1
|
Nakamura K, Tsukasaki M, Tsunematsu T, Yan M, Ando Y, Huynh NCN, Hashimoto K, Gou Q, Muro R, Itabashi A, Iguchi T, Okamoto K, Nakamura T, Nakano K, Okamura T, Ueno T, Ito K, Ishimaru N, Hoshi K, Takayanagi H. The periosteum provides a stromal defence against cancer invasion into the bone. Nature 2024; 634:474-481. [PMID: 39169177 DOI: 10.1038/s41586-024-07822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The periosteum is the layer of cells that covers nearly the entire surface of every bone. Upon infection, injury or malignancy the bone surface undergoes new growth-the periosteal reaction-but the mechanism and physiological role of this process remain unknown1,2. Here we show that the periosteal reaction protects against cancer invasion into the bone. Histological analyses of human lesions of head and neck squamous cell carcinomas (HNSCCs) show that periosteal thickening occurs in proximity to the tumour. We developed a genetically dissectible mouse model of HNSCC and demonstrate that inducible depletion of periosteal cells accelerates cancerous invasion of the bone. Single-cell RNA sequencing reveals that expression of the gene encoding the protease inhibitor TIMP1 is markedly increased in the periosteum at the pre-invasive stage. This increase is due to upregulation of HIF1α expression in the tumour microenvironment, and increased TIMP1 inactivates matrix-degrading proteases, promoting periosteal thickening to inhibit cancer invasion. Genetic deletion of Timp1 impairs periosteal expansion, exacerbating bone invasion and decreasing survival in tumour-bearing mice. Together, these data show that the periosteal reaction may act as a functional stromal barrier against tumour progression, representing a unique example of tissue immunity mediated by stromal cells.
Collapse
Affiliation(s)
- Kazutaka Nakamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Laboratory of Oral-Maxillofacial Biology, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Kyoko Hashimoto
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qiao Gou
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ayumi Itabashi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoya Ueno
- Department of Molecular Tumor Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Tumor Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naozumi Ishimaru
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuto Hoshi
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Naito K, Sangai T, Yamashita K. CAF-Associated Genes in Breast Cancer for Novel Therapeutic Strategies. Biomedicines 2024; 12:1964. [PMID: 39335478 PMCID: PMC11428270 DOI: 10.3390/biomedicines12091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and therapeutic strategies for it are based on the molecular subtypes of luminal BC, HER2 BC, and triple-negative BC (TNBC) because each subtype harbors different unique genetic aberrations. Recently, features of the tumor microenvironment (TME), especially cancer-associated fibroblasts (CAFs), have been demonstrated to play a critical role in BC progression, and we would like to understand the molecular features of BC CAFs for novel therapeutic strategies. In a recent study, 115 CAF-associated genes (CAFGs) were identified in a public database of microdissection and microarray data (GSE35602) from 13 colorectal cancer (CRC) tumors. Using a public database (GSE10797) of 28 BC tumors, a similar analysis was performed. In BC, 59 genes from the 115 CAFGs identified in CRC (CRC CAFGs) were also closely associated with a CAFs marker, SPARC (R = 0.6 or beyond), and POSTN was of particular interest as one of the BC CAFGs with the highest expression levels and a close association with SPARC expression (R = 0.94) in the cancer stroma of BC tumors. In BC stroma, POSTN was followed in expression levels by DKK3, MMP2, PDPN, and ACTA2. Unexpectedly, FAP and VIM were not as highly associated with SPARC expression in the cancer stroma of BC tumors and exhibited low expression. These findings suggested that ACTA2 might be the most relevant conventional CAFs marker in BC, and ACTA2 was actually correlated in expression with many CRC CAFGs, such as SPARC. Surprisingly, the SE ratio values of the BC CAFGs were much lower (average SE = 3.8) than those of the CRC CAFGs (SE = 10 or beyond). We summarized the current understanding of BC CAFs from the literature. Finally, in triple-negative BC (TNBC) (n = 5), SPARC expression uniquely showed a close association with COL11A1 and TAGLN expression, representing a myofibroblast (myCAFs) marker in the cancer stroma of the BC tumors, suggesting that myCAFs may be molecularly characterized by TNBC in contrast to other BC phenotypes. In summary, CAFs could have unique molecular characteristics in BC, and such TME uniqueness could be therapeutically targeted in BC.
Collapse
Affiliation(s)
- Kanako Naito
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
3
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
4
|
Wang H, Wang R, Shen K, Huang R, Wang Z. Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review. Int J Mol Sci 2024; 25:4620. [PMID: 38731840 PMCID: PMC11083446 DOI: 10.3390/ijms25094620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Collapse
Affiliation(s)
| | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| |
Collapse
|
5
|
Wang WN, Koguchi-Yoshioka H, Nimura K, Watanabe R, Tanemura A, Fujimoto M, Wataya-Kaneda M. Distinct Transcriptional Profiles in the Different Phenotypes of Neurofibroma from the Same Subject with Neurofibromatosis 1. J Invest Dermatol 2024; 144:133-141.e4. [PMID: 37301319 DOI: 10.1016/j.jid.2023.03.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023]
Abstract
Neurofibromatosis 1 is a prevalent hereditary neurocutaneous disorder. Among the clinical phenotypes of neurofibromatosis 1, cutaneous neurofibroma (cNF) and plexiform neurofibroma (pNF) have distinct clinical manifestations, and pNF should be closely monitored owing to its malignant potential. However, the detailed distinct features of neurofibromatosis 1 phenotypes remain unknown. To determine whether the transcriptional features and microenvironment of cNF and pNF differ, single-cell RNA sequencing was performed on isolated cNF and pNF cells from the same patient. Six cNF and five pNF specimens from different subjects were also immunohistochemically analyzed. Our findings revealed that cNF and pNF had distinct transcriptional profiles even within the same subject. pNF is enriched in Schwann cells with characteristics similar to those of their malignant counterpart, fibroblasts, with a cancer-associated fibroblast-like phenotype, angiogenic endothelial cells, and M2-like macrophages, whereas cNF is enriched in CD8 T cells with tissue residency markers. The results of immunohistochemical analyses performed on different subjects agreed with those of single-cell RNA sequencing. This study found that cNF and pNF, the different neurofibromatosis phenotypes in neurofibromatosis 1, from the same subject are transcriptionally distinct in terms of the cell types involved, including T cells.
