1
|
Tong J, Dong X, Martin TA, Yang Y, Dong B, Jiang WG. DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells. Cell Biol Int 2025; 49:277-287. [PMID: 39648301 PMCID: PMC11811745 DOI: 10.1002/cbin.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Downregulated in Metastasis Protein (DRIM) was discovered in malignant epithelial cells and was thought to be mainly a nucleus protein affecting cancer cells. Recent single-cell sequencing analysis suggests that DRIM is abundantly expressed in vascular endothelial cells. There has been no knowledge of the role of DRIM in the endothelium. In the present study, using protein fraction method and cell imaging, we identified that the DRIM protein was abundantly present in both nucleus and the cytoskeletal fractions of human vascular endothelial cells. Knockdown of DRIM in the endothelial cells significantly affected growth, migration, and angiogenic tubule formation. Proteomics analyses revealed that Src was an important direct target protein of DRIM, a finding further confirmed by protein interaction assay. Silencing DRIM activated the tyrosine 419 site phosphorylation of Src kinase in endothelial cells, thereby affecting the downstream proteins of Src including p-FAK and p-STAT3, and exerting biological effects. To conclude, our results provide evidence of DRIM being a nuclear and cytoskeletal-associated protein, having a novel key role of the protein in vascular endothelial cells.
Collapse
Affiliation(s)
- Jia Tong
- Department of Geriatric Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandong First Medical UniversityJinanChina
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Xuefei Dong
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Tracey A. Martin
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Yiming Yang
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Bo Dong
- Department of Geriatric Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandong First Medical UniversityJinanChina
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wen G. Jiang
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| |
Collapse
|
2
|
Kim J, Lee Y, Jeon T, Ju S, Kim JS, Kim MS, Kang C. Autophagy-dependent splicing control directs translation toward inflammation during senescence. Dev Cell 2025; 60:364-378.e7. [PMID: 39510077 DOI: 10.1016/j.devcel.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2024] [Revised: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
The cellular proteome determines the functional state of cells and is often skewed to direct pathological conditions. Autophagy shapes cellular proteomes primarily through lysosomal degradation of either damaged or unnecessary proteins. Here, we show that autophagy directs the senescence-specific translatome to fuel inflammation by coupling selective protein degradation with alternative splicing. RNA splicing is significantly altered during senescence, some of which surprisingly depend on autophagy, including exon 5 skipping of the translation regulator EIF4H. Systematic translatome profiling indicates that this event is key to the translational bias toward inflammation in senescence. Autophagy promotes these changes by selectively degrading the splicing regulator splicing factor proline and glutamine rich (SFPQ) via the autophagy receptor NBR1. These autophagy-centric inflammatory controls appear to be conserved during human tissue aging and cancer. Our work highlights the role of autophagy in the on-demand functional remodeling of cellular proteomes as well as the crosstalk between autophagy, alternative splicing, and inflammatory translation.
Collapse
Affiliation(s)
- Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeonghyeon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Seonmin Ju
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute of Basic Science, Seoul 08826, South Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute of Basic Science, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
3
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Üffing A, Weiergräber OH, Schwarten M, Hoffmann S, Willbold D. GABARAP interacts with EGFR - supporting the unique role of this hAtg8 protein during receptor trafficking. FEBS Lett 2024; 598:2656-2669. [PMID: 39160442 DOI: 10.1002/1873-3468.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
Collapse
Affiliation(s)
- Alina Üffing
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Oliver H Weiergräber
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Melanie Schwarten
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Silke Hoffmann
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Dieter Willbold
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| |
Collapse
|
5
|
Feng Z, Wei W, Wang S, Li X, Zhao L, Wan G, Hu R, Yu L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem Pharmacol 2024; 229:116461. [PMID: 39102992 DOI: 10.1016/j.bcp.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Ovarian cancer (OC) is the deadliest form of the gynecologic malignancies and effective therapeutic drugs are urgently needed. Focal adhesion kinase (FAK) is overexpressed in various solid tumors, and could serve as a potential biomarker of ovarian cancer. However, there are no launched drugs targeting FAK. Hence, the development of the novel FAK inhibitors is an emerging approach for the treatment of ovarian cancer. In this work, we characterized a selective FAK inhibitor E2, with a high inhibitory potency toward FAK. Moreover, E2 had cytotoxic, anti-invasion and anti-migration activity on ovarian cancer cells. Mechanistically, after treatment with E2, FAK downstream signaling cascades (e.g., Src and AKT) were suppressed, thus resulting in the ovarian cancer cell arrest at G0/G1 phase and the induction of cytotoxic autophagy. In addition, E2 attenuated the tumor growth of PA-1 and ES-2 ovarian cancer subcutaneous xenografts, as well as suppressed peritoneal metastasis of OVCAR3-luc. Furthermore, E2 exhibited favorable pharmacokinetic properties. Altogether, these findings demonstrate that E2 is a selective FAK inhibitor with potent anti-ovarian cancer activities both in vivo and in vitro, offering new possibilities for OC treatment strategies.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
7
|
Liu L, Zhu Y, Lan J, Chu L, Li W, Xue C. Association between CBL gene polymorphism and susceptibility of microscopic polyangiitis in a Chinese population: A case-control analysis. Cytokine 2024; 179:156596. [PMID: 38669907 DOI: 10.1016/j.cyto.2024.156596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To assess whether Casitas B-lineage lymphoma (CBL) gene polymorphism influences the risk of microscopic polyangiitis (MPA) in Chinese populations. METHODS In total, 266 MPA patients and 297 healthy controls were recruited for a case-control study. Five CBL SNPs were genotyped using multiplex polymerase chain reaction and high-throughput sequencing. The relationship between SNPs and the risk of MPA under different genetic models was evaluated by SNPstats. SNP-SNP interaction was analyzed by generalized multifactor dimensionality reduction (GMDR). Finally, the association between CBL SNPs and treatment effects were assessed. RESULTS The results showed that CBL rs2276083 was associated with decreasing MPA risk under dominant (OR: 0.53; p = 0.014) and recessive models (OR: 0.52; p = 0.0034). Stratification analysis indicated that rs2276083 and rs2509671 in age < 60 years, rs2276083 in female or in Han population were protective factors for MPA. The CBL haplotype (A-A-G-C-T) was associated with an increased risk of MPA. GMDR suggested that CBL rs2276083, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PI3KCA) rs1607237, and autophagy-related gene 7 (ATG7) rs7549008 might interact with each other in MPA development (p = 0.0107). CBL rs1047417 with AG genotype and rs11217234 with AG genotype had better clinical treatment effects than other two genotypes (p = 0.048 and p = 0.025, respectively). CONCLUSION The genetic polymorphism of CBL had a potential association with the risk of MPA and clinical treatment effects in Guangxi population in China.
