1
|
Wang Y, Ge X, Wang Y, Li W, Feng W. Biochemical and structural characterization of Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). Biochem Biophys Res Commun 2025; 765:151862. [PMID: 40279797 DOI: 10.1016/j.bbrc.2025.151862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Lysosome-related organelles (LROs) play critical roles in diverse cellular processes, and their dysfunction is linked to genetic disorders such as Hermansky-Pudlak Syndrome (HPS). BLOC-1(Biogenesis of Lysosome-related Organelles Complex-1) is a key regulator of LRO biogenesis and intracellular vesicle trafficking. However, the molecular mechanisms governing BLOC-1 assembly and its function remain poorly understood. In this study, we present a biochemical and structural characterization of BLOC-1, revealing a curved, arc-shaped architecture. Our structural model demonstrates that this hetero-octameric complex is composed of two distinct hemicomplexes: BLOC1S2/5/7/8 and BLOC1S1/3/4/6. Cryo-EM 2D classification analysis shows that both hemicomplexes adopt extended rod-like structures but differ in length. The merging of these two hemicomplexes gives rise to BLOC-1's unique arc-like conformation. These findings provide critical insights into the molecular architecture of BLOC-1, advancing our understanding of its role in LRO biogenesis and vesicle trafficking.
Collapse
Affiliation(s)
- Yibo Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Xuan Ge
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Han Y, Dai J, Cheng J, He Y, Zhao C, Li R, Zhang Y, Zhang L, Zhou T, Shi Y. Cadmium induces autophagy via IRE1 signaling pathway activated by Ca 2 + in GC-2spd cells. Reprod Toxicol 2025; 135:108950. [PMID: 40398541 DOI: 10.1016/j.reprotox.2025.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Cadmium (Cd), an environmental toxicant, accumulates in the human body and damages the male reproductive system. To investigate the molecular mechanisms underlying Cd-induced reproductive toxicity, we used GC-2spd cells and treated them with CdCl2. Additionally, we added 2-APB (an inhibitor of the IP3R) and STF-083010 (an inhibitor of IRE1) to investigate whether they could ameliorate Cd-induced reproductive toxicity. Confocal microscopy and flow cytometry confirmed that CdCl2-treated GC-2spd cells displayed imbalance of calcium homeostasis, with upregulation of the expression of the IP3R, a key pathway for endoplasmic reticulum (ER) Ca2+ release. Furthermore, the ER stress (ERS) effector protein IRE1 expression was also increased, suggesting that Cd activated ERS and the IRE1 pathway by disrupting calcium homeostasis. Previous studies have shown that ERS induces autophagy. We performed the MDC assay to detect autophagosome formation, revealing increased expression of autophagy-related proteins LC3-II/LC3-I and Beclin-1 in response to Cd treatment. In contrast, treatment with 2-APB and STF-083010 inhibited autophagy and mitigated cell death. This inhibitory effect may be due to 2-APB blocking IP3R-mediated Ca2+ release, alleviating imbalance of calcium homeostasis, while STF-083010 inhibits IRE1, restoring ER homeostasis and reducing autophagy. These findings suggest that imbalance of calcium homeostasis activates the IRE1 pathway-mediated ERS, leading to excessive autophagy and male reproductive toxicity. Conversely, the addition of 2-APB and STF-083010 reversed these effects, synergistically restoring intracellular Ca2+ homeostasis and inhibiting ERS to promote cell health. This study provides a new therapeutic strategy for Cd-induced male reproductive disorders.
Collapse
Affiliation(s)
- Yue Han
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Jinxin Cheng
- Jiang'an District Center for Disease Prevention and Control in Wuhan, China
| | - Yan He
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Chengkun Zhao
- Ezhou centers for Disease Prevention and Control, China.
| | - Rui Li
- Central China Normal University, China
| | - Yaqin Zhang
- Geriatric Hospital Affiliated with Wuhan University of Science and Technology, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
3
|
Freitas-Filho EG, Zaidan I, Fortes-Rocha M, Alzamora-Terrel DL, Bifano C, de Castro PA, Piraine REA, Pinzan CF, de Rezende CP, Boada-Romero E, dos Reis Almeida FB, Goldman GH, Florey O, Cunha LD. RAB5c controls the assembly of non-canonical autophagy machinery to promote phagosome maturation and microbicidal function of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645097. [PMID: 40196584 PMCID: PMC11974809 DOI: 10.1101/2025.03.25.645097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Non-canonical conjugation of ATG8 proteins, including LC3, to single membranes implicates the autophagy machinery in cell functions unrelated to metabolic stress. One such pathway is LC3-associated phagocytosis (LAP), which aids in phagosome maturation and subsequent signaling upon cargo uptake mediated by certain innate immunity-associated receptors. Here, we show that a specific isoform of RAB5 GTPases, the molecular switches controlling early endosome traffic, is necessary for LAP. We demonstrate that RAB5c regulates phagosome recruitment and function of complexes required for phosphatidylinositol-3-phosphate [PI(3)P] and reactive oxygen species (ROS) generation by macrophages. RAB5c facilitates phagosome translocation of the V-ATPase transmembrane core, which is needed for ATG16L1 binding and consequent LC3 conjugation. RAB5c depletion impaired macrophage elimination of the fungal pathogen Aspergillus fumigatus and disruption of the V-ATPase-ATG16L1 axis increased susceptibility in vivo. Therefore, early endosome-to-phagosome traffic is differentially regulated to promote LAP and ROS contributes to resistance against A. fumigatus by effecting LAP.
Collapse
Affiliation(s)
- Edismauro Garcia Freitas-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Isabella Zaidan
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marlon Fortes-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Daniel Leonardo Alzamora-Terrel
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carolina Bifano
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia Alves de Castro
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children′s Research Hospital, Memphis, TN, USA
| | | | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Larissa Dias Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Lead contact
| |
Collapse
|
4
|
Kefalas G, Priya A, Astori A, Persaud A, Jing L, Sydor AM, Yao HHY, Warner N, Zhang Y, Brumell JH, Muise AM, Sari S, Su HC, Lenardo MJ, Kahr WHA, Raught B, Rotin D. The primate-specific Nedd4-1(NE) localizes to late endosomes in response to amino acids to suppress autophagy. Nat Commun 2025; 16:2682. [PMID: 40102426 PMCID: PMC11920435 DOI: 10.1038/s41467-025-57944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
The ubiquitin ligase Nedd4 (Nedd4-1), comprised of C2-WW(n)-HECT domains, regulates protein trafficking. We recently described a primate-specific Nedd4-1 splice isoform with an extended N-terminus replacing the C2 domain, called Nedd4-1(NE). Here, we show that while canonical Nedd4-1 is primarily localized to the cytosol, Nedd4-1(NE) localizes to late endosomes. This localization is mediated by the NE region, is dependent on amino acid availability, is independent of mTORC1, and is inhibited by the autophagy inducer IKKβ. We further demonstrate that VPS16B, which regulates late endosome to lysosome maturation, is a unique Nedd4-1(NE) substrate that co-localizes with Nedd4-1(NE) in the presence of nutrients. Importantly, a potentially pathogenic homozygous variant identified in the NE region (E70Q) of a patient with lymphangiectasia and protein-losing enteropathy leads to reduced VPS16B ubiquitination by Nedd4-1(NE). Finally, we report that Nedd4-1(NE) inhibits autophagy, likely by disrupting late endosome to autophagosome maturation. This work identified an mTORC1-independent, IKK-driven mechanism to regulate Nedd4-1(NE) localization to late endosomes in primates in response to nutrient availability, and uncovered suppression of autophagy by this ubiquitin ligase.
