1
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
2
|
Amirloo B, Staroseletz Y, Yousaf S, Clarke DJ, Brown T, Aojula H, Zenkova MA, Bichenkova EV. "Bind, cleave and leave": multiple turnover catalysis of RNA cleavage by bulge-loop inducing supramolecular conjugates. Nucleic Acids Res 2021; 50:651-673. [PMID: 34967410 PMCID: PMC8789077 DOI: 10.1093/nar/gkab1273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.
Collapse
Affiliation(s)
- Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Sameen Yousaf
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Harmesh Aojula
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Di Fusco D, Dinallo V, Marafini I, Figliuzzi MM, Romano B, Monteleone G. Antisense Oligonucleotide: Basic Concepts and Therapeutic Application in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:305. [PMID: 30983999 PMCID: PMC6450224 DOI: 10.3389/fphar.2019.00305] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Several molecular technologies aimed at regulating gene expression that have been recently developed as a strategy to combat inflammatory and neoplastic diseases. Among these, antisense technology is a specific, rapid, and potentially high-throughput approach for inhibiting gene expression through recognition of cellular RNAs. Advances in the understanding of the molecular mechanisms that drive tissue damage in different inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBDs) in humans, have facilitated the identification of novel druggable targets and offered interesting therapeutic perspectives for the treatment of patients. This short review provides a comprehensive understanding of the basic concepts underlying the mechanism of action of the oligonucleotide therapeutics, and summarizes the available pre-clinical and clinical data for oligonucleotide-based therapy in IBD.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Michele M Figliuzzi
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Zheng L, Li X, Zhu L, Li W, Bi J, Yang G, Yin G, Liu J. Inhibition of porcine reproductive and respiratory syndrome virus replication in vitro using DNA-based short antisense oligonucleotides. BMC Vet Res 2015; 11:199. [PMID: 26265453 PMCID: PMC4534064 DOI: 10.1186/s12917-015-0518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/30/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is caused by porcine reproductive and respiratory syndrome virus (PRRSV) and is an economically important disease in swine-producing areas. The objective of this study was to screen for effective antisense oligonucleotides (AS-ONs) which could inhibit PRRSV replication in MARC-145 cells and in pulmonary alveolar macrophages (PAM). RESULTS Nine short AS-ON sequences against the well-conserved regions of PRRSV (5'-UTR, NSP9, ORF5 and ORF7) were selected. When MARC-145 cells or PAM were infected with PRRSV followed by transfection with AS-ONs, four AS-ON sequences targeting 5'-UTR, ORF5 or NSP9 were found to be the most effective oligonucleotides in decreasing the cytopathic effect (CPE) induced by PRRSV infection. Quantitative PCR and indirect immunofluorescence staining confirmed that ORF7 levels were significantly reduced both at RNA and protein levels. The PRRSV titration data furthermore indicated that transfection with AS-ON YN8 could reduce the PRRSV titer by 1000-fold compared with controls. CONCLUSION The results presented here indicate that DNA-based antisense oligonucleotides can effectively inhibit PRRSV replication in MARC-145 cells and in PAM. Furthermore, comparing with the reported hit rates (approximately 10-30 %), we achieved a higher success rate (44 %). The strategy we took to design the antisense sequences might be applied to select AS-ONs that more efficiently reduce the expression of target genes.
Collapse
Affiliation(s)
- Longlong Zheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Xiang Li
- Present address: Wulan Institute for Animal Health, Lingyuan, Chaoyang City, Liaoning province, China.
| | - Lingyun Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Wengui Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Junlong Bi
- Present address: Center for Animal Disease Control and Prevention of Chuxiong City, Chuxiong City, Yunnan province, China.
| | - Guishu Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Gefen Yin
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Jianping Liu
- Present address: Karolinska Institute, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden.
| |
Collapse
|
5
|
Abstract
Adequate therapies are lacking for Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decrease or increase total protein levels, preferentially shift splicing patterns, and inhibit microRNAs, all at the level of the RNA molecule. Here, we discuss many of the more commonly used ASO chemistries, as well as the different mechanisms of action that can result from these specific chemical modifications. When applied to multiple neurodegenerative mouse models, ASOs that specifically target the detrimental transgenes have been shown to rescue disease associated phenotypes in vivo. These supporting mouse model data have moved the ASOs from the bench to the clinic, with two neuro-focused human clinical trials now underway and several more being proposed. Although still early in development, translating ASOs into human patients for neurodegeneration appears promising.
Collapse
Affiliation(s)
- Sarah L. DeVos
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Timothy M. Miller
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
6
|
Reyes-Darias JA, Sánchez-Luque FJ, Berzal-Herranz A. HIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5' UTR structural elements. Virus Res 2012; 169:63-71. [PMID: 22820401 DOI: 10.1016/j.virusres.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 02/08/2023]
Abstract
The HIV-1 genome consists of two identical RNA molecules non-covalently linked by their 5' unstranslatable regions (5' UTR). The high level of sequence and structural conservation of this region correlates with its important functional involvement in the viral cycle, making it an attractive target for antiviral treatments based on antisense technology. Ten unmodified DNA antisense oligonucleotides (ODNs) targeted against different conserved structural elements within the 5' UTR were assayed for their capacity to interfere with HIV-1 RNA dimerisation, inhibit gene expression, and prevent virus production in cell cultures. The results show that, in addition to the well-characterised dimerisation initiation site (DIS), targeting of the AUG-containing structural element may reflect its direct role in HIV-1 genomic RNA dimerisation in vitro. Similarly, blocking the 3' end sequences of the stem-loop domain containing the primer biding site interferes with RNA dimerisation. Targeting the apical portion of the TAR element, however, appears to promote dimerisation. ODNs targeted against the conserved polyadenylation signal [Poly(A)], the primer binding site (PBS), the major splicing donor (SD) or the major packaging signal (Psi), and AUG-containing structural elements led to a highly efficient inhibition of HIV-1 gene expression and virus production in cell culture. Together, these results support the idea that ODNs possess great potential as molecular tools for the functional characterisation of viral RNA structural domains. Moreover, the targeting of these domains leads to the potent inhibition of viral replication, underscoring the potential of conserved structural RNA elements as antiviral targets.
Collapse
Affiliation(s)
- José A Reyes-Darias
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, Armilla, 18100 Granada, Spain
| | | | | |
Collapse
|
7
|
Shang X, Wang Y, Zhao Q, Wu K, Li X, Ji X, He R, Zhang W. siRNAs target sites selection of ezrin and the influence of RNA interference on ezrin expression and biological characters of osteosarcoma cells. Mol Cell Biochem 2012; 364:363-71. [PMID: 22286748 DOI: 10.1007/s11010-012-1238-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/13/2012] [Indexed: 12/27/2022]
Abstract
Ezrin, one of the ezrin/radixin/moesin (ERM) protein family which act as membrane organizers and linkers between plasma membrane and cytoskeleton, has attracted much attention as a crucial factor for tumor metastasis. Overexpression of ezrin has been correlated with the metastatic potential of several cancers especially for osteosarcoma. Short interfering RNA (siRNA) downregulate gene expression through an enzyme-mediated process named RNA interference (RNAi). RNAi has rapidly come to be recognized as a powerful tool for the study of gene function and a potential target therapy. In the present study, the human osteosarcoma cell line MG63 was cultured. Three siRNAs targeting ezrin mRNA were designed by the multiple computational methods and then were sythesized. These siRNAs were transfected into osteosarcoma cells. Then the expression of ezrin mRNA and protein in osteosarcoma cells was detected. The cellular proliferation and apoptosis was evaluated. C726–U730, C1653–A1661 and G1749–A1771 were selected to be the suitable target sites through the multiple computational methods because of their ideal secondary structures and hybridization thermodynamics. siRNAs against G1749–A1771 downregulated the expression level of ezrin mRNA and protein, inhibit the cellular proliferation and promoted the cellular apoptosis effectively. There is a significant correlation between the multiple computational methods and the efficacy of the corresponding siRNAs. siRNAs targeting ezrin may have therapeutic potential as inhibitors of osteosarcoma metastasis.