Collapse
Affiliation(s)
- Liu Liu
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning Guangxi, 530007, China; The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang Hunan, 421001, China
| | - Yan Zhu
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang Hunan, 421001, China
| | - Jingjing Lan
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning Guangxi, 530007, China
| | - Liepeng Chu
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning Guangxi, 530007, China
| | - Wei Li
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning Guangxi, 530007, China
| | - Chao Xue
- The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning Guangxi, 530007, China.
| |
Collapse
|
8
|
He T, Zou J, Sun K, Yang J. Global research status and frontiers on autophagy in hepatocellular carcinoma: a comprehensive bibliometric and visualized analysis. Int J Surg 2024; 110:2788-2802. [PMID: 38376850 PMCID: PMC11093451 DOI: 10.1097/js9.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND An extensive body of research has explored the role of autophagy in hepatocellular carcinoma (HCC), revealing its critical involvement in the disease's pathogenesis, progression, and therapeutic targeting. However, there is a discernible deficit in quantitative, analytical studies concerning autophagy in the context of HCC. Accordingly, this investigation endeavored to meticulously assess the evolution of autophagy research, employing bibliometric citation analysis to offer a comprehensive evaluation of the findings in this field. METHODS The authors conducted a literature search on 2 August 2023, to extract relevant publications spanning from 2013 to 2022, indexed in the Science Citation Index-Expanded (SCIE) of the Web of Science Core Collection (WOSCC). Subsequently, the authors performed a bibliometric assessment of the compiled documents using visualization tools such as CiteSpace and VOSviewer. RESULTS The search yielded 734 publications penned by 4699 authors, encompassing contributions from 41 countries and 909 institutions, disseminated across 272 journals, and comprising 26 295 co-cited references from 2667 journals. Notably, China led in publication volume with 264 articles (amounting to 35.9%) and exhibited the most robust collaboration with the United States. The mechanisms underlying autophagy's influence on the emergence and advancement of HCC, as well as the implicated proteins and genes, have garnered significant attention. In recent years, investigations of targeting autophagy and the resistance to sorafenib have surfaced as pivotal themes and emerging frontiers in this domain. CONCLUSIONS This study rigorously collated and distilled the prevailing research narratives and novel insights on autophagy in HCC. The resultant synthesis provides a substantive foundation for medical professionals and researchers, as well as pivotal implications for future investigative endeavors in this arena.
Collapse
Affiliation(s)
- Tao He
- Department of Hepatobiliary Surgery
| | - Jieyu Zou
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Ke Sun
- Department of Hepatobiliary Surgery
| | | |
Collapse
|
9
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Zeng S, Zhu W, Luo Z, Wu K, Lu Z, Li X, Wang W, Hu W, Qin Y, Chen W, Yi L, Fan S, Chen J. Role of OGDH in Atophagy-IRF3-IFN-β pathway during classical swine fever virus infection. Int J Biol Macromol 2023; 249:126443. [PMID: 37604413 DOI: 10.1016/j.ijbiomac.2023.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Classical swine fever (CSF) is a severe infectious disease caused by the classical swine fever virus (CSFV) that poses significant challenges to the swine industry. α-ketoglutarate dehydrogenase (OGDH), the first rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, catalyzes α-ketoglutarate (α-KG) to succinyl-CoA, playing a crucial role in glycometabolism. Our previous studies showed that CSFV disrupts the TCA cycle, resulting in α-KG accumulation. However, the interplay between CSFV and OGDH remains unclear. In this study, we found that CSFV significantly reduces OGDH protein levels and promotes α-KG secretion through OGDH in PK-15 cells. Furthermore, we observed CSFV C protein interacts with OGDH and revealed that CSFV utilizes NDP52/NBR1 to target OGDH protein degradation in the autophagy-lysosome pathway. We also unveiled that OGDH overexpression inhibits CSFV proliferation, whereas OGDH knockdown increases CSFV proliferation. Further investigation into the mechanisms of OGDH on CSFV replication revealed that OGDH regulates the AMPK-mTOR-autophagy pathway. Additionally, using the autophagy agonist/inhibitor, rapamycin/3-MA, we observed that OGDH modulates autophagy to regulate the IRF3-IFN-β network and CSFV replication. These findings shed light on the role of OGDH in CSFV infection and host metabolism, promoting the development of innovative strategies for combating CSFV and other viral infections via targeting metabolic pathways.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
11
|
Chen G, Zhang Z, Li J, Hu C, Gao D, Chen J, Zhang L, Xie X. Phosphatase regenerating liver 3 participates in Integrinβ1/FAK-Src/MAPK signaling pathway and contributes to the regulation of malignant behaviors in hepatocellular carcinoma cells. J Gastrointest Oncol 2023; 14:863-873. [PMID: 37201051 PMCID: PMC10186527 DOI: 10.21037/jgo-22-976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 12/09/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. Phosphatase regenerating liver 3 (PRL-3) was associated with cancer metastasis. However, the significance of PRL-3 in the prognosis of HCC remains elusive. The aim of this study was to elucidate the role of PRL-3 in HCC metastasis and its prognosis. METHODS The expressions of PRL-3 in cancer tissues isolated from 114 HCC patients, who underwent curative hepatectomy from May to November in 2008, were analyzed by immunohistochemistry, and its prognostic significance was evaluated. Thereafter, the migration, invasion, and metastatic alterations in MHCC97H cells with PRL-3 overexpression or knockdown were explored and compared with the tumor size and lung metastasis in orthotopic HCC model of nude mice derived from MHCC97H cells with PRL-3 overexpression or knockdown. The underlying mechanism involving PRL-3-mediated effect on HCC migration, invasion, and metastasis was further examined. RESULTS Univariate and multivariate analysis demonstrated PRL-3 overexpression was an independent prognostic factor for poor overall survival (OS) and progression-free survival (PFS) of the HCC patients. Increased PRL-3 expression in MHCC97H cells was in accordance with the enhanced metastasis potential. PRL-3 knockdown inhibited the migration, invasiveness, and clone forming ability in MHCC97H cells, whereas PRL-3 overexpression reverted the above behavior. The growth of xenograft tumor in the liver was suppressed, and the lung metastasis in nude mice was inhibited by PRL-3 downregulation. The knockdown of PRL-3 could downregulate the expressions of Integrinβ1 and p-Src (Tyr416), p-Erk (Thr202/Tyr204) activation, and reduce MMP9 expression. Both MEK1/2 inhibitor (U0126) and Src inhibitor could repress PRL-3-induced invasiveness and migration in MHCC97H cells. CONCLUSIONS PRL-3 was significantly overexpressed and an independent prognostic factor to predict the death of HCC patients. Mechanically, PRL-3 plays a critical role in HCC invasive and metastasis via Integrinβ1/FAK-Src/RasMAPK signaling. Validation of PRL-3 as a clinical prediction marker in HCC warrants further research.
