1
|
Wilson GJ, Church LWP, Kelley CF, Robinson ST, Lu Y, Furch BD, Fong Y, Paez CA, Yacovone M, Jacobsen T, Maughan M, Martik D, Heptinstall JR, Zhang L, Montefiori DC, Tomaras GD, Kublin JG, Corey L. HVTN 123: A Phase 1, Randomized Trial Comparing Safety and Immunogenicity of CH505TF gp120 Produced by Stably and Transiently Transfected Cell Lines. J Infect Dis 2025; 231:e764-e769. [PMID: 39671174 PMCID: PMC11998572 DOI: 10.1093/infdis/jiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 12/14/2024] Open
Abstract
Utilizing transiently transfected cell lines could significantly reduce manufacturing timelines for protein subunit vaccines. This trial compared safety and immunogenicity of human immunodeficiency virus (HIV) envelope CH505TF gp120 vaccines produced by upstream stable and transient transfection (each admixed with GLA-SE adjuvant, a TL4 agonist). Both vaccines were safe and well tolerated. Serum IgG binding antibody response rates 2 weeks after final injection were 92% in the stable group and 93% in the transient group (P = 1.000). Neutralization response rates against CH505.w4.3 were also equivalent (92% vs 100%, P = .291). These data support transient transfection as an available tool for accelerating HIV vaccine testing and iteration. Clinical Trials Registration. NCT03856996.
Collapse
Affiliation(s)
- Gregory J Wilson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - L W Preston Church
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Samuel T Robinson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Briana D Furch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Carmen A Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margaret Yacovone
- National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Thomas Jacobsen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maureen Maughan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Diana Martik
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, North Carolina, USA
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, North Carolina, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Lee M, Han SH, Kim D, Yun S, Yeom J, Kyeong M, Park SY, Lee DY. Systematic identification of genomic hotspots for high-yield protein production in CHO cells. N Biotechnol 2025; 88:61-72. [PMID: 40228657 DOI: 10.1016/j.nbt.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
The efficient and stable production of therapeutic proteins in Chinese hamster ovary (CHO) cells hinges on robust cell line development (CLD). Traditional methods relying on random transgene integration often result in clonal variability, requiring extensive and resource-intensive screening. To address this limitation, we established a systematic, multiomics-driven framework that integrates 202 RNA-sequencing datasets and whole-genome sequencing data to identify genomic "hotspot" loci for precise and high-yield transgene integration. From an initial pool of 20 candidate loci, 5 top-performing hotspots were validated using site-specific integration in CHO-DG44 cells via the CRISPR/Cas9 system with Recombinase-mediated cassette exchange (RMCE). These genomic hotspots achieved 2.2- to 15.0-fold higher relative specific productivity compared to previously known controls (Fer1L4 and Locus1 sites), across multiple therapeutic proteins, including a lysosomal storage disorder-related enzyme and an Immunoglobulin G (IgG)-related monoclonal antibody (mAb) expression. This study offers a transformative approach to CLD, achieving significant improvements in productivity, genomic stability, and efficiency, as well as paving the way for enhanced biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung-Hyuk Han
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongtae Yun
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Jinho Yeom
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Minji Kyeong
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
3
|
Meeson KE, Watson J, Rosser S, Hawke E, Pitt A, Moses T, Pybus L, Rattray M, Dickson AJ, Schwartz JM. Flux Sampling Suggests Metabolic Signatures of High Antibody-Producing CHO Cells. Biotechnol Bioeng 2025. [PMID: 40219633 DOI: 10.1002/bit.28982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Chinese hamster ovary (CHO) cells remain the industry standard for producing numerous therapeutic proteins, particularly monoclonal antibodies (mAbs). However, achieving higher recombinant protein titers remains an ongoing challenge and a fundamental understanding of the cellular mechanism driving improved bioprocess performance remains elusive. To directly address these challenges and achieve substantial improvements, a more in-depth understanding of cellular function within a bioprocess environment may be required. Over the past decade, significant advancements have been made in the building of genome-scale metabolic models (GEMs) for CHO cells, bridging the gap between high information content 'omics data and the ability to perform in silico phenotypic predictions. Here, time-course transcriptomics has been employed to constrain culture phase-specific GEMs, representing the early exponential, late exponential, and stationary/death phases of CHO cell fed-batch bioreactor culture. Temporal bioprocess data, including metabolite uptake and secretion rates, as well as growth and productivity, has been used to validate flux sampling results. Additionally, high mAb-producing solutions have been identified and the metabolic signatures associated with improved mAb production have been hypothesized. Finally, constraint-based modeling has been utilized to infer specific amino acids, cysteine, histidine, leucine, isoleucine, asparagine, and serine, which could drive increased mAb production and guide optimal media and feed formulations.
Collapse
Affiliation(s)
- Kate E Meeson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Joanne Watson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Susan Rosser
- EdinOmics, RRID:SCR_021838, Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ellie Hawke
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew Pitt
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tessa Moses
- EdinOmics, RRID:SCR_021838, Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Leon Pybus
- FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Kim MJ, Yoo HM, Lee YJ, Jang HH, Shim SC, Won EJ, Kim TJ. Clonorchis sinensis excretory/secretory proteins ameliorate inflammation in rheumatoid arthritis and ankylosing spondylitis. Parasit Vectors 2025; 18:85. [PMID: 40038824 DOI: 10.1186/s13071-025-06677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND We aimed to investigate whether substances secreted by Clonorchis sinensis excretory/secretory protein (CS-ESP) have an effect on the inflammation of rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and to identify specific peptides through related proteomic analysis to determine which proteins exhibit anti-inflammatory effects more specifically. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from healthy controls (HCs), RA and AS patients. Cytotoxicity of CS-ESP at different doses was assessed by MTS and flow cytometry before performing experiments. Inflammatory cytokine producing cells were analyzed using flow cytometry. To determine the effect of CS-ESP in an arthritis mouse model, 8-week-old SKG mice were injected intraperitoneally with curdlan and treated with CS-ESP; body weight and paw swelling were checked twice a week. Inflammation was evaluated using immunohistochemistry. We conducted proteomic analysis on CS-ESP and identified specific Cs-GT and Cs-Severin proteins. In vitro effect of coculture with Cs-GT and Cs-Severin was determined by inflammatory cytokine measurements. RESULT Treatment with CS-ESP resulted in no reduced cell viability of PBMCs. In experiments culturing PBMCs, the frequencies of IL-17A and GM-CSF producing cells were significantly reduced after CS-ESP treatment. In the SKG mouse model, CS-ESP treatment significantly suppressed clinical score, arthritis and enthesitis. Treatment with Cs-GT and Cs-Severin resulted in no reduced cell viability of HC PBMCs. After Cs-GT and Cs-Severin treatment of HC PBMC, the frequencies of IL-17A and GM-CSF producing cells were significantly reduced. CONCLUSIONS We provide evidence showing that CS-ESP, Cs-GT and Cs-Severin can ameliorate clinical signs and cytokine derangements in AS.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yu Jeong Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Gwangju, 61469, Republic of Korea
| | - Hyun Hee Jang
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2025; 79:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Johnson & Johnson, J&J Innovative Medicine, Spring House, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
6
|
Casteleijn MG, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R, Kubick S. Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein. Chem Rev 2025; 125:1303-1331. [PMID: 39841856 PMCID: PMC11826901 DOI: 10.1021/acs.chemrev.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature's border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.