Collapse
Affiliation(s)
- XiFu Shang
- Department of Orthopedic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 LuJiang Road, Hefei 230001, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Relieving bottlenecks in RNA drug discovery for retinal diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:145-53. [PMID: 22183327 DOI: 10.1007/978-1-4614-0631-0_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of efficacious and safe post transcriptional gene silencing (PTGS) agents is a challenging scientific endeavor that embraces “biocomplexity” at many levels. The target mRNA exhibits a level of structural complexity that profoundly limits annealing of PTGS agents. PTGS agents are macromolecular RNAs that must be designed to fold into catalytically active structures able to cleave the target mRNA. Pushing into and beyond the biological complexity requires new technologies for high throughput screening (HTS) to efficiently and rapidly assess a set of biological and experimental variables engaged in RNA Drug Discovery (RDD).
Collapse
|
9
|
Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol 2011; 226:365-79. [PMID: 22069063 DOI: 10.1002/path.2993] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022]
Abstract
Synthetic nucleic acids are commonly used laboratory tools for modulating gene expression and have the potential to be widely used in the clinic. Progress towards nucleic acid drugs, however, has been slow and many challenges remain to be overcome before their full impact on patient care can be understood. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are the two most widely used strategies for silencing gene expression. We first describe these two approaches and contrast their relative strengths and weaknesses for laboratory applications. We then review the choices faced during development of clinical candidates and the current state of clinical trials. Attitudes towards clinical development of nucleic acid silencing strategies have repeatedly swung from optimism to depression during the past 20 years. Our goal is to provide the information needed to design robust studies with oligonucleotides, making use of the strengths of each oligonucleotide technology.
Collapse
Affiliation(s)
- Jonathan K Watts
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
10
|
Sullivan JM, Yau EH, Kolniak TA, Sheflin LG, Taggart RT, Abdelmaksoud HE. Variables and strategies in development of therapeutic post-transcriptional gene silencing agents. J Ophthalmol 2011; 2011:531380. [PMID: 21785698 PMCID: PMC3138052 DOI: 10.1155/2011/531380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) agents such as ribozymes, RNAi and antisense have substantial potential for gene therapy of human retinal degenerations. These technologies are used to knockdown a specific target RNA and its cognate protein. The disease target mRNA may be a mutant mRNA causing an autosomal dominant retinal degeneration or a normal mRNA that is overexpressed in certain diseases. All PTGS technologies depend upon the initial critical annealing event of the PTGS ligand to the target RNA. This event requires that the PTGS agent is in a conformational state able to support hybridization and that the target have a large and accessible single-stranded platform to allow rapid annealing, although such platforms are rare. We address the biocomplexity that currently limits PTGS therapeutic development with particular emphasis on biophysical variables that influence cellular performance. We address the different strategies that can be used for development of PTGS agents intended for therapeutic translation. These issues apply generally to the development of PTGS agents for retinal, ocular, or systemic diseases. This review should assist the interested reader to rapidly appreciate critical variables in PTGS development and facilitate initial design and testing of such agents against new targets of clinical interest.
Collapse
Affiliation(s)
- Jack M. Sullivan
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Physiology and Biophysics, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Ross Eye Institute, University at Buffalo SUNY, Buffalo, NY 14209, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - Edwin H. Yau
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Department of Pharmacology and Toxicology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Tiffany A. Kolniak
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Neuroscience Program, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Lowell G. Sheflin
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
- Veterans Administration Western New York Healthcare System, Medical Research, Buffalo, NY 14215, USA
| | - R. Thomas Taggart
- Department of Ophthalmology, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Heba E. Abdelmaksoud
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13215, USA
| |
Collapse
|
11
|
Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics. Tumour Biol 2011; 32:809-17. [PMID: 21559778 DOI: 10.1007/s13277-011-0183-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022] Open
Abstract
Ezrin, a membrane organizer and linker between plasma membrane and cytoskeleton, is well documented to play an important role in the metastatic capacity of cancer cells especially for osteosarcoma cells. It has provided an ideal target for cancer gene therapy. RNA-cleaving 10-23 DNAzymes, consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, can cleave the target mRNA at purine-pyrimidine dinucleotide effectively. In the present study, we designed and screened the target sites for 10-23 DNAzymes against ezrin mRNA by using multiple computational methods with combination of secondary structural and hybridization thermodynamic parameters. Then, we testified the activities of the DNAzymes directed against these selected target sites in vitro. Our results show that AU1751 is the most effective target site of ezrin mRNA for DNAzymes because of its ideal secondary structure and hybridization thermodynamics. So, there is a significant correlation between the multiple computational methods and the efficacy of the corresponding DNAzymes. These provide a rational, efficient way for DNAzymes selection.
Collapse
|
12
|
Lee B, Kim KB, Oh S, Choi JS, Park JS, Min DH, Kim DE. Suppression of hepatitis C virus genome replication in cells with RNA-cleaving DNA enzymes and short-hairpin RNA. Oligonucleotides 2010; 20:285-96. [PMID: 20863235 DOI: 10.1089/oli.2010.0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A class of antisense oligodeoxyribozymes, known as the 10-23 DNA enzymes (DNAzyme), has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. Herein we have utilized a strategy to identify accessible cleavage sites for DNAzyme in the target RNA, the hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of randomized DNAzyme library. The screening procedure identified 18 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA cleavage in vitro. Using positively charged dendrimer nanoparticles, the target RNA-cleaving DNAzymes that are 31-mer oliogonucleotides are delivered into the human hepatoma cells harboring the HCV subgenomic replicon RNA. DNAzymes introduced into the cells efficiently inhibited HCV RNA replication by reducing the expression of HCV NS3. In addition, we designed short-hairpin RNA (shRNA) that targets the same cleavage site for the selected DNAzyme and confirmed that the shRNA also inhibited HCV NS3 gene expression in the HCV replicon cells. These selected DNAzyme and shRNA may be a viable therapeutic intervention to inhibit HCV replication in hepatic cells. We suggest that the method used in this study can be applicable for identification of available sites in any target RNA for antisense oligonucleotides and siRNAs.
Collapse
Affiliation(s)
- Bokhui Lee
- WCU Program, Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Fang H, Shen Y, Taylor JS. Native mRNA antisense-accessible sites library for the selection of antisense oligonucleotides, PNAs, and siRNAs. RNA (NEW YORK, N.Y.) 2010; 16:1429-1435. [PMID: 20498459 PMCID: PMC2885691 DOI: 10.1261/rna.1940610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
A procedure for rapidly generating a library of antisense-accessible sites on native mRNAs (mRNA antisense-accessible sites library [MASL]) is described that involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific polymerase chain reaction (PCR). Antisense phosphorothioate oligodeoxynucleotides (ODNs), peptide nucleic acids (PNAs), and small interfering RNAs (siRNAs) can then be identified by screening against the antisense-accessible sites. The utility of this methodology is demonstrated for the identification of more effective inhibitors of inducible nitric oxide synthase (iNOS) induction than have previously been reported. This method may also be useful for constraining folding calculations of native mRNAs and for designing mRNA imaging probes.