Collapse
Affiliation(s)
- Wei-Ning Wang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Department of Integrative Medicine for Allergic and Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka, Japan; Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Carter EP, Yoneten KK, Gavara N, Tyler EJ, Gauthier V, Murray ER, ten Dijke P, Cameron AJ, Pearce O, Grose RP. Opposing roles for ADAMTS2 and ADAMTS14 in myofibroblast differentiation and function. J Pathol 2024; 262:90-104. [PMID: 37929635 PMCID: PMC10953099 DOI: 10.1002/path.6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 11/07/2023]
Abstract
Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor β availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Department of Life SciencesUniversity of BathBathUK
- Centre for Therapeutic Innovation, Faculty of ScienceUniversity of BathBathUK
| | - Kubra K Yoneten
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Nuria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
| | - Eleanor J Tyler
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Valentine Gauthier
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Elizabeth R Murray
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Angus J Cameron
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Oliver Pearce
- Centre for Tumour Microenvironment, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
7
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
8
|
Sohal IS, Kasinski AL. Emerging diversity in extracellular vesicles and their roles in cancer. Front Oncol 2023; 13:1167717. [PMID: 37397375 PMCID: PMC10312242 DOI: 10.3389/fonc.2023.1167717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Extracellular vesicles have undergone a paradigm shift from being considered as 'waste bags' to being central mediators of cell-to-cell signaling in homeostasis and several pathologies including cancer. Their ubiquitous nature, ability to cross biological barriers, and dynamic regulation during changes in pathophysiological state of an individual not only makes them excellent biomarkers but also critical mediators of cancer progression. This review highlights the heterogeneity in extracellular vesicles by discussing emerging subtypes, such as migrasomes, mitovesicles, and exophers, as well as evolving components of extracellular vesicles such as the surface protein corona. The review provides a comprehensive overview of our current understanding of the role of extracellular vesicles during different stages of cancer including cancer initiation, metabolic reprogramming, extracellular matrix remodeling, angiogenesis, immune modulation, therapy resistance, and metastasis, and highlights gaps in our current knowledge of extracellular vesicle biology in cancer. We further provide a perspective on extracellular vesicle-based cancer therapeutics and challenges associated with bringing them to the clinic.
Collapse
Affiliation(s)
- Ikjot S. Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
10
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
12
|
Hu C, Zhang Y, Wu C, Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discov 2023; 9:124. [PMID: 37055382 PMCID: PMC10102018 DOI: 10.1038/s41420-023-01428-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most severe and complex malignant diseases with a high level of heterogeneity and, as a result, a wide range of therapeutic responses, regardless of clinical stage. Tumor progression depends on ongoing co-evolution and cross-talk with the tumor microenvironment (TME). In particular, cancer-associated fibroblasts (CAFs), embedded in the extracellular matrix (ECM), induce tumor growth and survival by interacting with tumor cells. Origin of CAFs is quite varied, and the activation patterns of CAFs are also heterogeneous. Crucially, the heterogeneity of CAFs appears to play a key role in ongoing tumor expansion, including facilitating proliferation, enhancing angiogenesis and invasion, and promoting therapy resistance, through the production of cytokines, chemokines, and other tumor-promotive molecules in the TME. This review describes the various origin and heterogeneous activation mechanisms of CAFs, and biological heterogeneity of CAFs in HNSCC is also included. Moreover, we have highlighted versatility of CAFs heterogeneity in HNSCC progression, and have discussed different tumor-promotive functions of CAFs respectively. In the future, it is a promising strategy for the therapy of HNSCC that specifically targeting tumor-promoting CAF subsets or the tumor-promoting functional targets of CAFs.
Collapse
Affiliation(s)
- Chen Hu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, 100730, Beijing, China
| | - Yifan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| |
Collapse
|
13
|
Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:182-204. [PMID: 37065872 PMCID: PMC10099601 DOI: 10.20517/cdr.2022.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2023]
Abstract
The context-dependent reciprocal interaction between the cancer cells and surrounding fibroblasts is imperative for regulating malignant potential, metabolic reprogramming, immunosuppression, and ECM deposition. However, recent evidence also suggests that cancer-associated fibroblasts induce chemoresistance in cancer cells to various anticancer regimens. Because of the protumorigenic function of cancer-associated fibroblasts, these stromal cell types have emerged as fascinating therapeutic targets for cancer. However, this notion was recently challenged by studies that targeted cancer-associated fibroblasts and highlighted the underlying heterogeneity by identifying a subset of these cells with tumor-restricting functions. Hence, it is imperative to understand the heterogeneity and heterotypic signaling of cancer-associated fibroblasts to target tumor-promoting signaling processes by sparing tumor-restricting ones. In this review, we discuss the heterogeneity and heterotypic signaling of cancer-associated fibroblasts in shaping drug resistance and also list the cancer-associated fibroblast-targeting therapeutics.
