1
|
Wang D, Haposan T, Fan J, Arramel, Wee ATS. Recent Progress of Imaging Chemical Bonds by Scanning Probe Microscopy: A Review. ACS NANO 2024; 18:30919-30942. [PMID: 39475528 DOI: 10.1021/acsnano.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
In the past decades, the invention of scanning probe microscopy (SPM) as the versatile surface-based characterization of organic molecules has triggered significant interest throughout multidisciplinary fields. In particular, the bond-resolved imaging acquired by SPM techniques has extended its fundamental function of not only unraveling the chemical structure but also allowing us to resolve the structure-property relationship. Here, we present a systematical review on the history of chemical bonds imaged by means of noncontact atomic force microscopy (nc-AFM) and bond-resolved scanning tunneling microscopy (BR-STM) techniques. We first summarize the advancement of real-space imaging of covalent bonds and the investigation of intermolecular noncovalent bonds. Beyond the bond imaging, we also highlight the applications of the bond-resolved SPM techniques such as on-surface synthesis, the determination of the reaction pathway, the identification of molecular configurations and unknown products, and the generation of artificial molecules created via tip manipulation. Lastly, we discuss the current status of SPM techniques and highlight several key technical challenges that must be solved in the coming years. In comparison to the existing reviews, this work invokes researchers from surface science, chemistry, condensed matter physics, and theoretical physics to uncover the bond-resolved SPM technique as an emerging tool in exploiting the molecule/surface system and their future applications.
Collapse
Affiliation(s)
- Dingguan Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Tobias Haposan
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Jinwei Fan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
2
|
Mallada B, Villalobos F, Donoso B, Casares R, Longhi G, Mendieta-Moreno JI, Jiménez-Martín A, Haïdour A, Seepersaud R, Rajagopal L, de la Torre B, Millán A, Cuerva JM. Single-Molecule Identification of the Isomers of a Lipidic Antibody Activator. J Phys Chem Lett 2024; 15:6935-6942. [PMID: 38935930 PMCID: PMC11247479 DOI: 10.1021/acs.jpclett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Molecular structural elucidation can be accomplished by different techniques, such as nuclear magnetic resonance or X-ray diffraction. However, the former does not give information about the three-dimensional atomic arrangement, and the latter needs crystallizable solid samples. An alternative is direct, real-space visualization of the molecules by cryogenic scanning tunneling microscopy (STM). This technique is usually limited to thermally robust molecules because an annealing step is required for sample deposition. A landmark development has been the coupling of STM with electrospray deposition (ESD), which smooths the process and widens the scope of the visualization technique. In this work, we present the on-surface characterization of air-, light-, and temperature-sensitive rhamnopolyene with relevance in molecular biology. Supported by theoretical calculations, we characterize two isomers of this flexible molecule, confirming the potential of the technique to inspect labile, non-crystallizable compounds.
Collapse
Affiliation(s)
- Benjamin Mallada
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Federico Villalobos
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Donoso
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Raquel Casares
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Giovanna Longhi
- Dipartimento
di Medicina Molecolare e Traslazionale, Universitá di Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Jesús I. Mendieta-Moreno
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Alejandro Jiménez-Martín
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Ali Haïdour
- Unidad
de Resonancia Magnética Nuclear, Centro de Instrumentación
Científica, Universidad de Granada, Paseo Juan Osorio s/n, 18071 Granada, Spain
| | - Ravin Seepersaud
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Lakshmi Rajagopal
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98105, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98105, United States
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Alba Millán
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
Jacobse PH, Sarker M, Saxena A, Zahl P, Wang Z, Berger E, Aluru NR, Sinitskii A, Crommie MF. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400473. [PMID: 38412424 DOI: 10.1002/smll.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.
Collapse
Affiliation(s)
- Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Berger
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Kurki L, Oinonen N, Foster AS. Automated Structure Discovery for Scanning Tunneling Microscopy. ACS NANO 2024; 18:11130-11138. [PMID: 38644571 PMCID: PMC11064214 DOI: 10.1021/acsnano.3c12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Scanning tunneling microscopy (STM) with a functionalized tip apex reveals the geometric and electronic structures of a sample within the same experiment. However, the complex nature of the signal makes images difficult to interpret and has so far limited most research to planar samples with a known chemical composition. Here, we present automated structure discovery for STM (ASD-STM), a machine learning tool for predicting the atomic structure directly from an STM image, by building upon successful methods for structure discovery in noncontact atomic force microscopy (nc-AFM). We apply the method on various organic molecules and achieve good accuracy on structure predictions and chemical identification on a qualitative level while highlighting future development requirements for ASD-STM. This method is directly applicable to experimental STM images of organic molecules, making structure discovery available for a wider scanning probe microscopy audience outside of nc-AFM. This work also allows more advanced machine learning methods to be developed for STM structure discovery.
Collapse
Affiliation(s)
- Lauri Kurki
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
| | - Niko Oinonen
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
- Nanolayers
Research Computing Ltd., London N12 0HL, U.K.