Collapse
Affiliation(s)
- Huafeng Fang
- Department of Chemistry, Washington University, St Louis, Missouri 63130, USA
| | | | | |
Collapse
|
14
|
Gray DM, Gray CW, Yoo BH, Lou TF. Antisense DNA parameters derived from next-nearest-neighbor analysis of experimental data. BMC Bioinformatics 2010; 11:252. [PMID: 20470414 PMCID: PMC2877693 DOI: 10.1186/1471-2105-11-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enumeration of tetrameric and other sequence motifs that are positively or negatively correlated with in vivo antisense DNA effects has been a useful addition to the arsenal of information needed to predict effective targets for antisense DNA control of gene expression. Such retrospective information derived from in vivo cellular experiments characterizes aspects of the sequence dependence of antisense inhibition that are not predicted by nearest-neighbor (NN) thermodynamic parameters derived from in vitro experiments. However, quantitation of the antisense contributions of motifs is problematic, since individual motifs are not isolated from the effects of neighboring nucleotides, and motifs may be overlapping. These problems are circumvented by a next-nearest-neighbor (NNN) analysis of antisense DNA effects in which the overlapping nature of nearest-neighbors is taken into account. RESULTS Next-nearest-neighbor triplet combinations of nucleotides are the simplest that include overlapping sequence effects and therefore can encompass interactions beyond those of nearest neighbors. We used singular value decomposition (SVD) to fit experimental data from our laboratory in which phosphorothioate-modified antisense DNAs (S-DNAs) 20 nucleotides long were used to inhibit cellular protein expression in 112 experiments involving four gene targets and two cell lines. Data were fitted using a NNN model, neglecting end effects, to derive NNN inhibition parameters that could be combined to give parameters for a set of 49 sequences that represents the inhibitory effects of all possible overlapping triplet interactions in the cellular targets of these antisense S-DNAs. We also show that parameters to describe subsets of the data, such as the mRNAs being targeted and the cell lines used, can be included in such a derivation. While NNN triplet parameters provided an adequate model to fit our data, NN doublet parameters did not. CONCLUSIONS The methodology presented illustrates how NNN antisense inhibitory information can be derived from in vivo cellular experiments. Subsequent calculations of the antisense inhibitory parameters for any mRNA target sequence automatically take into account the effects of all possible overlapping combinations of nearest-neighbors in the sequence. This procedure is more robust than the tallying of tetrameric motifs that have positive or negative antisense effects. The specific parameters derived in this work are limited in their applicability by the relatively small database of experiments that was used in their derivation.
Collapse
Affiliation(s)
- Donald M Gray
- Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W, Campbell Road, Richardson, Texas 75080, USA.
| | | | | | | |
Collapse
|
15
|
Birch RG, Shen B, Sawyer BJB, Huttner E, Tucker WQJ, Betzner AS. Evaluation and application of a luciferase fusion system for rapid in vivo analysis of RNAi targets and constructs in plants. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:465-75. [PMID: 20102531 DOI: 10.1111/j.1467-7652.2009.00489.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The practical use of RNA-mediated approaches including antisense RNA, ribozymes and siRNAs for specific inhibition of gene expression is limited by lack of simple quantitative methods to rapidly test efficacy in vivo. There have been indications that cotransfer of target::reporter gene fusions with constructs designed against the target sequence, followed by quantification of transient reporter gene activity might be effective. Here, we report detailed testing of the approach in plants, using diverse target::luciferase fusions and antisense or ribozyme constructs. We used quantitative transient luciferase activity (Luc) assays to test antisense constructs against beta-glucuronidase, PR glucanase, vacuolar invertase and cucumber mosaic virus, as well as ribozymes against watermelon mosaic virus and tobacco anionic peroxidase. For constructs previously tested in transgenic plants, the results correspond well with those from the transient expression assay. Target susceptibility was generally not strongly influenced by luciferase fusion, and the assay was not highly dependent on target sequence length. Some sequences reduced Luc activity below the level for reliable quantification, but suitable alternative fusions were readily produced. Transcriptional and translation fusions were effective for 5' target::luc constructs. Translational fusions were more reliable for luc::target 3' constructs. With minimal preliminary work to prepare suitable target::luciferase fusions, the approach appears generally applicable for rapid in vivo validation of effectiveness and specificity of constructs designed for RNA-mediated down-regulation of plant genes.
Collapse
Affiliation(s)
- Robert G Birch
- Botany Department/BIOL, University of Queensland, Brisbane, Qld, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 2010; 9:1663-74. [PMID: 19895249 DOI: 10.1586/era.09.138] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antisense oligodeoxynucleotides (AS-ODNs) have been widely used to determine gene function, validate drug targets and as novel therapeutics for human diseases. In this review, we describe the development of AS-ODNs, including their modifications, pharmacokinetics and toxicity in animal models and humans, and their preclinical and clinical development in the therapy of human high-grade gliomas. The most advanced AS-ODN for the therapy of high-grade gliomas is a phosphorothioate-modified AS-ODN, AP 12009 (trabedersen), which targets mRNA encoding TGF-beta2. AP 12009 is administered intratumorally using convection-enhanced delivery. A series of Phase I and II clinical trials have evaluated the toxicity profile and optimal dose of the substance. A randomized, controlled international Phase III study was initiated in March 2009 and will compare trabedersen 10 microM versus conventional alkylating chemotherapy in patients with recurrent or refractory anaplastic astrocytoma after standard radio- and chemotherapy.
Collapse
Affiliation(s)
- Peter Hau
- Department of Neurology, University of Regensburg, Medical School, Regensburg, Germany.
| | | | | |
Collapse
|
17
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
18
|
Kauffmann AD, Campagna RJ, Bartels CB, Childs-Disney JL. Improvement of RNA secondary structure prediction using RNase H cleavage and randomized oligonucleotides. Nucleic Acids Res 2009; 37:e121. [PMID: 19596816 PMCID: PMC2764423 DOI: 10.1093/nar/gkp587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA secondary structure prediction using free energy minimization is one method to gain an approximation of structure. Constraints generated by enzymatic mapping or chemical modification can improve the accuracy of secondary structure prediction. We report a facile method that identifies single-stranded regions in RNA using short, randomized DNA oligonucleotides and RNase H cleavage. These regions are then used as constraints in secondary structure prediction. This method was used to improve the secondary structure prediction of Escherichia coli 5S rRNA. The lowest free energy structure without constraints has only 27% of the base pairs present in the phylogenetic structure. The addition of constraints from RNase H cleavage improves the prediction to 100% of base pairs. The same method was used to generate secondary structure constraints for yeast tRNAPhe, which is accurately predicted in the absence of constraints (95%). Although RNase H mapping does not improve secondary structure prediction, it does eliminate all other suboptimal structures predicted within 10% of the lowest free energy structure. The method is advantageous over other single-stranded nucleases since RNase H is functional in physiological conditions. Moreover, it can be used for any RNA to identify accessible binding sites for oligonucleotides or small molecules.