Collapse
Affiliation(s)
| | - Ulrike Abendroth
- VTT
Technical Research Centre of Finland Ltd, 02150 Espoo, Finland
| | - Anne Zemella
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Ruben Walter
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Rashmi Rashmi
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Rainer Haag
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Stefan Kubick
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
- Faculty
of Health Sciences, Joint Faculty of the
Brandenburg University of Technology Cottbus–Senftenberg, The
Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
- B4 PharmaTech
GmbH, Altensteinstraße
40, 14195 Berlin, Germany
| |
Collapse
|
7
|
Shi J, Ho A, Snyder CE, Chaney EJ, Sorrells JE, Alex A, Talaban R, Spillman DR, Marjanovic M, Doan M, Finka G, Hood SR, Boppart SA. Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning. Commun Biol 2025; 8:157. [PMID: 39900674 PMCID: PMC11790971 DOI: 10.1038/s42003-025-07596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceutical cell lines based on their intrinsic molecular contrast. Employing simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy with fluorescence lifetime imaging microscopy (FLIM), we characterized Chinese hamster ovary (CHO) cell lines at early passages (0-2). A machine learning (ML)-assisted analysis pipeline leveraged high-dimensional information to classify single cells into their respective lines. Remarkably, the monoclonal cell line classifiers achieved balanced accuracies exceeding 96.8% as early as passage 2. Correlation features and FLIM modality played pivotal roles in early classification. This integrated optical bioimaging and machine learning approach presents a promising solution to expedite cell line selection process while ensuring identification of high-performing biopharmaceutical cell lines. The techniques have potential for broader single-cell characterization applications in stem cell research, immunology, cancer biology and beyond.
Collapse
Affiliation(s)
- Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexander Ho
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Corey E Snyder
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Remben Talaban
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Minh Doan
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Gary Finka
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2025; 67:369-392. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
9
|
Raigani M, Namdar P, Barkhordari F, Seyedjavadi SS, Rahimpour A, Adeli A. Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells. Prep Biochem Biotechnol 2025:1-7. [PMID: 39838843 DOI: 10.1080/10826068.2025.2454335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.
Collapse
Affiliation(s)
- Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Pegah Namdar
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran
| | | | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Singh R, Bajpai S, Singh A, Sharma P, Kumar Y, Kumar N. Metabolomics of Chinese Hamster Ovary Cells. Methods Mol Biol 2025; 2853:205-234. [PMID: 39460923 DOI: 10.1007/978-1-0716-4104-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Increasing demand of protein biotherapeutics produced using Chinese hamster ovary (CHO) cell lines necessitates improvement in the production yield of the bioprocess. Various cell engineering, improved media formulation and process-design based approaches utilizing the power of OMICS technologies, specifically, genomics and proteomics, have been employed; however, the potential of metabolomics largely remains unexplored. Metabolomics enables the detection, identification, and/or quantitation of small molecules, commonly known as metabolites, in and around the cells and may help to unlock the cellular molecular mechanism(s) that regulates cell growth and productivity in the bioprocess and improves cellular performance during the bioprocess. Currently, liquid chromatography (LC)/gas chromatography (CG)- coupled with mass-spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the most commonly used approaches for metabolomics. Therefore, in this chapter, we have discussed the standard procedures of investigating CHO metabolites using LC/GC-MS and/or NMR-based approaches.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jawaharlal Nehru University (JNU), Delhi, India
| | - Sneh Bajpai
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amardeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Phulwanti Sharma
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
11
|
Grav LM, Rojek JB, la Cour Karottki KJ, Lee JS, Kildegaard HF. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Methods Mol Biol 2025; 2853:49-69. [PMID: 39460914 DOI: 10.1007/978-1-0716-4104-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Genome editing has become an important aspect of Chinese hamster ovary (CHO) cell line engineering for improving the production of recombinant protein therapeutics. Currently, the engineering focus is directed toward expanding product diversity while controlling and improving product quality and yields. In this chapter, we present our protocol for using the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knock out engineering target genes in CHO cells. As an example, we describe how to knock out the glutamine synthetase (GS) gene, which increases the selection efficiency of the GS-mediated gene amplification system.
Collapse
Affiliation(s)
- Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Johan Blatt Rojek
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
12
|
Adebar N, Arnold S, Herrera LM, Emenike VN, Wucherpfennig T, Smiatek J. Physics-informed neural networks for biopharmaceutical cultivation processes: Consideration of varying process parameter settings. Biotechnol Bioeng 2025; 122:123-136. [PMID: 39294551 DOI: 10.1002/bit.28851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
We present a new modeling approach for the study and prediction of important process outcomes of biotechnological cultivation processes under the influence of process parameter variations. Our model is based on physics-informed neural networks (PINNs) in combination with kinetic growth equations. Using Taylor series, multivariate external process parameter variations for important variables such as temperature, seeding cell density and feeding rates can be integrated into the corresponding kinetic rates and the governing growth equations. In addition to previous approaches, PINNs also allow continuous and differentiable functions as predictions for the process outcomes. Accordingly, our results show that PINNs in combination with Taylor-series expansions for kinetic growth equations provide a very high prediction accuracy for important process variables such as cell densities and concentrations as well as a detailed study of individual and combined parameter influences. Furthermore, the proposed approach can also be used to evaluate the outcomes of new parameter variations and combinations, which enables a saving of experiments in combination with a model-driven optimization study of the design space.
Collapse
Affiliation(s)
- Niklas Adebar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Development NCE, Ingelheim (Rhein), Germany
| | - Sabine Arnold
- Boehringer Ingelheim Pharma GmbH & Co. KG, Bioprocess Development Biologicals, Biberach (Riss), Germany
| | - Liliana M Herrera
- Boehringer Ingelheim Pharma GmbH & Co. KG, Global Innovation & Alliance Management, Biberach (Riss), Germany
| | - Victor N Emenike
- Boehringer Ingelheim Pharma GmbH & Co. KG, HP BioP Launch and Innovation, Ingelheim (Rhein), Germany
| | - Thomas Wucherpfennig
- Boehringer Ingelheim Pharma GmbH & Co. KG, Bioprocess Development Biologicals, Biberach (Riss), Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Development NCE, Biberach (Riss), Germany
| |
Collapse
|
13
|
Henry M, Selvaprakash K, Meleady P. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Methods Mol Biol 2025; 2853:173-189. [PMID: 39460921 DOI: 10.1007/978-1-0716-4104-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is one of the most important post-translational modifications that regulates many biological processes. There have been relatively few studies on the phosphoproteome of recombinant Chinese hamster ovary (CHO) cells to date despite phosphorylation playing a crucial role in regulating many molecular and cellular processes relevant to bioprocess phenotypes including, for example, transcription, translation, growth, apoptosis, and signal transduction. In this chapter, we provide a protocol for phosphoproteomic analysis of CHO cells using phosphopeptide enrichment with metal oxide affinity chromatography (MOAC) and immobilized metal affinity chromatography (IMAC) techniques, followed by site-specific identification of phosphorylated residues using liquid chromatography mass spectrometry (LC-MS), multistage activation (MSA), and MS3 strategies. This protocol can also be used for quantitative phosphoproteomic analysis using both labeled and label-free approaches.