Collapse
Affiliation(s)
- G Kefalas
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - A Priya
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - A Astori
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A Persaud
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Jing
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A M Sydor
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - H H Y Yao
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - N Warner
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Y Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - A M Muise
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - S Sari
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Gazi University, Ankara, Turkey
| | - H C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M J Lenardo
- Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - W H A Kahr
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - B Raught
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - D Rotin
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Liu H, Yu R, Zhang M, Zheng X, Zhong L, Yang W, Luo Y, Huang Z, Zheng J, Zhong H, Wei X, Zheng W, Yu Y, Wang Q. Fibrinogen degradation products exacerbate alpha-synuclein aggregation by inhibiting autophagy via downregulation of Beclin1 in multiple system atrophy. Neurotherapeutics 2025; 22:e00538. [PMID: 39904669 PMCID: PMC12014411 DOI: 10.1016/j.neurot.2025.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease arising from accumulation of the α-synuclein and aberrant protein clearance in oligodendrocytes. The mechanisms of autophagy involved in the progression of MSA remain poorly understood. It is reported that MSA patients have blood-brain barrier impairments, which may increase the entry of fibrinogen into the brain. However, the roles of fibrinogen and its degradation products (FDPs) on autophagy and α-synuclein accumulation in MSA remain unknown. Here, we established the MSA animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) and 3-nitropropionic acid (3-NP), and cellular models by adding fibrillar α-syn into oligodendrocytes to investigate the mechanisms of FDPs on autophagy and accumulation of α-synuclein in oligodendrocytes. We found that FDPs inhibit the entry of α-synuclein into lysosomes for degradation, increasing aggregation of α-synuclein in oligodendrocytes (OLN-93). Our findings indicated that in OLN-93, FDPs inhibited the expressions of Beclin1 and Bif-1, which could promote the fusion of autophagosomes with lysosomes. Furthermore, the expression of α-synuclein was elevated in FDPs-injected mice, accompanied by an increase in the protein level of p62. We detected elevated expression of FDPs in the striatum of MSA mice. Finally, FDPs inhibited the expression of Beclin1 and Bif-1, which led to aberrant autophagic degradation and increased aggregation of α-synuclein and phospho-α-synuclein in MSA mice. Our study illustrates that FDPs can cause aggregation of α-synuclein in MSA by inhibiting Beclin1-mediated autophagy, which may exacerbate disease progression. These results provide a new therapeutic approach for MSA, that targets the inhibitory effect of FDPs on oligodendrocyte autophagy.
Collapse
Affiliation(s)
- Huanzhu Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Ruoyang Yu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Muwei Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Lizi Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hui Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wenhua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Yinghua Yu
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
6
|
Yi H, Liang W, Yang S, Liu H, Deng J, Han S, Feng X, Cheng W, Chen Y, Hang J, Lu H, Ran R. Melanin deposition and key molecular features in Xenopus tropicalis oocytes. BMC Biol 2025; 23:62. [PMID: 40016733 PMCID: PMC11866844 DOI: 10.1186/s12915-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Melanin pigmentation in oocytes is a critical feature for both the esthetic and developmental aspects of oocytes, influencing their polarity and overall development. Despite substantial knowledge of melanogenesis in melanocytes and retinal pigment epithelium cells, the molecular mechanisms underlying oocyte melanogenesis remain largely unknown. RESULTS Here, we compare the oocytes of wild-type, tyr-/- and mitf-/- Xenopus tropicalis and found that mitf-/- oocytes exhibit normal melanin deposition at the animal pole, whereas tyr-/- oocytes show no melanin deposition at this site. Transmission electron microscopy confirmed that melanogenesis in mitf-/- oocytes proceeds normally, similar to wild-type oocytes. Transcriptomic analysis revealed that mitf-/- oocytes still express melanogenesis-related genes, enabling them to complete melanogenesis. Additionally, in Xenopus tropicalis oocytes, the expression of the MiT subfamily factor tfe3 is relatively high, while tfeb, mitf, and tfec levels are extremely low. The expression pattern of tfe3 is similar to that of tyr and other melanogenesis-related genes. Thus, melanogenesis in Xenopus tropicalis oocytes is independent of Mitf and may be regulated by other MiT subfamily factors such as Tfe3, which control the expression of genes like tyr, dct, and tyrp1. Furthermore, transcriptomic data revealed that changes in the expression of genes related to mitochondrial cloud formation represent the most significant molecular changes during oocyte development. CONCLUSIONS Overall, these findings suggest that further elucidation of Tyr-dependent and Mitf-independent mechanisms of melanin deposition at the animal pole will enhance our understanding of melanogenesis and Oogenesis.
Collapse
Affiliation(s)
- Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Sumei Yang
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Han Liu
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Jiayu Deng
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Shuhong Han
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China
| | - Xiaohui Feng
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Wenjie Cheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yonglong Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, the Third People'S Hospital of Shenzhenand, the Second Affiliated Hospital of Southern University of Science and Technologyaq , Shenzhen, 518112, China.
