1
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
2
|
Li XH, Lee SH, Lu QY, Zhan CL, Lee GH, Kim JD, Sim JM, Song HJ, Cui XS. MAT2A is essential for zygotic genome activation by maintaining of histone methylation in porcine embryos. Theriogenology 2024; 230:81-90. [PMID: 39276507 DOI: 10.1016/j.theriogenology.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/18/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is an essential enzyme in the methionine cycle that generates S-adenosylmethionine (SAM) by reacting with methionine and ATP. SAM acts as a methyl donors for histone and DNA methylation, which plays key roles in zygotic genome activation (ZGA). However, the effects of MAT2A on porcine ZGA remain unclear. To investigate the function of MAT2A and its underlying mechanism in porcine ZGA, MAT2A was knocked down by double-stranded RNA injection at the 1-cell stage. MAT2A is highly expressed at every stage of porcine embryo development. The percentages of four-cell-stage embryos and blastocysts were lower in the MAT2A-knockdown (KD) group than in the control group. Notably, depletion of MAT2A decreased the levels of H3K4me2, H3K9me2/3, and H3K27me3 at the four-cell stage, whereas MAT2A KD reduced the transcriptional activity of ZGA genes. MAT2A KD decreased embryonic ectoderm development (EED) and enhancer of zeste homolog 2 (EZH2) expression. Exogenous SAM supplementation rescued histone methylation levels and developmental arrest induced by MAT2A KD. Additionally, MAT2A KD significantly increased DNA damage and apoptosis. In conclusion, MAT2A is involved in regulating transcriptional activity and is essential for regulating histone methylation during porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyeon-Ji Song
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
3
|
Dyachenko EI, Bel’skaya LV. Salivary Transmembrane Mucins of the MUC1 Family (CA 15-3, CA 27.29, MCA) in Breast Cancer: The Effect of Human Epidermal Growth Factor Receptor 2 (HER2). Cancers (Basel) 2024; 16:3461. [PMID: 39456554 PMCID: PMC11506585 DOI: 10.3390/cancers16203461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The MUC1 family of transmembrane glycoproteins (CA 15-3, CA 27.29, MCA) is aberrantly expressed among patients with breast cancer. Objectives: to measure the level of degradation products of MUC1, including CA 15-3, CA 27.29, and MCA, in the saliva of breast cancer patients and to describe the biochemical processes that influence their expression and the regulation of their biological functions. Methods: The case-control study included three groups (breast cancer, fibroadenomas, and healthy controls). All study participants provided saliva samples strictly before starting treatment. The levels of MUC1, including CA 15-3, CA 27.29, and MCA, free progesterone and estradiol, cytokines (MCP-1, VEGF, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18), and amino acids (Asp, Gln, Gly, His, Leu + Ile, Orn, Phe, Pro, Tyr) were determined. Results: It was shown that the levels of the MUC1 family in the saliva of patients with HER2-positive breast cancer were significantly lower compared to the control group. The level of pro-inflammatory cytokines and the level of free estradiol affected the expression of MUC1. We obtained a reliable relationship between the aggressive nature of tumor growth, an increased level of pro-inflammatory cytokines, a low level of free estradiol, and the suppressed expression of salivary MUC1. Conclusions: Among patients with aggressive breast cancer, a high level of pro-inflammatory cytokines, and a low level of free estradiol, there was an inhibition of the expression of pathologically unchanged glycoprotein MUC1 in saliva.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
4
|
Ueno M, Sugiyama H, Li F, Nishimura T, Arakawa H, Chen X, Cheng X, Takeuchi S, Takeshita Y, Takamura T, Miyagi S, Toyama T, Soga T, Masuo Y, Kato Y, Nakamura H, Tsujiguchi H, Hara A, Tajima A, Noguchi-Shinohara M, Ono K, Kurayoshi K, Kobayashi M, Tadokoro Y, Kasahara A, Shoulkamy MI, Maeda K, Ogoshi T, Hirao A. A Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite. Anal Chem 2024; 96:14499-14507. [PMID: 39183562 DOI: 10.1021/acs.analchem.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metabolic abnormalities play a pivotal role in various pathological conditions, necessitating the quantification of specific metabolites for diagnosis. While mass spectrometry remains the primary method for metabolite measurement, its limited throughput underscores the need for biosensors capable of rapid detection. Previously, we reported that pillar[6]arene with 12 carboxylate groups (P6AC) forms host-guest complexes with 1-methylnicotinamide (1-MNA), which is produced in vivo by nicotinamide N-methyltransferase (NNMT). P6AC acts as a biosensor by measuring the fluorescence quenching caused by photoinduced electron transfer upon 1-MNA binding. However, the low sensitivity of P6AC makes it impractical for detecting 1-MNA in unpurified biological samples. In this study, we found that P6A with 12 sulfonate groups (P6AS) is a specific and potent supramolecular host for 1-MNA interactions even in biological samples. The 1-MNA binding affinity of P6AS in water was found to be (5.68 ± 1.02) × 106 M-1, which is approximately 700-fold higher than that of P6AC. Moreover, the 1-MNA detection limit of P6AS was determined to be 2.84 × 10-7 M, which is substantially lower than that of P6AC. Direct addition of P6AS to culture medium was sufficient to quantify 1-MNA produced by cancer cells. Furthermore, this sensor was able to specifically detect 1-MNA even in unpurified human urine. P6AS therefore enables rapid and high-throughput quantification of 1-MNA, and further improvement of our strategy will contribute to the establishment of high-throughput screening of NNMT inhibitors, diagnosis of liver diseases, and imaging of human cancer cells in vivo.
Collapse
Affiliation(s)
- Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Sugiyama
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Feng Li
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsuya Nishimura
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Xiaoxiao Cheng
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shinji Takeuchi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Medical Oncology Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tadashi Toyama
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji-mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud I Shoulkamy
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Xu W, Hou L. Knockdown of nicotinamide N-methyltransferase ameliorates renal fibrosis caused by ischemia-reperfusion injury and remodels sphingosine metabolism. Clin Exp Nephrol 2024:10.1007/s10157-024-02545-z. [PMID: 39168882 DOI: 10.1007/s10157-024-02545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND CKD currently affects 8.2% to 9.1% of the global population and the CKD mortality rate has increased during recent decades, making it necessary to identify new therapeutic targets. This study investigated the role of nicotinamide N-methyltransferase (NNMT) in renal fibrosis following ischemia-reperfusion injury (IRI), a key factor in chronic kidney disease (CKD) progression. METHODS We established a mouse model with a knockdown of NNMT to investigate the impact of this enzyme on renal fibrosis after unilateral IRI. We then utilized histology, immunohistochemistry, and metabolomic analyses to investigate fibrosis markers and sphingolipid metabolism in NNMT-deficient mice. We also utilized an Nnmt lentivirus interference vector or an Nnmt overexpression plasmid to transfect mouse kidney proximal tubule cells, stimulated these cells with TGF-β1, and then measured the pro-fibrotic response and the expression of the methylated and unmethylated forms of Sphk1. RESULTS The results demonstrated that reducing NNMT expression mitigated fibrosis, inflammation, and lipid deposition, potentially through the modulation of sphingolipid metabolism. Histology, immunohistochemistry, and metabolomic analyses provided evidence of decreased fibrosis and enhanced sphingolipid metabolism in NNMT-deficient mice. NNMT mediated the TGF-β1-induced pro-fibrotic response, knockdown of Nnmt decreased the level of unmethylated Sphk1 and increased the level of methylated Sphk1 in renal tubular epithelial cells. CONCLUSIONS Our findings suggest that NNMT functions in sphingolipid metabolism and has potential as a therapeutic target for CKD. Further research is needed to elucidate the mechanisms linking NNMT to sphingolipid metabolism and renal fibrosis.
