1
|
Dai A, Xu P, Amos C, Fujise K, Wu Y, Yang H, Eisen JN, Guillén-Samander A, De Camilli P. Multiple interactions mediate the localization of BLTP2 at ER-PM contacts to control plasma membrane dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637094. [PMID: 39974967 PMCID: PMC11839039 DOI: 10.1101/2025.02.07.637094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BLTP2/KIAA0100, a bridge-like lipid transfer protein, was reported to localize at contacts of the endoplasmic reticulum (ER) with either the plasma membrane (PM) or recycling tubular endosomes depending on the cell type. Our findings suggest that mediating bulk lipid transport between the ER and the PM is a key function of this protein as BLTP2 tethers the ER to tubular endosomes only after they become continuous with the PM and that it also tethers the ER to macropinosomes in the process of fusing with the PM. We further identify interactions underlying binding of BLTP2 to the PM, including phosphoinositides, the adaptor proteins FAM102A and FAM102B, and also N-BAR domain proteins at membrane-connected tubules. The absence of BLTP2 results in the accumulation of intracellular vacuoles, many of which are connected to the plasma membrane, pointing to a role of the lipid transport function of BLTP2 in the control of PM dynamics.
Collapse
Affiliation(s)
- Anbang Dai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chase Amos
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Han Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Julia N. Eisen
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Present address: Pathogen Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Lead contact
| |
Collapse
|
2
|
Vargas KJ, Colosi PL, Girardi E, Park JM, Harmon LE, Chandra SS. α-Synuclein colocalizes with AP180 and affects the size of clathrin lattices. J Biol Chem 2023; 299:105091. [PMID: 37516240 PMCID: PMC10470054 DOI: 10.1016/j.jbc.2023.105091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
α-Synuclein and family members β- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αβγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.
Collapse
Affiliation(s)
- Karina J Vargas
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA; Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - P L Colosi
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA; PREP Program, Yale University, New Haven, Connecticut, USA
| | - Eric Girardi
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Jae-Min Park
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Leah E Harmon
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Lu CH, Tsai CT, Jones Iv T, Chim V, Klausen LH, Zhang W, Li X, Jahed Z, Cui B. A NanoCurvS platform for quantitative and multiplex analysis of curvature-sensing proteins. Biomater Sci 2023; 11:5205-5217. [PMID: 37337788 PMCID: PMC10809791 DOI: 10.1039/d2bm01856j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cell membrane is characterized by a rich variety of topographical features such as local protrusions or invaginations. Curvature-sensing proteins, including the Bin/Amphiphysin/Rvs (BAR) or epsin N-terminal homology (ENTH) family proteins, sense the bending sharpness and the positive/negative sign of these topographical features to induce subsequent intracellular signaling. A number of assays have been developed to study curvature-sensing properties of proteins in vitro, but it is still challenging to probe low curvature regime with the diameter of curvature from hundreds of nanometers to micrometers. It is particularly difficult to generate negative membrane curvatures with well-defined curvature values in the low curvature regime. In this work, we develop a nanostructure-based curvature sensing (NanoCurvS) platform that enables quantitative and multiplex analysis of curvature-sensitive proteins in the low curvature regime, in both negative and positive directions. We use NanoCurvS to quantitatively measure the sensing range of a negative curvature-sensing protein IRSp53 (an I-BAR protein) and a positive curvature-sensing protein FBP17 (an F-BAR protein). We find that, in cell lysates, the I-BAR domain of IRSp53 is able to sense shallow negative curvatures with the diameter-of-curvature up to 1500 nm, a range much wider than previously expected. NanoCurvS is also used to probe the autoinhibition effect of IRSp53 and the phosphorylation effect of FBP17. Therefore, the NanoCurvS platform provides a robust, multiplex, and easy-to-use tool for quantitative analysis of both positive and negative curvature-sensing proteins.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Taylor Jones Iv
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Vincent Chim
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Stoops EH, Ferrin MA, Jorgens DM, Drubin DG. Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers. Proc Natl Acad Sci U S A 2023; 120:e2302622120. [PMID: 37216532 PMCID: PMC10235984 DOI: 10.1073/pnas.2302622120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Forces generated by actin assembly assist membrane invagination during clathrin-mediated endocytosis (CME). The sequential recruitment of core endocytic proteins and regulatory proteins, and assembly of the actin network, are well documented in live cells and are highly conserved from yeasts to humans. However, understanding of CME protein self-organization, as well as the biochemical and mechanical principles that underlie actin's role in CME, is lacking. Here, we show that supported lipid bilayers coated with purified yeast Wiskott Aldrich Syndrome Protein (WASP), an endocytic actin assembly regulator, and incubated in cytoplasmic yeast extracts, recruit downstream endocytic proteins and assemble actin networks. Time-lapse imaging of WASP-coated bilayers revealed sequential recruitment of proteins from different endocytic modules, faithfully replicating in vivo behavior. Reconstituted actin networks assemble in a WASP-dependent manner and deform lipid bilayers, as seen by electron microscopy. Time-lapse imaging revealed that vesicles are released from the lipid bilayers with a burst of actin assembly. Actin networks pushing on membranes have previously been reconstituted; here, we have reconstituted a biologically important variation of these actin networks that self-organize on bilayers and produce pulling forces sufficient to bud off membrane vesicles. We propose that actin-driven vesicle generation may represent an ancient evolutionary precursor to diverse vesicle forming processes adapted for a wide array of cellular environments and applications.