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Kinikar A, Wang XY, Di Giovannantonio M, Urgel JI, Liu P, Eimre K, Pignedoli CA, Stolz S, Bommert M, Mishra S, Sun Q, Widmer R, Qiu Z, Narita A, Müllen K, Ruffieux P, Fasel R. Sterically Selective [3 + 3] Cycloaromatization in the On-Surface Synthesis of Nanographenes. ACS NANOSCIENCE AU 2024; 4:128-135. [PMID: 38644965 PMCID: PMC11027121 DOI: 10.1021/acsnanoscienceau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/23/2024]
Abstract
Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Xiao-Ye Wang
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marco Di Giovannantonio
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - José I. Urgel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pengcai Liu
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kristjan Eimre
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Samuel Stolz
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Max Bommert
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Qiang Sun
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roland Widmer
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Zijie Qiu
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-Universität
Mainz, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Pan WC, Mützel C, Haldar S, Hohmann H, Heinze S, Farrell JM, Thomale R, Bode M, Würthner F, Qi J. Diboraperylene Diborinic Acid Self-Assembly on Ag(111)-Kagome Flat Band Localized States Imaged by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202400313. [PMID: 38316614 DOI: 10.1002/anie.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Replacement of sp2-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant pz-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca. 0.33 eV above the Fermi level which is localized at the molecule center, in good agreement with tight-binding model calculations of flat bands characteristic for kagome lattices.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Carina Mützel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Soumyajyoti Haldar
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Hendrik Hohmann
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefan Heinze
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Jeffrey M Farrell
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Department of Chemistry, National Taiwan University, Roosevelt Road, 10617, Taipei, Taiwan
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Bode
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Jing Qi
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Wang L, Peng X, Su J, Wang J, Gallardo A, Yang H, Chen Q, Lyu P, Jelínek P, Liu J, Wong MW, Lu J. Highly Selective On-Surface Ring-Opening of Aromatic Azulene Moiety. J Am Chem Soc 2024; 146:1563-1571. [PMID: 38141030 DOI: 10.1021/jacs.3c11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| |
Collapse
|
8
|
Hamadeh A, Palmino F, Mathurin J, Deniset-Besseau A, Grosnit L, Luzet V, Jeannoutot J, Dazzi A, Chérioux F. Toward conformational identification of molecules in 2D and 3D self-assemblies on surfaces. Commun Chem 2023; 6:246. [PMID: 37951991 PMCID: PMC10640604 DOI: 10.1038/s42004-023-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
The design of supramolecular networks based on organic molecules deposited on surfaces, is highly attractive for various applications. One of the remaining challenges is the expansion of monolayers to well-ordered multilayers in order to enhance the functionality and complexity of self-assemblies. In this study, we present an assessment of molecular conformation from 2D to 3D supramolecular networks adsorbed onto a HOPG surface under ambient conditions utilizing a combination of scanning probe microscopies and atomic force microscopy- infrared (AFM-IR). We have observed that the infrared (IR) spectra of the designed molecules vary from layer to layer due to the modifications in the dihedral angle between the C=O group and the neighboring phenyl ring, especially in the case of a 3D supramolecular network consisting of multiple layers of molecules.
Collapse
Affiliation(s)
- Ali Hamadeh
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Frank Palmino
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Jérémie Mathurin
- Université de Paris-Saclay, Institut de Chimie-Physique, F-91400, Orsay, France
| | | | - Louis Grosnit
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | - Vincent Luzet
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France
| | | | - Alexandre Dazzi
- Université de Paris-Saclay, Institut de Chimie-Physique, F-91400, Orsay, France
| | - Frédéric Chérioux
- Université de Franche-Comté, FEMTO-ST, CNRS, F-25000, Besançon, France.
| |
Collapse
|
9
|
Calupitan JP, Berdonces-Layunta A, Aguilar-Galindo F, Vilas-Varela M, Peña D, Casanova D, Corso M, de Oteyza DG, Wang T. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. NANO LETTERS 2023; 23:9832-9840. [PMID: 37870305 PMCID: PMC10722538 DOI: 10.1021/acs.nanolett.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Tao Wang
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
10
|
Okabayashi N, Frederiksen T, Liebig A, Giessibl FJ. Dynamic Friction Unraveled by Observing an Unexpected Intermediate State in Controlled Molecular Manipulation. PHYSICAL REVIEW LETTERS 2023; 131:148001. [PMID: 37862665 DOI: 10.1103/physrevlett.131.148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/22/2023]
Abstract
The pervasive phenomenon of friction has been studied at the nanoscale via a controlled manipulation of single atoms and molecules with a metallic tip, which enabled a precise determination of the static friction force necessary to initiate motion. However, little is known about the atomic dynamics during manipulation. Here, we reveal the complete manipulation process of a CO molecule on a Cu(110) surface at low temperatures using a combination of noncontact atomic force microscopy and density functional theory simulations. We found that an intermediate state, inaccessible for the far-tip position, is enabled in the reaction pathway for the close-tip position, which is crucial to understanding the manipulation process, including dynamic friction. Our results show how friction forces can be controlled and optimized, facilitating new fundamental insights for tribology.
Collapse
Affiliation(s)
- Norio Okabayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Alexander Liebig
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg D-93053, Germany
| | - Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg D-93053, Germany
| |
Collapse
|
11
|
Seibel J, Fittolani G, Mirhosseini H, Wu X, Rauschenbach S, Anggara K, Seeberger PH, Delbianco M, Kühne TD, Schlickum U, Kern K. Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High-Resolution STM Imaging. Angew Chem Int Ed Engl 2023; 62:e202305733. [PMID: 37522820 DOI: 10.1002/anie.202305733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.
Collapse
Affiliation(s)
- Johannes Seibel
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- Current address: Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Giulio Fittolani
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Hossein Mirhosseini
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, 33098, Paderborn, Germany
| | - Xu Wu
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Oxford, OX13TA, Oxford, UK
| | - Kelvin Anggara
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Martina Delbianco
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, 33098, Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz Zentrum Dresden-Rossendorf, 02826, Görlitz, Germany
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Wu F, Barragán A, Gallardo A, Yang L, Biswas K, Écija D, Mendieta-Moreno JI, Urgel JI, Ma J, Feng X. Structural Expansion of Cyclohepta[def]fluorene towards Azulene-Embedded Non-Benzenoid Nanographenes. Chemistry 2023; 29:e202301739. [PMID: 37339368 DOI: 10.1002/chem.202301739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid non-alternant nanographenes (NGs) have attracted increasing attention on account of their distinct electronic and structural features in comparison to their isomeric benzenoid counterparts. In this work, we present a series of unprecedented azulene-embedded NGs on Au(111) during the attempted synthesis of cyclohepta[def]fluorene-based high-spin non-Kekulé structure. Comprehensive scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) evidence the structures and conformations of these unexpected products. The dynamics of the precursor bearing 9-(2,6-dimethylphenyl)anthracene and dihydro-dibenzo-cyclohepta[def]fluorene units and its reaction products on the surface are analyzed by density functional theory (DFT) and molecular dynamics (MD) simulations. Our study sheds light on the fundamental understanding of precursor design for the fabrication of π-extended non-benzenoid NGs on a metal surface.
Collapse
Affiliation(s)
- Fupeng Wu
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús I Mendieta-Moreno
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) &, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
13
|
Du Q, Su X, Liu Y, Jiang Y, Li C, Yan K, Ortiz R, Frederiksen T, Wang S, Yu P. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat Commun 2023; 14:4802. [PMID: 37558678 PMCID: PMC10412602 DOI: 10.1038/s41467-023-40542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.