Collapse
Affiliation(s)
- Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| | | | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
14
|
Szkodny AC, Lee KH. A Flexible Hybrid Site-Specific Integration-Based Expression System in CHO Cells for Higher-Throughput Evaluation of Monoclonal Antibody Expression Cassettes. Biotechnol J 2025; 20:e202400520. [PMID: 39834086 PMCID: PMC11747262 DOI: 10.1002/biot.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting. This study presents a recombinase-mediated cassette exchange (RMCE)-capable SSI system that uses only chemical selection to enrich for transgene-expressing RMCE pools in less than one month. The system was used to compare eight mAb expression cassettes containing two novel genetic regulatory elements, the Azin1 CpG island and the Piggybac transposase 5' terminal repeat, in various orientations to improve the expression of two therapeutic mAbs from two genomic loci. Similar patterns of productivity and mRNA expression were observed across sites and mAbs, and the best performing cassette universally increased mAb productivity by 7- to 11-fold. This flexible system allows for higher-throughput comparison of expression cassettes from a consistent clonal and transcriptional background to optimize RMCE-derived cell lines for industrial production of mAbs.
Collapse
Affiliation(s)
- Alana C. Szkodny
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
15
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjørn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates lactate production without impacting growth rate in mammalian cells. Nat Metab 2025; 7:212-227. [PMID: 39809975 DOI: 10.1038/s42255-024-01193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.
Collapse
Affiliation(s)
- Hooman Hefzi
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Iván Martínez-Monge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Igor Marin de Mas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nicholas Luke Cowie
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Marianne Decker
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Arnsdorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Jose Manuel Camacho-Zaragoza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sanne Schoffelen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nuša Pristovšek
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anders Holmgaard Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Antonio A Miguez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Sara Petersen Bjørn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Karen Kathrine Brøndum
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Elham Maria Javidi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kristian Lund Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Laura Stangl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | | | - Daniel Ley
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Patrice Ménard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Munck Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Zulfiya Sukhova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Anton Bauer
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Niall Barron
- National Institute for Bioprocessing Research and Training (NIBRT), Blackrock, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Bjørn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Center for Molecular Medicine, Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Raina S, Samuel E, Fuchs H. DT-13 Mediates Ligand-Dependent Activation of PPARγ Response Elements In Vitro. BIOLOGY 2024; 13:1015. [PMID: 39765682 PMCID: PMC11673078 DOI: 10.3390/biology13121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Activation of inflammatory pathways releases a storm of cytokines. Moreover, unregulated cytokines contribute to chronic inflammatory disorders. However, ligand-activated peroxisome proliferator-activated receptor gamma (PPARγ) is involved in suppressing inflammatory cytokines via transrepression of nuclear factor kappa B (NFκB). Therefore, in this study, the anti-inflammatory saponin DT-13 is explored as a ligand of PPARγ. DT-13 upregulated the expression of PPARγ in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in comparison to treatment with LPS alone. Applying a HEK transfection model, we observed a DT-13 dose-dependent increase in ligand-dependent activation of PPARγ, which was compared with troglitazone and rosiglitazone. DT-13 was not able to compete with the synthetic fluoromone tracer for binding to PPARγ as observed in a fluorescence polarization binding assay, whereas molecular docking showed a possible binding interaction of DT-13 with the PPARγ nuclear receptor. We proved the expression of PPARγ protein in the presence of DT-13 using a robust cell-based HEK293FT transfection model. More in-depth analysis needs to be performed to evaluate the efficiency of the binding of DT-13 to PPARγ. A possible binding interaction of DT-13 to PPARγ was observed, similar to that of rosiglitazone. This study revealed a novel mechanism for anti-inflammatory effects by DT-13 through PPARγ-dependent transrepression of NFκB.
Collapse
Affiliation(s)
| | | | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
17
|
Carreño A, Guerrero-Yagüe R, Casal E, Mendoza R, Corchero JL. Tuning plasmid DNA amounts for cost-effective transfections of mammalian cells: when less is more. Appl Microbiol Biotechnol 2024; 108:98. [PMID: 38212965 PMCID: PMC10784393 DOI: 10.1007/s00253-024-13003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Transient gene expression (TGE) in mammalian cells is a well-known approach to the fast expression of recombinant proteins. The human cell line HEK (human embryonic kidney) 293F is widely used in this field, due to its adaptability to grow in suspension to high cell densities in serum-free media, amenability to transfection, and production of recombinant proteins in satisfactory quantities for functional and structural analysis. Amounts of plasmid DNA (pDNA) required in transfections for TGE remain high (usually 1 µg pDNA/mL, or even higher), representing a noticeable proportion of the overall cost. Thus, there is an economic need to reduce amounts of coding pDNA in TGE processes. In this work, amounts of both pDNA and transfecting agent used for TGE in HEK 293F cells have been explored in order to reduce them without compromising (or even improving) the productivity of the process in terms of protein yield. In our hands, minimal polyethyleneimine (PEI) cytotoxicity and optimum protein yields were obtained when transfecting at 0.5 µg pDNA/mL (equal to 0.5 µg pDNA/million cells) and a DNA-to-PEI ratio of 1:3, a trend confirmed for several unrelated recombinant proteins. Thus, carefully tuning pDNA and transfecting agent amounts not only reduces the economic costs but also results in higher recombinant protein yields. These results surely have a direct application and interest for the biopharmaceutical industry, always concerned in increasing productivity while decreasing economic costs. KEY POINTS: • Mammalian cells are widely used to produce recombinant proteins in short times. • Tuning DNA and transfecting agent are of great interest to optimize economic costs. • Reducing DNA and transfecting agent amounts result in higher protein yields.