Collapse
Affiliation(s)
- Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ashwini Khaladkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Bombay 400076, India
- Authors contributed equally
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Authors contributed equally
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
14
|
Hurtado P, Martínez-Pena I, Yepes-Rodríguez S, Bascoy-Otero M, Abuín C, Fernández-Santiago C, Sánchez L, López-López R, Piñeiro R. Modelling metastasis in zebrafish unveils regulatory interactions of cancer-associated fibroblasts with circulating tumour cells. Front Cell Dev Biol 2023; 11:1076432. [PMID: 36949770 PMCID: PMC10025339 DOI: 10.3389/fcell.2023.1076432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The dynamic intercommunication between tumour cells and cells from the microenvironment, such as cancer-associated fibroblast (CAFs), is a key factor driving breast cancer (BC) metastasis. Clusters of circulating tumour cells (CTCs), known to bare a higher efficiency at establishing metastases, are found in the blood of BC patients, often accompanied by CAFs in heterotypic CTC-clusters. Previously we have shown the utility of CTC-clusters models and the zebrafish embryo as a model of metastasis to understand the biology of breast cancer CTC-clusters. In this work, we use the zebrafish embryo to study the interactions between CTCs in homotypic clusters and CTC-CAFs in heterotypic CTC-clusters to identify potential pro-metastatic traits derived from CTC-CAF communication. We found that upon dissemination CAFs seem to exert a pro-survival and pro-proliferative effect on the CTCs, but only when CTCs and CAFs remain joined as cell clusters. Our data indicate that the clustering of CTC and CAF allows the establishment of physical interactions that when maintained over time favour the selection of CTCs with a higher capacity to survive and proliferate upon dissemination. Importantly, this effect seems to be dependent on the survival of disseminated CAFs and was not observed in the presence of normal fibroblasts. Moreover, we show that CAFs can exert regulatory effects on the CTCs without being involved in promoting tumour cell invasion. Lastly, we show that the physical communication between BC cells and CAFs leads to the production of soluble factors involved in BC cell survival and proliferation. These findings suggest the existence of a CAF-regulatory effect on CTC survival and proliferation sustained by cell-to-cell contacts and highlight the need to understand the molecular mechanisms that mediate the interaction between the CTCs and CAFs in clusters enhancing the metastatic capacity of CTCs.
Collapse
Affiliation(s)
- Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Sabrina Yepes-Rodríguez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Bascoy-Otero
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristóbal Fernández-Santiago
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- *Correspondence: Roberto Piñeiro, ; Rafael López-López,
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- *Correspondence: Roberto Piñeiro, ; Rafael López-López,
| |
Collapse
|
15
|
Feng L, Guo L, Tanaka Y, Su L. Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. Int J Mol Sci 2022; 23:ijms232315236. [PMID: 36499561 PMCID: PMC9736664 DOI: 10.3390/ijms232315236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|
16
|
Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 2022; 22:367. [PMID: 36424598 PMCID: PMC9686122 DOI: 10.1186/s12935-022-02784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication plays an important role in cancer initiation and progression through direct contact and indirect interactions, such as via secretory molecules. Cancer-associated fibroblasts (CAFs) are one of the principal components of such communication with cancer cells, modulating cancer metastasis and tumour mechanics and influencing angiogenesis, the immune system, and therapeutic resistance. Over the past few years, there has been a significant increase in research on extracellular vesicles (EVs) as regulatory agents in intercellular communication. EVs enable the transfer of functional molecules, including proteins, mRNAs and microRNAs (miRNAs), to recipient cells. Cancer cells utilize EVs to dictate the specific characteristics of CAFs within the tumour microenvironment, thereby promoting cancer progression. In response to such "education" by cancer cells, CAFs contribute to cancer progression via EVs. In this review, we summarize experimental data indicating the pivotal roles of EVs in intercellular communication between cancer cells and CAFs.
Collapse
Affiliation(s)
- Yutaka Naito
- grid.410821.e0000 0001 2173 8328Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| | - Yusuke Yoshioka
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| |
Collapse
|
17
|
Meng L, Song K, Li S, Kang Y. Exosomes: Small Vesicles with Important Roles in the Development, Metastasis and Treatment of Breast Cancer. MEMBRANES 2022; 12:membranes12080775. [PMID: 36005690 PMCID: PMC9414313 DOI: 10.3390/membranes12080775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 05/12/2023]
Abstract
Breast cancer (BC) has now overtaken lung cancer as the most common cancer, while no biopredictive marker isolated from biological fluids has yet emerged clinically. After traditional chemotherapy, with the huge side effects brought by drugs, patients also suffer from the double affliction of drugs to the body while fighting cancer, and they often quickly develop drug resistance after the drug, leading to a poor prognosis. And the treatment of some breast cancer subtypes, such as triple negative breast cancer (TNBC), is even more difficult. Exosomes (Exos), which are naturally occurring extracellular vesicles (EVs) with nanoscale acellular structures ranging in diameter from 40 to 160 nm, can be isolated from various biological fluids and have been widely studied because they are derived from the cell membrane, have extremely small diameter, and are widely involved in various biological activities of the body. It can be used directly or modified to make derivatives or to make some analogs for the treatment of breast cancer. This review will focus on the involvement of exosomes in breast cancer initiation, progression, invasion as well as metastasis and the therapeutic role of exosomes in breast cancer.
Collapse
Affiliation(s)
- Ling’ao Meng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
- Correspondence: (S.L.); (Y.K.)