Collapse
Affiliation(s)
- Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xuelei Su
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ricardo Ortiz
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
14
|
Litman Y, Bonafé FP, Akkoush A, Appel H, Rossi M. First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images. J Phys Chem Lett 2023; 14:6850-6859. [PMID: 37487223 PMCID: PMC10405274 DOI: 10.1021/acs.jpclett.3c01216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations that can simulate the Raman scattering process and provide an unambiguous interpretation of TERS images often rely on crude approximations of the local electric field. In this work, we present a novel and first-principles-based method to compute TERS images by combining Time Dependent Density Functional Theory (TD-DFT) and Density Functional Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields. We present TERS results on free-standing benzene and C60 molecules, and on the TCNE molecule adsorbed on Ag(100). We demonstrate that chemical effects on chemisorbed molecules, often ignored in TERS simulations of larger systems, dramatically change the TERS images. This observation calls for the inclusion of chemical effects for predictive theory-experiment comparisons and an understanding of molecular motion at the nanoscale.
Collapse
Affiliation(s)
- Yair Litman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Franco P. Bonafé
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alaa Akkoush
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Heiko Appel
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Mariana Rossi
- MPI
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
15
|
Néel N, Kröger J. Orbital and Skeletal Structure of a Single Molecule on a Metal Surface Unveiled by Scanning Tunneling Microscopy. J Phys Chem Lett 2023; 14:3946-3952. [PMID: 37078645 DOI: 10.1021/acs.jpclett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Atomic-scale spatial characteristics of a phthalocyanine orbital and skeleton are obtained on a metal surface with a scanning tunneling microscope and a CO-functionalized tip. Intriguingly, the high spatial resolution of the intramolecular electronic patterns is achieved without resonant tunneling into the orbital and despite the hybridization of the molecule with the reactive Cu substrate. The resolution can be fine-tuned by the tip-molecule distance, which controls the p-wave and s-wave contribution of the molecular probe to the imaging process. The detailed structure is deployed to minutely track the translation of the molecule in a reversible interconversion of rotational variants and to quantify relaxations of the adsorption geometry. Entering into the Pauli repulsion imaging mode, the intramolecular contrast loses its orbital character and reflects the molecular skeleton instead. The assignment of pyrrolic-hydrogen sites becomes possible, which in the orbital patterns remains elusive.
Collapse
Affiliation(s)
- Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
16
|
Herrero-Gómez P, Calupitan JP, Ilyn M, Berdonces-Layunta A, Wang T, de Oteyza DG, Corso M, González-Moreno R, Rivilla I, Aparicio B, Aranburu AI, Freixa Z, Monrabal F, Cossío FP, Gómez-Cadenas JJ, Rogero C. Ba +2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector. Nat Commun 2022; 13:7741. [PMID: 36517491 PMCID: PMC9750972 DOI: 10.1038/s41467-022-35153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping.
Collapse
Affiliation(s)
- P Herrero-Gómez
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
| | - J P Calupitan
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
| | - M Ilyn
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
| | - A Berdonces-Layunta
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
| | - T Wang
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
| | - D G de Oteyza
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48009, Spain
| | - M Corso
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
| | - R González-Moreno
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
| | - I Rivilla
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48009, Spain
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU), San Sebastián, E-20018, Spain
| | - B Aparicio
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU), San Sebastián, E-20018, Spain
| | - A I Aranburu
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián, E-20018, Spain
| | - Z Freixa
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48009, Spain
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián, E-20018, Spain
| | - F Monrabal
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48009, Spain
| | - F P Cossío
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU), San Sebastián, E-20018, Spain
| | - J J Gómez-Cadenas
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48009, Spain
| | - C Rogero
- Centro de Física de Materiales (CSIC-UPV/EHU), San Sebastián, E-20018, Spain.
- Donostia International Physics Center (DIPC), San Sebastián, E-20018, Spain.
| |
Collapse
|
17
|
Burgo TL, Pereira GKR, Iglesias BA, Moreira KS, Valandro LF. AFM advanced modes for dental and biomedical applications. J Mech Behav Biomed Mater 2022; 136:105475. [PMID: 36195052 DOI: 10.1016/j.jmbbm.2022.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022]
Abstract
Several analytical methods have been employed to elucidate bonding mechanisms between dental hard tissues, luting agents and restorative materials. Atomic Force Microscopy (AFM) imaging that has been extensively used in materials science, but its full capabilities are poorly explored by dental research community. In fact, commonly used to obtain topographic images of different surfaces, it turns out that AFM is an underestimated technique considering that there are dozens of basic and advanced modes that are scarcely used to explain properties of biomaterials. Thus, this paper addresses the use of phase-contrast imaging, force-distance curves, nanomechanical and Kelvin probe force techniques during AFM analysis to explore topological, nanomechanical and electrical properties of Y-TZP samples modified by different surface treatments, which has been widely used to promote adhesive enhancements to such substrate. The AFM methods are capable of access erstwhile inaccessible properties of Y-TZP which allowed us to describe its adhesive properties correctly. Thus, AFM technique emerges as a key tool to investigate the complex nature of biomaterials and highlighting its inherent interdisciplinarity that can be successfully used for bridging fragmented disciplines such as solid-state physics, microbiology and dental sciences.
Collapse
Affiliation(s)
- ThiagoA L Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose do Rio Preto, São Paulo State, Brazil.
| | - Gabriel Kalil Rocha Pereira
- MSciD and Ph.D. Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Bernardo Almeida Iglesias
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Kelly S Moreira
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| | - Luiz Felipe Valandro
- MSciD and Ph.D. Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul State, Brazil.
| |
Collapse
|
18
|
Small molecule binding to surface-supported single-site transition-metal reaction centres. Nat Commun 2022; 13:7407. [PMID: 36456555 PMCID: PMC9715722 DOI: 10.1038/s41467-022-35193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Despite dominating industrial processes, heterogeneous catalysts remain challenging to characterize and control. This is largely attributable to the diversity of potentially active sites at the catalyst-reactant interface and the complex behaviour that can arise from interactions between active sites. Surface-supported, single-site molecular catalysts aim to bring together benefits of both heterogeneous and homogeneous catalysts, offering easy separability while exploiting molecular design of reactivity, though the presence of a surface is likely to influence reaction mechanisms. Here, we use metal-organic coordination to build reactive Fe-terpyridine sites on the Ag(111) surface and study their activity towards CO and C2H4 gaseous reactants using low-temperature ultrahigh-vacuum scanning tunnelling microscopy, scanning tunnelling spectroscopy, and atomic force microscopy supported by density-functional theory models. Using a site-by-site approach at low temperature to visualize the reaction pathway, we find that reactants bond to the Fe-tpy active sites via surface-bound intermediates, and investigate the role of the substrate in understanding and designing single-site catalysts on metallic supports.