Collapse
Affiliation(s)
- Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Rubén Guerrero-Yagüe
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Gene Therapy for Neurometabolic Disorders, Edifici H, Institute of Neurosciences (INc) & Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Enriqueta Casal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Alderley Analytical Ltd. Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193, Bellaterra, Barcelona, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193, Bellaterra, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Lant JT, Frasheri J, Kwon T, Tsang CMN, Li BB, Decombe S, Sklavounos AA, Akbari S, Wheeler AR. A multimodal digital microfluidic testing platform for antibody-producing cell lines. LAB ON A CHIP 2024. [PMID: 39565292 DOI: 10.1039/d4lc00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In recent years, monoclonal antibodies (mAbs) have become a powerful tool in the treatment of human diseases. Currently, over 100 mAbs have received approval for therapeutic use in the US, with wide-ranging applications from cancer to infectious diseases. The predominant method of producing antibodies for therapeutics involves expression in mammalian cell lines. In the mAb production process, significant optimization is typically done to maximize antibody titres from cells grown in bioreactors. Therefore, systems that can miniaturize and automate cell line testing (e.g., viability and antibody production assays) are valuable in reducing therapeutic mAb development costs. Here we present a novel platform for cell line optimization for mAb production using digital microfluidics. The platform enables testing of cell culture samples in 6-8 μL droplets with semi-automated viability, media pH, and antibody production assays. This system provides a unique bridge between cell growth and productivity metrics, while minimizing culture volume requirements for daily testing. We propose that this technology and its future iterations has the potential to help reduce the time-to-market and development costs of antibody-producing cell lines.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Frasheri
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taehong Kwon
- Sartorius Stedim North America Inc., Marlborough, MA, USA
| | - Camille M N Tsang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Bingyu B Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon Decombe
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Samin Akbari
- Sartorius Stedim North America Inc., Marlborough, MA, USA
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Prabhala SV, Marshall B, Galiardi J, Fan Y, Creamer E, Wood DW. Highly selective split intein method for efficient separation and purification of recombinant therapeutic proteins from mammalian cell culture fluid. J Chromatogr A 2024; 1736:465430. [PMID: 39405639 PMCID: PMC11533640 DOI: 10.1016/j.chroma.2024.465430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Biologics and vaccines have been successfully developed over the last few decades to treat many diseases. Each of these drugs must be highly purified for clinical use. Monoclonal antibodies (mAbs), the dominant therapeutic modality on the market, can be easily purified using the standard Protein A affinity platform. However, no generally applicable affinity platforms are available for the manufacture of other therapeutic proteins for clinical use. Thus, multicolumn chromatography processes for widely being used for product purification. These processes demand significant optimization to meet desired product quality attributes, where each step also decreases final yields. In this work, we demonstrate the novel self-removing iCapTag™ affinity tag, which provides a new platform for capturing, concentrating, and purifying recombinant proteins. Importantly, this system provides a tagless target protein, which is suitable for research and clinical use, where the only requirement for tag removal is a small change in buffer pH. No additional proteins, reagents or cofactors are required. We also present case studies demonstrating the use of iCapTag™ for highly efficient purification of untagged interferon alpha 2b, the ML39 single chain variable fragment (scFv), and the receptor binding domain (RBD) of SARS-CoV-2 spike protein. These proteins were expressed and secreted by Expi293 cells with the self-removing tag fused to their N-terminus. We were able to obtain highly pure (> 99 %) tagless protein in a single purification step with high clearance of host cell DNA, tagged precursor, higher and lower molecular weight impurities. Based on these preliminary results, we propose the iCapTag™ as a universal capture platform for diverse classes of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Sai Vivek Prabhala
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States
| | - Brian Marshall
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | | | - Yamin Fan
- Johnson & Johnson, 4560 Jinke Road, Shanghai 201210, China
| | - Ekaterina Creamer
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, United States
| | - David W Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States; Protein Capture Science LLC, Columbus, OH 43212, United States.
| |
Collapse
|
21
|
Wang Q, Shi S, Liu S, Ye S. A user-friendly fluorescent biosensor for precise lactate detection and quantification in vitro. Chem Commun (Camb) 2024; 60:12884-12887. [PMID: 39404007 DOI: 10.1039/d4cc04925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
As a critical metabolite, the standardization of lactate quantification is increasingly crucial. Therefore, we developed LaconicSF, a lactate-responsive biosensor exhibiting exceptional specificity in lactate detection. LaconicSF enables efficient lactate quantification in CHO cell culture medium and holds potential as a user-friendly detection tool for lactate quantification in vitro.
Collapse
Affiliation(s)
- Qiwei Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
22
|
Ulaangerel T, Yi M, Budsuren U, Shen Y, Ren H, Demuul B, Bai D, Dorjgotov D, Davaakhuu G, Jambal T, Dugarjav M, Bou G. Condition optimization for electroporation transfection in horse skeletal muscle satellite cells. Anim Biotechnol 2024; 35:2280664. [PMID: 37982395 DOI: 10.1080/10495398.2023.2280664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Satellite cells are an important cellular model for studying muscle growth and development and mammalian locomotion-related molecular mechanisms. In this study, we investigated the effects of voltage, pulse duration, and DNA dosage on horse skeletal muscle satellite cells' electroporation transfection efficiency using the eukaryotic expression plasmid Td Tomato-C1 (5.5 kb) encoding the red fluorescent protein gene mainly based on fluorescence-positive cell rate and cell survival rate. By comparison of different voltages, pulse durations, and DNA doses, horse skeletal muscle satellite cells have nearly 80% transfection efficiency under the condition of voltage 120 V, DNA dosage 7 µg/ml, and pulse duration 30 ms. This optimized electroporation condition would facilitate the application of horse skeletal muscle satellite cells in genetic studies of muscle function and related diseases.
Collapse
Affiliation(s)
- Tseweendolmaa Ulaangerel
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Minna Yi
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Undarmaa Budsuren
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- School of Animal Science and Biotechnology, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Yingchao Shen
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hong Ren
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bold Demuul
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dulguun Dorjgotov
- School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Gantulga Davaakhuu
- Institute of General and Experimental Biology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Tuyatsetseg Jambal
- School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Manglai Dugarjav
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
23
|
Shin J, Oh S, Jang M, Lee S, Min C, Eu Y, Begum H, Kim J, Lee GR, Oh H, Paul MJ, Ma JK, Gwak H, Youn H, Kim S. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3068-3081. [PMID: 39016470 PMCID: PMC11500988 DOI: 10.1111/pbi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.