Collapse
Affiliation(s)
- Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, China.
| |
Collapse
|
7
|
Wei W, Lu Y, Zhang M, Guo J, Zhang H. Identifying polyamine related biomarkers in diagnosis and treatment of ulcerative colitis by integrating bulk and single-cell sequencing data. Sci Rep 2024; 14:18094. [PMID: 39103474 PMCID: PMC11300856 DOI: 10.1038/s41598-024-69322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon, and its pathogenesis remains unclear. Polyamine metabolic enzymes play a crucial role in UC. In this study, we aimed to identify pivotal polyamine-related genes (PRGs) and explore the underlying mechanism between PRGs and the disease status and therapeutic response of UC. We analyzed mRNA-sequencing data and clinical information of UC patients from the GEO database and identified NNMT, PTGS2, TRIM22, TGM2, and PPARG as key PRGs associated with active UC using differential expression analysis and weighted gene co-expression network analysis (WCGNA). Receiver operator characteristic curve (ROC) analysis confirmed the accuracy of these key genes in UC and colitis-associated colon cancer (CAC) diagnosis, and we validated their relationship with therapeutic response in external verification sets. Additionally, single-cell analysis revealed that the key PRGs were specific to certain immune cell types, emphasizing the vital role of intestinal tissue stem cells in active UC. The results were validated in vitro and in vivo experiments, including the colitis mice model and CAC mice model. In conclusion, these key PRGs effectively predict the progression of UC patients and could serve as new pharmacological biomarkers for the therapeutic response of UC.
Collapse
Affiliation(s)
- Wanhui Wei
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JinKun Guo
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Wang J, Dou P, Sun Y, Zheng J, Wu G, Liu H, Tao L. Epigenetic dysregulated long non-coding RNAs in renal cell carcinoma based on multi-omics data and their influence on target drugs sensibility. Front Genet 2024; 15:1406150. [PMID: 39156959 PMCID: PMC11327069 DOI: 10.3389/fgene.2024.1406150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Epigenetic modifications play a crucial role in cancer development, and our study utilized public data to analyze which leads to the discovery of significant epigenetic abnormalities in lncRNAs, offering valuable insights into prognosis and treatment strategies for renal carcinoma. Methods Public data were obtained from the Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) database. The analysis of the online public data was all completed in R software. Results We discovered a great number of epigenetic abnormalities of lncRNA in renal cancer, which is achieved by comparing the following modification and methylation of histone region changes on the promoter and enhancer of lncRNA: H3K27ac, H3K4me1, H3K4me3. As a result, 12 specific epigenetic disorders of lncRNA genes in renal cancer were identified. Finally, based on this lncRNA, we investigated the prognosis of renal cancer samples, among which 8 lncRNA can be seen as markers of prognosis in renal cancer, which had great prediction ability for ccRCC prognosis. Meanwhile, high risk score may pose response better to axitinib and nilotinib, but not sorafenib or sunitinib. Beyond, we observed an elevated level of risk score in immunotherapy non-responders. Further, biological enrichment and immuno-infiltration analysis was conducted to investigate the fundamental differences between patients categorized as high or low risk. Conclusion Our research improves the understanding in the function of epigenetic dysregulated long non-coding RNAs in renal carcinoma.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Pingnan Dou
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Sun
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jie Zheng
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Guanwei Wu
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Heqian Liu
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Lingsong Tao
- Department of Urology, The Second People’s Hospital of Wuhu, Wuhu, China
| |
Collapse
|
9
|
Wang X, Zhao H, Luo X, Chen Y, Shi C, Wang Y, Bai J, Shao Z, Shang Z. NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis. Oncogene 2024; 43:2647-2660. [PMID: 39069579 DOI: 10.1038/s41388-024-03112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are known to promote angiogenesis in oral squamous cell carcinoma (OSCC). However, the epigenetic mechanisms through which CAFs facilitate angiogenesis within the tumor microenvironment are still poorly characterized. Nicotinamide N'-methyltransferase (NNMT), a member of the N-methyltransferase family, was found to be a key molecule in the activation of CAFs. This study shows that NNMT in fibroblasts contributes to angiogenesis and tumor growth through an epigenetic reprogramming-ETS2-VEGFA signaling axis in OSCC. Single-cell RNA Sequencing (scRNA-seq) analysis suggests that NNMT is mainly highly expressed in fibroblasts of head and neck squamous cell carcinoma (HNSCC). Moreover, analysis of the TCGA database and multiple immunohistochemical staining of clinical samples also identified a positive correlation between NNMT and tumor angiogenesis. This research further employed an assembled organoid model and a fibroblast-endothelial cell co-culture model to authenticate the proangiogenic ability of NNMT. At the molecular level, high expression of NNMT in CAFs was found to promote ETS2 expression by regulating H3K27 methylation level through mediating methylation deposition. Furthermore, ETS2 was verified to be an activating transcription factor of VEGFA in this study. Collectively, our findings delineate an epigenetic molecular regulatory network of angiogenesis and provide a theoretical basis for exploring new targets and clinical strategy in OSCC.
Collapse
Affiliation(s)
- Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinyue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Congyu Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Naughton KJ, Song X, Childress AR, Skaggs EM, Byrd AL, Gosser CM, Esoe DP, DuCote TJ, Plaugher DR, Lukyanchuk A, Goettl RA, Liu J, Brainson CF. Methionine Restriction Reduces Lung Cancer Progression and Increases Chemotherapy Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599795. [PMID: 38979225 PMCID: PMC11230185 DOI: 10.1101/2024.06.25.599795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting tumor metabolism through dietary interventions is an area of growing interest, and may help to improve the significant mortality of aggressive cancers, including non-small cell lung cancer (NSCLC). Here we show that the restriction of methionine in the aggressive KRAS/Lkb1-mutant NSCLC autochthonous mouse model drives decreased tumor progression and increased carboplatin treatment efficacy. Importantly, methionine restriction during early stages of tumorigenesis prevents the lineage switching known to occur in the model, and alters the tumor immune microenvironment (TIME) to have fewer tumor-infiltrating neutrophils. Mechanistically, mutations in LKB1 are linked to anti-oxidant production through changes to cystathionine-β-synthase (CBS) expression. Human cell lines with rescued LKB1 show increased CBS levels and resistance to carboplatin, which can be partially rescued by methionine restriction. Furthermore, LKB1 rescued cells, but not mutant cells, show less G2-M arrest and apoptosis in high methionine conditions. Knock-down of CBS sensitized both LKB1 mutant and non-mutated lines to carboplatin, again rescuing the carboplatin resistance of the LKB1 rescued lines. Given that immunotherapy is commonly combined with chemotherapy for NSCLC, we next wanted to understand if T cells are impaired by MR. Therefore, we examined the ability of T cells from MR and control tumor bearing mice to proliferate in culture and found that T cells from MR treated mice had no defects in proliferation, even though we continued the MR conditions ex vivo. We also identified that CBS is most highly correlated with smoking, adenocarcinomas with alveolar and bronchiolar features, and adenosquamous cell carcinomas, implicating its roles in oxidative stress response and lineage fate in human tumors. Taken together, we have shown the importance of MR as a dietary intervention to slow tumor growth and improve treatment outcomes for NSCLC.