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
- Correspondence: (S.L.); (Y.K.)
| |
Collapse
|
18
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
19
|
Duch P, Díaz-Valdivia N, Ikemori R, Gabasa M, Radisky ES, Arshakyan M, Gea-Sorlí S, Mateu-Bosch A, Bragado P, Carrasco JL, Mori H, Ramírez J, Teixidó C, Reguart N, Fillat C, Radisky DC, Alcaraz J. Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biol 2022; 111:207-225. [PMID: 35787446 PMCID: PMC9667815 DOI: 10.1016/j.matbio.2022.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
Abstract
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metalloproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor microenvironment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interaction. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-β1/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-β1-activated ADC-TAFs is both necessary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenuated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| | - Sabrina Gea-Sorlí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain
| | - Anna Mateu-Bosch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain
| | - Paloma Bragado
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Josep Lluís Carrasco
- Unit of Biostatistics, Department of Basic Clinical Practice, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, United States
| | - Josep Ramírez
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Cristina Teixidó
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Pathology Service, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 08029, Spain; Department of Medicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona 08036, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona 08036, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.
| |
Collapse
|
20
|
cGAS-STING signaling encourages immune cell overcoming of fibroblast barricades in pancreatic cancer. Sci Rep 2022; 12:10466. [PMID: 35773436 PMCID: PMC9247053 DOI: 10.1038/s41598-022-14297-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
Immune checkpoint blockade (ICB) treatment improves the prognosis of several types of solid tumors, however, responsiveness to ICB therapy remains low in pancreatic ductal adenocarcinoma (PDACs), which has a rich tumor microenvironment (TME). The TME is composed of various stromal cells, including cancer-associated fibroblasts (CAFs), which contribute to the establishment of an immunosuppressive microenvironment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an innate immune pathway that results in the upregulation of immune cell recruiting-cytokines and anti-tumor efficacy. In this study, we aimed to investigate the impact of cGAS-STING expression and the presence of CAFs upon immune cell infiltration in PDACs. cGAS and STING co-expressing PDAC cases showed favorable survival, with many cytotoxic CD8 + T cell infiltrations from the stromal component adjacent to the cancer cells toward cancer cells, but not in cGAS-STING signaling defected PDAC cases. The signatures of tumor-restrain CAFs were expressed in tumors with cGAS-STING signaling. Finally, transwell co-culture experiments demonstrated that immune cell infiltration was impeded by the presence of CAFs, but not by activation of cGAS-STING signaling. In conclusion, pro-infiltration signals, such as cGAS-STING, and characterization of CAFs are crucial in defeating CAF barricades and encouraging immune cell infiltration in PDACs.
Collapse
|
21
|
Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting. Stem Cells Int 2022; 2022:9653244. [PMID: 35800881 PMCID: PMC9256444 DOI: 10.1155/2022/9653244] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer is characterized by an abnormal growth of the cells in an uncontrolled manner. These cells have the potential to invade and can eventually turn into malignancy, leading to highly fatal forms of tumor. Small subpopulations of cancer cells that are long-lived with the potential of excessive self-renewal and tumor formation are called cancer stem cells (CSCs) or cancer-initiating cells or tumor stem cells. CSCs can be found in tissues, such as breast, brain, lung, liver, ovary, and testis; however, their origin is still a matter of debate. These cells can differentiate and possess self-renewal capacity maintained by numerous intracellular signal transduction pathways, such as the Wnt/β-catenin signaling, Notch signaling, transforming growth factor-β signaling, and Hedgehog signaling. They can also contribute to numerous malignancies and are an important reason for tumor recurrence and metastasis because they are resistant to the known therapeutic strategies that mainly target the bulk of the tumor cells. This review contains collected and compiled information after analyzing published works of the last three decades. The goal was to gather information of recent breakthroughs related to CSCs, strategies to target CSCs' niche (e.g., nanotechnology with tumor biology), and their signaling pathways for cancer therapy. Moreover, the role of metformin, an antidiabetic drug, acting as a chemotherapeutic agent on CSCs by inhibiting cellular transformation and its selective killing is also addressed.
Collapse
|
22
|
Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23126806. [PMID: 35743249 PMCID: PMC9224686 DOI: 10.3390/ijms23126806] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial–mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.
Collapse
|
23
|
Banik A, Sharma R, Chauhan A, Singh S. Cutting the umbilical cord: Cancer stem cell-targeted therapeutics. Life Sci 2022; 299:120502. [PMID: 35351466 DOI: 10.1016/j.lfs.2022.120502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Cancer Stem Cells (CSCs) are a notoriously quiescent subpopulation of cells within heterogeneous tumors exhibiting self-renewal, differentiation and drug-resistant capabilities leading to tumor relapse. Heterogeneous cell populations in tumor microenvironment develop an elaborate network of signalling and factors supporting the CSC population within a niche. Identification of specific biomarkers for CSCs facilitates their isolation. CSCs demonstrate abilities that bypass immune surveillance, exhibit resistance to therapy, and induce cancer recurrence while promoting altered metabolism of the bulk tumor, thereby encouraging metastasis. The fight against cancer is prone to relapse without discussing the issue of CSCs, making it imperative for encapsulation of current studies. In this review, we provide extensive knowledge of recent therapeutics developed that target CSCs via multiple signalling cascades, altered metabolism and the tumor microenvironment. Thorough understanding of the functioning of CSCs, their interaction with different cells in the tumor microenvironment as well as current gaps in knowledge are addressed. We present possible strategies to disrupt the cellular and molecular interplay within the tumor microenvironment and make it less conducive for CSCs, which may aid in their eradication with subsequently better treatment outcomes. In conclusion, we discuss a brief yet functional idea of emerging concepts in CSC biology to develop efficient therapeutics acting on cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Ankit Banik
- Department of Biotechnology, Pondicherry University, Chinna Kalapet, Puducherry 605014, India
| | - Rishika Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee 247667, India
| | - Akansha Chauhan
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India
| | - Sandhya Singh
- Amity Institute of Physiology and Allied Sciences, Amity University, Noida, India.