Collapse
Affiliation(s)
- Emily H. Stoops
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael A. Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Stoops EH, Ferrin MA, Jorgens DM, Drubin DG. Self-organizing actin networks drive sequential endocytic protein recruitment and vesicle release on synthetic lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528546. [PMID: 36824809 PMCID: PMC9949000 DOI: 10.1101/2023.02.14.528546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Forces generated by actin assembly assist membrane invagination during clathrin-mediated endocytosis (CME). The sequential recruitment of core endocytic proteins and regulatory proteins, and assembly of the actin network, are well documented in live cells and are highly conserved from yeasts to humans. However, understanding of CME protein self-organization, as well as the biochemical and mechanical principles that underlie actin’s role in CME, is lacking. Here, we show that supported lipid bilayers coated with purified yeast WASP, an endocytic actin assembly regulator, and incubated in cytoplasmic yeast extracts, recruit downstream endocytic proteins and assemble actin tails. Time-lapse imaging of WASP-coated bilayers revealed sequential recruitment of proteins from different endocytic modules, faithfully replicating in vivo behavior. Reconstituted actin networks assemble in a WASP-dependent manner and deform lipid bilayers, as seen by electron microscopy. Time-lapse imaging revealed that vesicles are released from the lipid bilayers with a burst of actin assembly. Actin networks pushing on membranes have previously been reconstituted; here, we have reconstituted a biologically important variation of these actin networks that self-organize on bilayers and produce pulling forces sufficient to bud off membrane vesicles. We propose that actin-driven vesicle generation may represent an ancient evolutionary precursor to diverse vesicle forming processes adapted for a wide array of cellular environments and applications. Significance Statement Actin filament assembly participates in many vesicle-forming processes. However, the underlying principles for how assembly is initiated and organized to effectively harness assembly forces remain elusive. To address this gap, we report a novel reconstitution of actin-driven vesicle release from supported lipid bilayers. Using real-time imaging, we observe sequential recruitment of endocytic proteins and, following a burst of actin assembly, vesicle release from bilayers. Given the absence of cargo or upstream endocytic regulatory proteins on the bilayers, and the participation of actin in many vesicle-forming processes, we posit that this mode of vesicle formation represents an early evolutionary precursor for multiple trafficking pathways. We expect that this assay will be of great use for future investigations of actin-mediated vesicle-forming processes.
Collapse
Affiliation(s)
- Emily H. Stoops
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Michael A. Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Danielle M. Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
6
|
Stachowiak JC, Kirchhausen T. The beauty of simplicity in membrane biology. Nat Cell Biol 2022; 24:1682-1685. [PMID: 36266490 PMCID: PMC9742310 DOI: 10.1038/s41556-022-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For the past 40 years, minimal reconstituted systems have helped cell biologists to understand the mechanisms that underlie membrane traffic. Having progressed from minimal synthetic and cell-derived ensembles to direct comparison with living systems, reconstitution is poised for ever more precise and informative understanding of membrane biology.
Collapse
Affiliation(s)
- Jeanne C. Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA,
| | - Tomas Kirchhausen
- Harvard Medical School, Department of Cell Biology, Boston, MA, USA,Harvard Medical School, Department of Pediatrics, Boston, MA, USA
| |
Collapse
|
7
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
8
|
Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nat Commun 2022; 13:5017. [PMID: 36028485 PMCID: PMC9418313 DOI: 10.1038/s41467-022-32529-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
A specific group of transmembrane receptors, including the β1-adrenergic receptor (β1-AR), is internalized through a non-clathrin pathway known as Fast Endophilin Mediated Endocytosis (FEME). A key question is: how does the endocytic machinery assemble and how is it modulated by activated receptors during FEME. Here we show that endophilin, a major regulator of FEME, undergoes a phase transition into liquid-like condensates, which facilitates the formation of multi-protein assemblies by enabling the phase partitioning of endophilin binding proteins. The phase transition can be triggered by specific multivalent binding partners of endophilin in the FEME pathway such as the third intracellular loop (TIL) of the β1-AR, and the C-terminal domain of lamellipodin (LPD). Other endocytic accessory proteins can either partition into, or target interfacial regions of, these condensate droplets, and LPD also phase separates with the actin polymerase VASP. On the membrane, TIL promotes protein clustering in the presence of endophilin and LPD C-terminal domain. Our results demonstrate how the multivalent interactions between endophilin, LPD, and TIL regulate protein assembly formation on the membrane, providing mechanistic insights into the priming and initiation steps of FEME. Here the authors show that protein phase separation is a key mechanism in cellular receptor internalization via fast endophilin mediated endocytosis (FEME). Phase separation facilitates multivalent FEME-protein assembly in this clathrin-independent pathway.
Collapse
|
9
|
Protein–Protein Interactions on Membrane Surfaces Analysed Using Pull-Downs with Supported Bilayers on Silica Beads. J Membr Biol 2022; 255:591-597. [DOI: 10.1007/s00232-022-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
|
10
|
Metal-Binding Propensity in the Mitochondrial Dynamin-Related Protein 1. J Membr Biol 2022; 255:143-150. [PMID: 35218392 DOI: 10.1007/s00232-022-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Dynamin-related protein1 (Drp1) functions to divide mitochondria and peroxisomes by binding specific adaptor proteins and lipids, both of which are integral to the limiting organellar membrane. In efforts to understand how such multivalent interactions regulate Drp1 functions, in vitro reconstitution schemes rely on recruiting soluble portions of the adaptors appended with genetically encoded polyhistidine tags onto membranes containing Ni2+-bound chelator lipids. These strategies are facile and circumvent the challenge in working with membrane proteins but assume that binding is specific to proteins carrying the polyhistidine tag. Here, we find using chelator lipids and chelator beads that both native and recombinant Drp1 directly bind Ni2+ ions. Metal binding, therefore, represents a potential strategy to deplete or purify Drp1 from native tissue lysates. Importantly, high concentrations of the metal in solution inhibit GTP hydrolysis and renders Drp1 inactive in membrane fission. Together, our results emphasize a metal-binding propensity, which could significantly impact Drp1 functions.
