1
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of a dimeric full-length ABC transporter. Nat Commun 2024; 15:9946. [PMID: 39550367 PMCID: PMC11569179 DOI: 10.1038/s41467-024-54147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Activities of ATP binding cassette (ABC) proteins are regulated by multiple mechanisms, including protein interactions, phosphorylation, proteolytic processing, and/or oligomerization of the ABC protein itself. Here we present the structure of yeast cadmium factor 1 (Ycf1p) in its mature form following cleavage by Pep4p protease. Ycf1p, a C subfamily ABC protein (ABCC), is homologue of human multidrug resistance protein 1. Remarkably, a portion of cleaved Ycf1p forms a well-ordered dimer, alongside monomeric particles also present in solution. While numerous other ABC proteins have been proposed to dimerize, no high-resolution structures have been reported. Both phosphorylation of the regulatory (R) region and ATPase activity are lower in the Ycf1p dimer compared to the monomer, indicating that dimerization affects Ycf1p function. The interface between Ycf1p protomers features protein-protein interactions and contains bound lipids, suggesting that lipids stabilize the dimer. The Ycf1p dimer structure may inform the dimerization interfaces of other ABCC dimers.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Huang G, Li J, Lin J, Duan C, Yan G. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuae015. [PMID: 38621758 DOI: 10.1093/jimb/kuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.
Collapse
Affiliation(s)
- Guangxi Huang
- C entre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiarong Li
- C entre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jingyuan Lin
- C entre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- C entre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Guoliang Yan
- C entre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Key Laboratory of Food Bioengineering (China National Light Industry), China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Sui X, Cheng X, Li Z, Wang Y, Zhang Z, Yan R, Chang L, Li Y, Xu P, Duan C. Quantitative proteomics revealed the transition of ergosterol biosynthesis and drug transporters processes during the development of fungal fluconazole resistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194953. [PMID: 37307946 DOI: 10.1016/j.bbagrm.2023.194953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Fungal infections and antifungal resistance are the increasing global public health concerns. Mechanisms of fungal resistance include alterations in drug-target interactions, detoxification by high expression of drug efflux transporters, and permeability barriers associated with biofilms. However, the systematic panorama and dynamic changes of the relevant biological processes of fungal drug resistance acquisition remain limited. In this study, we developed a yeast model of resistance to prolonged fluconazole treatment and utilized the isobaric labels TMT (tandem mass tag)-based quantitative proteomics to analyze the proteome composition and changes in native, short-time fluconazole stimulated and drug-resistant strains. The proteome exhibited significant dynamic range at the beginning of treatment but returned to normal condition upon acquisition drug resistance. The sterol pathway responded strongly under a short time of fluconazole treatment, with increased transcript levels of most enzymes facilitating greater protein expression. With the drug resistance acquisition, the sterol pathway returned to normal state, while the expression of efflux pump proteins increased obviously on the transcription level. Finally, multiple efflux pump proteins showed high expression in drug-resistant strain. Thus, families of sterol pathway and efflux pump proteins, which are closely associated with drug resistance mechanisms, may play different roles at different nodes in the process of drug resistance acquisition. Our findings uncover the relatively important role of efflux pump proteins in the acquisition of fluconazole resistance and highlight its potential as the vital antifungal targets.