| |
Collapse
|
24
|
Rao J, Qiu J, Ni M, Wang H, Wang P, Zhang L, Wang Z, Liu M, Cheng F, Wang X, Lu L. Macrophage nuclear factor erythroid 2-related factor 2 deficiency promotes innate immune activation by tissue inhibitor of metalloproteinase 3-mediated RhoA/ROCK pathway in the ischemic liver. Hepatology 2022; 75:1429-1445. [PMID: 34624146 PMCID: PMC9300153 DOI: 10.1002/hep.32184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of reactive oxygen species (ROS) and inflammation and has been implicated in both human and murine inflammatory disease models. We aimed to characterize the roles of macrophage-specific Nrf2 in liver ischemia/reperfusion injury (IRI). APPROACH AND RESULTS First, macrophage Nrf2 expression and liver injury in patients undergoing OLT or ischemia-related hepatectomy were analyzed. Subsequently, we created a myeloid-specific Nrf2-knockout (Nrf2M-KO ) strain to study the function and mechanism of macrophage Nrf2 in a murine liver IRI model. In human specimens, macrophage Nrf2 expression was significantly increased in liver tissues after transplantation or hepatectomy. Interestingly, lower Nrf2 expressions correlated with more severe liver injury postoperatively. In a mouse model, we found Nrf2M-KO mice showed worse hepatocellular damage than Nrf2-proficient controls based on serum biochemistry, pathology, ROS, and inflammation. In vitro, Nrf2 deficiency promoted innate immune activation and migration in macrophages on toll-like receptor (TLR) 4 stimulation. Microarray profiling showed Nrf2 deletion caused markedly lower transcriptional levels of tissue inhibitor of metalloproteinase 3 (Timp3). ChIP-seq, PCR, and luciferase reporter assay further demonstrated Nrf2 bound to the promoter region of Timp3. Moreover, a disintegrin and metalloproteinase (ADAM) 10/ROCK1 was specifically increased in Nrf2-deficient macrophages. Increasing Timp3 expression effectively inhibited ADAM10/ROCK1 expression and rescued the Nrf2M-KO -mediated inflammatory response on TLR4 stimulation in vitro. Importantly, Timp3 overexpression, recombinant Timp3 protein, or ROCK1 knockdown rescued Nrf2M-KO -related liver IRI by inhibiting macrophage activation. CONCLUSIONS In conclusion, macrophage Nrf2 mediates innate proinflammatory responses, attenuates liver IRI by binding to Timp3, and inhibits the RhoA/ROCK pathway, which provides a therapeutic target for clinical organ IRI.
Collapse
Affiliation(s)
- Jianhua Rao
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Jiannan Qiu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Ming Ni
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Hao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Peng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lei Zhang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Zeng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Mu Liu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Feng Cheng
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Xuehao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Ling Lu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| |
Collapse
|
25
|
Qin W, Wang L, Tian H, Wu X, Xiao C, Pan Y, Fan M, Tai Y, Liu W, Zhang Q, Yang Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol Carcinog 2022; 61:764-775. [PMID: 35638711 DOI: 10.1002/mc.23416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide because of metastasis. An increasing number of studies have reported that cancer-associated fibroblasts (CAFs) have emerged as the largest component of the stroma and play a critical role in tumor-promoting processes. However, the effects of CAFs on cancer progression and the sensitivity of hepatoma cells to sorafenib are not well characterized. Here, we identified the proteome of CAF-derived exosomes, and unveiled that exosomal Gremlin-1 derived from CAFs contributes to epithelial-mesenchymal transition (EMT) of hepatoma cells and the decrease of the sorafenib sensitivity through regulating Wnt/β-catenin and BMP signaling pathways. Compared to control subjects, the level of plasma exosomal Gremlin-1 was significantly increased in HCC patients. Further studies indicated that plasma exosomal Gremlin-1 may predict sorafenib response in HCC patients. Collectively, our findings uncover CAFs-derived Gremlin-1-rich exosomes promote EMT and decrease the sensitivity of hepatoma cells to sorafenib by Wnt/β-catenin and BMP signaling.
Collapse
Affiliation(s)
- Wei Qin
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Tian
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaocai Wu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuicui Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingming Fan
- Department of Surgery Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
27
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
28
|
Tissue Inhibitor of Metalloproteases 3 (TIMP-3): In Vivo Analysis Underpins Its Role as a Master Regulator of Ectodomain Shedding. MEMBRANES 2022; 12:membranes12020211. [PMID: 35207132 PMCID: PMC8878240 DOI: 10.3390/membranes12020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of TIMP-3 to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. This review provides an overview of the different functions of TIMP-3 in health and disease, with a major focus on the functional consequences in vivo related to its ability to control ectodomain shedding. Furthermore, herein we describe a collection of mass spectrometry-based approaches that have been used in recent years to identify new functions of sheddases and TIMP-3. These methods may be used in the future to elucidate the pathological mechanisms triggered by the Sorsby’s fundus dystrophy variants of TIMP-3 or to identify proteins released by less well characterized TIMP-3 target sheddases whose substrate repertoire is still limited, thus providing novel insights into the physiological and pathological functions of the inhibitor.