| | - Rensen Ran
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Kausar MA, Anwar S, Khan YS, Saleh AA, Ahmed MAA, Kaur S, Iqbal N, Siddiqui WA, Najm MZ. Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia. Biomolecules 2025; 15:215. [PMID: 40001518 PMCID: PMC11853340 DOI: 10.3390/biom15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Autophagy/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Animals
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | | | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| | - Naveed Iqbal
- Department of Obstetrics and Gynecology, College of Medicine, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India;
| | - Mohammad Zeeshan Najm
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122103, Haryana, India;
| |
Collapse
|
8
|
Li S, Wang Y, Liang X, Li Y. Autophagy intersection: Unraveling the role of the SNARE complex in lysosomal fusion in Alzheimer's disease. J Alzheimers Dis 2025; 103:979-993. [PMID: 39784954 DOI: 10.1177/13872877241307403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD. We examine the composition, regulation, and interacting molecules of the SNARE complex, emphasizing its central role in autophagosome-lysosome fusion. Furthermore, we discuss the potential impact of specific SNARE protein mutations and the broader implications for neuronal health and disease progression. By elucidating the molecular mechanisms underlying SNARE-mediated autophagic fusion, we aim to highlight therapeutic targets that could restore autophagic function and mitigate the neurodegenerative processes characteristic of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, P.R. China
| |
Collapse
|
9
|
Brdar I, Mašek T, Racetin A, Jurić M, Vukojević K, Bočina I, Filipović N. Renal expression of autophagy markers in diabetic kidney of PUFA-supplemented rats. Acta Histochem 2024; 126:152206. [PMID: 39405991 DOI: 10.1016/j.acthis.2024.152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024]
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease, and the association between impaired autophagy and kidney structure damage in diabetes is well known. Diets enriched with polyunsaturated fatty acids (PUFAs) have been the subject of numerous studies on preventing and treating various metabolic disorders. The results of these studies suggest that n-3 PUFA may have a renoprotective effect, reducing the structural damage to the kidneys associated with DM. We hypothesized that the activation of autophagy partly mediates the potential protective effect of n-3 PUFA on diabetic kidneys. Wistar rats were randomly divided into four groups according to the type of diet: control (C) and diabetic (STZ) groups received food including 0.5 % linseed oil and 2 % sunflower oil with an n-6/n-3 ratio of 7; the STZ+N6 group received a diet with 2.5 % sunflower oil with an n-6/n-3 ratio of 60; and the STZ+N3 group received a diet containing 2.5 % fish oil with an n-6/n-3 ratio of 1, with the addition of eicosapentaenoic acid (EPA) and 19 % docosahexaenoic acid (DHA). All rats, except for those in the C group, had diabetes induced by an intraperitoneal injection of streptozotocin. We conducted histological and immunohistochemical assessments to determine the effects of different n-6/n-3 PUFA dietary ratios on the expression levels of different autophagy markers in the kidney of the rats. The results indicate significant effects of n-3 and n-6 PUFA supplementation on the expression of different autophagy markers in the renal cortex of the diabetic rats. In particular, n-6 PUFA supplementation increased LC3B expression while simultaneously decreasing Rab7 expression; meanwhile, n-3 PUFA supplementation resulted in a decreased expression of LAMP2A and Rab7. Moreover, n-3 PUFA supplementation prevented an increase in BECL1 and p62, that was observed in kidneys from diabetic and diabetic n-3 supplemented animals. These results point to the complex interactions of fatty acids and autophagy during the development of diabetic kidney disease, which should be taken into account in future therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Brdar
- Department of Internal Emergency Medicine, University Hospital of Split, Split, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Marija Jurić
- Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia; Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia
| | - Ivana Bočina
- Department of Biology, University of Split Faculty of Science, Ruđera Boškovića 33, Split 21000, Croatia
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia; Laboratory for Basic Research of the Vascular System, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, Split 21000, Croatia.
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
11
|
Vafiadaki E, Kranias EG, Eliopoulos AG, Sanoudou D. The phospholamban R14del generates pathogenic aggregates by impairing autophagosome-lysosome fusion. Cell Mol Life Sci 2024; 81:450. [PMID: 39527246 PMCID: PMC11554986 DOI: 10.1007/s00018-024-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Phospholamban (PLN) plays a crucial role in regulating sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Mutations within the PLN gene have been detected in patients with cardiomyopathy, with the heterozygous variant c.40_42delAGA (p.R14del) of PLN being the most prevalent. Investigations into the mechanisms underlying the pathology of PLN-R14del have revealed that cardiac cells from affected patients exhibit pathological aggregates containing PLN. Herein, we performed comprehensive molecular and cellular analyses to delineate the molecular aberrations associated with the formation of these aggregates. We determined that PLN aggregates contain autophagic proteins, indicating inefficient degradation via the autophagy pathway. Our findings demonstrate that the expression of PLN-R14del results in diminished autophagic flux due to impaired fusion between autophagosomes and lysosomes. Mechanistically, this defect is linked to aberrant recruitment of key membrane fusion proteins to autophagosomes, which is mediated in part by changes in Ca2+ homeostasis. Collectively, these results highlight a novel function of PLN-R14del in regulating autophagy, that may contribute to the formation of pathogenic aggregates in patients with cardiomyopathy. Prospective strategies tailored to ameliorate impaired autophagy may hold promise against PLN-R14del disease.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| | - Evangelia G Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Aristides G Eliopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 11527, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
12
|
Lee Y, Tuan NM, Lee GJ, Kim B, Park JH, Lee CH. Regulatory Mechanisms Governing the Autophagy-Initiating VPS34 Complex and Its inhibitors. Biomol Ther (Seoul) 2024; 32:723-735. [PMID: 39370737 PMCID: PMC11535298 DOI: 10.4062/biomolther.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 10/08/2024] Open
Abstract
VPS34 is a crucial protein in cells, essential for handling cellular stress through its involvement in autophagy and endocytosis. This protein functions as a Class III phosphatidylinositol 3-kinase, producing phosphatidylinositol 3-phosphate, which is necessary for autophagy and vesicle trafficking. Additionally, VPS34 forms two mutually exclusive complexes, each playing a vital role in autophagy and endocytic sorting. These complexes share common subunits, including VPS15, VPS34, and Beclin 1, with complex I having ATG14 as a specific subunit. Due to its association with various human diseases, regulation of the VPS34 complex I has garnered significant interest, emerging as a potential therapeutic target for drug discovery. Summaries of the structure, function of VPS34 complexes, and developed VPS34 inhibitors have been provided, along with discussions on the regulation mechanism of VPS34, particularly in relation to the initiation complex I of autophagy. This offers valuable insights for treating autophagy-related diseases.