Collapse
Affiliation(s)
- Andrew D Kauffmann
- Department of Chemistry and Biochemistry, Canisius College, 2001 Main St., Buffalo, NY 14208, USA
| | | | | | | |
Collapse
|
19
|
Gopinath SCB. Mapping of RNA-protein interactions. Anal Chim Acta 2009; 636:117-28. [PMID: 19264161 DOI: 10.1016/j.aca.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
RNA-protein interactions are important biological events that perform multiple functions in all living organisms. The wide range of RNA interactions demands diverse conformations to provide contacts for the selective recognition of proteins. Various analytical procedures are presently available for quantitative analyses of RNA-protein complexes, but analytical-based mapping of these complexes is essential to probe specific interactions. In this overview, interactions of functional RNAs and RNA-aptamers with target proteins are discussed by means of mapping strategies.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Institute for Biological Resources and Functions & Center for Applied Near Field Optics Research (CAN-FOR), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba City 305-8562, Ibaraki, Japan
| |
Collapse
|
20
|
|
21
|
Rapid selection of accessible and cleavable sites in RNA by Escherichia coli RNase P and random external guide sequences. Proc Natl Acad Sci U S A 2008; 105:2354-7. [PMID: 18263737 DOI: 10.1073/pnas.0711977105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A method of inhibiting the expression of particular genes by using external guide sequences (EGSs) has been improved in its rapidity and specificity. Random EGSs that have 14-nt random sequences are used in the selection procedure for an EGS that attacks the mRNA for a gene in a particular location. A mixture of the random EGSs, the particular target RNA, and RNase P is used in the diagnostic procedure, which, after completion, is analyzed in a gel with suitable control lanes. Within a few hours, the procedure is complete. The action of EGSs designed by an older method is compared with EGSs designed by the random EGS method on mRNAs from two bacterial pathogens.
Collapse
|
22
|
Sullivan JM, Yau EH, Taggart RT, Butler MC, Kolniak TA. Bottlenecks in development of retinal therapeutic post-transcriptional gene silencing agents. Vision Res 2008; 48:453-69. [PMID: 17976683 PMCID: PMC3388035 DOI: 10.1016/j.visres.2007.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
Abstract
Development of post-transcriptional gene silencing (PTGS) agents for therapeutic purposes is an immense challenge in modern biology. Established technologies used to knockdown a specific target RNA and its cognate protein: antisense, ribozyme, RNAi, all conditionally depend upon an initial, critical annealing event of the PTGS ligand to a target RNA. In this review we address the nature of the bottlenecks, emphasizing the biocomplexity of target RNA structure, that currently limit PTGS therapeutic development. We briefly review existing and emerging technologies designed to release these constraints to realize the potential of PTGS agents in gene based therapies.
Collapse
Affiliation(s)
- Jack M Sullivan
- Department of Ophthalmology, SUNY, University at Buffalo, Veterans Administration Western New York Healthcare System, Medical Research, Building 20, Room 245, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| | | | | | | | | |
Collapse
|
23
|
Vinayak S, Sharma YD. Inhibition of Plasmodium falciparum ispH (lytB) gene expression by hammerhead ribozyme. Oligonucleotides 2007; 17:189-200. [PMID: 17638523 DOI: 10.1089/oli.2007.0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nonmevalonate pathway of isoprenoid biosynthesis in the apicoplast of the human malaria parasite Plasmodium falciparum is distinct from the mevalonate-dependent pathway of humans and thus a good drug target. We describe here the hammerhead ribozyme based cleavage of the ispH (lytB) gene transcript involved in the last step of this nonmevalonate pathway. Using RNA folding program, three hammerhead ribozymes named as RZ(876), RZ(1260), and RZ(1331) were predicted against ispH (lytB) mRNA. Messenger walk screening (RNaseH) assay confirmed the target accessibility for these ribozymes. All three ribozymes cleaved the target RNA in vitro but RZ(876) exhibited the highest catalytic potential (62.92%). Therefore, RZ(876) was chemically synthesized with appropriate chemical modifications to protect it from nuclease attack while using it for in vitro parasite growth inhibition assay. This ribozyme RZ(876) was able to inhibit 87.36% parasite growth at 30 microM concentration compared to the untreated culture. However, an absolute inhibition of 29.41% was achieved compared to the control ribozyme (RZ(ctrl)). Nonetheless, the growth inhibition effect was found to be sequence-specific as indicated by the decreased level of ispH (lytB) transcript after ribozyme treatment. In conclusion, we have identified the ispH (lytB) as a potential target whose transcript can be cleaved by a ribozyme RZ(876).
Collapse
Affiliation(s)
- Sumiti Vinayak
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | |
Collapse
|
24
|
Yanagihara N, Tadakuma H, Ishihama Y, Okabe K, Funatsu T. Determination of potent antisense oligonucleotides in vitro by semiempirical rules. J Biosci Bioeng 2007; 103:270-7. [PMID: 17434431 DOI: 10.1263/jbb.103.270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/25/2006] [Indexed: 11/17/2022]
Abstract
The selection of effective antisense target sites on a given mRNA molecule is a major problem in the detection of target mRNA in oligonucleotide arrays. In general, antisense oligodeoxynucleotides (asODNs) of about 10-20 nucleotides (nt) in length are used. However, the demand for predicting the sequence of potent asODNs much longer than those mentioned above has been increasing. Here, we prepared 40-nt asODNs directed against fluorescence-labeled green fluorescent protein (GFP) mRNA and quantified their hybridization efficiencies by fluorescence microscopy. We found that the hybridization efficiency depended on the TC content or the minimum free energy of the asODNs. On the basis of these findings, a semiempirical parameter called accessibility score was introduced to predict the potency of asODNs. The results of this study aided in the development of an effective two-step procedure for determining mRNA accessibility, namely, the computer-aided selection of asODN binding sites using an accessibility score followed by an experimental procedure for measuring the hybridization efficiencies between the selected asODNs and the target mRNA by fluorescence microscopy.
Collapse
Affiliation(s)
- Naoki Yanagihara
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
25
|
Shao Y, Wu Y, Chan CY, McDonough K, Ding Y. Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation. Nucleic Acids Res 2006; 34:5660-9. [PMID: 17038332 PMCID: PMC1636493 DOI: 10.1093/nar/gkl715] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense oligodeoxynucleotides (oligos) are widely used for functional studies of both prokaryotic and eukaryotic genes. However, the identification of effective target sites is a major issue in antisense applications. Here, we study a number of thermodynamic and structural parameters that may affect the potency of antisense inhibition. We develop a cell-free assay for rapid oligo screening. This assay is used for measuring the expression of Escherichia coli lacZ, the antisense target for experimental testing and validation. Based on a training set of 18 oligos, we found that structural accessibility predicted by local folding of the target mRNA is the most important predictor for antisense activity. This finding was further confirmed by a direct validation study. In this study, a set of 10 oligos was designed to target accessible sites, and another set of 10 oligos was selected to target inaccessible sites. Seven of the 10 oligos for accessible sites were found to be effective (>50% inhibition), but none of the oligos for inaccessible sites was effective. The difference in the antisense activity between the two sets of oligos was statistically significant. We also found that the predictability of antisense activity by target accessibility was greatly improved for oligos targeted to the regions upstream of the end of the active domain for β-galactosidase, the protein encoded by lacZ. The combination of the structure-based antisense design and extension of the lacZ assay to include gene fusions will be applicable to high-throughput gene functional screening, and to the identification of new drug targets in pathogenic microbes. Design tools are available through the Sfold Web server at .