Collapse
Affiliation(s)
- Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Erika M Skaggs
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Aria L Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Tanner J DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
| | - Ryan A Goettl
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
- Department of Internal Medicine, University of Kentucky, Lexington KY 40536
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington KY 40536
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
- Corresponding author
| |
Collapse
|
11
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
12
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Xiong Z, Fang Y, Lu S, Sun Q, Sun Y, Yang P, Huang J. Exploring the Relevance of Disulfidptosis to the Pathophysiology of Ulcerative Colitis by Bioinformatics Analysis. J Inflamm Res 2024; 17:2757-2774. [PMID: 38737111 PMCID: PMC11088416 DOI: 10.2147/jir.s454668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Ulcerative colitis (UC) is a nonspecific inflammatory disease confined to the intestinal mucosa and submucosa, and its prevalence significantly increases each year. Disulfidptosis is a recently discovered new form of cell death that has been suggested to be involved in multiple diseases. The aim of this study was to explore the relevance of disulfidptosis in UC. Methods First, the UC datasets were downloaded from the Gene Expression Omnibus (GEO) database, and UC samples were typed based on upregulated disulfidptosis-related genes (DRGs). Then, weighted gene co-expression network analysis (WGCNA) was performed on the datasets and molecular subtypes of UC, respectively, to obtain candidate signature genes. After validation of the validation set and qRT-PCR, we constructed a nomogram model by signature genes to predict the risk of UC. Finally, single-cell sequencing analysis was used to study the heterogeneity of UC and to demonstrate the expression of DRGs and signature genes at the single-cell level. Results A total of 7 DRGs were significantly upregulated in the expression profiles of UC, and 180 UC samples were divided into two subtypes based on these DRGs. Five candidate signature genes were obtained by intersecting two key gene modules selected by WGCNA. After evaluation, four signature genes with diagnostic relevance (COL4A1, PRRX1, NNMT, and PECAM1) were eventually identified. The nomogram model showed excellent prediction ability. Finally, in the single-cell analysis, there were eight cell types (including B cells, T cells, monocyte, smooth muscle cells, epithelial cells, neutrophil, endothelial cells and NK cells) were identified. The signature genes were significantly expressed mainly in endothelial cells and smooth muscle cells. Conclusion In this study, subtypes related to disulfidptosis were identified, and single-cell analysis was performed to understand the pathogenesis of UC from a new perspective. Four signature genes were screened and a prediction model with high accuracy was established. This provides novel insights for early diagnosis and therapeutic targets in UC.
Collapse
Affiliation(s)
- Zhe Xiong
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Fang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuangshuang Lu
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Qiuyue Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yuhui Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Pengcheng Yang
- Department of Gastroenterology, Hengshanqiao People’s Hospital, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jin Huang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
14
|
Pozzi V, Molinelli E, Campagna R, Serritelli EN, Cecati M, De Simoni E, Sartini D, Goteri G, Martin NI, van Haren MJ, Salvolini E, Simonetti O, Offidani A, Emanuelli M. Knockdown of nicotinamide N-methyltransferase suppresses proliferation, migration, and chemoresistance of Merkel cell carcinoma cells in vitro. Hum Cell 2024; 37:729-738. [PMID: 38504052 PMCID: PMC11016511 DOI: 10.1007/s13577-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, with a propensity for early metastasis. Therefore, early diagnosis and the identification of novel targets become fundamental. The enzyme nicotinamide N-methyltransferase (NNMT) catalyzes the reaction of N-methylation of nicotinamide and other analogous compounds. Although NNMT overexpression was reported in many malignancies, the significance of its dysregulation in cancer cell phenotype was partly clarified. Several works demonstrated that NNMT promotes cancer cell proliferation, migration, and chemoresistance. In this study, we investigated the possible involvement of this enzyme in MCC. Preliminary immunohistochemical analyses were performed to evaluate NNMT expression in MCC tissue specimens. To explore the enzyme function in tumor cell metabolism, MCC cell lines have been transfected with plasmids encoding for short hairpin RNAs (shRNAs) targeting NNMT mRNA. Preliminary immunohistochemical analyses showed elevated NNMT expression in MCC tissue specimens. The effect of enzyme downregulation on cell proliferation, migration, and chemosensitivity was then evaluated through MTT, trypan blue, and wound healing assays. Data obtained clearly demonstrated that NNMT knockdown is associated with a decrease of cell proliferation, viability, and migration, as well as with enhanced sensitivity to treatment with chemotherapeutic drugs. Taken together, these results suggest that NNMT could represent an interesting MCC biomarker and a promising target for targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy.
| | - Emma N Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Edoardo De Simoni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy.
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Oriana Simonetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131, Ancona, Italy
| |
Collapse
|
15
|
Türkmen O, Müftüoğlu KH, Dinçer N, Çelik ZE, Akar Inan S. NNMT overexpression is an adverse prognostic factor in uterine leiomyosarcoma. Turk J Med Sci 2024; 54:804-810. [PMID: 39295619 PMCID: PMC11407357 DOI: 10.55730/1300-0144.5852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/23/2024] [Accepted: 04/16/2024] [Indexed: 09/21/2024] Open
Abstract
Background/aim Uterine leiomyosarcomas (uLMS) are extremely rare high-grade tumors with a poor prognosis. Their etiopathogenesis remains largely unknown. The uterus is the most frequent site for LMS. uLMS and uterine leiomyoma (uLM) must frequently be differentiated in patients with a uterine mass. Nicotinamide N-methyltransferase (NNMT), a cytoplasmic protein, is involved in the progression and spread of a variety of cancer types. The expression of NNMT in a mesenchymal malignancy was not examined previously. This study represents the first investigation into NNMT expression in uLMS, uLM and benign uterine myometrium and correlates NNMT overexpression with worse prognosis in uLMS. Materials and methods The expression of NNMT was investigated by immunohistochemistry on formalin-fixed paraffin-embedded tissue of uLMS in 31 patients, uLM in seven patients and benign myometrial in 31 patients. Results The expression of NNMT in uLMS was markedly higher than in uLM and normal myometrial tissue (p < 0.001). The expression of NNMT in early stage uLMS was lower than in advanced stage disease (p = 0.034). NNMT expression was an independent prognostic factor in predicting recurrence-free survival in uLMS (p = 0.037). Conclusion NNMT can aid in the preoperative differentiation of uLMS and uLM. The consequences of NNMT overexpression, such as the activation and inactivation of oncoproteins and tumor suppressor proteins, respectively, as well as the enrichment of the cancer stem cell population, overlap with the major mechanisms responsible for poor prognosis in mesenchymal tumors. NNMT may be investigated further in the context of antitumor treatment in patients with mesenchymal malignancies.