Collapse
Affiliation(s)
- Yongook Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Nguyen Minh Tuan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jung Ho Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
13
|
Kaur S, Vashistt J, Changotra H. Identification of molecular signatures and molecular dynamics simulation of highly deleterious missense variants of key autophagy regulator beclin 1: a computational based approach. J Biomol Struct Dyn 2024; 42:9691-9704. [PMID: 37640005 DOI: 10.1080/07391102.2023.2252097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Beclin 1 is a key autophagy regulator that also plays significant roles in other intracellular processes such as vacuolar protein sorting. Beclin 1 protein functions as a scaffold in the formation of a multiprotein assemblage during autophagy. Beclin 1 is involved in various diseases such as cancers, neurodegenerative and autophagy-related disorders. In this study, we have used various in silico tools to scan beclin 1 at the molecular level to find its molecular signatures. We have predicted and analysed deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of beclin 1 causing alterations in its structure and also affecting its interactions with other proteins. In total, twelve coding region deleterious variants were predicted using sequence-based tools and nine were predicted using various structure-based tools. The molecular dynamics (MD) simulations revealed an altered stability of the native structure due to the introduction of mutations. Destabilization of beclin 1 ECD domain was observed due to nsSNPs W300R and E302K. Beclin 1 deleterious nsSNPs were predicted to show significant effects on beclin 1 interactions with ATG14L1, UVRAG and VPS34 proteins and were also predicted to alter the protein-protein interface of beclin 1 complexes. Additionally, beclin 1 was predicted to have thirty-one potential phosphorylation and three ubiquitination sites. In conclusion, the molecular details of beclin 1 could help in the better understanding of its functioning. The study of nsSNPs and their effect on beclin 1 and its interactions might aid in understanding the basis of anomalies caused due to beclin 1 dysfunction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
15
|
Wang Z, Liu M, Li GX, Zhang L, Ding KY, Li SQ, Gao BQ, Chen P, Choe HC, Xia LY, Yang YT, Liu Y, Sui X, Ma JN, Zhang L. A herbal pair of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang induced ferroptosis in ovarian cancer A2780 cells via inducing heme catabolism and ferritinophagy. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:665-682. [PMID: 39521705 DOI: 10.1016/j.joim.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Despite the combination of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang (SB-SD) being a recognized Chinese medicinal herbal pair that is commonly used in the treatment of ovarian cancer, there is a poor understanding of their pharmacological mechanisms. This study examines the antitumor properties and potential mechanisms of SB-SD on human ovarian cancer A2780 cells through a multi-omics approach, establishing a pharmacological basis for clinical utilization. METHODS A range of mass ratios and reagents were used in the hot reflux extraction of SB-SD. The inhibitory effect of the SB-SD extracts on A2780 cell proliferation was assessed using the cell-counting kit 8 assay. A zebrafish tumor implantation model was used to evaluate the effects of SB-SD extracts on tumor growth and metastasis in vivo. Transcriptomics and proteomics were used to investigate alterations in biological pathways in A2780 cells after treatment with different concentrations of SB-SD extract. Cell cycle, cell apoptosis, intracellular free iron concentration, intracellular reactive oxygen species (ROS) concentration, malondialdehyde (MDA), and mitochondrial membrane potential were measured. Real-time quantitative reverse transcription polymerase chain reaction and Western blotting were utilized to investigate the effects of heme catabolism and ferritinophagy on ferroptosis induced by SB-SD extract in A2780 cells. RESULTS The 70% ethanol extract of SB-SD (a mass ratio of 4:1) inhibited A2780 cell proliferation significantly with a half maximal inhibitory concentration of 660 μg/mL in a concentration- and time-dependent manner. Moreover, it effectively suppressed tumor growth and metastasis in a zebrafish tumor implantation model. SB-SD extract induced the accumulation of free iron, ROS, MDA, and mitochondrial damage in A2780 cells. The mechanisms might involve the upregulated expression of ferritinophagy-related genes microtubule-associated protein 1 light chain 3, autophagy-related gene 5, and nuclear receptor coactivator 4. CONCLUSION SB-SD extract effectively inhibited the development of ovarian cancer both in vitro and in vivo. Its mechanism of action involved inducing ferroptosis by facilitating heme catabolism and ferritinophagy. This herbal pair holds promise as a potential therapeutic option for ovarian cancer treatment and may be utilized in combination with routine treatment to improve the treatment outcomes of ovarian cancer patients. Please cite this article as: Wang Z, Liu M, Li GX, Zhang L, Ding KY, Li SQ, Gao BQ, Chen P, Choe HC, Xia LY, Yang YT, Liu Y, Sui X, Ma JN, Zhang L. A herbal pair of Scutellaria barbata D. Don and Scleromitrion diffusum (Willd.) R.J. Wang induced ferroptosis in ovarian cancer A2780 cells via inducing heme catabolism and ferritinophagy. J Integr Med. 2024; 22(6): 666-683.
Collapse
Affiliation(s)
- Zhen Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China; Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Min Liu
- Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Guang-Xing Li
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Liu Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Kai-Yue Ding
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Si-Qi Li
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing-Qing Gao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Peng Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hyok-Chol Choe
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China; Department of Clinical Medicine, Sinuiju Medical University, Sinuiju, North Pyongan 999093, Democratic People's Republic of Korea
| | - Lun-Yue Xia
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yu-Tong Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yi Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jun-Nan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
16
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 PMCID: PMC11698584 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D. Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
17
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
18
|
Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses 2024; 16:1491. [PMID: 39339967 PMCID: PMC11437447 DOI: 10.3390/v16091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As obligate parasites, viruses need to hijack resources from infected cells to complete their lifecycle. The interaction between the virus and host determines the viral infection process, including viral propagation and the disease's outcome. Understanding the interaction between the virus and host factors is a basis for unraveling the intricate biological processes in the infected cells and thereby developing more efficient and targeted antivirals. Among the various fundamental virus-host interactions, autophagy plays vital and also complicated roles by directly engaging in the viral lifecycle and functioning as an anti- and/or pro-viral factor. Autophagy thus becomes a promising target against virus infection. Since the COVID-19 pandemic, there has been an accumulation of studies aiming to investigate the roles of autophagy in SARS-CoV-2 infection by using different models and from distinct angles, providing valuable information for systematically and comprehensively dissecting the interplay between autophagy and SARS-CoV-2. In this review, we summarize the advancements in the studies of the interaction between SARS-CoV-2 and autophagy, as well as detailed molecular mechanisms. We also update the current knowledge on the pharmacological strategies used to suppress SARS-CoV-2 replication through remodeling autophagy. These extensive studies on SARS-CoV-2 and autophagy can advance our understanding of virus-autophagy interaction and provide insights into developing efficient antiviral therapeutics by regulating autophagy.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
19
|
Yuan Y, Fang A, Wang Z, Chen H, Fu ZF, Zhou M, Zhao L. The matrix protein of lyssavirus hijacks autophagosome for efficient egress by recruiting NEDD4 through its PPxY motif. Autophagy 2024; 20:1723-1740. [PMID: 38566321 PMCID: PMC11262214 DOI: 10.1080/15548627.2024.2338575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Lyssaviruses are well-known worldwide and often cause fatal encephalitis. Previous studies have shown that autophagy is beneficial for the replication of rabies virus (RABV), the representative lyssavirus, but the detailed mechanism remains obscure. In this study, we showed that the rabies virus matrix protein (RABV-M) used its PPxY motif to interact with the E3 ubiquitin-protein ligase NEDD4. NEDD4 then recruited MAP1LC3/LC3 via its LC3-interacting region (LIR). Interestingly, after binding to the ubiquitinated RABV-M, NEDD4 could bind more LC3 and enhance autophagosome accumulation, while NEDD4 knockdown significantly reduced M-induced autophagosome accumulation. Further study revealed that RABV-M prevented autophagosome-lysosome fusion and facilitated viral budding. Inhibition of RABV-M-induced autophagosome accumulation reduced the production of extracellular virus-like particles. We also found that M proteins of most lyssaviruses share the same mechanism to accumulate autophagosome by hijacking NEDD4. Collectively, this study revealed a novel strategy for lyssaviruses to achieve efficient viral replication by exploiting the host autophagy system.Abbreviations: ABLV: Australian bat lyssavirus; ATG5: autophagy related 5; Baf A1:bafilomycin A1;co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EBLV:European bat lyssavirus; GFP: green fluorescent protein; GST:glutathione S-transferase; hpi: hours post-infection; hpt: hourspost-transfection; LIR: LC3-interactingregion;MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mCherry:red fluorescent protein; MOI: multiplicity of infection; NC: negativecontrol; MVB: multivesicular body; NEDD4: neural precursorcell-expressed developmentally down-regulated 4; RABV: rabies virus;SQSTM1/p62: sequestosome 1; VLP: virus-like particle; VPS4B: vacuolarprotein sorting 4B; TEM: transmission electron microscopy; WB:western blotting; WT: wild-type; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Baek S, Chang JW, Yoo SM, Choo J, Jung S, Nah J, Jung YK. TMEM9 activates Rab9-dependent alternative autophagy through interaction with Beclin1. Cell Mol Life Sci 2024; 81:322. [PMID: 39078420 PMCID: PMC11335249 DOI: 10.1007/s00018-024-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.