Collapse
Affiliation(s)
| | | | | | | | - Ye Ding
- To whom correspondence should be addressed. Tel: +518 486 1719; Fax: +518 402 4623;
| |
Collapse
|
26
|
Bo X, Lou S, Sun D, Shu W, Yang J, Wang S. Selection of antisense oligonucleotides based on multiple predicted target mRNA structures. BMC Bioinformatics 2006; 7:122. [PMID: 16526963 PMCID: PMC1421440 DOI: 10.1186/1471-2105-7-122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 03/09/2006] [Indexed: 01/31/2023] Open
Abstract
Background Local structures of target mRNAs play a significant role in determining the efficacies of antisense oligonucleotides (ODNs), but some structure-based target site selection methods are limited by uncertainties in RNA secondary structure prediction. If all the predicted structures of a given mRNA within a certain energy limit could be used simultaneously, target site selection would obviously be improved in both reliability and efficiency. In this study, some key problems in ODN target selection on the basis of multiple predicted target mRNA structures are systematically discussed. Results Two methods were considered for merging topologically different RNA structures into integrated representations. Several parameters were derived to characterize local target site structures. Statistical analysis on a dataset with 448 ODNs against 28 different mRNAs revealed 9 features quantitatively associated with efficacy. Features of structural consistency seemed to be more highly correlated with efficacy than indices of the proportion of bases in single-stranded or double-stranded regions. The local structures of the target site 5' and 3' termini were also shown to be important in target selection. Neural network efficacy predictors using these features, defined on integrated structures as inputs, performed well in "minus-one-gene" cross-validation experiments. Conclusion Topologically different target mRNA structures can be merged into integrated representations and then used in computer-aided ODN design. The results of this paper imply that some features characterizing multiple predicted target site structures can be used to predict ODN efficacy.
Collapse
Affiliation(s)
- Xiaochen Bo
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| | - Shaoke Lou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| | - Daochun Sun
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| | - Wenjie Shu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P R China
| |
Collapse
|
27
|
Abstract
A novel approach for detecting nucleic acid in solution has been adopted for real-time imaging of native mRNAs in living cells. This method utilizes hybridization probes, called "molecular beacons", that generate fluorescent signals only when they are hybridized to a complementary target sequence. Nuclease-resistant molecular beacons are designed to efficiently hybridize to accessible regions within RNAs and then be detected via fluorescence microscopy. The target regions chosen for probe binding are selected using two computer algorithms, mfold and OligoWalk, that predict the secondary structure of RNAs and help narrow down sequence stretches to which the probes should bind with high affinity in vivo. As an example, molecular beacons were designed against regions of oskar mRNA, microinjected into living Drosophila melanogaster oocytes and imaged via confocal microscopy.
Collapse
Affiliation(s)
- Diana P Bratu
- Department of Molecular Genetics, Public Health Research Institute, Newark, NJ, USA
| |
Collapse
|
28
|
Böhl M, Schwenzer B. A potent inhibitor of prothrombin gene expression as a result of standardized target site selection and design of antisense oligonucleotides. Oligonucleotides 2005; 15:172-82. [PMID: 16201905 DOI: 10.1089/oli.2005.15.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of antisense oligonucleotides (AS-ODN) always had the limitation that because of complex mRNA secondary structures, not every designed AS-ODN inhibited the expression of its target. There have been many investigations to overcome this problem in the last few years. This produced a great deal of theoretical and empirical findings about characteristics of effective AS-ODNs in respect to their target regions but no standardized selection procedure of AS-ODN target regions within a given mRNA or standardized design of AS-ODNs against a specific target region. We present here a standardized method based on secondary structure prediction for target site selection and AS-ODN design, followed by validation of the antisense effect caused by our predicted AS-ODNs in cell culture. The combination of theoretical design and experimental selection procedure led to an AS-ODN that efficiently and specifically reduces prothrombin mRNA and antigen.
Collapse
Affiliation(s)
- Markus Böhl
- Institute of Biochemistry, Technical University Dresden, Bergstrasse 66, D-01069 Dresden, Germany
| | | |
Collapse
|
29
|
Far RKK, Leppert J, Frank K, Sczakiel G. Technical improvements in the computational target search for antisense oligonucleotides. Oligonucleotides 2005; 15:223-33. [PMID: 16201910 DOI: 10.1089/oli.2005.15.223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of theoretical and experimental approaches to design biologically active antisense oligonucleotides (AS-ON) have proven their usefulness. This includes systematic computational strategies that are based on the understanding of antisense mechanisms. Here, we investigate in detail the relationship between computational parameters of the local target search for the theoretical design of AS-ON and the hit rate, that is, the biologic efficacy of AS-ON in cell culture. The computational design of AS-ON studied in this work is based on an established algorithm to predict structurally favorable local target sites along a given target RNA against which AS-ON are directed. Briefly, a sequence segment of a certain length (window) is used to predict a group of lowest-energy RNA secondary structures. Subsequently, this window is shifted along the target sequence by a certain step width. To date, those technical parameters of the systematic structural target analysis have been chosen arbitrarily. Here, we investigate their role for the successful design of AS-ON and suggest an optimized computer-based protocol for the selection of favorable local target sequences and, hence, an improved design of active AS-ON. Further, this study provides systematic insights into the structure- function relationship of AS-ON.
Collapse
|
30
|
Thonberg H, Dahlgren C, Wahlestedt C. Antisense-induced Fas mRNA degradation produces site-specific stable 3'-mRNA fragment by exonuclease cleavage at the complementary sequence. Oligonucleotides 2005; 14:221-6. [PMID: 15625917 DOI: 10.1089/oli.2004.14.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisense-mediated degradation of target mRNA is achieved by the enzymatic action of nuclease RNase H. The enzyme recognizes hybrid RNA-DNA duplexes and hydrolyzes the RNA strand. Here, we compared six different phosphorothioate oligonucleotides for their ability to induce target-specific mRNA degradation in cultured mouse AML12 cells. We targeted transcripts of the cell surface receptor Fas and analyzed the levels of mRNA by Northern blotting and ribonuclease protection assay (RPA). Four of the tested antisense oligonucleotides reduced the mRNA levels significantly. Cultures treated with one of the antisense molecules resulted in a shifted band on Northern blots. This band of lower molecular weight was not detected after 6 hours of transfection but appeared at 24 hours. By RPA, the product was shown to be a 3'-cleavage fragment of the full-length Fas mRNA. The RPA also mapped the stable fragment to start within the antisense complementary sequence.
Collapse
Affiliation(s)
- Håkan Thonberg
- Center for Genomics and Bioinformatics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Vlassov AV, Koval OA, Johnston BH, Kazakov SA. ROLL: a method of preparation of gene-specific oligonucleotide libraries. Oligonucleotides 2005; 14:210-20. [PMID: 15625916 DOI: 10.1089/oli.2004.14.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The selection of nucleic acid sequences capable of specifically and efficiently hybridizing to target sequences is crucial to the success of many applications, including microarrays, PCR and other amplification procedures, antisense inhibition, ribozyme-mediated cleavage, and RNA interference (RNAi). Methods of selection using nucleotide sequence libraries have several advantages over rational approaches using defined sequences. However, the high complexity of completely random (degenerate) libraries and their high toxicity in cell-based assays make their use in many applications impractical. Gene-specific oligonucleotide libraries, which contain all possible sequences of a certain length occurring within a given gene, have much lower complexity and, thus, can significantly simplify and accelerate sequence screening. Here, we describe a new method for the preparation of gene-specific libraries using the ligation of randomized oligonucleotide probes hybridized adjacently on target polynucleotide templates followed by PCR amplification. We call this method random oligonucleotide ligated libraries (ROLL).