Collapse
Affiliation(s)
- Jun‐Hye Shin
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| | - Sera Oh
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | | | - Seok‐Yong Lee
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Chanhong Min
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | | | - Hilal Begum
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Jong‐Chan Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Gap Ryol Lee
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Han‐Bin Oh
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Matthew J. Paul
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K.‐C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Ho‐Shin Gwak
- National Cancer Center KoreaGoyang‐si, Kyunggi‐doSouth Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Ryong Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| |
Collapse
|
24
|
Bauer N, Boettger M, Papadaki S, Leitner T, Klostermann S, Kettenberger H, Georges G, Larraillet V, Gluhacevic von Kruechten D, Hillringhaus L, Vogt A, Ausländer S, Popp O. Procollagen-lysine 2-oxoglutarate 5-dioxygenases are responsible for 5R-hydroxylysine modification of therapeutic T-cell bispecific monoclonal antibodies produced by Chinese hamster ovary cells. Front Bioeng Biotechnol 2024; 12:1414408. [PMID: 39530057 PMCID: PMC11551027 DOI: 10.3389/fbioe.2024.1414408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
We present a detailed mass spectrometric analysis of three 2 + 1 T-cell bispecific monoclonal antibodies (TCB mAbs), where an unexpected +15.9950 Da mass shift in tryptic peptides was observed. This modification was attributed to the occurrence of 5R-hydroxylysine (Hyl) using a hybrid LC-MS/MS molecular characterization and CRISPR/Cas9 gene deletion approach. The modification was found at various sites within TCB mAbs, with a conspicuous hot spot motif mirroring a prior observation where Hyl was mapped to the CH1-VH Fab domain interface of IgGs. In contrast to the preceding report, our structural modeling analysis on TCB mAbs unveiled substantial differences in the orientation and flexibility of motifs in immediate proximity and across the artificial CH1-VL cross Fab interface and upstream elbow segment. Utilizing a hybrid database search, RNAseq, and a CRISPR/Cas9 knockout methodology in Chinese hamster ovary (CHO) production cell lines, procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were conclusively identified as the catalyzing enzymes accountable for the 5R-Hyl modification in TCB mAbs. To quantitatively inhibit Hyl formation in TCB mAbs, the activity of all three Chinese hamster PLOD isoenzymes needs to be depleted via CRISPR/Cas9 gene knockout. Moreover, our investigation identified cell culture iron availability, process duration, and clonal variability in CHO cells as elements influencing the levels of Hyl formation in TCB mAbs. This research offers a solution for circumventing Hyl formation in therapeutic complex mAb formats, such as TCB mAbs, produced in CHO cell culture processes, thereby addressing potential technical and biological challenges associated with unintended Hyl modification.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Boettger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Styliani Papadaki
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Tanja Leitner
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Data and Analytics, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | | | - Lars Hillringhaus
- Special Chemistry, Roche Diagnostics, Roche Innovation Center Munich, Penzberg, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
25
|
Haraguchi Y, Kato Y, Tsuji A, Hasunuma T, Shimizu T. Recombinant lactate-assimilating cyanobacteria reduce high-concentration culture-associated cytotoxicity in mammalian cells. Arch Microbiol 2024; 206:425. [PMID: 39361131 DOI: 10.1007/s00203-024-04149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
In the fields of cultured meat, biopharmaceuticals, cell therapy, and tissue engineering, large numbers of mammalian cells are required; thus, highly-concentrated cell cultures are widely adopted. In general, such cultures can lead to cell damage caused by waste product accumulation and nutritional inadequacy. In this study, a novel co-culture system where the recombinant lactate-assimilating cyanobacterial strain, KC0110, derived from euryhaline Picosynechococcus sp. PCC 7002, and mammalian muscle cells cultured across porous membranes been developed. By using the KC0110 strain, the amount of ammonium and lactate excreted from C2C12 mouse muscle cells into the culture significantly decreased. Importantly, pyruvate and some amino acids, including pyruvate-derived amino acids, also increased significantly compared to those in monoculture of C2C12 cells. It is believed that the organic acids secreted by the KC0110 strain enhance the growth of mammalian cells, leading to a reduction in high-concentration culture-induced mammalian cell damage [lactate dehydrogenase (LDH) release] through cyanobacterial co-culture. These results show that, through co-cultivation with cyanobacteria, it is possible to culture mammalian cells, alleviating cell damage, even in highly-concentrated cultures. This study demonstrated an in vitro "symbiotic circular system" that can interchange metabolites produced by phototrophs and mammalian cells.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Ayaka Tsuji
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
26
|
Guessous G, Blake L, Bui A, Woo Y, Manzanarez G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomater Sci Eng 2024; 10:5412-5438. [PMID: 39136701 PMCID: PMC11388149 DOI: 10.1021/acsbiomaterials.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, California 92092, United States
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
| | - Lauren Blake
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Tufts University Center for Cellular Agriculture (TUCCA), Tufts University, Medford, Massachusetts 02155, United States
| | - Anthony Bui
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850, United States
| | - Yelim Woo
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Questrom School of Business, Boston University, Boston, Massachusetts 02215, United States
| | - Gabriel Manzanarez
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92092, United States
| |
Collapse
|
27
|
Hu Z, Qian S, Zhao Q, Lu B, Lu Q, Wang Y, Zhang L, Mao X, Wang D, Cui W, Sun X. Engineering strategies for apoptotic bodies. SMART MEDICINE 2024; 3:e20240005. [PMID: 39420952 PMCID: PMC11425054 DOI: 10.1002/smmd.20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles containing proteins, lipids, nucleic acids, and metabolites secreted by cells under various physiological and pathological conditions that mediate intercellular communication. The main types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are vesicles released during the terminal stages of cellular apoptosis, enriched with diverse biological entities and characterized by distinct morphological features. As a result, ABs possess great potential in fields like disease diagnosis, immunotherapy, regenerative therapy, and drug delivery due to their specificity, targeting capacity, and biocompatibility. However, their therapeutic efficacy is notably heterogeneous, and an overdose can lead to side effects such as accumulation in the liver, spleen, lungs, and gastrointestinal system. Through bioengineering, the properties of ABs can be optimized to enhance drug-loading efficiency, targeting precision, and multifunctionality for clinical implementations. This review focuses on strategies such as transfection, sonication, electroporation, surface engineering, and integration with biomaterials to enable ABs to load cargoes and enhance targeting, providing insights into the engineering of ABs.
Collapse
Affiliation(s)
- Zheyuan Hu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuhuan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danru Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
28
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjorn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606284. [PMID: 39211256 PMCID: PMC11361052 DOI: 10.1101/2024.08.02.606284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
Collapse
|
29
|
Niazi SK. The United States Food and Drug Administration's Platform Technology Designation to Expedite the Development of Drugs. Pharmaceutics 2024; 16:918. [PMID: 39065616 PMCID: PMC11279857 DOI: 10.3390/pharmaceutics16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug development costs can be significantly reduced if proven "platform" technologies are allowed to be used without having to validate their use. The most recent US Food and Drug Administration (FDA) guideline brings more clarity, as well as a greater focus on the most complex technologies that can now be used for faster drug development. The FDA has highlights the use of lipid nanoparticles (LNPs) to package and deliver mRNA vaccines, gene therapy, and short (2-20 length) synthetic nucleotides (siRNA). Additionally, monoclonal antibody cell development is targeted. The FDA provides a systematic process of requesting platform status to benefit from its advantages. It brings advanced science and rationality into regulatory steps for the FDA's approval of drugs and biologicals.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Withanage T, Lal M, Wachtel E, Patchornik G. Conjugated Nonionic Detergent Micelles: An Efficient Purification Platform for Dimeric Human Immunoglobulin A. ACS Med Chem Lett 2024; 15:979-986. [PMID: 38894919 PMCID: PMC11181477 DOI: 10.1021/acsmedchemlett.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
The SARS-COV-2 virus is a deadly agent of inflammatory respiratory disease. Since 2020, studies have focused on developing new therapies based on galactose-rich IgA antibodies. Clinical surveys have also revealed that galactose-deficient IgA1 polymerizes in serum, producing IgA nephropathy, which is a common cause of kidney failure in young adults. Here we show that IgA1-IgA2 dimers are efficiently and economically purified in solution via conjugated nonionic surfactant micellar aggregates. Quantitative capture at pH 7 and extraction at pH 6.5 can avoid antibody exposure to acidic, potentially denaturing conditions. Brij-O20 aggregates lead to the highest process yields (88-91%) and purity (94%). Recovered IgA dimers preserve their native secondary structure and do not self-associate. Increasing the reaction volume has little impact on yield or purity. By introducing an efficient, inexpensive IgA purification protocol, we assist pharmaceutical firms and research laboratories in developing new IgA-based therapies as well as in increasing our understanding of IgA1 polymerization.
