. Writing cellular history in protein chains. Nat Biotechnol 2023; 41:617-618. [PMID: 36593409 DOI: 10.1038/s41587-022-01597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Shen J, Geng L, Li X, Emery C, Kroning K, Shingles G, Lee K, Heyden M, Li P, Wang W. A general method for chemogenetic control of peptide function. Nat Methods 2023; 20:112-122. [PMID: 36481965 PMCID: PMC10069916 DOI: 10.1038/s41592-022-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Natural or engineered peptides serve important biological functions. A general approach to achieve chemical-dependent activation of short peptides will be valuable for spatial and temporal control of cellular processes. Here we present a pair of chemically activated protein domains (CAPs) for controlling the accessibility of both the N- and C-terminal portion of a peptide. CAPs were developed through directed evolution of an FK506-binding protein. By fusing a peptide to one or both CAPs, the function of the peptide is blocked until a small molecule displaces them from the FK506-binding protein ligand-binding site. We demonstrate that CAPs are generally applicable to a range of short peptides, including a protease cleavage site, a dimerization-inducing heptapeptide, a nuclear localization signal peptide, and an opioid peptide, with a chemical dependence up to 156-fold. We show that the CAPs system can be utilized in cell cultures and multiple organs in living animals.
Collapse
Affiliation(s)
- Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lequn Geng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Emery
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gwendolyn Shingles
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kerry Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Zhou G, Wan WW, Wang W. Modular Peroxidase-Based Reporters for Detecting Protease Activity and Protein Interactions with Temporal Gating. J Am Chem Soc 2022; 144:22933-22940. [PMID: 36511757 PMCID: PMC10026560 DOI: 10.1021/jacs.2c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid-base coil-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein-protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal-to-noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, the more sensitive PPI-CLAPon1.1 is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-min calcium-dependent PPI with an SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Author: Wenjing Wang,
| |
Collapse
|
41
|
Abstract
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Collapse
|
42
|
Kroning KE, Wang W. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution. Clin Transl Med 2022; 12:e1124. [PMID: 36446954 PMCID: PMC9708909 DOI: 10.1002/ctm2.1124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the most abundant receptor type in the human body and are responsible for regulating many physiological processes, such as sensation, cognition, muscle contraction and metabolism. Further, GPCRs are widely expressed in the brain where their agonists make up a large number of neurotransmitters and neuromodulators. Due to the importance of GPCRs in human physiology, genetically encoded sensors have been engineered to detect GPCR agonists at cellular resolution in vivo. These sensors can be placed into two main categories: those that offer real-time information on the signalling dynamics of GPCR agonists and those that integrate the GPCR agonist signal into a permanent, quantifiable mark that can be used to detect GPCR agonist localisation in a large brain area. In this review, we discuss the various designs of real-time and integration sensors, their advantages and limitations, and some in vivo applications. We also discuss the potential of using real-time and integrator sensors together to identify neuronal circuits affected by endogenous GPCR agonists and perform detailed characterisations of the spatiotemporal dynamics of GPCR agonist release in those circuits. By using these sensors together, the overall knowledge of GPCR-mediated signalling can be expanded.
Collapse
Affiliation(s)
- Kayla E. Kroning
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Wenjing Wang
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
43
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Zlobin A, Golovin A. Between Protein Fold and Nucleophile Identity: Multiscale Modeling of the TEV Protease Enzyme-Substrate Complex. ACS OMEGA 2022; 7:40279-40292. [PMID: 36385818 PMCID: PMC9647873 DOI: 10.1021/acsomega.2c05201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The cysteine protease from the tobacco etch virus (TEVp) is a well-known and widely utilized enzyme. TEVp's chymotrypsin-like fold is generally associated with serine catalytic triads that differ in terms of a reaction mechanism from the most well-studied papain-like cysteine proteases. The question of what dominates the TEVp mechanism, nucleophile identity, or structural composition has never been previously addressed. Here, we use enhanced sampling multiscale modeling to uncover that TEVp combines the features of two worlds in such a way that potentially hampers its activity. We show that TEVp cysteine is strictly in the anionic form in a free enzyme similar to papain. Peptide binding shifts the equilibrium toward the nucleophile's protonated form, characteristic of chymotrypsin-like proteases, although the cysteinyl anion form is still present and interconversion is rapid. This way cysteine protonation generates enzyme states that are a diversion from the most effective course of action, with only 13.2% of Michaelis complex sub-states able to initiate the reaction. As a result, we propose an updated view on the reaction mechanism catalyzed by TEVp. We also demonstrate that AlphaFold is able to construct protease-substrate complexes with high accuracy. We propose that our findings open a way for its industrious use in enzymological tasks. Unique features of TEVp discovered in this work open a discussion on the evolutionary history and trade-offs of optimizing serine triad-associated folds to cysteine as a nucleophile.