Collapse
|
11
|
El Alaoui F, Casuso I, Sanchez-Fuentes D, Arpin-Andre C, Rathar R, Baecker V, Castro A, Lorca T, Viaud J, Vassilopoulos S, Carretero-Genevrier A, Picas L. Structural organization and dynamics of FCHo2 docking on membranes. eLife 2022; 11:e73156. [PMID: 35044298 PMCID: PMC8798043 DOI: 10.7554/elife.73156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain-only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like-shaped protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.
Collapse
Affiliation(s)
- Fatima El Alaoui
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de MontpellierMontpellierFrance
| | | | - David Sanchez-Fuentes
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de MontpellierMontpellierFrance
| | - Charlotte Arpin-Andre
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de MontpellierMontpellierFrance
| | - Raissa Rathar
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de MontpellierMontpellierFrance
| | - Volker Baecker
- Montpellier Ressources Imagerie, BioCampus Montpellier, CNRS, INSERM, Université de MontpellierMontpellierFrance
| | - Anna Castro
- Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR UMR 5237, Université de MontpellierMontpellierFrance
| | - Thierry Lorca
- Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR UMR 5237, Université de MontpellierMontpellierFrance
| | - Julien Viaud
- INSERM UMR1297, Institute of Metabolic and Cardiovascular Diseases (I2MC), University of Toulouse, Paul Sabatier UniversityToulouseFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974ParisFrance
| | - Adrian Carretero-Genevrier
- Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de MontpellierMontpellierFrance
| | - Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de MontpellierMontpellierFrance
| |
Collapse
|
12
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
De Camilli P. How a first research experience had an impact on my scientific journey. Mol Biol Cell 2021; 32:ae1. [PMID: 34735266 PMCID: PMC8694089 DOI: 10.1091/mbc.e21-08-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
As I look back to my scientific trajectory on the occasion of being the recipient of the E. B. Wilson Medal of the American Society for Cell Biology, I realize how much an early scientific experience had an impact on my research many years later. The major influence that the first scientific encounters can have in defining a scientist’s path makes the choice of the training environment so important for a future career.
Collapse
Affiliation(s)
- Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
14
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
15
|
Tagiltsev G, Haselwandter CA, Scheuring S. Nanodissected elastically loaded clathrin lattices relax to increased curvature. SCIENCE ADVANCES 2021; 7:7/33/eabg9934. [PMID: 34389539 PMCID: PMC8363152 DOI: 10.1126/sciadv.abg9934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytosis pathway for the specific internalization of large compounds, growth factors, and receptors. Formation of internalized vesicles from the flat plasma membrane is accompanied by maturation of cytoplasmic clathrin coats. How clathrin coats mature and the mechanistic role of clathrin coats are still largely unknown. Maturation models proposed clathrin coats to mature at constant radius or constant area, driven by molecular actions or elastic energy. Here, combining high-speed atomic force microscopy (HS-AFM) imaging, HS-AFM nanodissection, and elasticity theory, we show that clathrin lattices deviating from the intrinsic curvature of clathrin form elastically loaded assemblies. Upon nanodissection of the clathrin network, the stored elastic energy in these lattices drives lattice relaxation to accommodate an ideal area-curvature ratio toward the formation of closed clathrin-coated vesicles. Our work supports that the release of elastic energy stored in curvature-frustrated clathrin lattices could play a major role in CME.
Collapse
Affiliation(s)
- Grigory Tagiltsev
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
17
|
Mahapatra A, Uysalel C, Rangamani P. The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes. J Membr Biol 2021; 254:273-291. [PMID: 33462667 PMCID: PMC8184589 DOI: 10.1007/s00232-020-00164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Membrane tubulation is a ubiquitous process that occurs both at the plasma membrane and on the membranes of intracellular organelles. These tubulation events are known to be mediated by forces applied on the membrane either due to motor proteins, by polymerization of the cytoskeleton, or due to the interactions between membrane proteins binding onto the membrane. The numerous experimental observations of tube formation have been amply supported by mathematical modeling of the associated membrane mechanics and have provided insights into the force-displacement relationships of membrane tubes. Recent advances in quantitative biophysical measurements of membrane-protein interactions and tubule formation have necessitated the need for advances in modeling that will account for the interplay of multiple aspects of physics that occur simultaneously. Here, we present a comprehensive review of experimental observations of tubule formation and provide context from the framework of continuum modeling. Finally, we explore the scope for future research in this area with an emphasis on iterative modeling and experimental measurements that will enable us to expand our mechanistic understanding of tubulation processes in cells.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Can Uysalel
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Wu M, Wu X. A kinetic view of clathrin assembly and endocytic cargo sorting. Curr Opin Cell Biol 2021; 71:130-138. [PMID: 33865229 DOI: 10.1016/j.ceb.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Specificity and sensitivity in biochemical reactions can be achieved through regulation of equilibrium binding affinity or through proofreading mechanisms that allow for the dissociation of unwanted intermediates. In this essay, we aim to provide our perspectives on how the concept of kinetic proofreading might apply in the context of cargo sorting in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Milosevic I. Spatial and Temporal Aspects of Exocytosis Studied on the Isolated Plasma Membranes. Methods Mol Biol 2021; 2233:311-325. [PMID: 33222144 DOI: 10.1007/978-1-0716-1044-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Exocytosis of large-dense core vesicles in neuroendocrine cells is a highly regulated, calcium-dependent process, mediated by networks of interrelated proteins and lipids. Here, I describe experimental procedures for studies of selective spatial and temporal aspects of exocytosis at the plasma membrane, or in its proximity, using adrenal chromaffin cells. The assay utilizes primary cells subjected to a brief ultrasonic pulse, resulting in the formation of thin, flat inside-out plasma membranes with attached secretory vesicles and elements of cell cytoskeleton. In this model, secretion of plasma membrane-attached secretory vesicles was found to be dependent on calcium and sensitive to clostridial neurotoxins. Depending on the probe selected for secretory vesicle cargo, protein, and/or lipid detection, this simple assay is versatile, fast and inexpensive, and offers excellent spatial resolution.