Collapse
Affiliation(s)
- Xinying Sui
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Xinyu Cheng
- Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China
| | - Zhaodi Li
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yonghong Wang
- Department of Biomedicine, School of Medicine, Guizhou University, Guiyang 550025, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Ruyue Yan
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China; Department of Biomedicine, School of Medicine, Guizhou University, Guiyang 550025, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Hammond N, Snider J, Stagljar I, Mitchell K, Lagutin K, Jessulat M, Babu M, Teesdale-Spittle PH, Sheridan JP, Sturley SL, Munkacsi AB. Identification and characterization of protein interactions with the major Niemann-Pick type C disease protein in yeast reveals pathways of therapeutic potential. Genetics 2023; 225:iyad129. [PMID: 37440478 PMCID: PMC10471228 DOI: 10.1093/genetics/iyad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Niemann-Pick type C (NP-C) disease is a rare lysosomal storage disease caused by mutations in NPC1 (95% cases) or NPC2 (5% cases). These proteins function together in cholesterol egress from the lysosome, whereby upon mutation, cholesterol and other lipids accumulate causing major pathologies. However, it is not fully understood how cholesterol is transported from NPC1 residing at the lysosomal membrane to the endoplasmic reticulum (ER) and plasma membrane. The yeast ortholog of NPC1, Niemann-Pick type C-related protein-1 (Ncr1), functions similarly to NPC1; when transfected into a mammalian cell lacking NPC1, Ncr1 rescues the diagnostic hallmarks of cholesterol and sphingolipid accumulation. Here, we aimed to identify and characterize protein-protein interactions (PPIs) with the yeast Ncr1 protein. A genome-wide split-ubiquitin membrane yeast two-hybrid (MYTH) protein interaction screen identified 11 ER membrane-localized, full-length proteins interacting with Ncr1 at the lysosomal/vacuolar membrane. These highlight the importance of ER-vacuole membrane interface and include PPIs with the Cyb5/Cbr1 electron transfer system, the ceramide synthase complex, and the Sec61/Sbh1 protein translocation complex. These PPIs were not detected in a sterol auxotrophy condition and thus depend on normal sterol metabolism. To provide biological context for the Ncr1-Cyb5 PPI, a yeast strain lacking this PPI (via gene deletions) exhibited altered levels of sterols and sphingolipids including increased levels of glucosylceramide that mimic NP-C disease. Overall, the results herein provide new physical and genetic interaction models to further use the yeast model of NP-C disease to better understand human NP-C disease.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000 Split, Croatia
| | | | | | - Matthew Jessulat
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Paul H Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeffrey P Sheridan
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, USA
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Jansen RL, van den Noort M, Krikken AM, Bibi C, Böhm A, Schuldiner M, Zalckvar E, van der Klei IJ. Novel targeting assay uncovers targeting information within peroxisomal ABC transporter Pxa1. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119471. [PMID: 37028652 DOI: 10.1016/j.bbamcr.2023.119471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localization analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1-95 still localized to peroxisomes. This was confirmed via localization of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1-95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal.
Collapse
|
6
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
7
|
Pathmanathan S, Yao Z, Coelho P, Valla R, Drecun L, Benz C, Snider J, Saraon P, Grozavu I, Kotlyar M, Jurisica I, Park M, Stagljar I. B cell linker protein (BLNK) is a regulator of Met receptor signaling and trafficking in non-small cell lung cancer. iScience 2022; 25:105419. [DOI: 10.1016/j.isci.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
8
|
Dean JV, Willis M, Shaban L. Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14. PHYSIOLOGIA PLANTARUM 2022; 174:e13780. [PMID: 36121340 DOI: 10.1111/ppl.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins are a group of pigments that have various roles in plants including attracting pollinators and seed dispersers and protecting against various types of stress. In vegetative tissue, these anthocyanins are sequestered in the vacuole following biosynthesis in the cytoplasm, though there remain questions as to the events leading to the vacuolar sequestration. In this study, we were able to show that the uptake of acylated anthocyanins by vacuolar membrane-enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate and glybenclamide, but not by gramicidin D or bafilomycin A1 , suggesting that uptake involves an ATP-binding cassette (ABC) transporter and not an H+ -antiporter. Membrane vesicles isolated from yeast expressing the ABC transporters designated AtABCC1, AtABCC2, and AtABCC14 are capable of MgATP-dependent uptake of acylated anthocyanins. This uptake was not dependent on glutathione as seen previously for anthocyanidin 3-O-monoglucosides. Compared to the wild-type, the transport of acylated anthocyanins was lower in vacuolar membrane-enriched vesicles isolated from atabcc1 cell cultures providing evidence that AtABCC1 may be the predominant transporter of these compounds in vivo. In addition, the pattern of anthocyanin accumulation differed between the atabcc1, atabcc2, and atabcc14 mutants and the wild-type seedlings under anthocyanin inductive conditions. We suggest that AtABCC1, AtABCC2, and AtABCC14 are involved in the vacuolar transport of acylated anthocyanins produced in the vegetative tissue of Arabidopsis and that the pattern of anthocyanin accumulation can be altered depending on the presence or absence of a specific vacuolar ABC transporter.