Collapse
Affiliation(s)
- Alexander Zlobin
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- Shemyakin
and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey Golovin
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- Shemyakin
and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius
University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
45
|
Mansouri M, Ray PG, Franko N, Xue S, Fussenegger M. Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells. Nucleic Acids Res 2022; 51:e1. [PMID: 36268868 PMCID: PMC9841418 DOI: 10.1093/nar/gkac916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
46
|
Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022; 45:854-864. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
To understand the neural mechanisms of behavior, it is necessary to both monitor and perturb the activity of ensembles of neurons with high specificity. While neural ensemble recordings have been available for decades, progress in high-resolution manipulation techniques has lagged behind. Optogenetics has enabled the manipulation of genetically defined cell types in behaving animals, and recent developments, including multipoint nanofabricated light sources, provide spatiotemporal resolution on a par with that of physiological recordings. Here we review current advances in optogenetic methods for cellular-resolution stimulation and intervention, as well as their integration with real-time neural recordings for closed-loop experimentation. We discuss how these approaches open the door to new kinds of experiments aimed at dissecting the role of specific neural patterns and discrete cellular populations in orchestrating the activity of brain circuits that support behavior and cognition.
Collapse
Affiliation(s)
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
47
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
48
|
Butler YR, Liu Y, Kumbhar R, Zhao P, Gadhave K, Wang N, Li Y, Mao X, Wang W. α-Synuclein fibril-specific nanobody reduces prion-like α-synuclein spreading in mice. Nat Commun 2022; 13:4060. [PMID: 35853942 PMCID: PMC9296447 DOI: 10.1038/s41467-022-31787-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Pathogenic α-synuclein (α-syn) is a prion-like protein that drives the pathogenesis of Lewy Body Dementia (LBD) and Parkinson's Disease (PD). To target pathogenic α-syn preformed fibrils (PFF), here we designed extracellular disulfide bond-free synthetic nanobody libraries in yeast. Following selection, we identified a nanobody, PFFNB2, that can specifically recognize α-syn PFF over α-syn monomers. PFFNB2 cannot inhibit the aggregation of α-syn monomer, but can significantly dissociate α-syn fibrils. Furthermore, adeno-associated virus (AAV)-encoding EGFP fused to PFFNB2 (AAV-EGFP-PFFNB2) can inhibit PFF-induced α-syn serine 129 phosphorylation (pS129) in mouse primary cortical neurons, and prevent α-syn pathology spreading to the cortex in the transgenic mice expressing human wild type (WT) α-syn by intrastriatal-PFF injection. The pS129 immunoreactivity is negatively correlated with the expression of AAV-EGFP-PFFNB2. In conclusion, PFFNB2 holds a promise for mechanistic exploration and therapeutic development in α-syn-related pathogenesis.
Collapse
Affiliation(s)
- Yemima R Butler
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Liu
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ramhari Kumbhar
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peiran Zhao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kundlik Gadhave
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Wang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yanmei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xiaobo Mao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Barykina NV, Karasev MM, Verkhusha VV, Shcherbakova DM. Technologies for large-scale mapping of functional neural circuits active during a user-defined time window. Prog Neurobiol 2022; 216:102290. [PMID: 35654210 DOI: 10.1016/j.pneurobio.2022.102290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
The mapping of neural circuits activated during behavior down to individual neurons is crucial for decoding how the brain processes information. Technologies allowing activity-dependent labeling of neurons during user-defined restricted time windows are rapidly developing. Precise marking of the time window with light, in addition to chemicals, is now possible. In these technologies, genetically encoded molecules integrate molecular events resulting from neuronal activity with light/drug-dependent events. The outputs are either changes in fluorescence or activation of gene expression. Molecular reporters allow labeling of activated neurons for visualization and cell-type identification. The transcriptional readout also allows further control of activated neuronal populations using optogenetic tools as reporters. Here we review the design of these technologies and discuss their demonstrated applications to reveal previously unknown connections in the mammalian brain. We also consider the strengths and weaknesses of the current approaches and provide a perspective for the future.
Collapse
Affiliation(s)
- Natalia V Barykina
- P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V Verkhusha
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Daria M Shcherbakova
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|