Collapse
Affiliation(s)
- Osman Türkmen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Turkiye
| | | | - Nazmiye Dinçer
- Department of Pathology, Ankara Bilkent City Hospital, Ankara, Turkiye
| | - Zeliha Esin Çelik
- Department of Pathology, Faculty of Medicine, Selçuk University, Konya, Turkiye
| | - Serra Akar Inan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara Turkiye
| |
Collapse
|
16
|
Ma Y, Huang X, Wang Y, Lei Y, Yu J, Yu S, Gao Y, Yang J, Zhao F, Yu H, Zeng J, Chu Y, Yang M, Li G, Xie X, Zhang J. NNMT/1-MNA Promote Cell-Cycle Progression of Breast Cancer by Targeting UBC12/Cullin-1-Mediated Degradation of P27 Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305907. [PMID: 38126621 PMCID: PMC10916551 DOI: 10.1002/advs.202305907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Cell cycle dysregulation is a defining feature of breast cancer. Here, 1-methyl-nicotinamide (1-MNA), metabolite of nicotinamide N-methyltransferase(NNMT) is identified, as a novel driver of cell-cycle progression in breast cancer. NNMT, highly expressed in breast cancer tissues, positively correlates with tumor grade, TNM stage, Ki-67 index, and tumor size. Ablation of NNMT expression dramatically suppresses cell proliferation and causes cell-cycle arrest in G0/G1 phase. This phenomenon predominantly stems from the targeted action of 1-MNA, resulting in a specific down-regulation of p27 protein expression. Mechanistically, 1-MNA expedites the degradation of p27 proteins by enhancing cullin-1 neddylation, crucial for the activation of Cullin-1-RING E3 ubiquitin ligase(CRL1)-an E3 ubiquitin ligase targeting p27 proteins. NNMT/1-MNA specifically up-regulates the expression of UBC12, an E2 NEDD8-conjugating enzyme required for cullin-1 neddylation. 1-MNA showes high binding affinity to UBC12, extending the half-life of UBC12 proteins via preventing their localization to lysosome for degradation. Therefore, 1-MNA is a bioactive metabolite that promotes breast cancer progression by reinforcing neddylation pathway-mediated p27 degradation. The study unveils the link between NNMT enzymatic activity with cell-cycle progression, indicating that 1-MNA may be involved in the remodeling of tumor microenvironment.
Collapse
Affiliation(s)
- Yilei Ma
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Xucheng Huang
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Yanzhong Wang
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Yinjiao Lei
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
- Department of PathologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Jinwei Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Shaobo Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Jun Yang
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Department of CytopathologyNingbo Diagnostic Pathology CenterNingboZhejiang315046P. R. China
| | - Feng Zhao
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Haitao Yu
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Jin Zeng
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Yadong Chu
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
- Department of Clinical LaboratoryZhejiang Armed Police Corps HospitalHangzhouZhejiang310051P. R. China
| | - Min Yang
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Guoli Li
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Xinyou Xie
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| | - Jun Zhang
- Department of Clinical LaboratorySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceHangzhouZhejiang310016P. R. China
| |
Collapse
|
17
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Chen Y, Wang B, Zhao Y, Shao X, Wang M, Ma F, Yang L, Nie M, Jin P, Yao K, Song H, Lou S, Wang H, Yang T, Tian Y, Han P, Hu Z. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat Commun 2024; 15:1657. [PMID: 38395893 PMCID: PMC10891053 DOI: 10.1038/s41467-024-46043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.
Collapse
Affiliation(s)
- Yangzi Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yizi Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinxin Shao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Mingshuo Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuhai Ma
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
- Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Laishou Yang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Jin
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tianshu Yang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Qi Zhi Institute, Shanghai, 200438, China
| | - Yantao Tian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, 150081, China.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
20
|
Huang Q, Chen H, Yin D, Wang J, Wang S, Yang F, Li J, Mu T, Li J, Zhao J, Yin R, Li W, Qiu M, Zhang E, Li X. Multi-omics analysis reveals NNMT as a master metabolic regulator of metastasis in esophageal squamous cell carcinoma. NPJ Precis Oncol 2024; 8:24. [PMID: 38291241 PMCID: PMC10828394 DOI: 10.1038/s41698-024-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Metabolic reprogramming has been observed in cancer metastasis, whereas metabolic changes required for malignant cells during lymph node metastasis of esophageal squamous cell carcinoma (ESCC) are still poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of paired ESCC tumor tissues and lymph nodes to uncover the reprogramming of tumor microenvironment (TME) and metabolic pathways. By integrating analyses of scRNA-seq data with metabolomics of ESCC tumor tissues and plasma samples, we found nicotinate and nicotinamide metabolism pathway was dysregulated in ESCC patients with lymph node metastasis (LN+), exhibiting as significantly increased 1-methylnicotinamide (MNA) in both tumors and plasma. Further data indicated high expression of N-methyltransferase (NNMT), which converts active methyl groups from the universal methyl donor, S-adenosylmethionine (SAM), to stable MNA, contributed to the increased MNA in LN+ ESCC. NNMT promotes epithelial-mesenchymal transition (EMT) and metastasis of ESCC in vitro and in vivo by inhibiting E-cadherin expression. Mechanically, high NNMT expression consumed too much active methyl group and decreased H3K4me3 modification at E-cadherin promoter and inhibited m6A modification of E-cadherin mRNA, therefore inhibiting E-cadherin expression at both transcriptional and post-transcriptional level. Finally, a detection method of lymph node metastasis was build based on the dysregulated metabolites, which showed good performance among ESCC patients. For lymph node metastasis of ESCC, this work supports NNMT is a master regulator of the cross-talk between cellular metabolism and epigenetic modifications, which may be a therapeutic target.
Collapse
Affiliation(s)
- Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, 210003, China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 21009, China
- Department of Science and Technology, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 21009, China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Feng Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Jiawei Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Teng Mu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jilun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jia Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 21009, China
- Department of Science and Technology, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, 21009, China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
21
|
Meng Y, Iyamu ID, Ahmed NAM, Huang R. Comparative Analysis of Two NNMT Bisubstrate Inhibitors through Chemoproteomic Studies: Uncovering the Role of Unconventional SAM Analogue Moiety for Improved Selectivity. ACS Chem Biol 2024; 19:89-100. [PMID: 38181447 DOI: 10.1021/acschembio.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Unconventional S-adenosyl-L-methionine (SAM) mimics with enhanced hydrophobicity are an adaptable building block to develop cell-potent inhibitors for SAM-dependent methyltransferases as targeted therapeutics. We recently discovered cell-potent bisubstrate inhibitors for nicotinamide N-methyltransferase (NNMT) by using an unconventional SAM mimic. To delve into the selectivity implications of the unconventional SAM mimic, we employed a chemoproteomic approach to assess two potent NNMT inhibitors LL320 (Ki, app = 6.8 nM) and II399 (containing an unconventional SAM mimic, Ki, app = 5.9 nM) within endogenous proteomes. Our work began with the rational design and synthesis of immobilized probes 1 and 2, utilizing LL320 and II399 as parent compounds. Systematic analysis of protein networks associated with these probes revealed a comprehensive landscape. Notably, NNMT emerged as the top-ranking hit, substantiating the high selectivity of both inhibitors. Meanwhile, we identified additional interacting proteins for LL320 (38) and II399 (17), showcasing the intricate selectivity profiles associated with these compounds. Subsequent experiments confirmed LL320's interactions with RNMT, DPH5, and SAHH, while II399 exhibited interactions with SHMT2 and MEPCE. Importantly, incorporating the unconventional SAM mimic in II399 led to improved selectivity compared to LL320. Our findings underscore the importance of selectivity profiling and validate the utilization of the unconventional SAM mimic as a viable strategy to create highly selective and cell-permeable inhibitors for SAM-dependent methyltransferases.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Noha A M Ahmed
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Lumpp T, Stößer S, Fischer F, Hartwig A, Köberle B. Role of Epigenetics for the Efficacy of Cisplatin. Int J Mol Sci 2024; 25:1130. [PMID: 38256203 PMCID: PMC10816946 DOI: 10.3390/ijms25021130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.