Collapse
Affiliation(s)
- Ira Milosevic
- European Neuroscience Institute (ENI), A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany. .,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non‐Equilibrium Large‐Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Simon Kretschmer
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Bioengineering and Therapeutic Science University of California San Francisco San Francisco CA USA
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
21
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021; 60:6496-6502. [PMID: 33285025 PMCID: PMC7986748 DOI: 10.1002/anie.202015184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
Collapse
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Simon Kretschmer
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Bioengineering and Therapeutic ScienceUniversity of California San FranciscoSan FranciscoCAUSA
| | - Petra Schwille
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
22
|
Su M, Zhuang Y, Miao X, Zeng Y, Gao W, Zhao W, Wu M. Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17. iScience 2020; 23:101712. [PMID: 33205024 PMCID: PMC7649350 DOI: 10.1016/j.isci.2020.101712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Membrane curvature has emerged as an intriguing physical principle underlying biological signaling and membrane trafficking. The CIP4/FBP17/Toca-1 F-BAR subfamily is unique in the BAR family because its structurally folded F-BAR domain does not contain any hydrophobic motifs that insert into membrane. Although widely assumed so, whether the banana-shaped F-BAR domain alone can sense curvature has never been experimentally demonstrated. Using a nanobar-supported lipid bilayer system, we found that the F-BAR domain of FBP17 displayed minimal curvature sensing in vitro. In comparison, an alternatively spliced intrinsically disordered region (IDR) adjacent to the F-BAR domain has the membrane curvature-sensing ability greatly exceeding that of F-BAR domain alone. In living cells, the presence of the IDR delayed the recruitment of FBP17 in curvature-coupled cortical waves. Collectively, we propose that contrary to the common belief, FBP17's curvature-sensing capability largely originates from IDR, and not the F-BAR domain alone.
Collapse
Affiliation(s)
- Maohan Su
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,Centre for BioImaging Sciences, Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, Singapore, 117411
| | - Yinyin Zhuang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Xinwen Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Weibo Gao
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore, 637371
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA.,Centre for BioImaging Sciences, Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, Singapore, 117411
| |
Collapse
|
23
|
Wu M, Liu J. Mechanobiology in cortical waves and oscillations. Curr Opin Cell Biol 2020; 68:45-54. [PMID: 33039945 DOI: 10.1016/j.ceb.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Cortical actin waves have emerged as a widely prevalent phenomena and brought pattern formation to many fields of cell biology. Cortical excitabilities, reminiscent of the electric excitability in neurons, are likely fundamental property of the cell cortex. Although they have been mostly considered to be biochemical in nature, accumulating evidence support the role of mechanics in the pattern formation process. Both pattern formation and mechanobiology approach biological phenomena at the collective level, either by looking at the mesoscale dynamical behavior of molecular networks or by using collective physical properties to characterize biological systems. As such they are very different from the traditional reductionist, bottom-up view of biology, which brings new challenges and potential opportunities. In this essay, we aim to provide our perspectives on what the proposed mechanochemical feedbacks are and open questions regarding their role in cortical excitable and oscillatory dynamics.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA..
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, 855 N Wolfe Street, Baltimore, MD, 21025, USA
| |
Collapse
|
24
|
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020; 182:1140-1155.e18. [PMID: 32814015 PMCID: PMC7479521 DOI: 10.1016/j.cell.2020.07.021] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.
Collapse
Affiliation(s)
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Xiuyun Jiang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Jones T, Liu A, Cui B. Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered BAR Domain Proteins. ACS Synth Biol 2020; 9:893-901. [PMID: 32212723 DOI: 10.1021/acssynbio.9b00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoscale membrane curvature is now understood to play an active role in essential cellular processes such as endocytosis, exocytosis, and actin dynamics. Previous studies have shown that membrane curvature can directly affect protein function and intracellular signaling. However, few methods are able to precisely manipulate membrane curvature in live cells. Here, we report the development of a new method of generating nanoscale membrane curvature in live cells that is controllable, reversible, and capable of precise spatial and temporal manipulation. For this purpose, we make use of Bin/Amphiphysin/Rvs (BAR) domain proteins, a family of well-studied membrane-remodeling and membrane-sculpting proteins. Specifically, we engineered two optogenetic systems, opto-FBAR and opto-IBAR, that allow light-inducible formation of positive and negative membrane curvature, respectively. Using opto-FBAR, blue light activation results in the formation of tubular membrane invaginations (positive curvature), controllable down to the subcellular level. Using opto-IBAR, blue light illumination results in the formation of membrane protrusions or filopodia (negative curvature). These systems present a novel approach for light-inducible manipulation of nanoscale membrane curvature in live cells.