Collapse
Affiliation(s)
- Guobin Chen
- Department of Hepatic Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Zhenzhen Zhang
- Department of Hepatic Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Jinghuan Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Hu
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongmei Gao
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lan Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Xie
- Department of Hepatic Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Fard D, Testa E, Panzeri V, Rizzolio S, Bianchetti G, Napolitano V, Masciarelli S, Fazi F, Maulucci G, Scicchitano BM, Sette C, Viscomi MT, Tamagnone L. SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth. Cell Mol Life Sci 2023; 80:111. [PMID: 37002363 PMCID: PMC10066115 DOI: 10.1007/s00018-023-04756-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.
Collapse
Affiliation(s)
- Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Testa
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giada Bianchetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Virginia Napolitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Masciarelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy.
| |
Collapse
|
13
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
14
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
15
|
Endosomal LC3C-pathway selectively targets plasma membrane cargo for autophagic degradation. Nat Commun 2022; 13:3812. [PMID: 35780247 PMCID: PMC9250516 DOI: 10.1038/s41467-022-31465-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.
Collapse
|
16
|
Study on the Expression Profile of Autophagy-Related Genes in Colon Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7525048. [PMID: 35572821 PMCID: PMC9095386 DOI: 10.1155/2022/7525048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colon adenocarcinoma (COAD) is a common digestive tract tumor. Autophagy-related genes (ARGs) may play an obbligato role in the biological processes of COAD. This study was aimed at exploring the role of ARGs in COAD. Clinical data and RNA sequencing data of tumor and healthy samples were obtained from The Cancer Genome Atlas (TCGA), and discrepantly expressed ARGs were screened. Statistical differences of ARGs were performed with Gene Ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Eight ARGs were selected by univariate Cox and multivariate Cox regression. Kaplan–Meier (K-M) and multivariate receiver operating characteristic (multi-ROC) were used to check the fitness of the model. Among 398 COAD samples and 39 normal samples obtained from the TCGA database, 37 differentially expressed ARGs were screened. In the training group, eight prognostics-related ARGs (MTMR14, VAMP3, HSPA8, TSC1, DAPK1, CX3CL1, ATG13, and MAP1LC3C) were identified by Cox regression. A gene signature risk prediction model was constructed base on 8 autophagy-related genes. The survival time of the low-risk group was longer than the high-risk group, and the AUC of the model was 0.794. Univariate and multivariate Cox regression analysis showed that age and riskscore were the independent predictor. In conclusion, the prognosis model we built based one ARGs of COAD patients can estimate the prognosis of patients in clinical treatment.
Collapse
|
17
|
Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell 2022; 82:1514-1527. [PMID: 35452618 PMCID: PMC9119670 DOI: 10.1016/j.molcel.2022.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
Collapse
Affiliation(s)
- Grace A Hernandez
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Inhibition of Src improves cardiac fibrosis in AngII-induced hypertrophy by regulating the expression of galectin-3. Microvasc Res 2022; 142:104347. [DOI: 10.1016/j.mvr.2022.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
|
19
|
Ma W, Zhong T, Chen J, Ke X, Zuo H, Liu Q. Exogenous H2S reverses high glucose-induced endothelial progenitor cells dysfunction via regulating autophagy. Bioengineered 2022; 13:1126-1136. [PMID: 35258406 PMCID: PMC8805971 DOI: 10.1080/21655979.2021.2017695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
This study aims to determine the effect of exogenous hydrogen sulfide (H2S) under high glucose (HG)-induced injury in endothelial progenitor cells (EPCs), and to explore the possible underlying mechanisms. Mononuclear cells were isolated from the peripheral blood of healthy volunteers by density-gradient centrifugation and identified as late EPCs by immunofluorescence and flow cytometry. EPCs were treated with high concentrations of glucose, H2S, Baf-A1, 3-MA or rapamycin. Cell proliferation, cell migration and tube formation were measured using cell counting kit-8, Transwell migration and tube formation assays, respectively. Cellular autophagy flux was detected by RFP-GFP-LC3, and Western blotting was used to examine the protein expression levels of LC3B, P62, and phosphorylated endothelial nitric oxide synthase (eNOS) at Thr495 (p-eNOSThr495). Reactive oxygen species (ROS) levels were measured using a DHE probe. H2S and rapamycin significantly reversed the inhibitory effects of HG on the proliferation, migration, and tube formation of EPCs. Moreover, H2S and rapamycin led to an increase in the number of autophagosomes accompanied by a failure in lysosomal turnover of LC3-II or p62 and p-eNOSThr495 expression and ROS production under the HG condition. However, Baf-A1 and 3-MA reversed the effects of H2S on cell behavior. Collectively, exogenous H2S ameliorated HG-induced EPC dysfunction by promoting autophagic flux and decreasing ROS production by phosphorylating eNOSThr495.
Collapse
Affiliation(s)
- Wenxue Ma
- Department of Cardiology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Zhong
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Junqiu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Huihua Zuo
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Qiang Liu
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
20
|
Zhao M, Finlay D, Kwong E, Liddington R, Viollet B, Sasaoka N, Vuori K. Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell Signal 2022; 89:110170. [PMID: 34673141 PMCID: PMC8602780 DOI: 10.1016/j.cellsig.2021.110170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
Autophagy is a multi-step process regulated in part by AMP-activated protein kinase (AMPK). Phosphorylation of threonine 172 on the AMPK α-subunit enhances AMPK kinase activity, resulting in activation of downstream signaling. Integrin-mediated cell adhesion activates Src/ Focal Adhesion Kinase (FAK) signaling complex, which regulates multiple cellular processes including cell survival. We show here that Src signaling leads to direct phosphorylation of the AMPK-α subunit on a novel site, tyrosine 179, resulting in suppression of AMPK-T172 phosphorylation and autophagy upon integrin-mediated cell adhesion. By using chemical inhibitors, genetic cell models and targeted mutagenesis, we confirm an important role for Src and FAK in suppressing AMPK signaling and autophagy induced by various additional stimuli, including glucose starvation. Furthermore, we found that autophagy suppression by hydroxychloroquine promotes apoptosis in a cancer cell model that had been treated with Src inhibitors. Our findings reveal a link between the Src/ FAK complex and AMPK/ autophagy regulation, which may play an important role in the maintenance of normal cellular homeostasis and tumor progression.