Collapse
Affiliation(s)
| | | | | | | | - Beate Köberle
- Department Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (T.L.); (S.S.); (F.F.); (A.H.)
| |
Collapse
|
23
|
Zaalberg A, Pottendorfer E, Zwart W, Bergman AM. It Takes Two to Tango: The Interplay between Prostate Cancer and Its Microenvironment from an Epigenetic Perspective. Cancers (Basel) 2024; 16:294. [PMID: 38254784 PMCID: PMC10813511 DOI: 10.3390/cancers16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide and is associated with high morbidity and mortality. Consequently, there is an urgent unmet need for novel treatment avenues. In addition to somatic genetic alterations, deviations in the epigenetic landscape of cancer cells and their tumor microenvironment (TME) are critical drivers of prostate cancer initiation and progression. Unlike genomic mutations, epigenetic modifications are potentially reversible. Therefore, the inhibition of aberrant epigenetic modifications represents an attractive and exciting novel treatment strategy for castration-resistant prostate cancer patients. Moreover, drugs targeting the epigenome also exhibit synergistic interactions with conventional therapeutics by directly enhancing their anti-tumorigenic properties by "priming" the tumor and tumor microenvironment to increase drug sensitivity. This review summarizes the major epigenetic alterations in prostate cancer and its TME, and their involvement in prostate tumorigenesis, and discusses the impact of epigenome-targeted therapies.
Collapse
Affiliation(s)
- Anniek Zaalberg
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Elisabeth Pottendorfer
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Oncode Institute
| | - Andries M. Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
24
|
Tan P, Chu Y. Single-cell profiling of gastric cardia adenocarcinoma reveals drivers of cancer stemness and therapeutic targets. Gut 2023; 73:1-2. [PMID: 37336631 DOI: 10.1136/gutjnl-2023-329887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science, Singapore
| | - Yunqiang Chu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
25
|
Yu L, Wei Y, Lu T, Li Z, Lai S, Yan Y, Chen C, Wen W. The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback. Cell Commun Signal 2023; 21:345. [PMID: 38037054 PMCID: PMC10688075 DOI: 10.1186/s12964-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China
| | - Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
26
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
27
|
Scarpellini E, Rinninella E. Gut Microbiota According to the Metabolome. Nutrients 2023; 15:4768. [PMID: 38004160 PMCID: PMC10674210 DOI: 10.3390/nu15224768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The human gut microbiota is an ecosystem harboring trillions of microorganisms, encompassing bacteria, viruses, archaea, fungi, and protozoa [...].
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Emanuele Rinninella
- Research and Training Center in Human Nutrition, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
28
|
Masci D, Naro C, Puxeddu M, Urbani A, Sette C, La Regina G, Silvestri R. Recent Advances in Drug Discovery for Triple-Negative Breast Cancer Treatment. Molecules 2023; 28:7513. [PMID: 38005235 PMCID: PMC10672974 DOI: 10.3390/molecules28227513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Chiara Naro
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (D.M.); (A.U.)
| | - Claudio Sette
- Department of Neurosciences, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy; (C.N.); (C.S.)
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (G.L.R.)
| |
Collapse
|
29
|
Young CM, Beziaud L, Dessen P, Madurga Alonso A, Santamaria-Martínez A, Huelsken J. Metabolic dependencies of metastasis-initiating cells in female breast cancer. Nat Commun 2023; 14:7076. [PMID: 37925484 PMCID: PMC10625534 DOI: 10.1038/s41467-023-42748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Understanding the mechanisms that enable cancer cells to metastasize is essential in preventing cancer progression. Here we examine the metabolic adaptations of metastasis-initiating cells (MICs) in female breast cancer and how those shape their metastatic phenotype. We find that endogenous MICs depend on the oxidative tricarboxylic acid cycle and fatty acid usage. Sorting tumor cells based upon solely mitochondrial membrane potential or lipid storage is sufficient at identifying MICs. We further identify that mitochondrially-generated citrate is exported to the cytoplasm to yield acetyl-CoA, and this is crucial to maintaining heightened levels of H3K27ac in MICs. Blocking acetyl-CoA generating pathways or H3K27ac-specific epigenetic writers and readers reduces expression of epithelial-to-mesenchymal related genes, MIC frequency, and metastatic potential. Exogenous supplementation of a short chain carboxylic acid, acetate, increases MIC frequency and metastasis. In patient cohorts, we observe that higher expression of oxidative phosphorylation related genes is associated with reduced distant relapse-free survival. These data demonstrate that MICs specifically and precisely alter their metabolism to efficiently colonize distant organs.
Collapse
Affiliation(s)
- C Megan Young
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Laurent Beziaud
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pierre Dessen
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Angela Madurga Alonso
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
30
|
Li Y, Yang B, Miao H, Liu L, Wang Z, Jiang C, Yang Y, Qiu S, Li X, Geng Y, Zhang Y, Liu Y. Nicotinamide N -methyltransferase promotes M2 macrophage polarization by IL6 and MDSC conversion by GM-CSF in gallbladder carcinoma. Hepatology 2023; 78:1352-1367. [PMID: 36633260 DOI: 10.1097/hep.0000000000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Nicotinamide N -methyltransferase (NNMT), an enzyme responsible for the methylation of nicotinamide, is involved in many metabolic pathways in adipose tissue and the liver. However, the role of NNMT in editing the tumor immune microenvironment is not well understood. APPROACH AND RESULTS Here, we identified that NNMT can promote IL6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression by decreasing the tri-methyl-histone H3 levels on the promoters of IL6 and CSF2 (encoding GM-CSF) and CCAAT/Enhancer Binding Protein, an essential transcription factor for IL6 expression, thus promoting differentiation of macrophages into M2 type tumor-associated macrophages and generation of myeloid-derived suppressor cells from peripheral blood mononuclear cells. Treatment of xenografted tumor models overexpressing NNMT gallbladder carcinoma (GBC) cells with the NNMT inhibitor JBSNF-000088 resulted in compromised tumor development and decreased expression levels of IL6, GM-CSF, tumor-associated macrophage marker CD206, and myeloid-derived suppressor cell marker CD33 but increased expression levels of CD8. In addition, elevated expression of NNMT in tumors of patients with GBC was correlated with increased expression levels of CD206 and CD33 but with decreased levels of CD8 and survival of patients. CONCLUSIONS These data highlight the critical role of NNMT in GBC progression. Inhibition of NNMT by JBSNF-000088 is a potential molecular target for GBC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Bo Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shimei Qiu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijian Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
31
|
Perez MF, Sarkies P. Histone methyltransferase activity affects metabolism in human cells independently of transcriptional regulation. PLoS Biol 2023; 21:e3002354. [PMID: 37883365 PMCID: PMC10602318 DOI: 10.1371/journal.pbio.3002354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The N-terminal tails of eukaryotic histones are frequently posttranslationally modified. The role of these modifications in transcriptional regulation is well-documented. However, the extent to which the enzymatic processes of histone posttranslational modification might affect metabolic regulation is less clear. Here, we investigated how histone methylation might affect metabolism using metabolomics, proteomics, and RNA-seq data from cancer cell lines, primary tumour samples and healthy tissue samples. In cancer, the expression of histone methyltransferases (HMTs) was inversely correlated to the activity of NNMT, an enzyme previously characterised as a methyl sink that disposes of excess methyl groups carried by the universal methyl donor S-adenosyl methionine (SAM or AdoMet). In healthy tissues, histone methylation was inversely correlated to the levels of an alternative methyl sink, PEMT. These associations affected the levels of multiple histone marks on chromatin genome-wide but had no detectable impact on transcriptional regulation. We show that HMTs with a variety of different associations to transcription are co-regulated by the Retinoblastoma (Rb) tumour suppressor in human cells. Rb-mutant cancers show increased total HMT activity and down-regulation of NNMT. Together, our results suggest that the total activity of HMTs affects SAM metabolism, independent of transcriptional regulation.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Cells and Tissues, Instituto de Biologia Molecular de Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
33
|
Guo D, Ji X, Xie H, Ma J, Xu C, Zhou Y, Chen N, Wang H, Fan C, Song H. Targeted Reprogramming of Vitamin B 3 Metabolism as a Nanotherapeutic Strategy towards Chemoresistant Cancers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301257. [PMID: 37262365 DOI: 10.1002/adma.202301257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Cancer-associated fibroblasts (CAFs) promote cancer stem cell (CSC)-mediated chemoresistance and immunosuppressive tumor microenvironment. However, direct depletion of CAFs may increase cancer invasiveness and metastasis. As a generalized strategy against chemoresistant cancers, Gemini-like homotypic targeting nanoparticles (NPs) are designed for two-pronged CAF transformation and cancer cell elimination. The CAF-targeted NPs couple vitamin B3 metabolic reprogramming to epigenetic modulation of secreted pro-stemness and immunosuppressive factors, thereby diminishing CSC and suppressive immune cell populations to enhance cancer cell drug susceptibility and cytotoxic T cell infiltration. In mouse models of breast, liver, pancreatic and colorectal cancers that are resistant to their respective first-line chemotherapeutics, a single dose of hydrogel co-delivering the Gemini-like NPs can rehabilitate chemosensitivity, induce immune activation, and achieve tumor regression. Moreover, it stimulates robust T cell memory for long-term protection against tumor rechallenge. This study thus represents an innovative approach with broad applicability for overcoming cancer chemoresistance.