Collapse
|
29
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? SCIENCE CHINA. LIFE SCIENCES 2022; 65:236-279. [PMID: 34846643 DOI: 10.1007/s11427-021-1999-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live. Metabolic reprogramming supports tumor cell high demand of biogenesis for their rapid proliferation, and helps tumor cell to survive under certain genetic or environmental stresses. Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes, in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways. Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation. This cancer metabolic phenotype, described firstly by German physiologist Otto Warburg, insures enhanced glycolytic metabolism for the biosynthesis of macromolecules. The conception of metabolite signaling, i.e., metabolites are regulators of cell signaling, provides novel insights into how reactive oxygen species (ROS) and other metabolites deregulation may regulate redox homeostasis, epigenetics, and proliferation of cancer cells. Moreover, the unveiling of noncanonical functions of metabolic enzymes, such as the moonlighting functions of phosphoglycerate kinase 1 (PGK1), reassures the importance of metabolism in cancer development. The metabolic, microRNAs, and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome. Among them, cancer microenvironmental cells are immune cells which exert profound effects on cancer cells. Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Huimin Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wang Pu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongfei Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Jun Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Feng Zhang
- CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Peng Jiang
- Tsinghua University School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Fukuda Y, Tanaka Y, Eto K, Ukai N, Sonobe S, Takahashi H, Ikegami M, Shimoda M. S100-stained perineural invasion is associated with worse prognosis in stage I/II colorectal cancer: Its possible association with immunosuppression in the tumor. Pathol Int 2022; 72:117-127. [PMID: 35007380 DOI: 10.1111/pin.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Perineural invasion (PNI) is known as a poor prognostic factor in colorectal cancer (CRC). Although histopathological evaluation of PNI is usually conducted on hematoxylin and eosin (HE)-stained sections (HE-PNI), it remains controversial whether PNI can be precisely evaluated only by HE-staining, and its concise mechanisms causing worse prognosis remains elusive. In this study, we examined the impact of PNI evaluated by S-100-immunostaining (S100-PNI) on postoperative mortality in 279 consecutive CRC patients and further investigated its association with the tumor immune microenvironment. S100-PNI was present in 67.3% of tumors whereas HE-PNI was present in 18.5%. A 5-year cumulative incidence of death in the S100-PNI-positive group was significantly higher than that in the S100-PNI-negative group. Further statistical analyses revealed that S100-PNI was an independent prognostic factor of all-cause mortality in stage I/II but not in stage III/IV. Importantly, S100-PNI was associated with the altered tumor immune microenvironment. Infiltrating immune cell profiling revealed that stromal lymphocytic reaction, which was inversely correlated with postoperative mortality, was significantly reduced in S100-PNI-positive tumors compared to S100-PNI-negative tumors in stage I/II. These results indicated that S100-PNI was a poor prognostic factor in stage I/II CRC with possible association with immunosuppression in the tumor.
Collapse
Affiliation(s)
- Yumiko Fukuda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Tanaka
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Natsuko Ukai
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoko Sonobe
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
33
|
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021; 18:792-804. [PMID: 34489603 PMCID: PMC8791784 DOI: 10.1038/s41571-021-00546-5] [Citation(s) in RCA: 508] [Impact Index Per Article: 169.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) found in primary and metastatic tumours are highly versatile, plastic and resilient cells that are actively involved in cancer progression through complex interactions with other cell types in the tumour microenvironment. As well as generating extracellular matrix components that contribute to the structure and function of the tumour stroma, CAFs undergo epigenetic changes to produce secreted factors, exosomes and metabolites that influence tumour angiogenesis, immunology and metabolism. Because of their putative pro-oncogenic functions, CAFs have long been considered an attractive therapeutic target; however, clinical trials of treatment strategies targeting CAFs have mostly ended in failure and, in some cases, accelerated cancer progression and resulted in inferior survival outcomes. Importantly, CAFs are heterogeneous cells and their characteristics and interactions with other cell types might change dynamically as cancers evolve. Studies involving single-cell RNA sequencing and novel mouse models have increased our understanding of CAF diversity, although the context-dependent roles of different CAF populations and their interchangeable plasticity remain largely unknown. Comprehensive characterization of the tumour-promoting and tumour-restraining activities of CAF subtypes, including how these complex bimodal functions evolve and are subjugated by neoplastic cells during cancer progression, might facilitate the development of novel diagnostic and therapeutic approaches. In this Review, the clinical relevance of CAFs is summarized with an emphasis on their value as prognosis factors and therapeutic targets.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Villegas-Pineda JC, Lizarazo-Taborda MDR, Ramírez-de-Arellano A, Pereira-Suárez AL. Exosomal miRNAs and lncRNAs: The Modulator Keys of Cancer-Associated Fibroblasts in the Genesis and Progression of Malignant Neoplasms. Front Cell Dev Biol 2021; 9:717478. [PMID: 34912797 PMCID: PMC8667074 DOI: 10.3389/fcell.2021.717478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is made up of a universe of molecular and cellular components that promote or inhibit the development of neoplasms. Among the molecular elements are cytokines, metalloproteinases, proteins, mitochondrial DNA, and nucleic acids, within which the ncRNAs: miRNAs and lncRNAs stand out due to their direct modulating effects on the genesis and progression of various cancers. Regarding cellular elements, the solid tumor microenvironment is made up of tumor cells, healthy adjacent epithelial cells, immune system cells, endothelial cells, and stromal cells, such as cancer-associated fibroblasts, which are capable of generating a modulating communication network with the other components of the tumor microenvironment through, among other mechanisms, the secretion of exosomal vesicles loaded with miRNAs and lncRNAs. These ncRNAs are key pieces in developing neoplasms since they have diverse effects on cancer cells and healthy cells, favoring or negatively regulating protumoral cellular events, such as migration, invasion, proliferation, metastasis, epithelial-mesenchymal transition, and resistance to treatment. Due to the growing number of relevant evidence in recent years, this work focused on reviewing, analyzing, highlighting, and showing the current state of research on exosomal ncRNAs derived from cancer-associated fibroblasts and their effects on different neoplasms. A future perspective on using these ncRNAs as real therapeutic tools in the treatment of cancer patients is also proposed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
35
|
Li D, Lai W, Fan D, Fang Q. Protein biomarkers in breast cancer-derived extracellular vesicles for use in liquid biopsies. Am J Physiol Cell Physiol 2021; 321:C779-C797. [PMID: 34495763 DOI: 10.1152/ajpcell.00048.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their noninvasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Di Fan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Sino-Danish Center for Education and Research, Beijing, People's Republic of China
| |
Collapse
|
36
|
Designer Exosomes: Smart Nano-Communication Tools for Translational Medicine. Bioengineering (Basel) 2021; 8:bioengineering8110158. [PMID: 34821724 PMCID: PMC8615258 DOI: 10.3390/bioengineering8110158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids. They have applications in major diseases, including cancer, cardiovascular diseases, neurological disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the functional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration. In addition to their role as intracellular communication cargos, exosomes are increasingly primed as standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuristic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational medicine. This review discusses the advent transformation of exosomes in regenerative medicine and limitations that are caveats to broader applications in clinical use.