Collapse
Affiliation(s)
- Ming Zhao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Kwong
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert Liddington
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, 75014, France
| | - Norio Sasaoka
- Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correpsonding author.
| |
Collapse
|
21
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
22
|
Holm TM, Bian ZC, Manupati K, Guan JL. Inhibition of autophagy mitigates cell migration and invasion in thyroid cancer. Surgery 2021; 171:235-244. [PMID: 34565609 DOI: 10.1016/j.surg.2021.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autophagy is a highly conserved process for maintaining cellular homeostasis. Upregulation of autophagy promotes metastasis by promoting the cancer stem cell state while also stimulating tumor cell migration and invasion. We hypothesized that autophagy upregulation would be critical for cancer stem cell maintenance as well as cellular migration and invasion in thyroid cancer. METHODS Validated papillary (MDA-T32, MDA-T68), follicular (FTC-133), and anaplastic (ATC-8505c) human thyroid cancer cell lines in culture were first assessed for autophagic capacity after bafilomycin clamping. Cancer stem cells were quantified by flow cytometry for aldehyde dehydrogenase and thyrosphere formation assay. Scratch migration and Matrigel invasion assays were performed in the presence of known autophagy inhibitors: Lys05, chloroquine, and FIP200siRNA. RESULTS Autophagy activity was observed across all cell lines. Thyrosphere formation, aldehyde dehydrogenase activity, and CD44 expression were reduced with inhibition of autophagy in MDA-T32, MDA-T68, FTC-133, and 8505c cells. Similarly, cell migration and invasion were attenuated: 42% (FIP200siRNA), 78% (Lys05), P < .001 in MDA-T32 cells; 54% (FIP200siRNA), 67% (Lys05), P < .001 in MDA-T68 cells; 73% (FIP200siRNA), 71% (Lys05), P < .001) in FTC-133 cells; and 60% (FIP200siRNA), 90% (Lys05), P < .001 in 8505c cells. Invasion assays demonstrated a 73%, 39%, 75%, and 65.1% reduction in the presence of Lys05 in T32, T68, FTC-133, and 8505c cells, respectively. We observed similar reductions in invasion with FIP200siRNA: 61%, 62%, 55%, and 81.4% in T32, T68, FTC-133, and 8505c cells. CONCLUSION Autophagy is upregulated across multiple thyroid cancer subtypes. In thyroid cancer cell lines, inhibition of autophagy attenuates cancer stem cell viability, cell migration, and invasion suggesting a role for autophagy in the progression of thyroid cancer. Greater understanding of autophagy regulation in thyroid cancer will aid in developing targeted therapeutics.
Collapse
Affiliation(s)
- Tammy M Holm
- Department of Surgery, The University of Cincinnati, Cincinnati, OH; Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH.
| | - Z Christine Bian
- Department of Surgery, The University of Cincinnati, Cincinnati, OH
| | - Kanakaraju Manupati
- Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH
| | - Jun-Lin Guan
- Department of Surgery, The University of Cincinnati, Cincinnati, OH; Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH
| |
Collapse
|
23
|
Lövenich L, Dreissen G, Hoffmann C, Konrad J, Springer R, Höhfeld J, Merkel R, Hoffmann B. Strain induced mechanoresponse depends on cell contractility and BAG3-mediated autophagy. Mol Biol Cell 2021; 32:ar9. [PMID: 34379447 PMCID: PMC8684750 DOI: 10.1091/mbc.e21-05-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
Basically all mammalian tissues are constantly exposed to a variety of environmental mechanical signals. Depending on the signal strength, mechanics intervenes in a multitude of cellular processes and is thus capable to induce simple cellular adaptations but also complex differentiation processes and even apoptosis. The underlying recognition typically depends on mechanosensitive proteins, which most often sense the mechanical signal for the induction of a cellular signaling cascade by changing their protein conformation. However, the fate of mechanosensors after mechanical stress application is still poorly understood and it remains unclear whether protein degradation pathways affect the mechanosensitivity of cells. Here, we show that cyclic stretch induces autophagosome formation in a time-dependent manner. Formation depends on the cochaperone BAG3 and thus likely involves BAG3-mediated chaperone-assisted selective autophagy. Furthermore, we demonstrate that strain-induced cell reorientation is clearly delayed upon inhibition of autophagy, suggesting a bidirectional crosstalk between mechanotransduction and autophagic degradation. The strength of the observed delay depends on stable adhesion structures and stress fiber formation in a RhoA-dependent manner.
Collapse
Affiliation(s)
- Lukas Lövenich
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Georg Dreissen
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Christina Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Jens Konrad
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Ronald Springer
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-2: Mechanobiology, 52428 Jülich, Germany
| |
Collapse
|
24
|
Lees DM, Reynolds LE, Pedrosa AR, Roy-Luzarraga M, Hodivala-Dilke KM. Phosphorylation of pericyte FAK-Y861 affects tumour cell apoptosis and tumour blood vessel regression. Angiogenesis 2021; 24:471-482. [PMID: 33730293 PMCID: PMC8292267 DOI: 10.1007/s10456-021-09776-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
Collapse
Affiliation(s)
- Delphine M Lees
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana Rita Pedrosa
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Centre for Tumour Microenvironment, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
25
|
Cui H, Weng Y, Ding N, Cheng C, Wang L, Zhou Y, Zhang L, Cui Y, Zhang W. Autophagy-Related Three-Gene Prognostic Signature for Predicting Survival in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:650891. [PMID: 34336650 PMCID: PMC8321089 DOI: 10.3389/fonc.2021.650891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in China, and its prognosis remains poor. Autophagy is an evolutionarily conserved catabolic process involved in the occurrence and development of ESCC. In this study, we described the expression profile of autophagy-related genes (ARGs) in ESCC and developed a prognostic prediction model for ESCC patients based on the expression pattern of ARGs. We used four ESCC cohorts, GSE53624 (119 samples) set as the discovery cohort, The Cancer Genome Atlas (TCGA) ESCC set (95 samples) as the validation cohort, 155 ESCC cohort, and Oncomine cohort were used to screen and verify differentially expressed ARGs. We identified 34 differentially expressed genes out of 222 ARGs. In the discovery cohort, we divided ESCC patients into three groups that showed significant differences in prognosis. Then, we analyzed the prognosis of 34 differentially expressed ARGs. Three genes [poly (ADP-ribose) polymerase 1 (PARP1), integrin alpha-6 (ITGA6), and Fas-associated death domain (FADD)] were ultimately obtained through random forest feature selection and were constructed as an ARG-related prognostic model. This model was further validated in TCGA ESCC set. Cox regression analysis confirmed that the three-gene signature was an independent prognostic factor for ESCC patients. This signature effectively stratified patients in both discovery and validation cohorts by overall survival (P = 5.162E-8 and P = 0.052, respectively). We also constructed a clinical nomogram with a concordance index of 0.713 to predict the survival possibility of ESCC patients by integrating clinical characteristics and the ARG signature. The calibration curves substantiated fine concordance between nomogram prediction and actual observation. In conclusion, we constructed a new ARG-related prognostic model, which shows the potential to improve the ability of individualized prognosis prediction in ESCC.