Collapse
Affiliation(s)
- Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Ma
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
34
|
Houry D, Raasakka A, Ferrario E, Niere M, Bifulco E, Kursula P, Ziegler M. Identification of structural determinants of nicotinamide phosphoribosyl transferase (NAMPT) activity and substrate selectivity. J Struct Biol 2023; 215:108004. [PMID: 37495196 DOI: 10.1016/j.jsb.2023.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
NAD homeostasis in mammals requires the salvage of nicotinamide (Nam), which is cleaved from NAD+ by sirtuins, PARPs, and other NAD+-dependent signaling enzymes. Nam phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in vitamin B3 salvage, whereby Nam reacts with phosphoribosyl pyrophosphate (PRPP) to form nicotinamide mononucleotide. NAMPT has a high affinity towards Nam, which is further enhanced by autophosphorylation of His247. The mechanism of this enhancement has remained unknown. Here, we present high-resolution crystal structures and biochemical data that provide reasoning for the increased affinity of the phosphorylated NAMPT for its substrate. Structural and kinetic analyses suggest a mechanism that includes Mg2+ coordination by phospho-His247, such that PRPP is stabilized in a position highly favorable for catalysis. Under these conditions, nicotinic acid (NA) can serve as a substrate. Moreover, we demonstrate that a stretch of 10 amino acids, present only in NAMPTs from deuterostomes, facilitates conformational plasticity and stabilizes the chemically unstable phosphorylation of His247. Thereby the apparent substrate affinity is considerably enhanced compared to prokaryotic NAMPTs. Collectively, our study provides a structural basis for the important function of NAMPT to recycle Nam into NAD biosynthesis with high affinity.
Collapse
Affiliation(s)
- Dorothée Houry
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5006 Bergen, Norway; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Eugenio Ferrario
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Marc Niere
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Ersilia Bifulco
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5006 Bergen, Norway; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, 90220 Oulu, Finland
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
| |
Collapse
|
35
|
Iyamu ID, Zhao T, Huang R. Structure-Activity Relationship Studies on Cell-Potent Nicotinamide N-Methyltransferase Bisubstrate Inhibitors. J Med Chem 2023; 66:10510-10527. [PMID: 37523719 DOI: 10.1021/acs.jmedchem.3c00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme implicated in multiple diseases, making it a promising therapeutic target. Building upon our recently reported NNMT inhibitor II399, we systematically investigate the structure-activity relationship by designing and synthesizing a series of analogues. Among them, two top inhibitors II559 (Ki = 1.2 nM) and II802 (Ki = 1.6 nM) displayed over 5000-fold selectivity for NNMT over closely related methyltransferases. Moreover, II559 and II802 showed enhanced cellular inhibition, with a cellular IC50 value of approximately 150 nM, making them the most cell-potent bisubstrate inhibitors reported to date. Furthermore, both inhibitors reduced the cell viability with a GI50 value of ∼10 μM and suppressed the migration of aggressive clear cell renal cancer cell carcinoma cell lines. Overall, II559 and II802 would serve as valuable probes to investigate the enzymatic function of NNMT in health and diseases.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianqi Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
37
|
Rehan M, Deskin B, Kurundkar AR, Yadav S, Matsunaga Y, Manges J, Smith N, Dsouza KG, Burow ME, Thannickal VJ. Nicotinamide N-methyltransferase mediates lipofibroblast-myofibroblast transition and apoptosis resistance. J Biol Chem 2023; 299:105027. [PMID: 37423298 PMCID: PMC10413354 DOI: 10.1016/j.jbc.2023.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Metabolism controls cellular phenotype and fate. In this report, we demonstrate that nicotinamide N-methyltransferase (NNMT), a metabolic enzyme that regulates developmental stem cell transitions and tumor progression, is highly expressed in human idiopathic pulmonary fibrosis (IPF) lungs, and is induced by the pro-fibrotic cytokine, transforming growth factor-β1 (TGF-β1) in lung fibroblasts. NNMT silencing reduces the expression of extracellular matrix proteins, both constitutively and in response to TGF-β1. Furthermore, NNMT controls the phenotypic transition from homeostatic, pro-regenerative lipofibroblasts to pro-fibrotic myofibroblasts. This effect of NNMT is mediated, in part, by the downregulation of lipogenic transcription factors, TCF21 and PPARγ, and the induction of a less proliferative but more differentiated myofibroblast phenotype. NNMT confers an apoptosis-resistant phenotype to myofibroblasts that is associated with the downregulation of pro-apoptotic members of the Bcl-2 family, including Bim and PUMA. Together, these studies indicate a critical role for NNMT in the metabolic reprogramming of fibroblasts to a pro-fibrotic and apoptosis-resistant phenotype and support the concept that targeting this enzyme may promote regenerative responses in chronic fibrotic disorders such as IPF.
Collapse
Affiliation(s)
- Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin Manges
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Nia Smith
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Kevin G Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew E Burow
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA.
| |
Collapse
|
38
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
39
|
Couto JP, Vulin M, Jehanno C, Coissieux M, Hamelin B, Schmidt A, Ivanek R, Sethi A, Bräutigam K, Frei AL, Hager C, Manivannan M, Gómez‐Miragaya J, Obradović MMS, Varga Z, Koelzer VH, Mertz KD, Bentires‐Alj M. Nicotinamide N-methyltransferase sustains a core epigenetic program that promotes metastatic colonization in breast cancer. EMBO J 2023; 42:e112559. [PMID: 37259596 PMCID: PMC10308372 DOI: 10.15252/embj.2022112559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.