Collapse
|
37
|
Abnormal B-cell development in TIMP-deficient bone marrow. Blood Adv 2021; 5:3960-3974. [PMID: 34500457 PMCID: PMC8945646 DOI: 10.1182/bloodadvances.2020004101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bone marrow (BM) is the primary site of hematopoiesis and is responsible for a lifelong supply of all blood cell lineages. The process of hematopoiesis follows key intrinsic programs that also integrate instructive signals from the BM niche. First identified as an erythropoietin-potentiating factor, the tissue inhibitor of metalloproteinase (TIMP) protein family has expanded to 4 members and has widely come to be viewed as a classical regulator of tissue homeostasis. By virtue of metalloprotease inhibition, TIMPs not only regulate extracellular matrix turnover but also control growth factor bioavailability. The 4 mammalian TIMPs possess overlapping enzyme-inhibition profiles and have never been studied for their cumulative role in hematopoiesis. Here, we show that TIMPs are critical for postnatal B lymphopoiesis in the BM. TIMP-deficient mice have defective B-cell development arising at the pro-B-cell stage. Expression analysis of TIMPless hematopoietic cell subsets pointed to an altered B-cell program in the Lineage-Sca-1+c-Kit+ (LSK) cell fraction. Serial and competitive BM transplants identified a defect in TIMP-deficient hematopoietic stem and progenitor cells for B lymphopoiesis. In parallel, reverse BM transplants uncovered the extrinsic role of stromal TIMPs in pro- and pre-B-cell development. TIMP deficiency disrupted CXCL12 localization to LepR+ cells, and increased soluble CXCL12 within the BM niche. It also compromised the number and morphology of LepR+ cells. These data provide new evidence that TIMPs control the cellular and biochemical makeup of the BM niche and influence the LSK transcriptional program required for optimal B lymphopoiesis.
Collapse
|
38
|
Zhu H, Wang J, Nie W, Armando I, Han F. ADAMs family in kidney physiology and pathology. EBioMedicine 2021; 72:103628. [PMID: 34653870 PMCID: PMC8517843 DOI: 10.1016/j.ebiom.2021.103628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) family are proteolytic transmembrane proteases that modulate diverse cell functions and coordinate intercellular communication. ADAMs are responsible for regulating cell proliferation, differentiation, migration, and organ morphogenesis in kidney development. Abnormally activated ADAMs drive inflammation and fibrosis in response to kidney diseases such as acute kidney injury, diabetic kidney disease, polycystic kidney disease, and chronic allograft nephropathy. ADAM10 and ADAM17, known as the most characterized members of ADAMs, are extensively investigated in kidney diseases. Notably, ADAM proteases have the potential to be targets for developing novel treatment approaches in kidney diseases.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Junni Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wanyun Nie
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ines Armando
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28:984-999. [PMID: 33712707 DOI: 10.1038/s41417-021-00318-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
Tumors are one of the main causes of death in humans. The development of safe and effective methods for early diagnosis and treatment of tumors is a difficult problem that needs to be solved urgently. It is well established that the occurrence of tumors involves complex biological mechanisms, and the tumor microenvironment (TME) plays an important role in regulating the biological behavior of tumors. Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts with significant heterogeneity and plasticity in the tumor microenvironment. They secrete a variety of active factors to regulate tumor occurrence, development, metastasis, and therapeutic resistance. Although most studies suggest that CAFs have significant tumor-promoting functions, some evidence indicates that they may have certain tumor-suppressive functions in the early stage of tumors. Current research on CAFs continues to face many challenges, and the heterogeneity of their origin, phenotype, and function is a major difficulty and hot spot. To provide new perspectives for the research on CAFs and tumor diagnosis and treatment, this review summarizes the definition, origin, biomarkers, generation mechanism, functions, heterogeneity, plasticity, subpopulations, pre-metastasis niches (PMN), immune microenvironment, and targeted therapy of CAFs, describes the research progress and challenges, and proposes possible future research directions based on existing reports.