Collapse
Affiliation(s)
- Taylor Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Chen Y, Yong J, Martínez-Sánchez A, Yang Y, Wu Y, De Camilli P, Fernández-Busnadiego R, Wu M. Dynamic instability of clathrin assembly provides proofreading control for endocytosis. J Cell Biol 2019; 218:3200-3211. [PMID: 31451612 PMCID: PMC6781453 DOI: 10.1083/jcb.201804136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Clathrin-mediated endocytosis depends on the formation of functional clathrin-coated pits that recruit cargos and mediate the uptake of those cargos into the cell. However, it remains unclear whether the cargos in the growing clathrin-coated pits are actively monitored by the coat assembly machinery. Using a cell-free reconstitution system, we report that clathrin coat formation and cargo sorting can be uncoupled, indicating that a checkpoint is required for functional cargo incorporation. We demonstrate that the ATPase Hsc70 and a dynamic exchange of clathrin during assembly are required for this checkpoint. In the absence of Hsc70 function, clathrin assembles into pits but fails to enrich cargo. Using single-molecule imaging, we further show that uncoating takes place throughout the lifetime of the growing clathrin-coated pits. Our results suggest that the dynamic exchange of clathrin, at the cost of the reduced overall assembly rates, primarily serves as a proofreading mechanism for quality control of endocytosis.
Collapse
Affiliation(s)
- Yan Chen
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeffery Yong
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Yang Yang
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Yumei Wu
- Howard Hughes Medical Institute, Department of Cell Biology and Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Pietro De Camilli
- Howard Hughes Medical Institute, Department of Cell Biology and Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Rubén Fernández-Busnadiego
- Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Neuropathology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Min Wu
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
| |
Collapse
|
27
|
Drab M, Stopar D, Kralj-Iglič V, Iglič A. Inception Mechanisms of Tunneling Nanotubes. Cells 2019; 8:cells8060626. [PMID: 31234435 PMCID: PMC6627088 DOI: 10.3390/cells8060626] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Bonsergent E, Lavieu G. Content release of extracellular vesicles in a cell‐free extract. FEBS Lett 2019; 593:1983-1992. [DOI: 10.1002/1873-3468.13472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Emeline Bonsergent
- INSERM U932 Institut Curie PSL Research University Paris France
- Université Paris Descartes Paris France
| | - Gregory Lavieu
- INSERM U932 Institut Curie PSL Research University Paris France
| |
Collapse
|
29
|
Shi X, Garcia G, Wang Y, Reiter JF, Huang B. Deformed alignment of super-resolution images for semi-flexible structures. PLoS One 2019; 14:e0212735. [PMID: 30865666 PMCID: PMC6415779 DOI: 10.1371/journal.pone.0212735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/10/2019] [Indexed: 01/04/2023] Open
Abstract
Due to low labeling efficiency and structural heterogeneity in fluorescence-based single-molecule localization microscopy (SMLM), image alignment and quantitative analysis is often required to make accurate conclusions on the spatial relationships between proteins. Cryo-electron microscopy (EM) image alignment procedures have been applied to average structures taken with super-resolution microscopy. However, unlike cryo-EM, the much larger cellular structures analyzed by super-resolution microscopy are often heterogeneous, resulting in misalignment. And the light-microscopy image library is much smaller, which makes classification challenging. To overcome these two challenges, we developed a method to deform semi-flexible ring-shaped structures and then align the 3D structures without classification. These algorithms can register semi-flexible structures with an accuracy of several nanometers in short computation time and with greatly reduced memory requirements. We demonstrated our methods by aligning experimental Stochastic Optical Reconstruction Microscopy (STORM) images of ciliary distal appendages and simulated structures. Symmetries, dimensions, and locations of protein complexes in 3D are revealed by the alignment and averaging for heterogeneous, tilted, and under-labeled structures.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Galo Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yina Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA,United States of America
| |
Collapse
|
30
|
Zhao P, Chen B, Li L, Wu H, Li Y, Shaneen B, Zhan X, Gu N. Missing-in-metastasis protein promotes internalization of magnetic nanoparticles via association with clathrin light chain and Rab7. Biochim Biophys Acta Gen Subj 2019; 1863:502-510. [PMID: 30528490 PMCID: PMC8218922 DOI: 10.1016/j.bbagen.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) have been widely used in biomedical applications. Proper control of the duration of MNPs in circulation promises to improve further their applications, in particularly drug delivery. It is known that the uptake of tissue-associated MNPs is mainly carried out by macrophages. Yet, the molecular mechanism to control MNPs internalization in macrophages remains to be elusive. Missing-in-metastasis (MIM) is a scaffolding protein that is highly expressed in macrophages and regulates receptor-mediated endocytosis. We hypothesize that uptake of MNPs may also involve the function of MIM. METHODS We investigated the effect of MIM expression on the intracellular trafficking of MNPs by transmission electronic microscopy, flow cytometry, o-phenanthroline photometric analysis, Perl's staining, immunofluorescence microscopy and co-immunoprecipitation. To explore the molecular events in MIM-mediated MNPs uptake, we examined the effect of MNPs on the interaction of MIM with clathrin, Rab5 and Rab7. RESULTS Uptake of MNPs was significantly enhanced in cells overexpressing MIM. Upon exposure to MNPs, MIM was associated with clathrin light chain in endocytic vesicles and Rab7, a protein that regulates late endosomes. However, MNPs caused dissociation of MIM with Rab5, an early endosome-associated protein. CONCLUSIONS MIM regulates internalization of MNPs via promoting their trafficking from plasma membrane to late endosomes. GENERAL SIGNIFICANCE Our data unveiled a novel pathway which MNPs internalization and intracellular trafficking in macrophages. This new pathway may allow us to control the uptake of MNPs within cells by targeting MIM, thereby improving their medical applications.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Bo Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, Jiangsu 215009, PR China
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Baxter Shaneen
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China.