Collapse
Affiliation(s)
- Joana Pinto Couto
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Milica Vulin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charly Jehanno
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Marie‐May Coissieux
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Baptiste Hamelin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Alexander Schmidt
- Proteomics Core Facility, BiozentrumUniversity of BaselBaselSwitzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Atul Sethi
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Konstantin Bräutigam
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
- Institute of PathologyUniversity of BernBernSwitzerland
| | - Anja L Frei
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Carolina Hager
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Madhuri Manivannan
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Jorge Gómez‐Miragaya
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Milan MS Obradović
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Zsuzsanna Varga
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Viktor H Koelzer
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Kirsten D Mertz
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Mohamed Bentires‐Alj
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
40
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Chou PJ, Sarwar MS, Wang L, Wu R, Li S, Hudlikar RR, Wang Y, Su X, Kong AN. Metabolomic, DNA Methylomic, and Transcriptomic Profiling of Suberoylanilide Hydroxamic Acid Effects on LPS-Exposed Lung Epithelial Cells. Cancer Prev Res (Phila) 2023; 16:321-332. [PMID: 36867722 PMCID: PMC10238674 DOI: 10.1158/1940-6207.capr-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anticancer effects via epigenetic and non-epigenetic mechanisms. The role of SAHA in metabolic rewiring and epigenomic reprogramming to inhibit pro-tumorigenic cascades in lung cancer remains unknown. In this study, we aimed to investigate the regulation of mitochondrial metabolism, DNA methylome reprogramming, and transcriptomic gene expression by SAHA in lipopolysaccharide (LPS)-induced inflammatory model of lung epithelial BEAS-2B cells. LC/MS was used for metabolomic analysis, while next-generation sequencing was done to study epigenetic changes. The metabolomic study reveals that SAHA treatment significantly regulated methionine, glutathione, and nicotinamide metabolism with alteration of the metabolite levels of methionine, S-adenosylmethionine, S-adenosylhomocysteine, glutathione, nicotinamide, 1-methylnicotinamide, and nicotinamide adenine dinucleotide in BEAS-2B cells. Epigenomic CpG methyl-seq shows SAHA revoked a list of differentially methylated regions in the promoter region of the genes, such as HDAC11, miR4509-1, and miR3191. Transcriptomic RNA sequencing (RNA-seq) reveals SAHA abrogated LPS-induced differentially expressed genes encoding proinflammatory cytokines, including interleukin 1α (IL1α), IL1β, IL2, IL6, IL24, and IL32. Integrative analysis of DNA methylome-RNA transcriptome displays a list of genes, of which CpG methylation correlated with changes in gene expression. qPCR validation of transcriptomic RNA-seq data shows that SAHA treatment significantly reduced the LPS-induced mRNA levels of IL1β, IL6, DNA methyltransferase 1 (DNMT1), and DNMT3A in BEAS-2B cells. Altogether, SAHA treatment alters the mitochondrial metabolism, epigenetic CpG methylation, and transcriptomic gene expression to inhibit LPS-induced inflammatory responses in lung epithelial cells, which may provide novel molecular targets to inhibit the inflammation component of lung carcinogenesis. PREVENTION RELEVANCE Inflammation increases the risk of lung cancer and blocking inflammation could reduce the incidence of lung cancer. Herein, we demonstrate that histone deacetylase inhibitor suberoylanilide hydroxamic acid regulates metabolic rewiring and epigenetic reprogramming to attenuate lipopolysaccharide-driven inflammation in lung epithelial cells.
Collapse
Affiliation(s)
- Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika R Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
Zhou S, Ou H, Wu Y, Qi D, Pei X, Yu X, Hu X, Wu E. Targeting tumor endothelial cells with methyltransferase inhibitors: Mechanisms of action and the potential of combination therapy. Pharmacol Ther 2023:108434. [PMID: 37172786 DOI: 10.1016/j.pharmthera.2023.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Tumor endothelial cells (TECs) reside in the inner lining of blood vessels and represent a promising target for targeted cancer therapy. DNA methylation is a chemical process that involves the transfer of a methyl group to a specific base in the DNA strand, catalyzed by DNA methyltransferase (DNMT). DNMT inhibitors (DNMTis) can inhibit the activity of DNMTs, thereby preventing the transfer of methyl groups from s-adenosyl methionine (SAM) to cytosine. Currently, the most viable therapy for TECs is the development of DNMTis to release cancer suppressor genes from their repressed state. In this review, we first outline the characteristics of TECs and describe the development of tumor blood vessels and TECs. Abnormal DNA methylation is closely linked to tumor initiation, progression, and cell carcinogenesis, as evidenced by numerous studies. Therefore, we summarize the role of DNA methylation and DNA methyltransferase and the therapeutic potential of four types of DNMTi in targeting TECs. Finally, we discuss the accomplishments, challenges, and opportunities associated with combination therapy with DNMTis for TECs.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hailong Ou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yatao Wu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dan Qi
- Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA
| | - Xiaming Pei
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaohui Yu
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China; Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott & White Health, Temple, TX 78508, USA; Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
43
|
Verma R, Aggarwal P, Bischoff ME, Reigle J, Secic D, Wetzel C, VandenHeuvel K, Biesiada J, Ehmer B, Landero Figueroa JA, Plas DR, Medvedovic M, Meller J, Czyzyk-Krzeska MF. Microtubule-associated protein MAP1LC3C regulates lysosomal exocytosis and induces zinc reprogramming in renal cancer cells. J Biol Chem 2023; 299:104663. [PMID: 37003503 PMCID: PMC10173779 DOI: 10.1016/j.jbc.2023.104663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.
Collapse
Affiliation(s)
- Rita Verma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Parul Aggarwal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James Reigle
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine VandenHeuvel
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Birgit Ehmer
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julio A Landero Figueroa
- Department of Chemistry, Agilent Metallomics Center of the Americas, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Veterans Affairss, Veteran Affairs Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
44
|
Schneider V, Visone J, Harris C, Florini F, Hadjimichael E, Zhang X, Gross M, Rhee K, Ben Mamoun C, Kafsack B, Deitsch K. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proc Natl Acad Sci U S A 2023; 120:e2302152120. [PMID: 37068249 PMCID: PMC10151525 DOI: 10.1073/pnas.2302152120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.
Collapse
Affiliation(s)
- Victoria M. Schneider
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Joseph E. Visone
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Chantal T. Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Mackensie R. Gross
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Department of Microbial Pathogenesis, Yale School of Medicine, Yale University New Haven, CT 06510
| | - Björn F. C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| |
Collapse
|
45
|
Dutta T, Kapoor N, Mathew M, Chakraborty SS, Ward NP, Prieto-Farigua N, Falzone A, DeLany JP, Smith SR, Coen PM, DeNicola GM, Gardell SJ. Source of nicotinamide governs its metabolic fate in cultured cells, mice, and humans. Cell Rep 2023; 42:112218. [PMID: 36897780 DOI: 10.1016/j.celrep.2023.112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.
Collapse
Affiliation(s)
- Tumpa Dutta
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Meril Mathew
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Suban S Chakraborty
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James P DeLany
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| |
Collapse
|
46
|
Huang H, Zhao G, Cardenas H, Valdivia AF, Wang Y, Matei D. N6-Methyladenosine RNA Modifications Regulate the Response to Platinum Through Nicotinamide N-methyltransferase. Mol Cancer Ther 2023; 22:393-405. [PMID: 36622754 DOI: 10.1158/1535-7163.mct-22-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Development of resistance to platinum (Pt) in ovarian cancer remains a major clinical challenge. Here we focused on identifying epitranscriptomic modifications linked to Pt resistance. Fat mass and obesity-associated protein (FTO) is a N6-methyladenosine (m6A) RNA demethylase that we recently described as a tumor suppressor in ovarian cancer. We hypothesized that FTO-induced removal of m6A marks regulates the cellular response of ovarian cancer cells to Pt and is linked to the development of resistance. To study the involvement of FTO in the cellular response to Pt, we used ovarian cancer cells in which FTO was knocked down via short hairpin RNA or overexpressed and Pt-resistant (Pt-R) models derived through repeated cycles of exposure to Pt. We found that FTO was significantly downregulated in Pt-R versus sensitive ovarian cancer cells. Forced expression of FTO, but not of mutant FTO, increased sensitivity to Pt in vitro and in vivo (P < 0.05). Increased numbers of γ-H2AX foci, measuring DNA double-strand breaks, and increased apoptosis were observed after exposure to Pt in FTO-overexpressing versus control cells. Through integrated RNA sequencing and MeRIP sequencing, we identified and validated the enzyme nicotinamide N-methyltransferase (NNMT), as a new FTO target linked to Pt response. NNMT was upregulated and demethylated in FTO-overexpressing cells. Treatment with an NNMT inhibitor or NNMT knockdown restored sensitivity to Pt in FTO-overexpressing cells. Our results support a new function for FTO-dependent m6A RNA modifications in regulating the response to Pt through NNMT, a newly identified RNA methylated gene target.