Collapse
Affiliation(s)
- John V Dean
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Morgan Willis
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Laith Shaban
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Alkhadrawi AM, Xue H, Ahmad N, Akram M, Wang Y, Li C. Molecular study on the role of vacuolar transporters in glycyrrhetinic acid production in engineered Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183890. [PMID: 35181296 DOI: 10.1016/j.bbamem.2022.183890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
Glycyrrhetinic acid (GA) is one of the major bioactive components of the leguminous plant, Glycyrrhiza spp. (Chinese licorice). Owing to GA's complicated chemical structure, its production by chemical synthesis is challenging and requires other efficient strategies such as microbial synthesis. Earlier investigations employed numerous approaches to improve GA yield by refining the synthetic pathway and improving the metabolic flux. Nevertheless, the metabolic role of transporters in GA biosynthesis in microbial cell factories has not been studied so far. In this study, we investigated the role of yeast ATP binding cassette (ABC) vacuolar transporters in GA production. Molecular docking of GA and its precursors, β-Amyrin and 11-oxo-β-amyrin, was performed with five vacuolar ABC transporters (Bpt1p, Vmr1p, Ybt1p, Ycf1p and Nft1p). Based on docking scores, two top scoring transporters were selected (Bpt1p and Vmr1p) to investigate transporters' functions on GA production via overexpression and knockout experiments in one GA-producing yeast strain (GA166). Results revealed that GA and its precursors exhibited the highest predicted binding affinity towards BPT1 (ΔG = -10.9, -10.6, -10.9 kcal/mol for GA, β-amyrin and 11-oxo-β-amyrin, respectively). Experimental results showed that the overexpression of BPT1 and VMR1 restored the intracellular as well as extracellular GA production level under limited nutritional conditions, whereas knockout of BPT1 resulted in a total loss of GA production. These results suggest that the activity of BPT1 is required for GA production in engineered Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Adham M Alkhadrawi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haijie Xue
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad 22060, Pakistan
| | - Muhammad Akram
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Life Sciences, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Lin Y, Pan X, Chen Z, Lin S, Shen Z, Chen S. Prognostic value and immune infiltration of novel signatures in colon cancer microenvironment. Cancer Cell Int 2021; 21:679. [PMID: 34922547 PMCID: PMC8684099 DOI: 10.1186/s12935-021-02342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background Growing evidence has shown that the prognosis for colon cancer depends on changes in microenvironment. The purpose of this study was to elucidate the prognostic value of long noncoding RNAs (lncRNAs) related to immune microenvironment (IM) in colon cancer. Methods Single sample gene set enrichment analysis (ssGSEA) was used to identify the subtypes of colon cancer based on the immune genomes of 29 immune signatures. Cox regression analysis identified a lncRNA signatures associated with immune infiltration. The Tumor Immune Estimation Resource database was used to analyze immune cell content. Results Colon cancer samples were divided into three subtypes by unsupervised cluster analysis. Cox regression analysis identified an immune infiltration-related 5-lncRNA signature. This signature combined with clinical factors can effectively improve the predictive ability for the overall survival (OS) of colon cancer. At the same time, we found that the expression of H19 affects the content of B cells and macrophages in the microenvironment of colon cancer and affects the prognosis of colon cancer. Finally, we constructed the H19 regulatory network and further analyzed the possible mechanisms. We found that knocking down the expression of H19 can significantly inhibit the expression of CCND1 and VEGFA. At the same time, the immunohistochemical assay found that the expression of CCND1 and VEGFA protein was significantly positively correlated with the infiltration of M2 type macrophages. Conclusion The findings may help to formulate clinical strategies and understand the underlying mechanisms of H19 regulation. H19 may be a biomarker for targeted treatment of colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02342-8.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng, Beijing, China
| | - Xiaoxian Pan
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhihua Chen
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang, Fuzhou, Fujian, China
| | - Suyong Lin
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang, Fuzhou, Fujian, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng, Beijing, China.