Collapse
|
32
|
Abstract
Antisense oligonucleotides present a powerful means to inhibit expression of specific genes, but their effectiveness is limited by factors including cellular delivery, biochemical attack, and poor binding to target. We have developed a systems model of the processes required for an antisense oligonucleotide to enter, gain access to its target mRNA, and exert activity in a cell. The model accurately mimics observed trends in antisense effectiveness with the stability of the oligonucleotide backbone and with the affinity/kinetics of binding to the mRNA over the time course of inhibition. By varying the model parameters within the physically realizable range, we note that the major molecular and cellular barriers to antisense effectiveness are intracellular trafficking, oligonucleotide-mRNA binding rate, and nuclease degradation of oligonucleotides, with a weaker dependence on total cellular uptake than might be expected. Furthermore, the model may serve as a predictive tool to design and test strategies for the cellular use of antisense oligonucleotides. The use of integrated mathematical modeling can play a significant role in the development of antisense and related technologies.
Collapse
Affiliation(s)
- Charles M Roth
- Department of Chemical and Biochemical Engineering, Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854-8058, USA.
| |
Collapse
|
33
|
Overhoff M, Alken M, Far RKK, Lemaitre M, Lebleu B, Sczakiel G, Robbins I. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 2005; 348:871-81. [PMID: 15843019 DOI: 10.1016/j.jmb.2005.03.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 01/17/2023]
Abstract
The efficiency with which small interfering RNAs (siRNAs) down-regulate specific gene expression in living cells is variable and a number of sequence-governed, biochemical parameters of the siRNA duplex have been proposed for the design of an efficient siRNA. Some of these parameters have been clearly identified to influence the assembly of the RNA-induced silencing complex (RISC), or to favour the sequence preferences of the RISC endonuclease. For other parameters, it is difficult to ascertain whether the influence is a determinant of the siRNA per se, or a determinant of the target RNA, especially its local structural characteristics. In order to gain an insight into the effects of local target structure on the biological activity of siRNA, we have used large sets of siRNAs directed against local targets of the mRNAs of ICAM-1 and survivin. Target structures were classified as accessible or inaccessible using an original, iterative computational approach and by experimental RNase H mapping. The effectiveness of siRNA was characterized by measuring the IC50 values in cell culture and the maximal extent of target suppression. Mean IC50 values were tenfold lower for accessible local target sites, with respect to inaccessible ones. Mean maximal target suppression was improved. These data illustrate that local target structure does, indeed, influence the activity of siRNA. We suggest that local target screening can significantly improve the hit rate in the design of biologically active siRNAs.
Collapse
Affiliation(s)
- Marita Overhoff
- Universität zu Lübeck, Institut für Molekulare Medizin, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Improved understanding of the molecular mechanisms that mediate cancer progression and therapeutic resistance has identified many therapeutic gene targets that regulate apoptosis, proliferation and cell signalling. Antisense oligonucleotides offer one approach to target genes involved in cancer progression, especially those that are not amenable to small-molecule or antibody inhibition. Better chemical modifications of antisense oligonucleotides increase resistance to nuclease digestion, prolong tissue half-lives and improve scheduling. Indeed, recent clinical trials confirm the ability of this class of drugs to significantly suppress target-gene expression. The current status and future directions of several antisense drugs that have potential clinical use in cancer are reviewed.
Collapse
Affiliation(s)
- Martin E Gleave
- The Prostate Centre at Vancouver General Hospital, and Division of Urology, University of British Columbia D9, Canada, V5Z 355.
| | | |
Collapse
|
35
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
36
|
Islam A, Thompson KSJ, Akhtar S, Handley SL. Increased 5-HT2A receptor expression and function following central glucocorticoid receptor knockdown in vivo. Eur J Pharmacol 2005; 502:213-20. [PMID: 15476747 DOI: 10.1016/j.ejphar.2004.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 06/18/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Central glucocorticoid receptor function may be reduced in depression. In vivo modelling of glucocorticoid receptor underfunctionality would assist in understanding its role in depressive illness. The role of glucocorticoid receptors in modulating 5-HT(2A) receptor expression and function in the central nervous system (CNS) is presently unclear, but 5-HT(2A) receptor function also appears altered in depression. With the aid of RNAse H accessibility mapping, we have developed a 21-mer antisense oligodeoxynucleotide (5'-TAAAAACAGGCTTCTGATCCT-3', termed GRAS-5) that showed 56% reduction in glucocorticoid receptor mRNA and 80% down-regulation in glucocorticoid receptor protein in rat C6 glioma cells. Sustained delivery to rat cerebral ventricles in slow release biodegradable polymer microspheres produced a marked decrease in glucocorticoid receptor mRNA and protein in hypothalamus (by 39% and 80%, respectively) and frontal cortex (by 26% and 67%, respectively) 5 days after a single injection, with parallel significant up-regulation of 5-HT(2A) receptor mRNA expression (13%) and binding (21%) in frontal cortex. 5-HT(2A) receptor function, determined by DOI-head-shakes, showed a 55% increase. These findings suggest that central 5-HT(2A) receptors are, directly or indirectly, under tonic inhibitory control by glucocorticoid receptor.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Gene Silencing/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Molecular Sequence Data
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/physiology
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Aminul Islam
- LHS, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | |
Collapse
|
37
|
Wilson A, He F, Li J, Ma Z, Pitt B, Li S. Targeted delivery of therapeutic oligonucleotides to pulmonary circulation. ADVANCES IN GENETICS 2005; 54:21-41. [PMID: 16096006 DOI: 10.1016/s0065-2660(05)54002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional oligodeoxynucleotides (ODN) such as antisense ODN (AS-ODN) show promise as new therapeutics for the treatment of a number of pulmonary diseases. They also hold potential to serve as a research tool for the study of gene function related to lung physiology. The success of their application is largely dependent on the development of an efficient delivery vehicle. This chapter summarizes work toward the development of lipidic vectors for targeted ODN delivery to pulmonary circulation. Recent advancements in the development of novel ODN are also discussed briefly.
Collapse
Affiliation(s)
- Annette Wilson
- Department of Environmental and Occupational Health Graduate School of Public Health, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
38
|
Morpholinos and PNAs compared. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Bo X, Wang S. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics 2004; 21:1401-2. [PMID: 15598838 DOI: 10.1093/bioinformatics/bti211] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED TargetFinder is a PC/Windows program for interactive effective antisense oligonucleotide (AO) selection based on mRNA accessible site tagging (MAST) and secondary structures of target mRNA. To make MAST result intuitive, both the alignment result and tag frequency profile is illustrated. As theoretical reference, secondary structure and single strand probability profile of target mRNA is also represented. All of these sequences and profiles are displayed in aligned mode, which facilitates identification of the accessible sites in target mRNA. Graphical, user-friendly interface makes TargetFinder a useful tool in AO target site selection. AVAILABILITY The software is freely available at http://www.bioit.org.cn/ao/targetfinder.htm CONTACT sqwang@nic.bmi.ac.cn.