Collapse
Affiliation(s)
- Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongjia Weng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ning Ding
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Chen Cheng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Longlong Wang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yong Zhou
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ling Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongping Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Weimin Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
26
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
27
|
Liu H, Zhou Y, Qiu H, Zhuang R, Han Y, Liu X, Qiu X, Wang Z, Xu L, Tan R, Hong W, Wang T. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src. Cell Death Dis 2021; 12:284. [PMID: 33731709 PMCID: PMC7969620 DOI: 10.1038/s41419-021-03561-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Rab proteins play crucial roles in membrane trafficking. Some Rab proteins are implicated in cancer development through regulating protein sorting or degradation. In this study, we found that the expression of Rab26 is suppressed in the aggressive breast cancer cells as compared to the levels in non-invasive breast cancer cells. Over-expression of Rab26 inhibits cell migration and invasion, while Rab26 knockdown significantly promotes the migration and invasion of breast cancer cells. Rab26 reduces focal adhesion association of Src kinase and induces endosomal translocation of Src. Further experiments revealed that Rab26 mediates the autophagic degradation of phosphorylated Src through interacting with ATG16L1, consequently, resulting in the suppression of the migration and invasion ability of breast cancer cells.
Collapse
Affiliation(s)
- Huiying Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yuxia Zhou
- grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550025 Guiyang, China
| | - Hantian Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ruijuan Zhuang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Yang Han
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xiaoqing Liu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Xi Qiu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ziyan Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Liju Xu
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Ran Tan
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| | - Wanjin Hong
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China ,grid.185448.40000 0004 0637 0221Institute of Molecular and Cell Biology, A STAR (Agency of ScienceTechnology and Research), 61 Biopolis Drive, Singapore, 138673 Singapore
| | - Tuanlao Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, 361005 Fujian, China
| |
Collapse
|
28
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
29
|
Abstract
Autophagy and cellular senescence are two potent tumor suppressive mechanisms activated by various cellular stresses, including the expression of activated oncogenes. However, emerging evidence has also indicated their pro-tumorigenic activities, strengthening the case for the complexity of tumorigenesis. More specifically, tumorigenesis is a systemic process emanating from the combined accumulation of changes in the tumor support pathways, many of which cannot cause cancer on their own but might still provide excellent therapeutic targets for cancer treatment. In this review, we discuss the dual roles of autophagy and senescence during tumorigenesis, with a specific focus on the stress support networks in cancer cells modulated by these processes. A deeper understanding of such context-dependent roles may help to enhance the effectiveness of cancer therapies targeting autophagy and senescence, while limiting their potential side effects. This will steer and accelerate the pace of research and drug development for cancer treatment.
Collapse
|
30
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
31
|
Zhao T, Zheng T, Yu H, Hu BH, Hu B, Ma P, Yang Y, Yang N, Hu J, Cao T, Chen G, Yan B, Peshoff M, Hatzoglou M, Geng R, Li B, Zheng QY. Autophagy impairment as a key feature for acetaminophen-induced ototoxicity. Cell Death Dis 2021; 12:3. [PMID: 33414397 PMCID: PMC7791066 DOI: 10.1038/s41419-020-03328-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Macroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.
Collapse
Affiliation(s)
- Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Huining Yu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Bing Hu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Peng Ma
- Department of Genetics, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Juan Hu
- Department of Otolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tongtao Cao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Melina Peshoff
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Nagakannan P, Islam MI, Conrad M, Eftekharpour E. Cathepsin B is an executioner of ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118928. [PMID: 33340545 DOI: 10.1016/j.bbamcr.2020.118928] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Ferroptosis is a necrotic form of cell death caused by inactivation of the glutathione system and uncontrolled iron-mediated lipid peroxidation. Increasing evidence implicates ferroptosis in a wide range of diseases from neurotrauma to cancer, highlighting the importance of identifying an executioner system that can be exploited for clinical applications. In this study, using pharmacological and genetic models of ferroptosis, we observed that lysosomal membrane permeabilization and cytoplasmic leakage of cathepsin B unleashes structural and functional changes in mitochondria and promotes a not previously reported cleavage of histone H3. Inhibition of cathepsin-B robustly rescued cellular membrane integrity and chromatin degradation. We show that these protective effects are independent of glutathione peroxidase-4 and are mediated by preventing lysosomal membrane damage. This was further confirmed when cathepsin B knockout primary fibroblasts remained unaffected in response to various ferroptosis inducers. Our work identifies new and yet-unrecognized aspects of ferroptosis and identifies cathepsin B as a mediator of ferroptotic cell death.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada
| | - Md Imamul Islam
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada
| | - Marcus Conrad
- Institute for Metabolism and Cell Death, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program and Spinal Cord Research Centre, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
33
|
Acebrón I, Righetto RD, Schoenherr C, de Buhr S, Redondo P, Culley J, Rodríguez CF, Daday C, Biyani N, Llorca O, Byron A, Chami M, Gräter F, Boskovic J, Frame MC, Stahlberg H, Lietha D. Structural basis of Focal Adhesion Kinase activation on lipid membranes. EMBO J 2020; 39:e104743. [PMID: 32779739 PMCID: PMC7527928 DOI: 10.15252/embj.2020104743] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Focal adhesion kinase (FAK) is a key component of the membrane proximal signaling layer in focal adhesion complexes, regulating important cellular processes, including cell migration, proliferation, and survival. In the cytosol, FAK adopts an autoinhibited state but is activated upon recruitment into focal adhesions, yet how this occurs or what induces structural changes is unknown. Here, we employ cryo-electron microscopy to reveal how FAK associates with lipid membranes and how membrane interactions unlock FAK autoinhibition to promote activation. Intriguingly, initial binding of FAK to the membrane causes steric clashes that release the kinase domain from autoinhibition, allowing it to undergo a large conformational change and interact itself with the membrane in an orientation that places the active site toward the membrane. In this conformation, the autophosphorylation site is exposed and multiple interfaces align to promote FAK oligomerization on the membrane. We show that interfaces responsible for initial dimerization and membrane attachment are essential for FAK autophosphorylation and resulting cellular activity including cancer cell invasion, while stable FAK oligomerization appears to be needed for optimal cancer cell proliferation in an anchorage-independent manner. Together, our data provide structural details of a key membrane bound state of FAK that is primed for efficient autophosphorylation and activation, hence revealing the critical event in integrin mediated FAK activation and signaling at focal adhesions.