Collapse
Affiliation(s)
| | - Mitra Lal
- Department
of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| | - Ellen Wachtel
- Faculty
of Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Guy Patchornik
- Department
of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| |
Collapse
|
31
|
Wang W, Liu C, Zhang X, Yan J, Zhang J, You S, Su R, Qi W. Time-resolved fluoroimmunoassay for Aspergillus detection based on anti-galactomannan monoclonal antibody from stable cell line. Anal Biochem 2024; 689:115494. [PMID: 38403258 DOI: 10.1016/j.ab.2024.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Invasive Aspergillosis is a high-risk illness with a high death rate in immunocompromised people due to a lack of early detection and timely treatment. Based on immunology study, we achieved an efficient production of anti-galactomannan antibody by Chinese hamster ovary (CHO) cells and applied it to time-resolved fluoroimmunoassay for Aspergillus galactomannan detection. We first introduced dual promoter expression vector into CHO host cells, and then applied a two-step screening strategy to screen the stable cell line by methionine sulfoximine pressurization. After amplification and fermentation, antibody yield reached 4500 mg/L. Then we conjugated the antibodies with fluorescent microspheres to establish a double antibody sandwich time-resolved fluoroimmunoassay, which was compared with the commercial Platelia™ Aspergillus Ag by clinical serum samples. The preformed assay could obtain the results in less than 25 min, with a limit of detection for galactomannan of approximately 1 ng/mL. Clinical results of the two methods showed that the overall percent agreement was 97.7% (95% CI: 96.6%-98.4%) and Cohen's kappa coefficient was 0.94. Overall, the assay is highly consistent with commercial detection, providing a more sensitive and effective method for the rapid diagnosis of invasive aspergillosis.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Chunlong Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Dynamiker Biotechnology (Tianjin) Co., Ltd, PR China
| | - Xuemei Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jun Yan
- Dynamiker Biotechnology (Tianjin) Co., Ltd, PR China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Shengping You
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
32
|
Wang R, Wang Z, Tong L, Wang R, Yao S, Chen D, Hu H. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells. BIOSENSORS 2024; 14:256. [PMID: 38785730 PMCID: PMC11117831 DOI: 10.3390/bios14050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.
Collapse
Affiliation(s)
- Rubing Wang
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| | - Ziqi Wang
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Lingling Tong
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
| | - Ruoming Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Shuo Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), International Campus, Zhejiang University, Haining 314400, China; (R.W.); (S.Y.)
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; (Z.W.); (L.T.)
- Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310003, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Haining 314400, China
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Haining 314400, China;
| |
Collapse
|
33
|
Raab N, Zeh N, Kretz R, Weiß L, Stadermann A, Lindner B, Fischer S, Stoll D, Otte K. Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells. Metab Eng 2024; 83:110-122. [PMID: 38561148 DOI: 10.1016/j.ymben.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.
Collapse
Affiliation(s)
- Nadja Raab
- Biberach University of Applied Sciences, Germany.
| | - Nikolas Zeh
- Biberach University of Applied Sciences, Germany; Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Robin Kretz
- Hochschule Albstadt Sigmaringen, Germany; NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Linus Weiß
- Biberach University of Applied Sciences, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Benjamin Lindner
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dieter Stoll
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Kerstin Otte
- Biberach University of Applied Sciences, Germany
| |
Collapse
|
34
|
Lee JY, Huh HD, Lee DK, Park SY, Shin JE, Gee HY, Park HW. Reprogramming anchorage dependency to develop cell lines for recombinant protein expression. Biotechnol J 2024; 19:e2400104. [PMID: 38700448 DOI: 10.1002/biot.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
As the biopharmaceutical industry continues to mature in its cost-effectiveness and productivity, many companies have begun employing larger-scale biomanufacturing and bioprocessing protocols. While many of these protocols require cells with anchorage-independent growth, it remains challenging to induce the necessary suspension adaptations in many different cell types. In addition, although transfection efficiency is an important consideration for all cells, especially for therapeutic protein production, cells in suspension are generally more difficult to transfect than adherent cells. Thus, much of the biomanufacturing industry is focused on the development of new human cell lines with properties that can support more efficient biopharmaceutical production. With this in mind, we identified a set of "Adherent-to-Suspension Transition" (AST) factors, IKZF1, BTG2 and KLF1, the expression of which induces adherent cells to acquire anchorage-independent growth. Working from the HEK293A cell line, we established 293-AST cells and 293-AST-TetR cells for inducible and reversible reprogramming of anchorage dependency. Surprisingly, we found that the AST-TetR system induces the necessary suspension adaptations with an accompanying increase in transfection efficiency and protein expression rate. Our AST-TetR system therefore represents a novel technological platform for the development of cell lines used for generating therapeutic proteins.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong Ki Lee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Chakrabarti L, Savery J, Mpindi JP, Klover J, Li L, Zhu J. Simplifying stable CHO cell line generation with high probability of monoclonality by using microfluidic dispensing as an alternative to fluorescence activated cell sorting. Biotechnol Prog 2024; 40:e3441. [PMID: 38462762 DOI: 10.1002/btpr.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - James Savery
- Machine Learning & AI, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - John Patrick Mpindi
- Biostatistics, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Judith Klover
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Lina Li
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Jie Zhu
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
36
|
Wu R, Kahl DM, Kloberdanz R, Rohilla KJ, Balasubramanian S. Demonstration of a robust high cell density transient CHO platform yielding mAb titers of up to 2 g/L without medium exchange. Biotechnol Prog 2024; 40:e3435. [PMID: 38329375 DOI: 10.1002/btpr.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Biopharmaceuticals like therapeutic monoclonal antibodies (mAbs) and other derived proteins are popular for treating various diseases. Transient gene expression (TGE) is typically used as a fast yet efficient method to generate moderate amounts of material. It has been used to support early stage research and discovery processes. Introduction of a robust high yielding and predictive TGE platform in Chinese hamster ovary (CHO) is crucial. It maintains the consistency in cell lines and processes throughout the early drug discovery and downstream manufacturing processes. This helps researchers to identify the issues at an early stage for timely resolution. In this study, we have demonstrated a simple high-titer platform for TGE in CHO based on a dilution process of seeding cells. We achieved titers ranging from 0.8 to 1.9 g/L for eight model mAbs at three scales (1, 30, 100 mL) in 10 days using our new platform. The ability to seed by dilution significantly streamlined the process and dramatically enhanced platform throughput. We observed a modest reduction in titer ranging from 11% to 28% when cells were seeded using dilution compared to when cells were seeded using medium exchange. Further studies revealed that carry over of spent medium into transfection negatively affected the DNA uptake and transcription processes, while the translation and secretion was minimally impacted. In summary, our transient CHO platform using cells prepared by dilution at high densities can achieve high titers of up to 1.9 g/L, which can be further improved by targeting the bottlenecks of transfection and transcription.