Collapse
Affiliation(s)
- Xiaochen Bo
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | | |
Collapse
|
40
|
Camps-Valls G, Chalk AM, Serrano-López AJ, Martín-Guerrero JD, Sonnhammer ELL. Profiled support vector machines for antisense oligonucleotide efficacy prediction. BMC Bioinformatics 2004; 5:135. [PMID: 15383156 PMCID: PMC526382 DOI: 10.1186/1471-2105-5-135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/22/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1) feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE), and (2) AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. RESULTS In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE) using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278) and predicted high (>75% inhibition of gene expression) and low efficacy (<25%) AOs with a success rate of 83.3% and 82.9%, respectively, which is better than by previous approaches. A web server for AO prediction is available online at http://aosvm.cgb.ki.se/. CONCLUSIONS The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.
Collapse
Affiliation(s)
- Gustavo Camps-Valls
- Grup de Processament Digital de Senyals, Universitat de València, Spain. C/ Dr. Moliner, 50. 46100 Burjassot, València, Spain
| | - Alistair M Chalk
- Center for Genomics and Bioinformatics (CGB), Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Antonio J Serrano-López
- Grup de Processament Digital de Senyals, Universitat de València, Spain. C/ Dr. Moliner, 50. 46100 Burjassot, València, Spain
| | - José D Martín-Guerrero
- Grup de Processament Digital de Senyals, Universitat de València, Spain. C/ Dr. Moliner, 50. 46100 Burjassot, València, Spain
| | - Erik LL Sonnhammer
- Center for Genomics and Bioinformatics (CGB), Karolinska Institutet, S-17177, Stockholm, Sweden
| |
Collapse
|
41
|
Abstract
Antisense technology is finding increasing application not only in clinical development, but also for cellular engineering. Several types of antisense methods (e.g. antisense oligonucleotides, antisense RNA and small interfering RNA) can be used to inhibit the expression of a target gene. These antisense methods are being used as part of metabolic engineering strategies to downregulate enzymes controlling undesired pathways with regard to product formation. In addition, they are beginning to be utilized to control cell phenotype in tissue engineering constructs. As improved methods for antisense effects that can be externally regulated emerge, these approaches are likely to find increased application in cellular engineering applications.
Collapse
Affiliation(s)
- Li Kim Lee
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Jakobsen MR, Damgaard CK, Andersen ES, Podhajska A, Kjems J. A genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA. Nucleic Acids Res 2004; 32:e67. [PMID: 15107482 PMCID: PMC407842 DOI: 10.1093/nar/gnh064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defining target sites for antisense oligonucleotides in highly structured RNA is a non-trivial exercise that has received much attention. Here we describe a novel and simple method to generate a library composed of all 20mer oligoribonucleotides that are sense- and antisense to any given sequence or genome and apply the method to the highly structured HIV-1 leader RNA. Oligoribonucleotides that interact strongly with folded HIV-1 RNA and potentially inhibit its dimerization were identified through iterative rounds of affinity selection by native gel electrophoresis. We identified five distinct regions in the HIV-1 RNA that were particularly prone to antisense annealing and a structural comparison between these sites suggested that the 3'-end of the antisense RNA preferentially interacts with single-stranded loops in the target RNA, whereas the 5'-end binds within double-stranded regions. The selected RNA species and corresponding DNA oligonucleotides were assayed for HIV-1 RNA binding, ability to block reverse transcription and/or potential to interfere with dimerization. All the selected oligonucleotides bound rapidly and strongly to the HIV-1 leader RNA in vitro and one oligonucleotide was capable of disrupting RNA dimers efficiently. The library selection methodology we describe here is rapid, inexpensive and generally applicable to any other RNA or RNP complex. The length of the oligonucleotide in the library is similar to antisense molecules generally applied in vivo and therefore likely to define targets relevant for HIV-1 therapy.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Abstract
With the advent of functional genomics and the shift of interest towards sequence-based therapeutics, the past decades have witnessed intense research efforts on nucleic acid-mediated gene regulation technologies. Today, RNA interference is emerging as a groundbreaking discovery, holding promise for development of genetic modulators of unprecedented potency. Twenty-five years after the discovery of antisense RNA and ribozymes, gene control therapeutics are still facing developmental difficulties, with only one US FDA-approved antisense drug currently available in the clinic. Limited predictability of target site selection models is recognized as one major stumbling block that is shared by all of the so-called complementary technologies, slowing the progress towards a commercial product. Currently employed in vitro systems for target site selection include RNAse H-based mapping, antisense oligonucleotide microarrays, and functional screening approaches using libraries of catalysts with randomized target-binding arms to identify optimal ribozyme/DNAzyme cleavage sites. Individually, each strategy has its drawbacks from a drug development perspective. Utilization of message-modulating sequences as therapeutic agents requires that their action on a given target transcript meets criteria of potency and selectivity in the natural physiological environment. In addition to sequence-dependent characteristics, other factors will influence annealing reactions and duplex stability, as well as nucleic acid-mediated catalysis. Parallel consideration of physiological selection systems thus appears essential for screening for nucleic acid compounds proposed for therapeutic applications. Cellular message-targeting studies face issues relating to efficient nucleic acid delivery and appropriate analysis of response. For reliability and simplicity, prokaryotic systems can provide a rapid and cost-effective means of studying message targeting under pseudo-cellular conditions, but such approaches also have limitations. To streamline nucleic acid drug discovery, we propose a multi-model strategy integrating high-throughput-adapted bacterial screening, followed by reporter-based and/or natural cellular models and potentially also in vitro assays for characterization of the most promising candidate sequences, before final in vivo testing.
Collapse
Affiliation(s)
- Isabelle Gautherot
- Virology Platform, Industrialization and Process Development, AVENTIS PASTEUR, Marcy l'Etoile, France.
| | | |
Collapse
|
44
|
Hüsken D, Asselbergs F, Kinzel B, Natt F, Weiler J, Martin P, Häner R, Hall J. mRNA fusion constructs serve in a general cell-based assay to profile oligonucleotide activity. Nucleic Acids Res 2003; 31:e102. [PMID: 12930976 PMCID: PMC212822 DOI: 10.1093/nar/gng103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A cellular assay has been developed to allow measurement of the inhibitory activity of large numbers of oligonucleotides at the protein level. The assay is centred on an mRNA fusion transcript construct comprising of a full-length reporter gene with a target region of interest inserted into the 3'-untranslated region. Luciferase and fluorescent reporter genes were used in the constructs. The insert can be from multiple sources (uncharacterised ESTs, partial or full-length genes, genes from alternate species, etc.). Large numbers of oligonucleotides were screened for antisense activity against a number of such constructs bearing different reporters, in different cell lines and the inhibitory profiles obtained were compared with those observed through screening the oligonucleotides against the corresponding endogenous genes assayed at the mRNA level. A high degree of similarity in the profiles was obtained indicating that the fusion constructs are suitable surrogates for the endogenous messages for characterisation of antisense oligonucleotides (ASOs). Furthermore, the results support the hypothesis that the secondary structure of mRNAs are divided into domains, the nature of which is determined by primary nucleotide sequence. Oligonucleotides whose activity is dependent on the local structure of their target mRNAs (e.g. ASOs, short interfering RNAs) can be characterised via such fusion RNA constructs.