| |
Collapse
|
31
|
Bucki R, Wang YH, Yang C, Kandy SK, Fatunmbi O, Bradley R, Pogoda K, Svitkina T, Radhakrishnan R, Janmey PA. Lateral distribution of phosphatidylinositol 4,5-bisphosphate in membranes regulates formin- and ARP2/3-mediated actin nucleation. J Biol Chem 2019; 294:4704-4722. [PMID: 30692198 DOI: 10.1074/jbc.ra118.005552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
Spatial and temporal control of actin polymerization is fundamental for many cellular processes, including cell migration, division, vesicle trafficking, and response to agonists. Many actin-regulatory proteins interact with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and are either activated or inactivated by local PI(4,5)P2 concentrations that form transiently at the cytoplasmic face of cell membranes. The molecular mechanisms of these interactions and how the dozens of PI(4,5)P2-sensitive actin-binding proteins are selectively recruited to membrane PI(4,5)P2 pools remains undefined. Using a combination of biochemical, imaging, and cell biologic studies, combined with molecular dynamics and analytical theory, we test the hypothesis that the lateral distribution of PI(4,5)P2 within lipid membranes and native plasma membranes alters the capacity of PI(4,5)P2 to nucleate actin assembly in brain and neutrophil extracts and show that activities of formins and the Arp2/3 complex respond to PI(4,5)P2 lateral distribution. Simulations and analytical theory show that cholesterol promotes the cooperative interaction of formins with multiple PI(4,5)P2 headgroups in the membrane to initiate actin nucleation. Masking PI(4,5)P2 with neomycin or disrupting PI(4,5)P2 domains in the plasma membrane by removing cholesterol decreases the ability of these membranes to nucleate actin assembly in cytoplasmic extracts.
Collapse
Affiliation(s)
- Robert Bucki
- From the Departments of Physiology, .,the Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 15-089 Białystok, Poland
| | - Yu-Hsiu Wang
- Chemistry.,the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Sreeja Kutti Kandy
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ololade Fatunmbi
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ryan Bradley
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Katarzyna Pogoda
- From the Departments of Physiology.,the Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland, and
| | | | - Ravi Radhakrishnan
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul A Janmey
- From the Departments of Physiology.,the Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
32
|
Kamerkar SC, Roy K, Bhattacharyya S, Pucadyil TJ. A Screen for Membrane Fission Catalysts Identifies the ATPase EHD1. Biochemistry 2018; 58:65-71. [PMID: 30403133 PMCID: PMC6327249 DOI: 10.1021/acs.biochem.8b00925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane fission manifests during cell division, synaptic transmission, vesicular transport, and organelle biogenesis, yet identifying proteins that catalyze fission remains a challenge. Using a facile and robust assay system of supported membrane tubes in a microscopic screen that directly monitors membrane tube scission, we detect robust GTP- and ATP-dependent as well as nucleotide-independent fission activity in the brain cytosol. Using previously established interacting partner proteins as bait for pulldowns, we attribute the GTP-dependent fission activity to dynamin. Biochemical fractionation followed by mass spectrometric analyses identifies the Eps15-homology domain-containing protein1 (EHD1) as a novel ATP-dependent membrane fission catalyst. Together, our approach establishes an experimental workflow for the discovery of novel membrane fission catalysts.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pashan, Pune 411008 , Maharashtra , India
| | - Krishnendu Roy
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pashan, Pune 411008 , Maharashtra , India
| | - Soumya Bhattacharyya
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pashan, Pune 411008 , Maharashtra , India
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road , Pashan, Pune 411008 , Maharashtra , India
| |
Collapse
|
33
|
A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nat Commun 2018; 9:1475. [PMID: 29662076 PMCID: PMC5902610 DOI: 10.1038/s41467-018-03571-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion. Circular dorsal ruffles (CDRs) are apical actin enriched structures involved in the interpretation of growth factor gradients during cell migration. Here, the authors find that a RAB35/PI3K axis is necessary and sufficient for the formation and stabilization of polarized CDRs and persistent directional migration.
Collapse
|
34
|
Schnitzbauer J, Wang Y, Zhao S, Bakalar M, Nuwal T, Chen B, Huang B. Correlation analysis framework for localization-based superresolution microscopy. Proc Natl Acad Sci U S A 2018; 115:3219-3224. [PMID: 29531072 PMCID: PMC5879654 DOI: 10.1073/pnas.1711314115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolution images reconstructed from single-molecule localizations can reveal cellular structures close to the macromolecular scale and are now being used routinely in many biomedical research applications. However, because of their coordinate-based representation, a widely applicable and unified analysis platform that can extract a quantitative description and biophysical parameters from these images is yet to be established. Here, we propose a conceptual framework for correlation analysis of coordinate-based superresolution images using distance histograms. We demonstrate the application of this concept in multiple scenarios, including image alignment, tracking of diffusing molecules, as well as for quantification of colocalization, showing its superior performance over existing approaches.