| | - Shaoqin Chen
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
12
|
Karamanou DA, Aliferis KA. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: Evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104475. [PMID: 32359550 DOI: 10.1016/j.pestbp.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 05/14/2023]
Abstract
The development of plant protection product (PPPs)-resistant populations of plant pathogens, pests, and weeds, represents a major challenge that the crop protection sector is facing. Focusing on plant pathogenic fungi, the increased efflux of the active ingredients (a.i.) from the cytoplasm is highly correlated to elevated resistance levels to the applied fungicides. Such mechanism is regulated by ATP-binding cassette transporters (ABC transporters), and although it has been investigated for the past two decades, the latest developments in "omics" technologies could provide new insights with potential applications in crop protection. Within this context, and based on results from preliminary experiments, we have undertaken the task of mining the involvement of the ABC transporter YCF1, which is located in the vacuole membrane, in the fungicide resistance development, applying a functional genomics approach and using yeast (Saccharomyces cerevisiae) as the model organism. Among the fungicides being assessed, flusilazole, which belongs to the azole group of dimethylation inhibitors (DMIs), was discovered as a possible substrate of the YCF1. GC/EI/MS metabolomics analysis revealed the effect of the fungicide's toxicity and that of genotype on yeast's metabolism, confirming the role of this transporter. Fluctuations in the activity of various yeast biosynthetic pathways associated with stress responses were recorded, and corresponding metabolites-biomarkers of flusilazole toxicity were discovered. The metabolites α,α-trehalose, glycerol, myo-inositol-1-phosphate, GABA, l-glutamine, l-tryptophan, l-phenylalanine, l-tyrosine, and phosphate, were the major identified biomarkers of toxicity. Among these, are metabolites that play important roles in fungal metabolism (e.g., cell responses to osmotic stress) or serve as signaling molecules. To the best of our knowledge, this is the first report on the implication of YCF1 in fungal resistance to PPPs. Additionally, the results of GC/EI/MS yeast metabolomics confirmed the robustness of the method and its applicability in the high-throughput study of fungal resistance to fungicides.
Collapse
Affiliation(s)
- Dimitra A Karamanou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Plant Science, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
13
|
Saraon P, Snider J, Kalaidzidis Y, Wybenga-Groot LE, Weiss K, Rai A, Radulovich N, Drecun L, Vučković N, Vučetić A, Wong V, Thériault B, Pham NA, Park JH, Datti A, Wang J, Pathmanathan S, Aboualizadeh F, Lyakisheva A, Yao Z, Wang Y, Joseph B, Aman A, Moran MF, Prakesch M, Poda G, Marcellus R, Uehling D, Samaržija M, Jakopović M, Tsao MS, Shepherd FA, Sacher A, Leighl N, Akhmanova A, Al-Awar R, Zerial M, Stagljar I. A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nat Chem Biol 2020; 16:577-586. [PMID: 32094923 DOI: 10.1038/s41589-020-0484-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.
Collapse
Affiliation(s)
- Punit Saraon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Konstantin Weiss
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nika Vučković
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adriana Vučetić
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jin H Park
- Department of Pharmacology and Cancer Biology Institute, Yale University, New Haven, CT, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro Datti
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jenny Wang
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Lyakisheva
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael F Moran
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. .,Mediterranean Institute for Life Sciences, Split, Croatia.
| |
Collapse
|
14
|
Voss L, Foster OK, Harper L, Morris C, Lavoy S, Brandt JN, Peloza K, Handa S, Maxfield A, Harp M, King B, Eichten V, Rambo FM, Hermann GJ. An ABCG Transporter Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in Caenorhabditis elegans. Genetics 2020; 214:419-445. [PMID: 31848222 PMCID: PMC7017009 DOI: 10.1534/genetics.119.302900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
ABC transporters couple ATP hydrolysis to the transport of substrates across cellular membranes. This protein superfamily has diverse activities resulting from differences in their cargo and subcellular localization. Our work investigates the role of the ABCG family member WHT-2 in the biogenesis of gut granules, a Caenorhabditis elegans lysosome-related organelle. In addition to being required for the accumulation of birefringent material within gut granules, WHT-2 is necessary for the localization of gut granule proteins when trafficking pathways to this organelle are partially disrupted. The role of WHT-2 in gut granule protein targeting is likely linked to its function in Rab GTPase localization. We show that WHT-2 promotes the gut granule association of the Rab32 family member GLO-1 and the endolysosomal RAB-7, identifying a novel function for an ABC transporter. WHT-2 localizes to gut granules where it could play a direct role in controlling Rab localization. Loss of CCZ-1 and GLO-3, which likely function as a guanine nucleotide exchange factor (GEF) for GLO-1, lead to similar disruption of GLO-1 localization. We show that CCZ-1, like GLO-3, is localized to gut granules. WHT-2 does not direct the gut granule association of the GLO-1 GEF and our results point to WHT-2 functioning differently than GLO-3 and CCZ-1 Point mutations in WHT-2 that inhibit its transport activity, but not its subcellular localization, lead to the loss of GLO-1 from gut granules, while other WHT-2 activities are not completely disrupted, suggesting that WHT-2 functions in organelle biogenesis through transport-dependent and transport-independent activities.