Collapse
|
19
|
Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene. Nat Commun 2022; 13:1796. [PMID: 35379784 PMCID: PMC8979967 DOI: 10.1038/s41467-022-29445-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B–O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.
Collapse
|
20
|
Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P. On-surface synthesis of triangulene trimers via dehydration reaction. Nat Commun 2022; 13:1705. [PMID: 35361812 PMCID: PMC8971457 DOI: 10.1038/s41467-022-29371-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Triangulene and its homologues are of considerable interest for molecular spintronics due to their high-spin ground states as well as the potential for constructing high spin frameworks. Realizing triangulene-based high-spin system on surface is challenging but of particular importance for understanding π-electron magnetism. Here, we report two approaches to generate triangulene trimers on Au(111) by using surface-assisted dehydration and alkyne trimerization, respectively. We find that the developed dehydration reaction shows much higher chemoselectivity thus resulting in significant promotion of product yield compared to that using alkyne trimerization approach, through cutting the side reaction path. Combined with spin-polarized density functional theory calculations, scanning tunneling spectroscopy measurements identify the septuple (S = 3) high-spin ground state and quantify the collective ferromagnetic interaction among three triangulene units. Our results demonstrate the approaches to fabricate high-quality triangulene-based high spin systems and understand their magnetic interactions, which are essential for realizing carbon-based spintronic devices.
Collapse
Affiliation(s)
- Suqin Cheng
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhijie Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Longjun Xiang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Youqi Ke
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Kaking Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
21
|
Schultz JF, Li L, Mahapatra S, Jiang N. Chemically imaging nanostructures formed by the covalent assembly of molecular building blocks on a surface with ultrahigh vacuum tip-enhanced Raman spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204008. [PMID: 35196263 DOI: 10.1088/1361-648x/ac57d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Surface-bound reactions have become a viable method to develop nanoarchitectures through bottom-up assembly with near atomic precision. However, the bottom-up fabrication of nanostructures on surfaces requires careful consideration of the intrinsic properties of the precursors and substrate as well as the complex interplay of any interactions that arise in the heterogeneous two-dimensional (2D) system. Therefore, it becomes necessary to consider these systems with characterization methods sensitive to such properties with suitable spatial resolution. Here, low temperature ultrahigh vacuum scanning tunneling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS) were used to investigate the formation of 2D covalent networks via coupling reactions of tetra(4-bromophenyl)porphyrin (Br4TPP) molecules on a Ag(100) substrate. Through the combination of STM topographic imaging and TERS vibrational fingerprints, the conformation of molecular precursors on the substrate was understood. Following the thermally activated coupling reaction, STM and TERS imaging confirm the covalent nature of the 2D networks and suggest that the apparent disorder arises from molecular flexibility.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| | - Linfei Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| |
Collapse
|
22
|
Field emission microscope for a single fullerene molecule. Sci Rep 2022; 12:2714. [PMID: 35177727 PMCID: PMC8854663 DOI: 10.1038/s41598-022-06670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear. These phenomena were first observed seventy years ago. However, the source of these emission patterns has not yet been identified owing to the limited experimental information about molecular configurations on a tip. Here, we used fullerene molecules and characterized the molecule-covered tip by an FEM. In addition to the experiments, simulations were performed to obtain optimized molecular configurations on a tip. Both results indicate that the molecules, the source of the peculiar emission patterns, appear on a molecule layer formed on the tip under strong DC electric fields. Furthermore, the simulations revealed that these molecules are mostly isolated single molecules forming single-molecule-terminated protrusions. Upon the excellent agreements in both results, we concluded that each emission pattern originates from a single molecule. Our work should pave the way to revive old-fashioned electron microscopy as a powerful tool for investigating a single molecule.
Collapse
|
23
|
Lu S, Huang M, Huang G, Guo Q, Li H, Deng J, Zhang C, Yu Y. Two 'braking mechanisms' for tin phthalocyanine molecular rotors on dipolar iron oxide surfaces. NANOSCALE ADVANCES 2022; 4:1213-1219. [PMID: 36131761 PMCID: PMC9417875 DOI: 10.1039/d1na00588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/10/2021] [Indexed: 06/15/2023]
Abstract
Manipulation of artificial molecular rotors/motors is a key issue in the field of molecular nanomachines. Here we assemble non-planar SnPc molecules on an FeO film to form two kinds of rotors with different apparent morphologies, rotational speeds and stabilities. Both kinds of rotors can switch to each other via external field stimulation and the switch depends on the polarity of the applied bias voltage. Furthermore, we reveal that the molecular fragment has a great influence on the motions of molecules. Combining scanning tunneling microscopy and DFT calculations, two braking mechanisms are addressed for molecular rotors. One is the transformation of adsorption configurations under the external electric field stimulus that enables the molecular rotor to stop/restart its rotation. The other is the introduction of embedded molecular fragments that act as a brake pad and can stop the molecular rotation. We find that the rotation can be recovered by separating the molecule from the fragments. Our study suggests a good system for manipulating molecular rotors' properties in nanophysics and has important value for the design of controllable molecular machines.
Collapse
Affiliation(s)
- Shuangzan Lu
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Min Huang
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| | - Guodong Huang
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| | - Qinmin Guo
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology Wuhan 430081 China
| | - Hongxing Li
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology Changsha 410114 China
| | - Jinghao Deng
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Chendong Zhang
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Yinghui Yu
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| |
Collapse
|
24
|
Drechsel C, D’Astolfo P, Liu JC, Glatzel T, Pawlak R, Meyer E. Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1-9. [PMID: 35059274 PMCID: PMC8744454 DOI: 10.3762/bjnano.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Topological superconductivity emerging in one- or two-dimensional hybrid materials is predicted as a key ingredient for quantum computing. However, not only the design of complex heterostructures is primordial for future applications but also the characterization of their electronic and structural properties at the atomic scale using the most advanced scanning probe microscopy techniques with functionalized tips. We report on the topographic signatures observed by scanning tunneling microscopy (STM) of carbon monoxide (CO) molecules, iron (Fe) atoms and sodium chloride (NaCl) islands deposited on superconducting Pb(111). For the CO adsorption a comparison with the Pb(110) substrate is demonstrated. We show a general propensity of these adsorbates to diffuse at low temperature under gentle scanning conditions. Our findings provide new insights into high-resolution probe microscopy imaging with terminated tips, decoupling atoms and molecules by NaCl islands or tip-induced lateral manipulation of iron atoms on top of the prototypical Pb(111) superconducting surface.