Collapse
Affiliation(s)
- Sohyeon Baek
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae-Woong Chang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seung-Min Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - JeongRim Choo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sunmin Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jihoon Nah
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea.
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
21
|
Mou W, Tang Y, Huang Y, Wu Z, Cui Y. Upregulation of neuronal ER-phagy improves organismal fitness and alleviates APP toxicity. Cell Rep 2024; 43:114255. [PMID: 38761376 DOI: 10.1016/j.celrep.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
ER-phagy, a selective autophagy targeting the endoplasmic reticulum (ER) for lysosomal degradation through cargo receptors, plays a critical role in ER quality control and is linked to various diseases. However, its physiological and pathological roles remain largely unclear due to a lack of animal model studies. This study establishes Drosophila as an in vivo ER-phagy model. Starvation triggers ER-phagy across multiple fly tissues. Disturbing ER-phagy by either globally upregulating or downregulating ER-phagy receptors, Atl or Rtnl1, harms the fly. Notably, moderate upregulation of ER-phagy in fly brains by overexpressing Atl or Rtnl1 significantly attenuates age-associated neurodegenerations. Furthermore, in a Drosophila model of Alzheimer's disease expressing human amyloid precursor protein (APP), impaired ER-phagy is observed. Enhancing ER-phagy in the APP-expressing fly brain facilitates APP degradation, significantly alleviating disease symptoms. Therefore, our findings suggest that modulating ER-phagy may offer a therapeutic strategy to treat aging and diseases associated with ER protein aggregation.
Collapse
Affiliation(s)
- Wenqing Mou
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX 75275, USA.
| | - Yixian Cui
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
23
|
Lin Y, Wu X, Yang Y, Wu Y, Xiang L, Zhang C. The multifaceted role of autophagy in skin autoimmune disorders: a guardian or culprit? Front Immunol 2024; 15:1343987. [PMID: 38690268 PMCID: PMC11058840 DOI: 10.3389/fimmu.2024.1343987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Ke PY. Regulation of Autophagosome-Lysosome Fusion by Human Viral Infections. Pathogens 2024; 13:266. [PMID: 38535609 PMCID: PMC10974352 DOI: 10.3390/pathogens13030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 02/11/2025] Open
Abstract
Autophagy plays a fundamental role in maintaining cellular homeostasis by eliminating intracellular components via lysosomes. Successful degradation through autophagy relies on the fusion of autophagosomes to lysosomes, which leads to the formation of autolysosomes containing acidic proteases that degrade the sequestered materials. Viral infections can exploit autophagy in infected cells to balance virus-host cell interactions by degrading the invading virus or promoting viral growth. In recent years, cumulative studies have indicated that viral infections may interfere with the fusion of autophagosomes and lysosomes, thus benefiting viral replication and associated pathogenesis. In this review, I provide an overview of the current understanding of the molecular mechanism by which human viral infections deregulate autophagosome-lysosome fusion and summarize the physiological significance in the virus life cycle and host cell damage.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
25
|
Ke PY. Molecular Mechanism of Autophagosome-Lysosome Fusion in Mammalian Cells. Cells 2024; 13:500. [PMID: 38534345 PMCID: PMC10968809 DOI: 10.3390/cells13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
In eukaryotes, targeting intracellular components for lysosomal degradation by autophagy represents a catabolic process that evolutionarily regulates cellular homeostasis. The successful completion of autophagy initiates the engulfment of cytoplasmic materials within double-membrane autophagosomes and subsequent delivery to autolysosomes for degradation by acidic proteases. The formation of autolysosomes relies on the precise fusion of autophagosomes with lysosomes. In recent decades, numerous studies have provided insights into the molecular regulation of autophagosome-lysosome fusion. In this review, an overview of the molecules that function in the fusion of autophagosomes with lysosomes is provided. Moreover, the molecular mechanism underlying how these functional molecules regulate autophagosome-lysosome fusion is summarized.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
26
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Awad AM, Elshaer SL, Gangaraju R, Abdelaziz RR, Nader MA. Ameliorative effect of montelukast against STZ induced diabetic nephropathy: targeting HMGB1, TLR4, NF-κB, NLRP3 inflammasome, and autophagy pathways. Inflammopharmacology 2024; 32:495-508. [PMID: 37498374 PMCID: PMC10907471 DOI: 10.1007/s10787-023-01301-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Diabetic nephropathy (DN) is reported as one of the most serious microvascular diabetic complications and the trigger of end-stage renal disease (ESRD), underscoring the concern of any therapeutic intervention directed at ameliorating the development and progression of DN. The current study explored the renoprotective impact of montelukast (Mon) against streptozotocin (STZ)-induced DN in rats compared to a standard anti-hyperglycemic insulin (Ins) treatment. Diabetes was induced by a single dose of STZ (55 mg/kg). Diabetic rats were treated with Mon (10 and 20 mg/kg, oral gavage) for eight weeks. Mon administration for 8 weeks after induction of diabetes conferred significant dose-dependent renoprotection, independent of blood glucose levels (unlike Ins), as evidenced by the improvement in serum creatinine, and blood urea nitrogen (BUN), and ameliorated STZ-induced renal necrotic, inflammatory alterations, and renal fibrosis. Additionally, Mon treatment in diabetic rats significantly restored redox hemostasis as evidenced by malondialdehyde (MDA) and total antioxidant capacity (TAC) levels; significantly reduced the renal expression of high mobility group box (HMGB) 1, toll-like receptor (TLR) 4, nuclear factor kappa B (NF-κB) (in the nucleus), NOD-like receptor family pyrin domain containing (NLRP) 3, and interleukin (IL)-1β. Moreover, Mon administration ameliorated the dysregulation in autophagy as evidenced by p62 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-II levels. In conclusion, the renoprotective effect of Mon is potentially associated with its modulatory effect on inflammatory cytokines, antioxidant properties, and autophagy.