Collapse
Affiliation(s)
- Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Olivia K Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Logan Harper
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Sierra Lavoy
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - James N Brandt
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Amanda Maxfield
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Brian King
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | | | - Fiona M Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon
| |
Collapse
|
15
|
Cunningham B, Torres-Duarte C, Cherr G, Adams N. Effects of three zinc-containing sunscreens on development of purple sea urchin (Strongylocentrotus purpuratus) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105355. [PMID: 31790937 DOI: 10.1016/j.aquatox.2019.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 05/20/2023]
Abstract
The growing popularity of physical sunscreens will lead to an increased release of ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations may be released into marine environments by use of sunscreens. The extent of the consequences of this addition of Zn to the ocean are not fully understood. We investigated the effects of materials released by ZnO- sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos incubated in various concentrations of Zn (0.01, 0.05, 0.1, 0.5, and 1 mg/L), the sources of which included zinc-containing compounds: ZnO and zinc sulfate (ZnSO4); and ZnO sunscreens: All Good, Badger, and Raw Elements brands. Based on EC50 values, ZnO-containing sunscreens were slightly, but not significantly, more toxic than ZnO and ZnSO4, suggesting that sunscreens may release additional unknown materials that are detrimental to sea urchin embryo development. All concentrations of Zn-exposure resulted in significant malformations (skeletal abnormality, stage arrest, axis determination disruption), which were identified using light and fluorescence confocal microscopy. The concentration of Zn2+ internalized by the developing embryos correlated positively with the concentration of Zn in seawater. Additionally, exposure to both ZnO sunscreens and ZnO and ZnSO4 at 1 mg/L Zn, significantly increased calcein-AM (CAM) accumulation, indicating decreased multidrug resistant (MDR) transporter activity. This is one of the first studies documenting ZnO-containing sunscreens release high concentrations of Zn that are internalized by and have detrimental effects on aquatic organisms.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States.
| | - Cristina Torres-Duarte
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. (CIATEJ), Guadalajara, 44270, Mexico
| | - Gary Cherr
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, 94923, United States; Departments of Environmental Toxicology and Nutrition, University of California Davis, Davis, CA, United States
| | - Nikki Adams
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, United States
| |
Collapse
|
16
|
Bu X, Lin JY, Cheng J, Yang D, Duan CQ, Koffas M, Yan GL. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:168. [PMID: 33062054 PMCID: PMC7548044 DOI: 10.1186/s13068-020-01809-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/05/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Product toxicity is one of the bottlenecks for microbial production of biofuels, and transporter-mediated biofuel secretion offers a promising strategy to solve this problem. As a robust microbial host for industrial-scale production of biofuels, Saccharomyces cerevisiae contains a powerful transport system to export a wide range of toxic compounds to sustain survival. The aim of this study is to improve the secretion and production of the hydrophobic product (β-carotene) by harnessing endogenous ABC transporters combined with physiological engineering in S. cerevisiae. RESULTS Substrate inducibility is a prominent characteristic of most endogenous transporters. Through comparative proteomic analysis and transcriptional confirmation, we identified five potential ABC transporters (Pdr5p, Pdr10p, Snq2p, Yor1p, and Yol075cp) for β-carotene efflux. The accumulation of β-carotene also affects cell physiology in various aspects, including energy metabolism, mitochondrial translation, lipid metabolism, ergosterol biosynthetic process, and cell wall synthesis. Here, we adopted an inducible GAL promoter to overexpress candidate transporters and enhanced the secretion and intracellular production of β-carotene, in which Snq2p showed the best performance (a 4.04-fold and a 1.33-fold increase compared with its parental strain YBX-01, respectively). To further promote efflux capacity, two strategies of increasing ATP supply and improving membrane fluidity were following adopted. A 5.80-fold increase of β-carotene secretion and a 1.71-fold increase of the intracellular β-carotene production were consequently achieved in the engineered strain YBX-20 compared with the parental strain YBX-01. CONCLUSIONS Overall, our results showcase that engineering endogenous plasma membrane ABC transporters is a promising approach for hydrophobic product efflux in S. cerevisiae. We also highlight the importance of improving cell physiology to enhance the efficiency of ABC transporters, especially energy status and cell membrane properties.