Collapse
Affiliation(s)
- Rigumula Wu
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Danielle M Kahl
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Ronald Kloberdanz
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Kushal J Rohilla
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| | - Sowmya Balasubramanian
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc, San Francisco, California, USA
| |
Collapse
|
37
|
Tang X, Quiroz J, Zhang Y, Pan J, Lai Z, Du Z, Liu R. A deep-well plate enabled automated high-throughput cell line development platform. Biotechnol Prog 2024; 40:e3442. [PMID: 38377061 DOI: 10.1002/btpr.3442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/28/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Cell line development (CLD) plays a crucial role in the manufacturing process development of therapeutic biologics. Most biologics are produced in Chinese hamster ovary (CHO) cell. Because of the nature of random transgene integration in CHO genome and CHO's inherent plasticity, stable CHO transfectants usually have a vast diversity in productivity, growth, and product quality. Thus, we often must resort to screening a large number of cell pools and clones to increase the probability of identifying the ideal production cell line, which is a very laborious and resource-demanding process. Here we have developed a deep-well plate (DWP) enabled high throughput (DEHT) CLD platform using 24-well DWP (24DWP), liquid handler, and other automation components. This platform has capabilities covering the key steps of CLD including cell passaging, clone imaging and expansion, and fed-batch production. We are the first to demonstrate the suitability of 24DWP for CLD by confirming minimal well-to-well and plate-to-plate variability and the absence of well-to-well cross contamination. We also demonstrated that growth, production, and product quality of 24DWP cultures were comparable to those of conventional shake flask cultures. The DEHT platform enables scientists to screen five times more cultures than the conventional CLD platform, thus significantly decreases the resources needed to identify an ideal production cell line for biologics manufacturing.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Process Cell Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Jorge Quiroz
- BARDS, Research CMC Statistics, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Yixiao Zhang
- Process Cell Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Jessica Pan
- Process Cell Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Zhong Lai
- BARDS, Research CMC Statistics, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Zhimei Du
- Process Cell Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Ren Liu
- Process Cell Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
38
|
Liu Z, Zhao Y, Yang J, Liu X, Luo Y, Zhu L, Huang K, Sheng F, Du X, Jin M. Seroprevalence of the novel swine acute diarrhea syndrome coronavirus in China assessed by enzyme-linked immunosorbent assay. Front Cell Infect Microbiol 2024; 14:1367975. [PMID: 38736750 PMCID: PMC11082911 DOI: 10.3389/fcimb.2024.1367975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 05/14/2024] Open
Abstract
The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.
Collapse
Affiliation(s)
- Zuqing Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yun Luo
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
39
|
Abali F, Schasfoort R, Nijland S, Wittenberns J, Tibbe AGJ, den Hartog M, Boon L, Terstappen LWMM. A nanowell platform to identify, sort and expand high antibody-producing cells. Sci Rep 2024; 14:9457. [PMID: 38658627 PMCID: PMC11043069 DOI: 10.1038/s41598-024-60054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.
Collapse
Affiliation(s)
- Fikri Abali
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Richard Schasfoort
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Sanne Nijland
- VYCAP, Capitool 41, 7521PL, Enschede, The Netherlands
| | - Jelle Wittenberns
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584 CM, Utrecht, The Netherlands
| | | | - Marcel den Hartog
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584 CM, Utrecht, The Netherlands
| | - Louis Boon
- JJP Biologics, Bobrowiecka 6, 00-728, Warsaw, Poland
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE, Enschede, The Netherlands.
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine University, University Hospital Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
40
|
Zhang X, Wang Y, Yi D, Zhang C, Ning B, Fu Y, Jia Y, Wang T, Wang X. Synergistic promotion of transient transgene expression in CHO cells by PDI/XBP-1s co-transfection and mild hypothermia. Bioprocess Biosyst Eng 2024; 47:557-565. [PMID: 38416261 DOI: 10.1007/s00449-024-02987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Transient gene expression system is an important tool for rapid production of recombinant proteins in Chinese hamster ovary (CHO) cells. However, their low productivity is the main hurdle to overcome. An effective approach through which to obtain high protein yield involves targeting transcriptional, post-transcriptional events (PTEs), and culture conditions. Here, we investigated the effects of protein disulfide isomerase (PDI) and spliced X-box binding protein 1 (XBP-1s) co-overexpression combined with mild hypothermia on the transient yields of recombinant proteins in CHO cells. The results showed that the gene of interest (GOI) and the PDI/XBP-1s helper vector at a co-transfection ratio of 10:1 could obviously increase transient expression level of recombinant protein in CHO cells. However, PDI/XBP-1s overexpression had no significance effect on the mRNA levels of the recombinant protein, suggesting that it targeted PTEs. Moreover, the increased production was due to the enhancing of cell specific productivity, not related to cell growth, viability, and cell cycle. In addition, combined PDI/XBP-1s co-overexpression and mild hypothermia could further improve Adalimumab expression, compared to the control/37 °C and PDI/XBP-1s/37 °C, the Adalimumab volume yield of PDI/XBP-1s/33 °C increased by 203% and 142%, respectively. Mild hypothermia resulted in 3.52- and 2.33-fold increase in the relative mRNA levels of PDI and XBP-1s, respectively. In conclusion, the combination of PDI/XBP-1s overexpression and culture temperature optimization can achieve higher transient expression of recombinant protein, which provides a synergetic strategy to improve transient production of recombinant protein in CHO cells.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaokun Wang
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dandan Yi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Binhuan Ning
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yushun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
41
|
Singh AK, Lewis CD, Boas CAWV, Diebolder P, Jethva PN, Rhee A, Song JH, Goo YA, Li S, Nickels ML, Liu Y, Rogers BE, Kapoor V, Hallahan DE. Development of a [89Zr]Zr-labeled Human Antibody using a Novel Phage-displayed Human scFv Library. Clin Cancer Res 2024; 30:1293-1306. [PMID: 38277241 PMCID: PMC10984770 DOI: 10.1158/1078-0432.ccr-23-3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/μg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 μg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.