Collapse
Affiliation(s)
- Ahmed M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally L Elshaer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
28
|
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024; 20:221-241. [PMID: 37700498 PMCID: PMC10813589 DOI: 10.1080/15548627.2023.2254191] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
ABBREVIATIONS ACOX1: acyl-CoA oxidase 1; ADH5: alcohol dehydrogenase 5 (class III), chi polypeptide; ADIPOQ: adiponectin, C1Q and collagen domain containing; ATG: autophagy related; BECN1: beclin 1; CRTC2: CREB regulated transcription coactivator 2; ER: endoplasmic reticulum; F2RL1: F2R like trypsin receptor 1; FA: fatty acid; FOXO1: forkhead box O1; GLP1R: glucagon like peptide 1 receptor; GRK2: G protein-coupled receptor kinase 2; GTPase: guanosine triphosphatase; HFD: high-fat diet; HSCs: hepatic stellate cells; HTRA2: HtrA serine peptidase 2; IRGM: immunity related GTPase M; KD: knockdown; KDM6B: lysine demethylase 6B; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAP: LC3-associated phagocytosis; LDs: lipid droplets; Li KO: liver-specific knockout; LSECs: liver sinusoidal endothelial cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MED1: mediator complex subunit 1; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; NFE2L2: NFE2 like bZIP transcription factor 2; NOS3: nitric oxide synthase 3; NR1H3: nuclear receptor subfamily 1 group H member 3; OA: oleic acid; OE: overexpression; OSBPL8: oxysterol binding protein like 8; PA: palmitic acid; RUBCNL: rubicon like autophagy enhancer; PLIN2: perilipin 2; PLIN3: perilipin 3; PPARA: peroxisome proliferator activated receptor alpha; PRKAA2/AMPK: protein kinase AMP-activated catalytic subunit alpha 2; RAB: member RAS oncogene family; RPTOR: regulatory associated protein of MTOR complex 1; SCD: stearoyl-CoA desaturase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1;SREBF2: sterol regulatory element binding transcription factor 2; STING1: stimulator of interferon response cGAMP interactor 1; STX17: syntaxin 17; TAGs: triacylglycerols; TFEB: transcription factor EB; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VMP1: vacuole membrane protein 1.
Collapse
Affiliation(s)
- Qiannan Ren
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
29
|
Guo R, Liu J, Min X, Zeng W, Shan B, Zhang M, He Z, Zhang Y, He K, Yuan J, Xu D. Reduction of DHHC5-mediated beclin 1 S-palmitoylation underlies autophagy decline in aging. Nat Struct Mol Biol 2024; 31:232-245. [PMID: 38177673 DOI: 10.1038/s41594-023-01163-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
Autophagy is a lysosome-dependent degradation pathway essential for cellular homeostasis, which decreases with age. However, it is unclear how aging induces autophagy decline. Here we show the role of protein S-palmitoylation in autophagy. We identify the palmitoyl acyltransferase DHHC5 as a regulator of autophagy by mediating the palmitoylation of beclin 1, which in turn promotes the formation of ATG14L-containing class III phosphatidylinositol-3-kinase complex I and its lipid kinase activity by promoting the hydrophobic interactions between beclin 1 and adapter proteins ATG14L and VPS15. In aging brains of human and nonhuman primate, the levels of DHHC5 exhibit a marked decrease in expression. We show that DHHC5 deficiency in neurons leads to reduced cellular protein homeostasis in two established murine models of Alzheimer's disease, which exaggerates neurodegeneration in an autophagy-dependent manner. These findings identify reduction of DHHC5-mediated beclin 1 S-palmitoylation as an underlying mechanism by which aging induces autophagy decline.
Collapse
Affiliation(s)
- Rui Guo
- College of Life Sciences, Nankai University, Tianjin, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
30
|
Li B, Wang H, Zeng X, Liu S, Zhuang Z. Mitochondrial Homeostasis Regulating Mitochondrial Number and Morphology Is a Distinguishing Feature of Skeletal Muscle Fiber Types in Marine Teleosts. Int J Mol Sci 2024; 25:1512. [PMID: 38338790 PMCID: PMC10855733 DOI: 10.3390/ijms25031512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.
Collapse
Affiliation(s)
- Busu Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Huan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| | - Xianghui Zeng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| | - Shufang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Zhimeng Zhuang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (B.L.); (H.W.); (X.Z.); (Z.Z.)
| |
Collapse
|
31
|
Wible DJ, Parikh Z, Cho EJ, Chen MD, Jeter CR, Mukhopadhyay S, Dalby KN, Varadarajan S, Bratton SB. Unexpected inhibition of the lipid kinase PIKfyve reveals an epistatic role for p38 MAPKs in endolysosomal fission and volume control. Cell Death Dis 2024; 15:80. [PMID: 38253602 PMCID: PMC10803372 DOI: 10.1038/s41419-024-06423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
p38 mitogen-activated protein kinases (MAPKs) participate in autophagic signaling; and previous reports suggest that pyridinyl imidazole p38 MAPK inhibitors, including SB203580 and SB202190, induce cell death in some cancer cell-types through unrestrained autophagy. Subsequent studies, however, have suggested that the associated cytoplasmic vacuolation resulted from off-target inhibition of an unidentified enzyme. Herein, we report that SB203580-induced vacuolation is rapid, reversible, and relies on the class III phosphatidylinositol 3-kinase (PIK3C3) complex and the production of phosphatidylinositol 3-phosphate [PI(3)P] but not on autophagy per se. Rather, vacuolation resulted from the accumulation of Rab7 on late endosome and lysosome (LEL) membranes, combined with an osmotic imbalance that triggered severe swelling in these organelles. Inhibition of PIKfyve, the lipid kinase that converts PI(3)P to PI(3,5)P2 on LEL membranes, produced a similar phenotype in cells; therefore, we performed in vitro kinase assays and discovered that both SB203580 and SB202190 directly inhibited recombinant PIKfyve. Cancer cells treated with either drug likewise displayed significant reductions in the endogenous levels of PI(3,5)P2. Despite these results, SB203580-induced vacuolation was not entirely due to off-target inhibition of PIKfyve, as a drug-resistant p38α mutant suppressed vacuolation; and combined genetic deletion of both p38α and p38β dramatically sensitized cells to established PIKfyve inhibitors, including YM201636 and apilimod. The rate of vacuole dissolution (i.e., LEL fission), following the removal of apilimod, was also significantly reduced in cells treated with BIRB-796, a structurally unrelated p38 MAPK inhibitor. Thus, our studies indicate that pyridinyl imidazole p38 MAPK inhibitors induce cytoplasmic vacuolation through the combined inhibition of both PIKfyve and p38 MAPKs, and more generally, that p38 MAPKs act epistatically to PIKfyve, most likely to promote LEL fission.