Collapse
Affiliation(s)
- Carl Drechsel
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Philipp D’Astolfo
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Jung-Ching Liu
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Rémy Pawlak
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Biswas K, Urgel JI, Xu K, Ma J, Sánchez‐Grande A, Mutombo P, Gallardo A, Lauwaet K, Mallada B, Torre B, Matěj A, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. On‐Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - José I. Urgel
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Kun Xu
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ana Sánchez‐Grande
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University CZ-180 00 Praha Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Benjamin Mallada
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Bruno Torre
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco 28049 Madrid Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
- Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - David Écija
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
26
|
Biswas K, Urgel JI, Xu K, Ma J, Sánchez‐Grande A, Mutombo P, Gallardo A, Lauwaet K, Mallada B, de la Torre B, Matěj A, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. On-Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angew Chem Int Ed Engl 2021; 60:25551-25556. [PMID: 34546628 PMCID: PMC9298296 DOI: 10.1002/anie.202111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/30/2023]
Abstract
The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp2 -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG. Kelvin probe force microscopy measurements reveal a considerable variation of the local contact potential difference toward lower values with respect to the gold surface, indicative of its positive net charge. Altogether, we introduce the concept of cationic nitrogen doping of NGs on surfaces, opening new avenues for the design of novel carbon nanostructures.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - José I. Urgel
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Kun Xu
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | | | - Pingo Mutombo
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles UniversityCZ-180 00PrahaCzech Republic
| | - Koen Lauwaet
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Benjamin Mallada
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Bruno de la Torre
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Adam Matěj
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSICCantoblanco28049MadridSpain
| | - Rodolfo Miranda
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - David Écija
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
27
|
Zahl P, Yakutovich AV, Ventura-Macías E, Carracedo-Cosme J, Romero-Muñiz C, Pou P, Sadowski JT, Hybertsen MS, Pérez R. Hydrogen bonded trimesic acid networks on Cu(111) reveal how basic chemical properties are imprinted in HR-AFM images. NANOSCALE 2021; 13:18473-18482. [PMID: 34580697 DOI: 10.1039/d1nr04471k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High resolution non-contact atomic force microscopy measurements characterize assemblies of trimesic acid molecules on Cu(111) and the link group interactions, providing the first fingerprints utilizing CO-based probes for this widely studied paradigm for hydrogen bond driven molecular self assembly. The enhanced submolecular resolution offered by this technique uniquely reveals key aspects of the competing interactions. Accurate comparison between full-density-based modeled images and experiment allows to identify key structural elements in the assembly in terms of the electron-withdrawing character of the carboxylic groups, interactions of those groups with Cu atoms in the surface, and the valence electron density in the intermolecular region of the hydrogen bonds. This study of trimesic acid assemblies on Cu(111) combining high resolution atomic force microscopy measurements with theory and simulation forges clear connections between fundamental chemical properties of molecules and key features imprinted in force images with submolecular resolution.
Collapse
Affiliation(s)
- Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Aliaksandr V Yakutovich
- Swiss Federal Laboratories for Materials Science and Technology (Empa), nanotech@surfaces laboratory, CH-8600 Dübendorf, Switzerland
| | - Emiliano Ventura-Macías
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jaime Carracedo-Cosme
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Quasar Science Resources S.L., Camino de las Ceudas 2, E-28232 Las Rozas, Madrid, Spain
| | - Carlos Romero-Muñiz
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, E-41013, Seville, Spain
| | - Pablo Pou
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Jerzy T Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Mark S Hybertsen
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| |
Collapse
|
28
|
Zeng Q, Huang Q, Wang H, Li C, Fan Z, Chen D, Cheng Y, Zeng K. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non-Contact Heterodyne Electrostrain Force Microscopy. SMALL METHODS 2021; 5:e2100639. [PMID: 34927968 DOI: 10.1002/smtd.202100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Indexed: 06/14/2023]
Abstract
Perceiving nanoscale ferroelectric phenomena from real space is of great importance for elucidating underlying ferroelectric physics. During the past decades, nanoscale ferroelectric characterization has mainly relied on the Piezoresponse Force Microscopy (PFM) invented in 1992, however, the fundamental limitations of PFM have made the nanoscale ferroelectric studies encounter significant bottlenecks. In this study, a high-resolution non-contact ferroelectric measurement, named Non-Contact Heterodyne Electrostrain Force Microscopy (NC-HEsFM), is introduced. It is demonstrated that NC-HEsFM can operate on multiple eigenmodes to perform ideal high-resolution ferroelectric domain mapping, standard ferroelectric hysteresis loop measurement, and controllable domain manipulation. By using a quartz tuning fork (QTF) sensor, multi-frequency operation, and heterodyne detection schemes, NC-HEsFM achieves a real non-contact yet non-destructive ferroelectric characterization with negligible electrostatic force effect and hence breaks the fundamental limitations of the conventional PFM. It is believed that NC-HEsFM can be extensively used in various ferroelectric or piezoelectric studies with providing substantially improved characterization performance. Meanwhile, the QTF-based force detection makes NC-HEsFM highly compatible for high-vacuum and low-temperature environments, providing ideal conditions for investigating the intrinsic ferroelectric phenomena with the possibility of achieving an atomically resolved ferroelectric characterization.