Collapse
Affiliation(s)
- Abhay K. Singh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Calvin D. Lewis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristian AWV Boas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Aaron Rhee
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Shunqian Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Michael L. Nickels
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
- Cyclotron Facility, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| |
Collapse
|
42
|
Singh R, Fatima E, Thakur L, Singh S, Ratan C, Kumar N. Advancements in CHO metabolomics: techniques, current state and evolving methodologies. Front Bioeng Biotechnol 2024; 12:1347138. [PMID: 38600943 PMCID: PMC11004234 DOI: 10.3389/fbioe.2024.1347138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Eram Fatima
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Chandra Ratan
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
43
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
44
|
Wang X, Xu J, Guo Q, Li Z, Cao J, Fu R, Xu M, Zhao X, Wang F, Zhang X, Dong T, Li X, Qian W, Hou S, Ji L, Zhang D, Guo H. Improving product quality and productivity of an antibody-based biotherapeutic using inverted frustoconical shaking bioreactors. Front Bioeng Biotechnol 2024; 12:1352098. [PMID: 38585708 PMCID: PMC10995296 DOI: 10.3389/fbioe.2024.1352098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The Chinese hamster ovarian (CHO) cells serve as a common choice in biopharmaceutical production, traditionally cultivated in stirred tank bioreactors (STRs). Nevertheless, the pursuit of improved protein quality and production output for commercial purposes demand exploration into new bioreactor types. In this context, inverted frustoconical shaking bioreactors (IFSB) present unique physical properties distinct from STRs. This study aims to compare the production processes of an antibody-based biotherapeutic in both bioreactor types, to enhance production flexibility. The findings indicate that, when compared to STRs, IFSB demonstrates the capability to produce an antibody-based biotherapeutic with either comparable or enhanced bioprocess performance and product quality. IFSB reduces shear damage to cells, enhances viable cell density (VCD), and improves cell state at a 5-L scale. Consequently, this leads to increased protein expression (3.70 g/L vs 2.56 g/L) and improved protein quality, as evidenced by a reduction in acidic variants from 27.0% to 21.5%. Scaling up the culture utilizing the Froude constant and superficial gas velocity ensures stable operation, effective mixing, and gas transfer. The IFSB maintains a high VCD and cell viability at both 50-L and 500-L scales. Product expression levels range from 3.0 to 3.6 g/L, accompanied by an improved acidic variants attribute of 20.6%-22.7%. The IFSB exhibits superior productivity and product quality, underscoring its potential for incorporation into the manufacturing process for antibody-based biotherapeutics. These results establish the foundation for IFSB to become a viable option in producing antibody-based biotherapeutics for clinical and manufacturing applications.
Collapse
Affiliation(s)
- Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingcheng Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Taizhou Mabtech Pharmaceuticals Co., Ltd., Taizhou, China
| | - Zhenhua Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Jiawei Cao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Rongrong Fu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Mengjiao Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xiang Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xinmeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Taimin Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xu Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weizhu Qian
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shen Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lusha Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dapeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
45
|
Hazare C, Bhagwat P, Singh S, Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024; 10:e26668. [PMID: 38434287 PMCID: PMC10907686 DOI: 10.1016/j.heliyon.2024.e26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.
Collapse
Affiliation(s)
- Chinmay Hazare
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| |
Collapse
|
46
|
Anny CA, Nouaille S, Fauré R, Schulz C, Spriet C, Huvent I, Biot C, Lefebvre T. A Step-by-Step Guide for the Production of Recombinant Fluorescent TAT-HA-Tagged Proteins and their Transduction into Mammalian Cells. Curr Protoc 2024; 4:e1016. [PMID: 38511507 DOI: 10.1002/cpz1.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.
Collapse
Affiliation(s)
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | | | | | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| |
Collapse
|
47
|
Ganesan V, Ulgekar G, Ramalingam A, Sen Sharma S, Ganguli N, Majumdar SS. Goat mammary epithelial cells provide a better expression system for production of recombinant human bone morphogenetic protein 2 compared to Chinese hamster ovarian cells. Cell Biochem Funct 2024; 42:e3982. [PMID: 38488412 DOI: 10.1002/cbf.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-β (TGF-β) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.
Collapse
Affiliation(s)
- Venkateswaran Ganesan
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Goutam Ulgekar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Nirmalya Ganguli
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
48
|
Yan G, Lu X, Sun R, Zhou W, Zhou H. Intensified perfusion culture (IPC) reduced recombinant protein fragmentation. Biotechnol Prog 2024; 40:e3405. [PMID: 37997628 DOI: 10.1002/btpr.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Mammalian cells remain the mainstay of biological production host. In industry, cultivating and harvest strategies are sorted in batch mode (e.g., batch, fed-batch, concentrated fed-batch and intensified fed-batch) and continuous mode (e.g., perfusion). To retrieve greater productivity and better product quality, especially for the sensitive products prone to fragmentation, culture modes with various modifications are innovated (e.g., intensified perfusion culture [IPC]). In our study, we demonstrated that the fragmentation of Fc-fusion product (Molecule A) is time-dependent in traditional fed-batch (TFB) culture. The fragmentation proportion increased from 3.8% to 12.4% for Clone A, 0.8% to 1.7% for Clone B and 0.9% to 2.0% for Clone C from Day 10 to Day 14. By applying a novel bioprocess, IPC, which allows continuous feeding of the fresh medium and constant removal of the spent medium without bleeding cells to maintain a defined constant viable cell density, the fragmentation was reduced to 0.3% while the productivity was increased from 2.96 g/L to 15.51 g/L for Clone A. To validate whether the fragmentation reduction is product-sensitive, plasmids carrying the DNA sequences of two other Fc-fusion molecules (Molecule B and Molecule C) were transfected into the host. The results showed consistent fragmentation reducing effect by using IPC. Furthermore, the cultivation scale was expanded to 50 L and 1000 L. A minimum fragmentation level below 0.1% was observed for Molecule C. Our study revealed the capability of IPC in reducing Fc-fusion protein fragmentation and the reproducibility when scaling up while maintaining high productivity.
Collapse
Affiliation(s)
- Ge Yan
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Xun Lu
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Ruiqiang Sun
- Cell Culture Process Development, WuXi Biologics, Shanghai, China
| | - Weichang Zhou
- Biologics Development, WuXi Biologics, Shanghai, China
| | - Hang Zhou
- Bioprocess Research and Development, WuXi Biologics, Shanghai, China
| |
Collapse
|
49
|
Kim D, Kim SH, Yoon C, Lee GM. Genome-wide CRISPR/Cas9 knockout screening to mitigate cell growth inhibition induced by histone deacetylase inhibitors in recombinant CHO cells. Biotechnol Bioeng 2024; 121:931-941. [PMID: 38013500 DOI: 10.1002/bit.28611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Histone deacetylase inhibitors (iHDACs) have been extensively studied as enhancers of therapeutic protein production in recombinant Chinese hamster ovary (CHO) (rCHO) cell cultures. However, the addition of iHDACs reduces the viable cell concentration (VCC) in rCHO cell cultures, thereby reducing their potential to enhance therapeutic protein production. To mitigate the negative effects of iHDACs on VCC, screening using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based single-gene knockout (KO) library in rCHO cells was performed in the presence of CI994, a member of iHDACs, and 10 potential KO genes that enhanced the VCC of CI994-treated rCHO cells were identified. Among these, Bcor was validated as a promising KO target that improved VCC without negatively affecting the specific productivity in the presence of CI994. Bcor KO increased the VCC and therapeutic protein concentrations in both batch and fed-batch cultures in the presence of CI994. Taken together, these findings highlight the potential of the whole-genome CRISPR/Cas9-based single-gene KO cell library to identify KO target genes for the development of iHDAC-resistant rCHO cells for enhanced therapeutic protein production.
Collapse
Affiliation(s)
- Dongil Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Chansik Yoon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
50
|
Cheng J, Zhang Y, Tian Y, Cao L, Liu X, Miao S, Zhao L, Ye Q, Zhou Y, Tan WS. Development of a novel tyrosine-based selection system for generation of recombinant Chinese hamster ovary cells. J Biosci Bioeng 2024; 137:221-229. [PMID: 38220502 DOI: 10.1016/j.jbiosc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanmin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou 310051, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|