Collapse
Affiliation(s)
- Iván Acebrón
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
| | - Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalyticsBiozentrumUniversity of BaselBaselSwitzerland
| | - Christina Schoenherr
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Svenja de Buhr
- Heidelberg Institute for Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Pilar Redondo
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
| | - Jayne Culley
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Carlos F Rodríguez
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
| | - Csaba Daday
- Heidelberg Institute for Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Nikhil Biyani
- Center for Cellular Imaging and NanoAnalyticsBiozentrumUniversity of BaselBaselSwitzerland
| | - Oscar Llorca
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
| | - Adam Byron
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalyticsBiozentrumUniversity of BaselBaselSwitzerland
| | - Frauke Gräter
- Heidelberg Institute for Theoretical StudiesHeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg UniversityHeidelbergGermany
| | - Jasminka Boskovic
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
| | - Margaret C Frame
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalyticsBiozentrumUniversity of BaselBaselSwitzerland
| | - Daniel Lietha
- Structural Biology ProgrammeSpanish National Cancer Research CentreMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasSpanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
34
|
LC3C-Mediated Autophagy Selectively Regulates the Met RTK and HGF-Stimulated Migration and Invasion. Cell Rep 2020; 29:4053-4068.e6. [PMID: 31851933 DOI: 10.1016/j.celrep.2019.11.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2019] [Revised: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The Met/hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK) is deregulated in many cancers and is a recognized target for cancer therapies. Following HGF stimulation, the signaling output of Met is tightly controlled by receptor internalization and sorting for degradation or recycling. Here, we uncover a role for autophagy in selective degradation of Met and regulation of Met-dependent cell migration and invasion. Met engagement with the autophagic pathway is dependent on complex formation with the mammalian ATG8 family member MAP1LC3C. LC3C deletion abrogates Met entry into the autophagy-dependent degradative pathway, allowing identification of LC3C domains required for rescue. Cancer cells with low LC3C levels show enhanced Met stability, signaling, and cell invasion. These findings provide mechanistic insight into RTK recruitment to autophagosomes and establish distinct roles for ATG8 proteins in this process, supporting that differential expression of ATG8 proteins can shape the functional consequences of autophagy in cancer development and progression.
Collapse
|
35
|
Assar EA, Tumbarello DA. Loss of the Essential Autophagy Regulators FIP200 or Atg5 Leads to Distinct Effects on Focal Adhesion Composition and Organization. Front Cell Dev Biol 2020; 8:733. [PMID: 32850845 PMCID: PMC7417463 DOI: 10.3389/fcell.2020.00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an essential catabolic intracellular pathway that maintains homeostasis by degrading long-lived proteins, damaged organelles, and provides an energy source during nutrient starvation. It is now understood that autophagy has discrete functions as a selective lysosomal degradation pathway targeting large cytosolic structural and signaling complexes to influence cell motility and adhesion. We provide evidence suggesting the primary autophagy regulators Atg5 and FIP200 both play a role in cell motility and extracellular matrix adhesion. However, their loss of function has a differential impact on focal adhesion composition and organization, as well as signaling in response to fibronectin induced cell spreading. This differential impact on focal adhesions is illustrated by smaller focal adhesion complexes and a decrease in FAK, paxillin, and vinculin expression associated with FIP200 loss of function. In contrast, Atg5 loss of function results in production of large and stable focal adhesions, characterized by their retention of phosphorylated FAK and Src, which correlates with increased vinculin and FAK protein expression. Importantly, autophagy is upregulated during processes associated with focal adhesion reorganization and their exhibits colocalization of autophagosomes with focal adhesion cargo. Interestingly, FIP200 localizes to vinculin-rich focal adhesions and its loss negatively regulates FAK phosphorylation. These data collectively suggest FIP200 and Atg5 may have both autophagy-dependent and -independent functions that provide distinct mechanisms and impacts on focal adhesion dynamics associated with cell motility.
Collapse
Affiliation(s)
- Emelia A Assar
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Salidroside-Mediated Autophagic Targeting of Active Src and Caveolin-1 Suppresses Low-Density Lipoprotein Transcytosis across Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9595036. [PMID: 32685103 PMCID: PMC7333065 DOI: 10.1155/2020/9595036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Subendothelial retention of apolipoprotein B100-containing lipoprotein, such as low-density lipoprotein (LDL), is the initial step of atherogenesis. Activation of autophagy exhibits beneficial effects for the treatment of atherosclerosis. In our previous study, we demonstrated that hyperglycemia suppressed autophagic degradation of caveolin-1, which in turn resulted in acceleration of caveolae-mediated LDL transcytosis across endothelial cells and lipid retention. Therefore, targeting the crossed pathway in autophagy activation and LDL transcytosis interruption may be a promising antiatherosclerotic strategy. In metabolic diseases, including atherosclerosis, salidroside, a phenylpropanoid glycoside compound (3,5-dimethoxyphenyl) methyl-β-glucopyranoside), is the most important compound responsible for the therapeutic activities of Rhodiola. However, whether salidroside suppresses LDL transcytosis to alleviate atherosclerosis has not yet been elucidated. In the present study, we demonstrated that salidroside significantly decreased LDL transcytosis across endothelial cells. Salidroside-induced effects were dramatically blocked by AMPK (adenosine monophosphate-activated protein kinase) inhibitor (compound c, AMPKα siRNA) and by overexpression of exogenous tyrosine-phosphorylated caveolin-1 using transfected cells with phosphomimicking caveolin-1 on tyrosine 14 mutant plasmids (Y14D). Furthermore, we observed that salidroside promoted autophagosome formation via activating AMPK. Meanwhile, the interaction between caveolin-1 and LC3B-II, as well as the interaction between active Src (indicated by the phosphorylation of Src on tyrosine 416) and LC3B-II, was significantly increased, upon stimulation with salidroside. In addition, both bafilomycin A1 (a lysosome inhibitor) and an AMPK inhibitor (compound c) markedly prevented salidroside-induced autophagic degradation of p-Src and caveolin-1. Moreover, the phosphorylation of caveolin-1 on tyrosine 14 was disrupted due to the downregulation of p-Src and caveolin-1, thereby directly decreasing LDL transcytosis by attenuating the number of caveolae on the cell membrane and by preventing caveolae-mediated LDL endocytosis released from the cell membrane. In ApoE−/− mice, salidroside significantly delayed the formation of atherosclerotic lesions. Meanwhile, a significant increase in LC3B, accompanied by attenuated accumulation of the autophagy substrate SQSTM1, was observed in aortic endothelium of ApoE−/− mice. Taken together, our findings demonstrated that salidroside protected against atherosclerosis by inhibiting LDL transcytosis through enhancing the autophagic degradation of active Src and caveolin-1.
Collapse
|
37
|
Raj EN, Lin Y, Chen C, Liu K, Chao J. Selective Autophagy Pathway of Nanoparticles and Nanodrugs: Drug Delivery and Pathophysiological Effects. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Naveen Raj
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Yu‐Wei Lin
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Chien‐Hung Chen
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Kuang‐Kai Liu
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
| | - Jui‐I Chao
- Institute of Molecular Medicine and Bioengineering National Chiao Tung University Hsinchu 30068 Taiwan
- Department of Biological Science and Technology National Chiao Tung University Hsinchu 30068 Taiwan
- Center For Intelligent Drug Systems and Smart Bio‐devices National Chiao Tung University Hsinchu 30068 Taiwan
| |
Collapse
|
38
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Dobner J, Simons IM, Rufinatscha K, Hänsch S, Schwarten M, Weiergräber OH, Abdollahzadeh I, Gensch T, Bode JG, Hoffmann S, Willbold D. Deficiency of GABARAP but not its Paralogs Causes Enhanced EGF-induced EGFR Degradation. Cells 2020; 9:E1296. [PMID: 32456010 PMCID: PMC7291022 DOI: 10.3390/cells9051296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Iman Abdollahzadeh
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Thomas Gensch
- Institute of Biological Information Processing: Molecular and Cell Physiology (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (K.R.); (J.G.B.)
| | - Silke Hoffmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (J.D.); (I.M.S.)