Collapse
Affiliation(s)
- Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andres Felipe Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
47
|
Park BS, Jeon H, Chi SG, Kim T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol 2023; 21:45. [PMID: 36829149 PMCID: PMC9960226 DOI: 10.1186/s12915-023-01536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.
Collapse
Affiliation(s)
- Byung-Sun Park
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Heeju Jeon
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Sung-Gil Chi
- grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Tackhoon Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea. .,Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea. .,Division of Bio-Medical Science and Technology, Korea University of Science and Technology, 217 GajeongRo YuseongGu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
48
|
Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: evidence from patient-derived assembled organoids. Oncogene 2023; 42:1166-1180. [PMID: 36823377 DOI: 10.1038/s41388-023-02642-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) has been reported to be linked to methylation reprogramming in cancer cells. However, the role of NNMT in the tumour microenvironment (TME) remains elusive. Here, we found that the expression of NNMT was elevated in the stroma of oral squamous cell carcinoma (OSCC). Using a fibroblast-attached organoids (FAOs) model, we confirmed that stromal NNMT expression contributed to the generation of assembled tumour organoids. In a tumour regeneration assay with co-implanted OSCC cells and cancer-associated fibroblasts (CAFs), the tumour-initiating activity was reduced when NNMT was silenced in CAFs. In contrast, overexpression of NNMT in paracancerous fibroblasts (PFs) accelerated tumour growth in co-inoculation experiments. Notably, fibroblast-specific NNMT can regulate type I collagen deposition in both FAOs and xenografts. Further investigations confirmed that the stromal NNMT-aggravated oncogenic activities were attenuated by treatment with inhibitors of either collagen synthesis (e.g. losartan, tranilast, and halofuginone) in fibroblasts, or the focal adhesion kinase (FAK) signal (i.e. defactinib) in cancer cells. Mechanistically, overexpression of NNMT reduced the enrichment of H3K27me3 at the promoter of the gene encoding lysyl oxidase (LOX), a key enzyme that regulates the cross-linking of collagen I. Overall, we propose that the NNMT-LOX-FAK cascade contributes to the crosstalk between cancer cells and fibroblasts during OSCC development, and that NNMT-centric extracellular matrix remodelling is a novel therapeutic target for patients with OSCC.
Collapse
|
49
|
Zhong A, Cai Y, Zhou Y, Ding N, Yang G, Chai X. Identification and Analysis of Hub Genes and Immune Cells Associated with the Formation of Acute Aortic Dissection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:8072369. [PMID: 36818541 PMCID: PMC9936456 DOI: 10.1155/2023/8072369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
Background Acute type A aortic dissection (AAD) is a catastrophic disease with high mortality, but the pathogenesis has not been fully elucidated. This study is aimed at identifying hub genes and immune cells associated with the pathogenesis of AAD. Methods The datasets were downloaded from Gene Expression Omnibus (GEO). Gene Set Enrichment Analysis (GSEA), gene set variation analysis (GSVA), and differential analysis were performed. The differentially expressed genes (DEGs) were intersected with specific genes collected from MSigDB. The gene function and pathway enrichment analysis were also performed on intersecting genes. The key modules were selected by weighted gene coexpression network analysis (WGCNA). Hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis and were verified in the metadataset. The immune cell infiltration was analyzed by CIBERSORT, and the relationship between hub genes and immune cells was performed by Pearson's correlation analysis. The single-cell RNA sequencing (scRNA-seq) dataset was used to verify the differences in DNA damage and repair signaling pathways and hub genes in different cell types. Results The results of GSEA and GSVA indicated that DNA damage and repair processes were activated in the occurrence of AAD. The gene function and pathway enrichment analysis on differentially expressed DNA damage- and repair-related genes showed that these genes were mainly involved in the regulation of the cell cycle process, cellular response to DNA damage stimulus, response to wounding, p53 signaling pathway, and cellular senescence. Three key modules were identified by WGCNA. Five genes were screened as hub genes, including CDK2, EIF4A1, GLRX, NNMT, and SLCO2A1. Naive B cells and Gamma delta T cells (γδ T cells) were decreased in AAD, but monocytes and M0 macrophages were increased. scRNA-seq analysis included that DNA damage and repair processes were activated in smooth muscle cells (SMCs), tissue stem cells, and monocytes in the aortic wall of patients with AAD. Conclusions Our results suggested that DNA damage- and repair-related genes may be involved in the occurrence of AAD by regulating many biological processes. The hub genes and immune cells reported in this study also increase the understanding of AAD.
Collapse
Affiliation(s)
- Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhong Cai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Trauma Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Mehdi A, Attias M, Arakelian A, Szyf M, Piccirillo CA, Rabbani SA. S-adenosylmethionine blocks tumorigenesis and with immune checkpoint inhibitor enhances anti-cancer efficacy against BRAF mutant and wildtype melanomas. Neoplasia 2023; 36:100874. [PMID: 36638586 PMCID: PMC9840362 DOI: 10.1016/j.neo.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Despite marked success in treatment with immune checkpoint inhibitor (CPI), only a third of patients are responsive. Thus, melanoma still has one of the highest prevalence and mortality rates; which has led to a search for novel combination therapies that might complement CPI. Aberrant methylomes are one of the mechanisms of resistance to CPI therapy. S-adenosylmethionine (SAM), methyl donor of important epigenetic processes, has significant anti-cancer effects in several malignancies; however, SAM's effect has never been extensively investigated in melanoma. We demonstrate that SAM modulates phenotype switching of melanoma cells and directs the cells towards differentiation indicated by increased melanogenesis (melanin and melanosome synthesis), melanocyte-like morphology, elevated Mitf and Mitf activators' expression, increased antigen expression, reduced proliferation, and reduced stemness genes' expression. Consistently, providing SAM orally, reduced tumor growth and progression, and metastasis of syngeneic BRAF mutant and wild-type (WT) melanoma mouse models. Of note, SAM and anti-PD-1 antibody combination treatment had enhanced anti-cancer efficacy compared to monotherapies, showed significant reduction in tumor growth and progression, and increased survival. Furthermore, SAM and anti-PD-1 antibody combination triggered significantly higher immune cell infiltration, higher CD8+ T cells infiltration and effector functions, and polyfunctionality of CD8+ T cells in YUMMER1.7 tumors. Therefore, SAM combined with CPI provides a novel therapeutic strategy against BRAF mutant and WT melanomas and provides potential to be translated into clinic.
Collapse
Affiliation(s)
- A Mehdi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada; Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada
| | - M Attias
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - A Arakelian
- Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada
| | - M Szyf
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 2B4, Canada
| | - C A Piccirillo
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - S A Rabbani
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H3A 2B4, Canada; Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada; Program in Metabolic Disorders and Complications (MeDiC), Research Institute of the McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|