Collapse
Affiliation(s)
- Qibin Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Qicheng Huang
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Hongli Wang
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Caiwen Li
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Deyang Chen
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yuan Cheng
- Institute of High-Performance Computing, Agency for Science Technology and Research, Singapore, 138632, Singapore
- Monash Suzhou Research Institute, Suzhou, 215123, China
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS (Suzhou) Research Institute (NUSRI), Suzhou, 215123, China
| |
Collapse
|
29
|
Peng J, Sokolov S, Hernangómez-Pérez D, Evers F, Gross L, Lupton JM, Repp J. Atomically resolved single-molecule triplet quenching. Science 2021; 373:452-456. [PMID: 34437120 DOI: 10.1126/science.abh1155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023]
Abstract
The nonequilibrium triplet state of molecules plays an important role in photocatalysis, organic photovoltaics, and photodynamic therapy. We report the direct measurement of the triplet lifetime of an individual pentacene molecule on an insulating surface with atomic resolution by introducing an electronic pump-probe method in atomic force microscopy. Strong quenching of the triplet lifetime is observed if oxygen molecules are coadsorbed in close proximity. By means of single-molecule manipulation techniques, different arrangements with oxygen molecules were created and characterized with atomic precision, allowing for the direct correlation of molecular arrangements with the lifetime of the quenched triplet. Such electrical addressing of long-lived triplets of single molecules, combined with atomic-scale manipulation, offers previously unexplored routes to control and study local spin-spin interactions.
Collapse
Affiliation(s)
- Jinbo Peng
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany.
| | - Sophia Sokolov
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany
| | - Daniel Hernangómez-Pérez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ferdinand Evers
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Leo Gross
- IBM Research-Zurich, 8803 Rüschlikon, Switzerland
| | - John M Lupton
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany
| | - Jascha Repp
- Institute for Experimental and Applied Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
30
|
Pawlak R, Liu X, Ninova S, D'Astolfo P, Drechsel C, Liu JC, Häner R, Decurtins S, Aschauer U, Liu SX, Meyer E. On-Surface Synthesis of Nitrogen-Doped Kagome Graphene. Angew Chem Int Ed Engl 2021; 60:8370-8375. [PMID: 33507589 DOI: 10.1002/anie.202016469] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Indexed: 11/08/2022]
Abstract
Nitrogen-doped Kagome graphene (N-KG) has been theoretically predicted as a candidate for the emergence of a topological band gap as well as unconventional superconductivity. However, its physical realization still remains very elusive. Here, we report on a substrate-assisted reaction on Ag(111) for the synthesis of two-dimensional graphene sheets possessing a long-range honeycomb Kagome lattice. Low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) with a CO-terminated tip supported by density functional theory (DFT) are employed to scrutinize the structural and electronic properties of the N-KG down to the atomic scale. We demonstrate its semiconducting character due to the nitrogen doping as well as the emergence of Kagome flat bands near the Fermi level which would open new routes towards the design of graphene-based topological materials.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Xunshan Liu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Silviya Ninova
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Philipp D'Astolfo
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Carl Drechsel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Jung-Ching Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| |
Collapse
|
31
|
Pawlak R, Liu X, Ninova S, D'Astolfo P, Drechsel C, Liu J, Häner R, Decurtins S, Aschauer U, Liu S, Meyer E. On‐Surface Synthesis of Nitrogen‐Doped Kagome Graphene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rémy Pawlak
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Xunshan Liu
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silviya Ninova
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Philipp D'Astolfo
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Carl Drechsel
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Jung‐Ching Liu
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Silvio Decurtins
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Shi‐Xia Liu
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ernst Meyer
- Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
| |
Collapse
|
32
|
Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh MJ, Edmonds M, Jelínek P, Wu J, Lu J. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. SCIENCE ADVANCES 2021; 7:7/3/eabf0269. [PMID: 33523911 PMCID: PMC7810380 DOI: 10.1126/sciadv.abf0269] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/20/2020] [Indexed: 05/16/2023]
Abstract
On-surface synthesis has revealed remarkable potential in the fabrication of atomically precise nanographenes. However, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to a limited yield of target nanographene products. Here, we devise a strategy for the ultrahigh-yield synthesis of circumcoronene molecules on Cu(111) via surface-assisted intramolecular dehydrogenation of the rationally designed precursor, followed by methyl radical-radical coupling and aromatization. An elegant electrostatic interaction between circumcoronenes and metallic surface drives their self-organization into an extended superlattice, as revealed by bond-resolved scanning probe microscopy measurements. Density functional theory and tight-binding calculations reveal that unique hexagonal zigzag topology of circumcoronenes, along with their periodic electrostatic landscape, confines two-dimensional electron gas in Cu(111) into a chiral electronic Kagome-honeycomb lattice with two emergent electronic flat bands. Our findings open up a new route for the high-yield fabrication of elusive nanographenes with zigzag topologies and their superlattices with possible nontrivial electronic properties.
Collapse
Affiliation(s)
- Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
- Department of Petrochemistry and Refining, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Diego Soler-Polo
- Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Spain
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mark Edmonds
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
33
|
Larson AM, Balema TA, Zahl P, Schilling AC, Stacchiola DJ, Sykes ECH. Hypothetical Efficiency of Electrical to Mechanical Energy Transfer during Individual Stochastic Molecular Switching Events. ACS NANO 2020; 14:16558-16564. [PMID: 32946215 DOI: 10.1021/acsnano.0c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.
Collapse
Affiliation(s)
- Amanda M Larson
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Tedros A Balema
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex C Schilling
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
34
|
Su X, Li C, Du Q, Tao K, Wang S, Yu P. Atomically Precise Synthesis and Characterization of Heptauthrene with Triplet Ground State. NANO LETTERS 2020; 20:6859-6864. [PMID: 32787160 DOI: 10.1021/acs.nanolett.0c02939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By virtue of multitunable spin structures upon designing the π-electron topologies, phenalenyl-based nanographenes are of substantial interest in fundamental science and for potential applications in spintronics. Heptauthrene, as one of the well-known phenalenyl diradicals, is composed of one benzene-fused bisphenalenyls in mirror symmetry and expected to have a triplet ground state. However, the synthesis of unsubstituted heptauthrene remains very challenging due to the high reactivity of triplet diradicals. Here, we report a combined in-solution and on-surface synthesis of unsubstituted heptauthrene, whose chemical structure is characterized through bond-resolved atomic force microscopy. Combined with mean-field Hubbard model calculations, its triplet ground state is unambiguously confirmed by the underscreened Kondo resonance in response to the magnetic field, as well as the engineered spin-state switching upon extra hydrogen atom addition and dissociation on the radical site. Our results provide access to phenalenyl-based nanographenes with high-spin ground state, potentially useful in constructing high-spin networks.