Collapse
|
40
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
41
|
Wang M, Zhao X, Huang F, Wang L, Huang J, Gong Z, Yu W. Exosomal proteins: Key players mediating pre‑metastatic niche formation and clinical implications (Review). Int J Oncol 2021; 58:4. [PMID: 33649844 DOI: 10.3892/ijo.2021.5184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor metastasis is a destructive characteristic of malignant tumors and the fundamental reason why malignant tumors are difficult to cure. The concept of a pre‑metastatic niche (PMN) provides a novel way to elucidate the molecular mechanism of tumor metastasis. At present, the PMN has been considered as a critical determinant priming distal sites for metastasis. Accumulating evidence has suggested that exosomes are cellular communicators serving a pivotal role in mediating tumor cell metastasis by establishing the PMN. Among exosomal cargos, non‑coding RNAs and proteins are two commonly studied components; however, the latter has received less attention. The present review aimed to summarize the findings regarding cargo proteins selectively loaded in malignant tumor‑derived exosomes. Metastasis‑associated proteins have been demonstrated to be selectively enriched in malignant tumor‑derived exosomes. Exosomal proteins promote PMN formation to mediate the site‑specific metastasis of tumor cells by inducing lymphangiogenesis, angiogenesis and permeability, educating stromal cells, remodeling the extracellular matrix, and suppressing the antitumor immune response. These exosomal proteins have great potential in predicting organ‑directed metastasis and prognosis, as well as in cancer therapy.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Feng Huang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Lin Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiaying Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
42
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
43
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
44
|
Ding J, Shi M, Wang L, Qi D, Tao Z, Hayat MA, Liu T, Zhang JT, Wang H. Gene Expression of Metalloproteinases and Endogenous Inhibitors in the Lamellae of Dairy Heifers With Oligofructose-Induced Laminitis. Front Vet Sci 2020; 7:597827. [PMID: 33426020 PMCID: PMC7786368 DOI: 10.3389/fvets.2020.597827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 12/03/2022] Open
Abstract
Bovine laminitis leads to huge economic losses and animal welfare problems in the dairy industry worldwide. Numerous studies suggested that several metalloproteinases (MPs) may play vital roles in the failure of epidermal attachment. To the best of our knowledge, the present study is the first to investigate and characterize the gene-level changes in distinct MPs and endogenous inhibitors using oligofructose (OF)-induced bovine laminitis model. The objective of this study was to determine aberrant MPs and related inhibitors of bovine laminitis in gene level, and to provide reasonable directions for the further protein-level research. Twelve normal Chinese Holstein dairy heifers were randomly divided into treatment group (n = 6) and control group (n = 6). The heifers in the treatment group were administered with OF solutions at a dose of 17 g/kg of body weight via a stomach tube. The heifers were then humanely euthanized when they met the criteria of bovine laminitis. The heifers in the control group were administered with deionized water at a dose of 2 L/100 kg of body weight. They humanely euthanized at 72 h. The gene expressions of MPs and endogenous inhibitors, namely, matrix metalloproteinases (MMPs), A disintegrin and metalloproteinases (ADAMs), and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs), and tissue inhibitors of metalloproteinases (TIMPs) in the lamellae from two groups were determined via real-time quantitative PCR. The gene expressions of MMP-2, MMP-9, ADAMTS-4, and ADAMTS-5 significantly increased (P < 0.05), whereas that of TIMP-2 significantly decreased (P < 0.05) in the treatment group relative to the control group. No significant difference was found in the gene expressions of ADAM-10, ADAM-17, TIMP-1, and TIMP-3. These results indicated that the gene-level imbalanced condition of MPs and their TIMPs may be the basic cause for the failure of epidermal attachment. At the same time, more detailed protein-level studies would be needed to further clarify the roles of MPs and TIMPs in the pathogenesis of bovine laminitis, especially to MMP-2, MMP-9, ADAMTS-4, ADAMTS-5, TIMP-2 as well as related substrates (e.g., aggrecan and versican).
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Mingxian Shi
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Long Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Dongdong Qi
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Ze Tao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Muhammad A Hayat
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jian-Tao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
45
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
47
|
Chen R, Huang L, Hu K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm Sin B 2020; 10:2140-2155. [PMID: 33304782 PMCID: PMC7714988 DOI: 10.1016/j.apsb.2020.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance. Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy. Recently, through modulating cancer-associated fibroblasts (CAFs) which are the most abundant cell type among all stromal cells, natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells, showing promising ability to improve treatment effects on desmoplastic tumors. In this review, we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products, highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.
Collapse
Affiliation(s)
- Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
48
|
Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol Int 2020; 71:1-14. [PMID: 33074556 DOI: 10.1111/pin.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteolytic balance is crucial for the maintenance of tissue homeostasis. In cancer, dysregulated proteolysis is involved in unregulated tissue remodeling and inflammation, leading to the promotion of tumor growth, local invasion, and metastasis. Metalloproteinases, which were first identified as collagen cleaving enzymes, have been shown to extensively degrade extracellular matrix proteins or selectively release cell surface-bound cytokines, growth factors, or their receptors, thereby impacting extracellular matrix integrity, immune cell recruitment and tissue turnover. Although tumor cells produce various metalloproteinases, the major source is thought to be stromal cells infiltrating the tumor. Different types of stromal cells express specific sets of metalloproteinases and their inhibitors, which specifically alter the milieu within the tumor. In this review, recent findings and knowledge regarding metalloproteinases derived from stromal cells during the creation of the tumor microenvironment are described and their contribution to the tumor progression and metastasis discussed.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Choi JU, Park IK, Lee YK, Hwang SR. The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21197363. [PMID: 33028046 PMCID: PMC7582692 DOI: 10.3390/ijms21197363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapeutics must be delivered to their targets for improving efficacy and reducing toxicity, though they encounter physiological barriers in the tumor microenvironment. They also face limitations associated with genetic instability and dynamic changes of surface proteins in cancer cells. Nanosized exosomes generated from the endosomal compartment, however, transfer their cargo to the recipient cells and mediate the intercellular communication, which affects malignancy progression, tumor immunity, and chemoresistance. In this review, we give an overview of exosomes' biological aspects and therapeutic potential as diagnostic biomarkers and drug delivery vehicles for oncotherapy. Furthermore, we discuss whether exosomes could contribute to personalized cancer immunotherapy drug design as efficient nanocommunicators.
Collapse
Affiliation(s)
- Jeong Uk Choi
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea;
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6365
| |
Collapse
|
50
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|