Collapse
Affiliation(s)
- Daric J Wible
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Zalak Parikh
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Miao-Der Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Collene R Jeter
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kevin N Dalby
- Targeted Therapeutic Drug Discovery and Development Program, Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shankar Varadarajan
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Shawn B Bratton
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
32
|
Xu Q, Fu X, Xiu Z, Yang H, Men X, Liu M, Xu C, Li B, Zhao S, Xu H. Interleukin‑22 alleviates arginine‑induced pancreatic acinar cell injury via the regulation of intracellular vesicle transport system: Evidence from proteomic analysis. Exp Ther Med 2023; 26:578. [PMID: 38023358 PMCID: PMC10655043 DOI: 10.3892/etm.2023.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition characterized by the activation of pancreatic enzymes within acinar cells, leading to tissue damage and inflammation. Interleukin (IL)-22 is a potential therapeutic agent for AP owing to its anti-inflammatory properties and ability to promote tissue repair. The present study evaluated the differentially expressed proteins in arginine-induced pancreatic acinar cell injury following treatment with IL-22, and the possible mechanisms involved in IL-22-mediated alleviation of AP. AR42J cells were stimulated using L-arginine to establish an acinar cell injury model in vitro and the damaged cells were subsequently treated with IL-22. The characteristics of the model and the potential therapeutic effects of IL-22 were examined by CCK-8 assay, flow cytometry, TUNEL assay, transmission electron microscopy and ELISA. Differentially expressed proteins in cells induced by arginine and treated with IL-22 were assessed using liquid chromatography-mass spectrometry. The identified proteins were further subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to elucidate their functional roles. The present study demonstrated that arginine-stimulated cells showed significant pathological changes resembling those in AP, which were alleviated after IL-22 treatment. Proteomic analysis then demonstrated that in IL-22-treated cells, proteins related to the formation and fusion of autophagosomes with lysosomes were significantly downregulated, whereas endocytosis related proteins were enriched in the upregulated proteins. After IL-22 treatment, western blotting demonstrated reduced expression of autophagy-associated proteins. In conclusion, by inhibiting the formation and fusion of autophagosomes with lysosomes, IL-22 may have mitigated premature trypsinogen activation, subsequently minimizing acinar cell injury induced by L-arginine. This was accompanied by concurrent upregulation of endocytosis, which serves a pivotal role in sustaining regular cellular material transport and signal propagation. This research underscored the potential of IL-22 in mitigating arginine-induced AR42J injury, which could be valuable in refining treatment strategies for AP.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xinjuan Fu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Gastroenterology Center, Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, P.R. China
| | - Zhigang Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaoxiao Men
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Mingyue Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
33
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
34
|
Qian X, He L, Yang J, Sun J, Peng X, Zhang Y, Mao Y, Zhang Y, Cui Y. UVRAG cooperates with cargo receptors to assemble the ER-phagy site. EMBO J 2023; 42:e113625. [PMID: 37902287 PMCID: PMC10690450 DOI: 10.15252/embj.2023113625] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
ER-phagy is a selective autophagy process that targets specific regions of the endoplasmic reticulum (ER) for removal via lysosomal degradation. During cellular stress induced by starvation, cargo receptors concentrate at distinct ER-phagy sites (ERPHS) to recruit core autophagy proteins and initiate ER-phagy. However, the molecular mechanism responsible for ERPHS formation remains unclear. In our study, we discovered that the autophagy regulator UV radiation Resistance-Associated Gene (UVRAG) plays a crucial role in orchestrating the assembly of ERPHS. Upon starvation, UVRAG localizes to ERPHS and interacts with specific ER-phagy cargo receptors, such as FAM134B, ATL3, and RTN3L. UVRAG regulates the oligomerization of cargo receptors and facilitates the recruitment of Atg8 family proteins. Consequently, UVRAG promotes efficient ERPHS assembly and turnover of both ER sheets and tubules. Importantly, UVRAG-mediated ER-phagy contributes to the clearance of pathogenic proinsulin aggregates. Remarkably, the involvement of UVRAG in ER-phagy initiation is independent of its canonical function as a subunit of class III phosphatidylinositol 3-kinase complex II.
Collapse
Affiliation(s)
- Xuehong Qian
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Lingang He
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jiejie Yang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jiajia Sun
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Xueying Peng
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yuting Zhang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yizhou Mao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Yixian Cui
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center for Immunology and MetabolismZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| |
Collapse
|
35
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
36
|
Li Y, Lin H, Tang H, Zhu K, Zhou Z, Zeng Z, Pan B, Chen Z. The STING-IRF3 Signaling Pathway, Mediated by Endoplasmic Reticulum Stress, Contributes to Impaired Myocardial Autophagic Flux After Ischemia/Reperfusion. J Cardiovasc Pharmacol 2023; 82:389-399. [PMID: 37851150 DOI: 10.1097/fjc.0000000000001465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT This study aimed to determine whether endoplasmic reticulum (ER) stress is involved in impaired autophagy after myocardial ischemia/reperfusion (M-I/R) and elucidate the underlying mechanisms. The expression levels of stimulator of interferon gene (STING) and interferon regulatory transcription factor 3 (IRF3) phosphorylation increased in M-I/R heart tissues and hypoxia-treated/reoxygenation-treated H9c2 cells. The ER stress inhibitor 4-phenylbutyric acid (4-PBA) significantly suppressed the stimulation of STING-IRF3 transcription and alleviated cardiac dysfunction caused by M-I/R injury. In addition, 4-PBA reversed ischemia-induced/reperfusion-induced autophagic flux dysfunction, as demonstrated by a decrease in p 62 and LC3 levels. Similarly, the protective effect of STING deficiency on myocardial cell damage was achieved by the recovery of autophagic flux. Conversely, the protective effect of 4-PBA against hypoxia/reoxygenation injury in cardiomyocytes was offset by STING overexpression, wherein the activated STING-IRF3 pathway promoted the expression of Rubicon (a negatively-regulated autophagic molecule) by binding to the Rubicon promoter. Rubicon ablation effectively counteracts the adverse effects of STING overexpression in cardiomyocytes. The data showed that STING-IRF3 signaling of ER stress receptors is particularly important in the progression of physiological M-I/R caused by the inhibition of autophagic flow in vivo and in vitro.
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| | - Hui Lin
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| | - Hao Tang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ke Zhu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Zhangfu Zhou
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| | - Zhaohui Zeng
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| | - Bin Pan
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| | - Zhuang Chen
- Department of Basic Medical, Hunan Traditional Chinese Medical College, Zhuzhou, China; and
| |
Collapse
|
37
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
38
|
Hu Z, Luo Y, Liu Y, Luo Y, Wang L, Gou S, Peng Y, Wei R, Jia D, Wang Y, Gao S, Zhang Y. Partial inhibition of class III PI3K VPS-34 ameliorates motor aging and prolongs health span. PLoS Biol 2023; 21:e3002165. [PMID: 37432924 DOI: 10.1371/journal.pbio.3002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/13/2023] [Indexed: 07/13/2023] Open
Abstract
Global increase of life expectancy is rarely accompanied by increased health span, calling for a greater understanding of age-associated behavioral decline. Motor independence is strongly associated with the quality of life of elderly people, yet the regulators for motor aging have not been systematically explored. Here, we designed a fast and efficient genome-wide screening assay in Caenorhabditis elegans and identified 34 consistent genes as potential regulators of motor aging. Among the top hits, we found VPS-34, the class III phosphatidylinositol 3-kinase that phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI(3)P), regulates motor function in aged but not young worms. It primarily functions in aged motor neurons by inhibiting PI(3)P-PI-PI(4)P conversion to reduce neurotransmission at the neuromuscular junction (NMJ). Genetic and pharmacological inhibition of VPS-34 improve neurotransmission and muscle integrity, ameliorating motor aging in both worms and mice. Thus, our genome-wide screening revealed an evolutionarily conserved, actionable target to delay motor aging and prolong health span.