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (M.S.); (O.H.W.); (I.A.); (S.H.)
| |
Collapse
|
40
|
Alza L, Nàger M, Visa A, Cantí C, Herreros J. FAK Inhibition Induces Glioblastoma Cell Senescence-Like State through p62 and p27. Cancers (Basel) 2020; 12:E1086. [PMID: 32349327 PMCID: PMC7281094 DOI: 10.3390/cancers12051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
Focal adhesion kinase (FAK) is a central component of focal adhesions that regulate cancer cell proliferation and migration. Here, we studied the effects of FAK inhibition in glioblastoma (GBM), a fast growing brain tumor that has a poor prognosis. Treating GBM cells with the FAK inhibitor PF-573228 induced a proliferative arrest and increased cell size. PF-573228 also reduced the growth of GBM neurospheres. These effects were associated with increased p27/CDKN1B levels and β-galactosidase activity, compatible with acquisition of senescence. Interestingly, FAK inhibition repressed the expression of the autophagy cargo receptor p62/SQSTM-1. Moreover, depleting p62 in GBM cells also induced a senescent-like phenotype through transcriptional upregulation of p27. Our results indicate that FAK inhibition arrests GBM cell proliferation, resulting in cell senescence, and pinpoint p62 as being key to this process. These findings highlight the possible therapeutic value of targeting FAK in GBM.
Collapse
Affiliation(s)
- Lía Alza
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Mireia Nàger
- Department of Medical Biology, UiT The Arctic University of Norway, 9010 Tromsø, Norway;
| | - Anna Visa
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Carles Cantí
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| | - Judit Herreros
- Calcium Signaling Group, IRBLleida, University of Lleida, Rovira Roure 80, 25198 Lleida, Spain; (L.A.); (A.V.); (C.C.)
| |
Collapse
|
41
|
Liu X, Feng C, Wei G, Kong W, Meng H, Du Y, Li J. Mitofusin1 Is a Major Mediator in Glucose-Induced Epithelial-to-Mesenchymal Transition in Lung Adenocarcinoma Cells. Onco Targets Ther 2020; 13:3511-3523. [PMID: 32425551 PMCID: PMC7187943 DOI: 10.2147/ott.s238714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 01/25/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) has been considered a latent mediator of diverse biological processes in cancer. However, the mechanisms involved in high glucose-associated EMT in lung adenocarcinoma (LAD) have not been fully clarified. In this study, we aimed to investigate whether mitofusin1 (MFN1) is involved in the EMT of LAD cells induced by glucose and to identify the molecular mechanism involved in this process. Materials and Methods The expression of specific proteins was analysed by Western blotting, immunohistochemistry, co-immunoprecipitation and immunofluorescence analysis. The proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8, bromodeoxyuridine incorporation, wound-healing and transwell assays. Lung tissues of adjacent normal regions and lung tissues from patients with LAD and LAD combined with diabetes mellitus were collected to determine the expression and significance of MFN1. Results Here, we showed that the expression of MFN1 was increased in LAD tissues compared with adjacent normal tissues and expression was even higher in lung tissues from patients with LAD combined with diabetes. In the lung cancer cell line A549, increased cell proliferation, invasion and EMT induced by high glucose were inhibited by MFN1 silencing. Mechanistic studies demonstrated that inhibiting autophagy reversed the abnormal EMT triggered by high glucose conditions. In addition, our data provide novel evidence demonstrating that PTEN-induced kinase (Pink) is a potential regulator involved in MFN1-mediated cell autophagy, which eventually leads to high glucose-induced proliferation, invasion and EMT of A549 cells. Conclusion Taken together, our data show that MFN1 interacts with Pink to induce the autophagic process and that the abnormal occurrence of autophagy ultimately contributes to glucose-induced pathological EMT in LAD.
Collapse
Affiliation(s)
- Xingyuan Liu
- Pathology Department, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Chuang Feng
- Science and Technology Department, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Guohua Wei
- Pathology Department, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wencong Kong
- Pathology Department, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Hai Meng
- Clinicopathological Center, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Yaqin Du
- Clinicopathological Center, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Jingyuan Li
- Faculty of Pharmaceutical Sciences, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| |
Collapse
|
42
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
43
|
Dawson JC, Serrels B, Byron A, Muir MT, Makda A, García-Muñoz A, von Kriegsheim A, Lietha D, Carragher NO, Frame MC. A Synergistic Anticancer FAK and HDAC Inhibitor Combination Discovered by a Novel Chemical-Genetic High-Content Phenotypic Screen. Mol Cancer Ther 2020; 19:637-649. [PMID: 31784455 PMCID: PMC7611632 DOI: 10.1158/1535-7163.mct-19-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Revised: 08/22/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022]
Abstract
We mutated the focal adhesion kinase (FAK) catalytic domain to inhibit binding of the chaperone Cdc37 and ATP, mimicking the actions of a FAK kinase inhibitor. We reexpressed mutant and wild-type FAK in squamous cell carcinoma (SCC) cells from which endogenous FAK had been deleted, genetically fixing one axis of a FAK inhibitor combination high-content phenotypic screen to discover drugs that may synergize with FAK inhibitors. Histone deacetylase (HDAC) inhibitors represented the major class of compounds that potently induced multiparametric phenotypic changes when FAK was rendered kinase-defective or inhibited pharmacologically in SCC cells. Combined FAK and HDAC inhibitors arrest proliferation and induce apoptosis in a subset of cancer cell lines in vitro and efficiently inhibit their growth as tumors in vivo Mechanistically, HDAC inhibitors potentiate inhibitor-induced FAK inactivation and impair FAK-associated nuclear YAP in sensitive cancer cell lines. Here, we report the discovery of a new, clinically actionable, synergistic combination between FAK and HDAC inhibitors.