Collapse
Affiliation(s)
- Dieter Hüsken
- Department of Functional Genomics, Novartis Pharma AG, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Petch AK, Sohail M, Hughes MD, Benter I, Darling J, Southern EM, Akhtar S. Messenger RNA expression profiling of genes involved in epidermal growth factor receptor signalling in human cancer cells treated with scanning array-designed antisense oligonucleotides. Biochem Pharmacol 2003; 66:819-30. [PMID: 12948863 DOI: 10.1016/s0006-2952(03)00407-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Scanning oligodeoxynucleotide (ODN) arrays appear promising in vitro tools for the prediction of effective antisense reagents but their usefulness has not yet been reported in mammalian systems. In this study, we have evaluated the use of scanning ODN arrays to predict efficacious antisense ODNs targeting the human epidermal growth factor receptor (EGFR) mRNA in a human epidermoid cancer cell line and in primary human glioma cells. Hybridisation accessibility profile of the first 120nt in the coding region of the human EGFR mRNA was determined by hybridising a radiolabelled EGFR transcript to a scanning array of 2684 antisense sequences ranging from monomers to 27-mers. Two ODNs, AS1 and AS2, complementary to accessible sequences within the EGFR mRNA, were designed and their ability to hybridise to EGFR mRNA was further confirmed by in vitro RNase H-mediated cleavage assays. Phosphorothioate-modified 21-mer AS1 and AS2 ODNs inhibited the growth of an established human A431 cancer cell line as well as primary glioma cells from human subjects when delivered as cationic lipoplexes. In contrast, scrambled controls and AS3-an antisense ODN complementary to an inaccessible site in EGFR mRNA-were inactive. Western blots showed that AS1 ODN exhibited a dose-dependent inhibition of EGFR protein expression in A431 cells in the nanomolar range. Microarray-based gene expression profiling studies of A431 cells treated with the 21-mer phosphorothioate AS1 ODN demonstrated successful inhibition of downstream signalling molecules further confirming the effective inhibition of EGFR expression in human cancer cells by antisense ODNs designed by scanning ODN array technology.
Collapse
Affiliation(s)
- Amelia K Petch
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Stone LS, Vulchanova L. The pain of antisense: in vivo application of antisense oligonucleotides for functional genomics in pain and analgesia. Adv Drug Deliv Rev 2003; 55:1081-112. [PMID: 12935946 DOI: 10.1016/s0169-409x(03)00105-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As the genomic revolution continues to evolve, there is an increasing demand for efficient and reliable tools for functional characterization of individual gene products. Antisense oligonucleotide-mediated knockdown has been used successfully as a functional genomics tool in animal models of pain and analgesia yet skepticism regarding the validity and utility of antisense technology remains. Contributing to this uncertainty are the lack of systematic studies exploring antisense oligonucleotide use in vivo and the many technical and methodological challenges intrinsic to the method. This article reviews the contributions of antisense oligonucleotide-based studies to the field of pain and analgesia and the general principles of antisense technology. A special emphasis is placed on technical issues surrounding the successful application of antisense oligonucleotides in vivo, including sequence selection, antisense oligonucleotide chemistry, DNA controls, route of administration, uptake, dose-dependence, time-course and adequate evaluation of knockdown.
Collapse
Affiliation(s)
- Laura S Stone
- Department of Neuroscience, University of Minnesota, 6-125 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
47
|
Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 2003; 31:4417-24. [PMID: 12888501 PMCID: PMC169945 DOI: 10.1093/nar/gkg649] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biological activity of siRNA seems to be influenced by local characteristics of the target RNA, including local RNA folding. Here, we investigated quantitatively the relationship between local target accessibility and the extent of inhibition of the target gene by siRNA. Target accessibility was assessed by a computational approach that had been shown earlier to be consistent with experimental probing of target RNA. Two sites of ICAM-1 mRNA predicted to serve as accessible motifs and one site predicted to adopt an inaccessible structure were chosen to test siRNA constructs for suppression of ICAM-1 gene expression in ECV304 cells. The local target-dependent effectiveness of siRNA was compared with antisense oligonucleotides (asON). The concentration dependency of siRNA-mediated suppression indicates a >1000-fold difference between active siRNAs (IC50 approximately 0.2-0.5 nM) versus an inactive siRNA (IC50 > or = 1 microM) which is consistent with the activity pattern of asON when relating target suppression to predicted local target accessibility. The extremely high activity of the siRNA si2B (IC50 = 0.24 nM) indicates that not all siRNAs shown to be active at the usual concentrations of >10-100 nM belong to this highly active species. The observations described here suggest an option to assess target accessibility for siRNA and, thus, support the design of active siRNA constructs. This approach can be automated, work at high throughput and is open to include additional parameters relevant to the biological activity of siRNA.
Collapse
|
48
|
Gabler A, Krebs S, Seichter D, Förster M. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry. Nucleic Acids Res 2003; 31:e79. [PMID: 12888531 PMCID: PMC169965 DOI: 10.1093/nar/gng079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alteration of gene expression by use of antisense oligonucleotides has considerable potential for therapeutic purposes and scientific studies. Although applied for almost 25 years, this technique is still associated with difficulties in finding antisense-effective regions along the target mRNA. This is mainly due to strong secondary structures preventing binding of antisense oligonucleotides and RNase H, playing a major role in antisense-mediated degradation of the mRNA. These difficulties make empirical testing of a large number of sequences complementary to various sites in the target mRNA a very lengthy and troublesome procedure. To overcome this problem, more recent strategies to find efficient antisense sites are based on secondary structure prediction and RNase H-dependent mechanisms. We were the first who directly combined these two strategies; antisense oligonucleotides complementary to predicted unpaired target mRNA regions were designed and hybridized to the corresponding RNAs. Incubation with RNase H led to cleavage of the RNA at the respective hybridization sites. Analysis of the RNA fragments by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, which has not been used in this context before, allowed exact determination of the cleavage site. Thus the technique described here is very promising when searching for effective antisense sites.
Collapse
Affiliation(s)
- Angelika Gabler
- Lehrstuhl für Tierzucht und Allgemeine Landwirtschaftslehre, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 Munich, Germany.
| | | | | | | |
Collapse
|
49
|
Zhang HY, Mao J, Zhou D, Xu Y, Thonberg H, Liang Z, Wahlestedt C. mRNA accessible site tagging (MAST): a novel high throughput method for selecting effective antisense oligonucleotides. Nucleic Acids Res 2003; 31:e72. [PMID: 12853649 PMCID: PMC167646 DOI: 10.1093/nar/gng072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A solution-based method, mRNA accessible site tagging (MAST), has been developed to map the accessible sites of any given mRNA in high throughput fashion. mRNA molecules were immobilized and hybridized to randomized oligonucleotide libraries. Oligonucleotides specifically hybridized to the mRNA were sequenced and found to be able to precisely define the accessible sites of the mRNA. A number of ways were used to validate the accessible sites defined by the MAST process. Mapping of rabbit beta-globin mRNA demonstrates the efficacy and advantage of MAST over other technologies in identifying accessible sites. Antisense oligonucleotides designed according to the accessible site map of human RhoA and Renilla luciferase mRNA result in knockdown effects that are in good correlation with the degrees of accessibility. The MAST methodology can be applied to mRNA of any length using a universal protocol.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Center for Genomics and Bioinformatics, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
|