Collapse
Affiliation(s)
- Joerg Schnitzbauer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Yina Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Shijie Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Matthew Bakalar
- UC Berkeley-UCSF Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720
| | - Tulip Nuwal
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Baohui Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
35
|
Saitoh S, Ohno N, Saitoh Y, Terada N, Shimo S, Aida K, Fujii H, Kobayashi T, Ohno S. Improved Serial Sectioning Techniques for Correlative Light-Electron Microscopy Mapping of Human Langerhans Islets. Acta Histochem Cytochem 2018; 51:9-20. [PMID: 29622846 PMCID: PMC5880804 DOI: 10.1267/ahc.17020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/29/2017] [Indexed: 01/19/2023] Open
Abstract
Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets.
Collapse
Affiliation(s)
- Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- Present address: Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- Department of Occupational Therapy, School of Health Sciences, Shinshu University School of Medicine
| | - Satoshi Shimo
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kaoru Aida
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Hideki Fujii
- First Department of Surgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Tetsuro Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
36
|
|
37
|
Milosevic I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front Cell Neurosci 2018; 12:27. [PMID: 29467622 PMCID: PMC5807904 DOI: 10.3389/fncel.2018.00027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Without robust mechanisms to efficiently form new synaptic vesicles (SVs), the tens to hundreds of SVs typically present at the neuronal synapse would be rapidly used up, even at modest levels of neuronal activity. SV recycling is thus critical for synaptic physiology and proper function of sensory and nervous systems. Yet, more than four decades after it was originally proposed that the SVs are formed and recycled locally at the presynaptic terminals, the mechanisms of endocytic processes at the synapse are heavily debated. Clathrin-mediated endocytosis, a type of endocytosis that capitalizes on the clathrin coat, a number of adaptor and accessory proteins, and the GTPase dynamin, is well understood, while the contributions of clathrin-independent fast endocytosis, kiss-and-run, bulk endocytosis and ultrafast endocytosis are still being evaluated. This review article revisits and summarizes the current knowledge on the SV reformation with a focus on clathrin-mediated endocytosis, and it discusses the modes of SV formation from endosome-like structures at the synapse. Given the importance of this topic, future advances in this active field are expected to contribute to better comprehension of neurotransmission, and to have general implications for neuroscience and medicine.
Collapse
Affiliation(s)
- Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
38
|
Wu Z, Su M, Tong C, Wu M, Liu J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat Commun 2018; 9:136. [PMID: 29321558 PMCID: PMC5762918 DOI: 10.1038/s41467-017-02469-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. Traveling waves in the cell cortex can propagate much faster than actin waves, and the mechanism is unknown. Here the authors propose a mechanochemical feedback model for traveling waves that incorporates membrane shape changes and recruitment of F-BAR proteins that enables fast wave propagation.
Collapse
Affiliation(s)
- Zhanghan Wu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maohan Su
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Cheesan Tong
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore.
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Spatial and Temporal Aspects of Phosphoinositides in Endocytosis Studied in the Isolated Plasma Membranes. Methods Mol Biol 2018; 1847:147-160. [PMID: 30129015 DOI: 10.1007/978-1-4939-8719-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endocytosis is a well-orchestrated cascade of lipid-protein and protein-protein interactions resulting in formation and internalization of vesicles. Membrane phospholipids have key regulatory functions in endocytosis and membrane traffic. I have previously described an in vitro assay based on the isolated, substrate-attached plasma membrane to study the spatial distribution and levels of phosphoinositides, in particular phosphatidylinositol-4,5-bisphospate [PI(4,5)P2]. This assay utilizes cultured cells subjected to a brief ultrasonic pulse, resulting in the formation of thin, flat inside-out plasma membrane sheets with elements of cell cytoskeleton. Here, I describe an experimental procedure for "on-stage" and "off-stage" detection of PI(4,5)P2 spatial distribution, and semi-quantification of PI(4,5)P2 levels in the plasma membrane using fluorescence microscopy. Depending on the probe selected for lipid detection, this simple assay can be modified to study other plasmalemmal phospholipids and/or proteins.
Collapse
|
40
|
Yong J, Chen Y, Wu M. Real-Time Monitoring of Clathrin Assembly Kinetics in a Reconstituted System. Methods Mol Biol 2018; 1847:177-187. [PMID: 30129017 DOI: 10.1007/978-1-4939-8719-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clathrin-coated pits (ccp) are important structures that cells use for internalizing materials and regulating plasma membrane homeostasis. We had previously described an assay of reconstituting ccp assembly on sheets of basal plasma membranes. Here, we describe a workflow to adapt this system for monitoring the assembly of ccps over time using total internal reflection fluorescence (TIRF) microscopy.
Collapse
Affiliation(s)
- Jeffery Yong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yan Chen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Min Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
41
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
42
|
Yang Y, Xiong D, Pipathsouk A, Weiner OD, Wu M. Clathrin Assembly Defines the Onset and Geometry of Cortical Patterning. Dev Cell 2017; 43:507-521.e4. [PMID: 29161594 PMCID: PMC5826602 DOI: 10.1016/j.devcel.2017.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
Assembly of the endocytic machinery is a constitutively active process that is important for the organization of the plasma membrane, signal transduction, and membrane trafficking. Existing research has focused on the stochastic nature of endocytosis. Here, we report the emergence of the collective dynamics of endocytic proteins as periodic traveling waves on the cell surface. Coordinated clathrin assembly provides the earliest spatial cue for cortical waves and sets the direction of propagation. Surprisingly, the onset of clathrin waves, but not individual endocytic events, requires feedback from downstream factors, including FBP17, Cdc42, and N-WASP. In addition to the localized endocytic assembly at the plasma membrane, intracellular clathrin and phosphatidylinositol-3,4-bisphosphate predict the excitability of the plasma membrane and modulate the geometry of traveling waves. Collectively, our data demonstrate the multiplicity of clathrin functions in cortical pattern formation and provide important insights regarding the nucleation and propagation of single-cell patterns.