Collapse
Affiliation(s)
- Zhongliang Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangce Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuling Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Zhang J, Xiang Q, Wu M, Lao YZ, Xian YF, Xu HX, Lin ZX. Autophagy Regulators in Cancer. Int J Mol Sci 2023; 24:10944. [PMID: 37446120 PMCID: PMC10341480 DOI: 10.3390/ijms241310944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy plays a complex impact role in tumor initiation and development. It serves as a double-edged sword by supporting cell survival in certain situations while also triggering autophagic cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to adapt to and survive unfavorable conditions by recycling cellular components. However, excessive or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for cancer therapy.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Qian Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
40
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
41
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
42
|
Safaroghli-Azar A, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Phosphoinositide 3-kinase (PI3K) classes: From cell signaling to endocytic recycling and autophagy. Eur J Pharmacol 2023:175827. [PMID: 37269974 DOI: 10.1016/j.ejphar.2023.175827] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Lipid signaling is defined as any biological signaling action in which a lipid messenger binds to a protein target, converting its effects to specific cellular responses. In this complex biological pathway, the family of phosphoinositide 3-kinase (PI3K) represents a pivotal role and affects many aspects of cellular biology from cell survival, proliferation, and migration to endocytosis, intracellular trafficking, metabolism, and autophagy. While yeasts have a single isoform of phosphoinositide 3-kinase (PI3K), mammals possess eight PI3K types divided into three classes. The class I PI3Ks have set the stage to widen research interest in the field of cancer biology. The aberrant activation of class I PI3Ks has been identified in 30-50% of human tumors, and activating mutations in PIK3CA is one of the most frequent oncogenes in human cancer. In addition to indirect participation in cell signaling, class II and III PI3Ks primarily regulate vesicle trafficking. Class III PI3Ks are also responsible for autophagosome formation and autophagy flux. The current review aims to discuss the original data obtained from international research laboratories on the latest discoveries regarding PI3Ks-mediated cell biological processes. Also, we unravel the mechanisms by which pools of the same phosphoinositides (PIs) derived from different PI3K types act differently.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Li X, Jiang Q, Song G, Barkestani MN, Wang Q, Wang S, Fan M, Fang C, Jiang B, Johnson J, Geirsson A, Tellides G, Pober JS, Jane-Wit D. A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nat Commun 2023; 14:3002. [PMID: 37225719 PMCID: PMC10209169 DOI: 10.1038/s41467-023-38684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-β-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.
Collapse
Affiliation(s)
- Xue Li
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Guiyu Song
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mahsa Nouri Barkestani
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Qianxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shaoxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT, USA
| | - Caodi Fang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Dept of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Justin Johnson
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arnar Geirsson
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan S Pober
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dan Jane-Wit
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
44
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
46
|
Huang J, Gan J, Wang J, Zheng M, Xiao H. VPS72, a member of VPS protein family, can be used as a new prognostic marker for hepatocellular carcinoma. Immun Inflamm Dis 2023; 11:e856. [PMID: 37249275 PMCID: PMC10201960 DOI: 10.1002/iid3.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Vacuolar protein sorting (VPS) plays a crucial role in intracellular molecular transport between organelles. However, studies have indicated a correlation between VPSs and tumorigenesis and the development of several cancers. Nevertheless, the association between VPSs and hepatocellular carcinoma (HCC) remains unclear. METHODS By analyzing databases such as The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we investigated the differences in VPSs expression between normal tissue and HCC transcriptomes. Furthermore, we examined the relationship between VPSs expression and overall survival (OS) in patients with HCC. Univariate and multivariate Cox analyses were employed to assess the prognostic value of VPS72 as an independent factor, and the correlation between VPS72 and the tumor immune microenvironment was also analyzed. RESULTS We observed significant overexpression of 28 VPSs in HCC tissues compared to normal tissues. The mRNA expression of VPSs displayed a negative correlation with OS, while exhibiting a positive correlation with tumor grade and stage. Additionally, both univariate and multivariate Cox analyses identified VPS72 as a potential independent risk factor for HCC prognosis. Overexpression of VPS72 demonstrated a positive correlation with various clinicopathological factors associated with poor prognosis, as well as the infiltration levels of immune cells. CONCLUSION Therefore, our research shows that VPSs participate in HCC occurrence and development, especially VPS72, which may act as a potential target for HCC treatment and prognosis biomarker.
Collapse
Affiliation(s)
- Jian Huang
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jin Gan
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
| | - Jian Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryPingxiang People's HospitalPingxiangChina
| | - Min Zheng
- Department of rehabilitationLushan People's HospitalJiujiangChina
| | - Han Xiao
- Department of General surgeryJiujiang First People's HospitalJiujiangChina
- Department of Hepato‐Biliary‐Pancreatic SurgeryJiujiang First People's HospitalJiujiangChina
| |
Collapse
|
47
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
48
|
Martínez RAS, Pinky PD, Harlan BA, Brewer GJ. GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience 2023; 45:757-780. [PMID: 36622562 PMCID: PMC9886713 DOI: 10.1007/s11357-022-00717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.
Collapse
Affiliation(s)
| | - Priyanka D. Pinky
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Benjamin A. Harlan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697 USA
- MIND Institute, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
49
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
50
|
Wible DJ, Parikh Z, Cho EJ, Chen MD, Mukhopadhyay S, Dalby KN, Varadarajan S, Bratton SB. Unexpected inhibition of the lipid kinase PIKfyve reveals an epistatic role for p38 MAPKs in endolysosomal fission and volume control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532495. [PMID: 36993747 PMCID: PMC10054966 DOI: 10.1101/2023.03.13.532495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) regulate early endocytic trafficking, but their effects on late endocytic trafficking remain unclear. Herein, we report that the pyridinyl imidazole p38 MAPK inhibitors, SB203580 and SB202190, induce a rapid but reversible Rab7-dependent accumulation of large cytoplasmic vacuoles. While SB203580 did not induce canonical autophagy, phosphatidylinositol 3-phosphate [PI(3)P] accumulated on vacuole membranes, and inhibition of the class III PI3-kinase (PIK3C3/VPS34) suppressed vacuolation. Ultimately, vacuolation resulted from the fusion of ER/Golgi-derived membrane vesicles with late endosomes and lysosomes (LELs), combined with an osmotic imbalance in LELs that led to severe swelling and a decrease in LEL fission. Since PIKfyve inhibitors induce a similar phenotype by preventing the conversion of PI(3)P to PI(3,5)P2, we performed in vitro kinase assays and found that PIKfyve activity was unexpectedly inhibited by SB203580 and SB202190, corresponding to losses in endogenous PI(3,5)P2 levels in treated cells. However, vacuolation was not entirely due to 'off-target' inhibition of PIKfyve by SB203580, as a drug-resistant p38α mutant suppressed vacuolation. Moreover, genetic deletion of both p38α and p38β rendered cells dramatically more sensitive to PIKfyve inhibitors, including YM201636 and apilimod. In subsequent 'washout' experiments, the rate of vacuole dissolution upon the removal of apilimod was also significantly reduced in cells treated with BIRB-796, a structurally unrelated p38 MAPK inhibitor. Thus, p38 MAPKs act epistatically to PIKfyve to promote LEL fission; and pyridinyl imidazole p38 MAPK inhibitors induce cytoplasmic vacuolation through the combined inhibition of both PIKfyve and p38 MAPKs.
Collapse
|