Collapse
Affiliation(s)
- John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna T Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashraff Makda
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Daniel Lietha
- Cell Signaling and Adhesion Group, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
44
|
Cheng T, Wang Y, Lu M, Zhan X, Zhou T, Li B, Zhan X. Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients. Front Endocrinol (Lausanne) 2019; 10:854. [PMID: 31920968 PMCID: PMC6915109 DOI: 10.3389/fendo.2019.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/01/2018] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Non-functional pituitary adenoma (NFPA) is a common tumor that occurs in the pituitary gland, and generally without any symptoms at its early stage and without clinical elevation of hormones, which is commonly diagnosed when it grows up to compress its surrounding tissues and organs. Currently, the pathogenesis of NFPA has not been clarified yet. It is necessary to investigate molecular alterations in NFPA, and identify reliable biomarkers and drug therapeutic targets for effective treatments. Methods: Tandem mass tags (TMT)-based quantitative proteomics was used to identify and quantify proteins in NFPAs. GO and KEGG enrichment analyses were used to analyze the identified proteins. Differentially expressed genes (DEGs) between NFPA and control tissues were obtained from GEO datasets. These two sets of protein and gene data were analyzed to obtain overlapped molecules (genes; proteins), followed by further GO and KEGG pathway analyses of these overlapped molecules, and molecular network analysis to obtain the hub molecules with Cytoscape. Two hub molecules (SRC and AKT1) were verified with Western blotting. Results: Totally 6076 proteins in NFPA tissues were identified, and 3598 DEGs between NFPA and control tissues were identified from GEO database. Overlapping analysis of 6076 proteins and 3598 DEGs obtained 1088 overlapped molecules (DEGs; proteins). KEGG pathway analysis of 6076 proteins obtained 114 statistically significant pathways, including endocytosis, and spliceosome signaling pathways. KEGG pathway analysis of 1088 overlapped molecules obtained 52 statistically significant pathways, including focal adhesion, cGMP-PKG pathway, and platelet activation signaling pathways. These pathways play important roles in cell energy supply, adhesion, and maintenance of the tumor microenvironment. According to the association degree in Cytoscape, ten hub molecules (DEGs; proteins) were identified, including GAPDH, ALB, ACACA, SRC, ENO2, CALM1, POTEE, HSPA8, DECR1, and AKT1. Western-blotting analysis confirmed the upregulated expressions of SRC and PTMScan experiment confirmed the increased levels of pAKT1, in NFPAs compared to controls. Conclusions: This study established the large-scale quantitative protein profiling of NFPA tissue proteome. It offers a basis for subsequent in-depth proteomics analysis of NFPAs, and insight into the molecular mechanism of NFPAs. It also provided the basic data to discover reliable biomarkers and therapeutic targets for NFPA patients.
Collapse
Affiliation(s)
- Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Yu J, Adapala NS, Doherty L, Sanjay A. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Bone 2019; 127:376-385. [PMID: 31299383 PMCID: PMC6708784 DOI: 10.1016/j.bone.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/14/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effective bone resorption by osteoclasts is critical for balanced bone remodeling. We have previously reported that mice harboring a substitution mutation of tyrosine 737 to phenylalanine in the adapter protein Cbl (CblY737F, YF) have increased bone volume partly due to decreased osteoclast-mediated bone resorption. The CblY737F mutation abrogates interaction between Cbl and the p85 subunit of PI3K. Here, we studied the mechanism for defective resorptive function of YF mutant osteoclasts. The YF osteoclasts had intact actin cytoskeletons and sealing zones. Expression and localization of proteins needed for acidification of the resorptive lacunae were also comparable between the WT and YF osteoclasts. In contrast, secretion of Cathepsin K, a major protease needed to degrade collagen, was diminished in the conditioned media derived from YF osteoclasts. The targeting of Cathepsin K into LAMP2-positive vesicles was also compromised due to decreased number of LAMP2-positive vesicles in YF osteoclasts. Further, we found that in contrast to WT, conditioned media derived from YF osteoclasts promoted increased numbers of alkaline phosphatase positive colonies, and increased expression of osteogenic markers in WT calvarial cultures. Cumulatively, our results suggest that the Cbl-PI3K interaction regulates Cathepsin K secretion required for proper bone resorption, and secretion of factors which promote osteogenesis.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
46
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
47
|
Juanes MA, Isnardon D, Badache A, Brasselet S, Mavrakis M, Goode BL. The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover. J Cell Biol 2019; 218:3415-3435. [PMID: 31471457 PMCID: PMC6781439 DOI: 10.1083/jcb.201904165] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Actin assembly by APC maintains proper organization and dynamics of F-actin at focal adhesions. This, in turn, impacts the organization of other molecular components and the responsiveness of focal adhesions to microtubule capture and autophagosome-induced disassembly. Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin’s roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In WT cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state “primed” for microtubule-induced turnover.
Collapse
Affiliation(s)
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Manos Mavrakis
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
48
|
Abstract
Autophagy is a highly conserved catabolic process induced under various conditions of cellular stress, which prevents cell damage and promotes survival in the event of energy or nutrient shortage and responds to various cytotoxic insults. Thus, autophagy has primarily cytoprotective functions and needs to be tightly regulated to respond correctly to the different stimuli that cells experience, thereby conferring adaptation to the ever-changing environment. It is now apparent that autophagy is deregulated in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Zhang S, Yang Z, Bao W, Liu L, You Y, Wang X, Shao L, Fu W, Kou X, Shen W, Yuan C, Hu B, Dang W, Nandakumar KS, Jiang H, Zheng M, Shen X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy 2019; 16:735-749. [PMID: 31208298 DOI: 10.1080/15548627.2019.1632122] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
The non-receptor tyrosine kinase SRC is a key mediator of cellular protumorigenic signals. SRC is aberrantly over-expressed and activated in more than 80% of colorectal cancer (CRC) patients, therefore regulation of its stability and activity is essential. Here, we report a significant down regulation of SNX10 (sorting nexin 10) in human CRC tissues, which is closely related to tumor differentiation, TNM stage, lymph node metastasis and survival period. SNX10 deficiency in normal and neoplastic colorectal epithelial cells promotes initiation and progression of CRC in mice. SNX10 controls SRC levels by mediating autophagosome-lysosome fusion and SRC recruitment for autophagic degradation. These mechanisms ensure proper controlling of the activities of SRC-STAT3 and SRC-CTNNB1 signaling pathways by up-regulating SNX10 expression under stress conditions. These findings suggest that SNX10 acts as a tumor suppressor in CRC and it could be a potential therapeutic target for future development.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG12: autophagy related 12; CQ: chloroquine; CRC: colorectal cancer; CTNNB1: catenin beta 1; EBSS: Earle's balanced salt solution; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; mRNA: messenger RNA; PX: phox homology; RT-qPCR: real time quantitative polymerase chain reaction; siRNA: small interfering RNA; SNX10: sorting nexin 10; SQSTM1: sequestosome 1; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; WT: wild type.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Liming Shao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinhui Kou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weixing Shen
- The Translational Medicine Research Center, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Congmin Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells. Methods Mol Biol 2019; 1854:87-103. [PMID: 29101677 DOI: 10.1007/7651_2017_84] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Autophagy is increasingly identified as a central player in many cellular activities from cell proliferation to cell division, migration, and differentiation. However, it is also considered as a double-edged sword in cancer biology which either promotes oncogenesis/invasion or sensitizes the tumor cells to chemotherapy induced apoptosis. Recent investigations have provided direct evidence for regulation of cellular phenotype via autophagy pathway. One of the most important types of phenotype conversion is Epithelial-Mesenchymal-Transition (EMT), resulting in alteration of epithelial cell properties to a more mesenchymal form. In the current chapter, we provide a method which is established and being used in our laboratory for detection of autophagy and EMT in lung epithelial cells and show the involvement of autophagy in modulation of cellular phenotype.
Collapse
|