Collapse
Affiliation(s)
- Xuelei Su
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Kun Tao
- Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, 730000 LanZhou, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
35
|
Investigating effects of silicon nanowire and nanohole arrays on fibroblasts via AFAM. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01470-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
37
|
Song S, Guo N, Li X, Li G, Haketa Y, Telychko M, Su J, Lyu P, Qiu Z, Fang H, Peng X, Li J, Wu X, Li Y, Su C, Koh MJ, Wu J, Maeda H, Zhang C, Lu J. Real-Space Imaging of a Single-Molecule Monoradical Reaction. J Am Chem Soc 2020; 142:13550-13557. [PMID: 32633951 DOI: 10.1021/jacs.0c05337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic radicals consisting of light elements exhibit a low spin-orbit coupling and weak hyperfine interactions with a long spin coherence length, which are crucial for future applications in molecular spintronics. However, the synthesis and characterization of these organic radicals have been a formidable challenge due to their chemical instability arising from unpaired electrons. Here, we report a direct imaging of the surface chemical transformation of an organic monoradical synthesized via the monodehydrogenation of a chemically designed precursor. Bond-resolved scanning tunneling microscopy unambiguously resolves various products formed through a complex structural dissociation and rearrangement of organic monoradicals. Density functional theory calculations reveal detailed reaction pathways from the monoradical to different cyclized products. Our study provides unprecedented insights into complex surface reaction mechanisms of organic radical reactions at the single molecule level, which may guide the design of stable organic radicals for future quantum technology applications.
Collapse
Affiliation(s)
- Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Na Guo
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Xinzhe Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hanyan Fang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinbang Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ying Li
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Chenliang Su
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Chun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
38
|
Lohr TG, Urgel JI, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli CA, Fasel R, Feng X. On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. J Am Chem Soc 2020; 142:13565-13572. [DOI: 10.1021/jacs.0c05668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thorsten G. Lohr
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany
| | - José I. Urgel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Reinhard Berger
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany
| |
Collapse
|
39
|
Su J, Wu X, Song S, Telychko M, Lu J. Substrate induced strain for on-surface transformation and synthesis. NANOSCALE 2020; 12:7500-7508. [PMID: 32227066 DOI: 10.1039/d0nr01270j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intermolecular strain has long been used to steer and promote chemical reactions towards desired products in wet chemical synthesis. However, similar protocols have not been adopted for the on-surface synthesis on solid substrates due to the complexity of reaction processes. Recent advances in the sub-molecular resolution with scanning probe microscopy allow us to capture on-surface reaction pathways and to gain substantial insights into the role of strain in chemical reactions. The primary focus of this review is to highlight the recent findings on strain-induced on-surface reactions. Such substrate-induced processes can be applied to alter the chemical reactivity and to drive on-surface chemical reactions in different manners, which provides a promising alternative approach for on-surface synthesis. This review aims to shed light on the utilization of substrate-induced strain for on-surface transformation and synthesis of atomically-precise novel functional nanomaterials.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | | | | | | | | |
Collapse
|
40
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020; 59:7658-7668. [DOI: 10.1002/anie.201913783] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
41
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
42
|
Alldritt B, Hapala P, Oinonen N, Urtev F, Krejci O, Federici Canova F, Kannala J, Schulz F, Liljeroth P, Foster AS. Automated structure discovery in atomic force microscopy. SCIENCE ADVANCES 2020; 6:eaay6913. [PMID: 32133405 PMCID: PMC7043916 DOI: 10.1126/sciadv.aay6913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/04/2019] [Indexed: 05/12/2023]
Abstract
Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental technique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecules due to difficulties with interpretation of highly distorted AFM images originating from nonplanar molecules. Here, we develop a deep learning infrastructure that matches a set of AFM images with a unique descriptor characterizing the molecular configuration, allowing us to predict the molecular structure directly. We apply this methodology to resolve several distinct adsorption configurations of 1S-camphor on Cu(111) based on low-temperature AFM measurements. This approach will open the door to applying high-resolution AFM to a large variety of systems, for which routine atomic and chemical structural resolution on the level of individual objects/molecules would be a major breakthrough.
Collapse
Affiliation(s)
- Benjamin Alldritt
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Prokop Hapala
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Niko Oinonen
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Fedor Urtev
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Department of Computer Science, Aalto University, 00076 Aalto, Espoo, Finland
| | - Ondrej Krejci
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Filippo Federici Canova
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Nanolayers Research Computing Ltd., London, UK
| | - Juho Kannala
- Department of Computer Science, Aalto University, 00076 Aalto, Espoo, Finland
| | - Fabian Schulz
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| | - Peter Liljeroth
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Corresponding author. (P.L.); (A.S.F.)
| | - Adam S. Foster
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128, Germany
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Corresponding author. (P.L.); (A.S.F.)
| |
Collapse
|
43
|
Recent advances in atomic imaging of organic-inorganic hybrid perovskites. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Truhlar DG, Hiberty PC, Shaik S, Gordon MS, Danovich D. Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Donald G. Truhlar
- Department of Chemistry Chemical Theory Center, and Minnesota Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455-0431 USA
| | - Philippe C. Hiberty
- Laboratoire de Chimie Physique, CNRS UMR8000, Bat. 349 Université de Paris-Sud 91405 Orsay Cédex France
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Givant-Ram Campus Jerusalem 9190407 Israel
| | - Mark S. Gordon
- Department of Chemistry Iowa State University and Ames Laboratory Ames IA 50014 USA
| | - David Danovich
- Institute of Chemistry The Hebrew University of Jerusalem Givant-Ram Campus Jerusalem 9190407 Israel
| |
Collapse
|
45
|
Truhlar DG, Hiberty PC, Shaik S, Gordon MS, Danovich D. Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments. Angew Chem Int Ed Engl 2019; 58:12332-12338. [PMID: 31081208 DOI: 10.1002/anie.201904609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 11/10/2022]
Abstract
Electron momentum spectroscopy, scanning tunneling microscopy, and photoelectron spectroscopy provide unique information about electronic structure, but their interpretation has been controversial. This essay discusses a framework for interpretation. Although this interpretation is not new, we believe it is important to present this framework in light of recent publications. The key point is that these experiments provide information about how the electron distribution changes upon ionization, not how electrons behave in the pre-ionized state. Therefore, these experiments do not lead to a "selection of the correct orbitals" in chemistry and do not overturn the well-known conclusion that both delocalized molecular orbitals and localized molecular orbitals are useful for interpreting chemical structure and dynamics. The two types of orbitals can produce identical total molecular electron densities and therefore molecular properties. Different types of orbitals are useful for different purposes.