Collapse
Affiliation(s)
- Yang Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ding Xiong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Anne Pipathsouk
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Min Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
43
|
Hohendahl A, Talledge N, Galli V, Shen PS, Humbert F, De Camilli P, Frost A, Roux A. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 2017; 6:26856. [PMID: 28933693 PMCID: PMC5663480 DOI: 10.7554/elife.26856] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.
Collapse
Affiliation(s)
- Annika Hohendahl
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Nathaniel Talledge
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Valentina Galli
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| |
Collapse
|
44
|
Chabanon M, Stachowiak JC, Rangamani P. Systems biology of cellular membranes: a convergence with biophysics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28475297 PMCID: PMC5561455 DOI: 10.1002/wsbm.1386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022]
Abstract
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles. PLoS Biol 2017; 15:e2002354. [PMID: 28806752 PMCID: PMC5570487 DOI: 10.1371/journal.pbio.2002354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/24/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Microparticles (MPs) are cell–cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT pathway for MP biogenesis in mammalian cardiac ventricular cells, identifying elements of a pathway by which cytoplasmic cBIN1 is released into blood. Microparticles are small vesicles generated from the cell surface membrane and externally released for communication with other cells. We now show that heart ventricular muscle cells, which form the main pumping chambers of the heart, release microparticles in both mouse and human. Ventricular microparticles arise from surface membrane microdomains organized by cardiac bridging integrator 1 (cBIN1), a membrane deformation protein that has been shown to be reduced during human heart failure. Here we identify microparticles containing cBIN1 in blood, which were reduced in mutant mice lacking heart cBIN1 expression. Furthermore, the process leading to microparticle release involves the recruitment of CHMP4B protein to snip the cBIN1 membrane. In humans, cBIN1 is present in blood and within microparticles. Upon osmotic shock, human microparticles burst, allowing for the quantification of cBIN1 in plasma by enzyme-linked immunosorbent assay (ELISA). The measured cBIN1 level was greatly reduced in patients with heart failure. Thus, we introduce the biology for a new blood-based diagnostic tool that can assess cardiac muscle health and identify failing heart in human patients.
Collapse
|
46
|
Zhao W, Hanson L, Lou HY, Akamatsu M, Chowdary PD, Santoro F, Marks JR, Grassart A, Drubin DG, Cui Y, Cui B. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. NATURE NANOTECHNOLOGY 2017; 12:750-756. [PMID: 28581510 PMCID: PMC5544585 DOI: 10.1038/nnano.2017.98] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2017] [Indexed: 05/02/2023]
Abstract
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Lindsey Hanson
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Praveen D. Chowdary
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Francesca Santoro
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Jessica R. Marks
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Alexandre Grassart
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally. Int J Biochem Cell Biol 2017; 86:37-41. [PMID: 28323208 DOI: 10.1016/j.biocel.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
Abstract
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton.
Collapse
|
48
|
Abstract
Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.
Collapse
Affiliation(s)
- TingTing Hong
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
49
|
Nowosad CR, Tolar P. Plasma Membrane Sheets for Studies of B Cell Antigen Internalization from Immune Synapses. Methods Mol Biol 2017; 1584:77-88. [PMID: 28255697 DOI: 10.1007/978-1-4939-6881-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surrogate planar and membrane systems have been employed to study the architecture of immune synapses; however, they often do not recapitulate trans-synaptic extraction and endocytosis of ligands by the immune cells. Transendocytosis (or trogocytosis) of antigen from immune synapses is particularly critical for antigen processing and presentation by B cells. Here we describe a protocol for preparation of plasma membrane sheets (PMSs), which are flexible and fluid membrane substrates that support robust B cell antigen extraction. We show how to attach B cell antigens to the PMSs and how to investigate antigen extraction and endocytosis by fluorescent microscopy and computational image analysis. These techniques should be broadly applicable to studies of transendocytosis in a variety of cellular systems.
Collapse
Affiliation(s)
- Carla R Nowosad
- Laboratory of Activation of Immune Receptors, Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Pavel Tolar
- Laboratory of Activation of Immune Receptors, Francis Crick Institute, Mill Hill Laboratory, London, UK.
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, NW7 1AA, London, UK.
| |
Collapse
|
50
|
Ovsepian SV, O'Leary VB, Ntziachristos V, Dolly JO. Circumventing Brain Barriers: Nanovehicles for Retroaxonal Therapeutic Delivery. Trends Mol Med 2016; 22:983-993. [PMID: 27720365 DOI: 10.1016/j.molmed.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
In addition to safeguarding the central nervous system (CNS) from the vast majority of pathogens and toxins, transvascular barriers impose immense challenges to the delivery of beneficial cargo. A few toxins and neurotropic viruses capable of penetrating the brain have proved to be potentially valuable for neuron targeting and enhanced transfer of restorative medicine and therapeutic genes. Here we review molecular concepts and implications of the highly neurotropic tetanus toxin (TeTx) and botulinum neurotoxins (BoNTs) and their ability to infiltrate and migrate throughout neurons. We discuss recent applications of their detoxified variants as versatile nanovehicles for retroaxonal delivery of therapeutics to motor neurons and synapses. Continued advances in research on these remarkable agents in preclinical trials might facilitate their future use for medical benefit.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland
| |
Collapse
|