Collapse
Affiliation(s)
- Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455-0431, USA
| | - Philippe C Hiberty
- Laboratoire de Chimie Physique, CNRS UMR8000, Bat. 349, Université de Paris-Sud, 91405, Orsay Cédex, France
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givant-Ram Campus, Jerusalem, 9190407, Israel
| | - Mark S Gordon
- Department of Chemistry, Iowa State University and Ames Laboratory, Ames, IA, 50014, USA
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Givant-Ram Campus, Jerusalem, 9190407, Israel
| |
Collapse
|
46
|
Su J, Telychko M, Hu P, Macam G, Mutombo P, Zhang H, Bao Y, Cheng F, Huang ZQ, Qiu Z, Tan SJR, Lin H, Jelínek P, Chuang FC, Wu J, Lu J. Atomically precise bottom-up synthesis of π-extended [5]triangulene. SCIENCE ADVANCES 2019; 5:eaav7717. [PMID: 31360763 PMCID: PMC6660211 DOI: 10.1126/sciadv.aav7717] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/20/2019] [Indexed: 05/10/2023]
Abstract
The zigzag-edged triangular graphene molecules (ZTGMs) have been predicted to host ferromagnetically coupled edge states with the net spin scaling with the molecular size, which affords large spin tunability crucial for next-generation molecular spintronics. However, the scalable synthesis of large ZTGMs and the direct observation of their edge states have been long-standing challenges because of the molecules' high chemical instability. Here, we report the bottom-up synthesis of π-extended [5]triangulene with atomic precision via surface-assisted cyclodehydrogenation of a rationally designed molecular precursor on metallic surfaces. Atomic force microscopy measurements unambiguously resolve its ZTGM-like skeleton consisting of 15 fused benzene rings, while scanning tunneling spectroscopy measurements reveal edge-localized electronic states. Bolstered by density functional theory calculations, our results show that [5]triangulenes synthesized on Au(111) retain the open-shell π-conjugated character with magnetic ground states.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Pan Hu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Gennevieve Macam
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pingo Mutombo
- Institute of Physics, The Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Hejian Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yang Bao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Fang Cheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Zhi-Quan Huang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Zhizhan Qiu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sherman J. R. Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, Prague 16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc 78371, Czech Republic
| | - Feng-Chuan Chuang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
47
|
Brozena AH, Kim M, Powell LR, Wang Y. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat Rev Chem 2019; 3:375-392. [PMID: 32789186 PMCID: PMC7418925 DOI: 10.1038/s41570-019-0103-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previously unwelcome, defects are emerging as a new frontier of research, providing a molecular focal point to study the coupling of electrons, excitons, phonons and spin in low-dimensional materials. This opportunity is particularly intriguing in semiconducting single-walled carbon nanotubes, in which covalently bonding organic functional groups to the sp 2 carbon lattice can produce tunable sp 3 quantum defects that fluoresce brightly in the shortwave IR, emitting pure single photons at room temperature. These novel physical properties have made such synthetic defects, or 'organic colour centres', exciting new systems for chemistry, physics, materials science, engineering and quantum technologies. This Review examines progress in this emerging field and presents a unified description of this new family of quantum emitters, as well as providing an outlook of the rapidly expanding research and applications of synthetic defects.
Collapse
Affiliation(s)
- Alexandra H. Brozena
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Lyndsey R. Powell
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park,
MD, USA
| |
Collapse
|
48
|
Sarsa A, Alcaraz-Pelegrina JM, Le Sech C. Exclusion principle repulsion effects on the covalent bond beyond the Born-Oppenheimer approximation. Phys Chem Chem Phys 2019; 21:10411-10416. [PMID: 31065634 DOI: 10.1039/c9cp01063g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The changes in the covalent bond of the hydrogen molecule limited in space by a spherical hard boundary are studied. The sphere is moved along an axis parallel or orthogonal to the molecular axis. The diffusion Monte Carlo approach is used to solve the Schrödinger equation with the relevant boundary conditions and to evaluate the changes in the bond energy versus the location of the sphere. The vertical and lateral quantum forces exerted on the sphere are evaluated by calculating the energy derivative versus the distances to the sphere. The results show that the quantum forces present an important dependence on the distance and vanish rapidly as the separation between the sphere and the molecule increases. In the limiting case the molecular bond breaks due to the electronic depletion induced in the covalent bond. An application of this study is the modelisation of the forces exerted on the passivated cantilever of an atomic force microscope probing the electron cloud in the contact mode in the Pauli exclusion regime.
Collapse
Affiliation(s)
- A Sarsa
- Departamento de Física, Campus de Rabanales Edif. C2, Universidad de Córdoba, E-14071 Córdoba, Spain.
| | | | | |
Collapse
|
49
|
Chang CO, Chang-Chien WT, Song JP, Zhou C, Huang BS. Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force. SENSORS 2019; 19:s19081948. [PMID: 31027253 PMCID: PMC6514747 DOI: 10.3390/s19081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
A self-sensing and self-actuating quartz tuning fork (QTF) can be used to obtain its frequency shift as function of the tip-sample distance. Once the function of the frequency shift versus force gradient is acquired, the combination of these two functions results in the relationship between the force gradient and the tip-sample distance. Integrating the force gradient once and twice elucidates the values of the interaction force and the interatomic potential, respectively. However, getting the frequency shift as a function of the force gradient requires a physical model which can describe the equations of motion properly. Most papers have adopted the single harmonic oscillator model, but encountered the problem of determining the spring constant. Their methods of finding the spring constant are very controversial in the research community and full of discrepancies. By circumventing the determination of the spring constant, we propose a method which models the prongs and proof mass as elastic bodies. Through the use of Hamilton's principle, we can obtain the equations of motion of the QTF, which is subject to Lennard-Jones potential force. Solving these equations of motion analytically, we get the relationship between the frequency shift and force gradient.
Collapse
Affiliation(s)
- Chia-Ou Chang
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Wen-Tien Chang-Chien
- Department of Information Technology and Management, Fooyin University, Tai-Liao, Kaohsiung 831, Taiwan.
| | - Jia-Po Song
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Chuang Zhou
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Bo-Shiun Huang
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
50
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|