Collapse
Affiliation(s)
- Xiao Bu
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Jing-Yuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Jing Cheng
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing, 100083 China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| |
Collapse
|
17
|
Yeast α-arrestin Art2 is the key regulator of ubiquitylation-dependent endocytosis of plasma membrane vitamin B1 transporters. PLoS Biol 2019; 17:e3000512. [PMID: 31658248 PMCID: PMC6837554 DOI: 10.1371/journal.pbio.3000512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/07/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
Abstract
Endocytosis of membrane proteins in yeast requires α-arrestin-mediated ubiquitylation by the ubiquitin ligase Rsp5. Yet, the diversity of α-arrestin targets studied is restricted to a small subset of plasma membrane (PM) proteins. Here, we performed quantitative proteomics to identify new targets of 12 α-arrestins and gained insight into the diversity of pathways affected by α-arrestins, including the cell wall integrity pathway and PM–endoplasmic reticulum contact sites. We found that Art2 is the main regulator of substrate- and stress-induced ubiquitylation and endocytosis of the thiamine (vitamin B1) transporters: Thi7, nicotinamide riboside transporter 1 (Nrt1), and Thi72. Genetic screening allowed for the isolation of transport-defective Thi7 mutants, which impaired thiamine-induced endocytosis. Coexpression of inactive mutants with wild-type Thi7 revealed that both transporter conformation and transport activity are important to induce endocytosis. Finally, we provide evidence that Art2 mediated Thi7 endocytosis is regulated by the target of rapamycin complex 1 (TORC1) and requires the Sit4 phosphatase but is not inhibited by the Npr1 kinase. A combination of proteomics, protein modeling, and molecular biology sheds light on how endocytosis of the plasma membrane vitamin B1 transporter Thi7 in yeast is regulated by the α-arrestin Art2.
Collapse
|
18
|
Celaj A, Gebbia M, Musa L, Cote AG, Snider J, Wong V, Ko M, Fong T, Bansal P, Mellor JC, Seesankar G, Nguyen M, Zhou S, Wang L, Kishore N, Stagljar I, Suzuki Y, Yachie N, Roth FP. Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Syst 2019; 10:25-38.e10. [PMID: 31668799 PMCID: PMC6989212 DOI: 10.1016/j.cels.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe “X-gene” genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain’s resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems. Celaj et al. introduce “X-gene” genetic analysis (XGA), a strategy for modeling complex systems by engineering and profiling highly combinatorial genetic perturbations. They apply XGA to 16 yeast ABC transporters, revealing many high-order genetic interactions. Neural network models yielded intuitive functional models and illuminated an ABC transporter influence network, supporting application of XGA to other organisms and processes.
Collapse
Affiliation(s)
- Albi Celaj
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Louai Musa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Atina G Cote
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Minjeong Ko
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Tiffany Fong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul Bansal
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph C Mellor
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shijie Zhou
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liangxi Wang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Nishka Kishore
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Mediterranean Institute for Life Sciences, Split 21 000, Croatia
| | - Yo Suzuki
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nozomu Yachie
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Synthetic Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan; Department of Biological Sciences, School of Science, University of Tokyo, Tokyo 113-0033, Japan; Institute for Advanced Biosciences, Keio University, Yamagata 997-0035, Japan; PRESTO, Japan Science and Technology Agency, Tokyo 153-8904, Japan.
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 2019; 10:1445. [PMID: 31379756 PMCID: PMC6647914 DOI: 10.3389/fmicb.2019.01445] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette (ABC) superfamily members have a key role as nutrient importers and exporters in bacteria. However, their role as drug exporters in eukaryotes brought this superfamily member to even greater prominence. The capacity of ABC transporters to efflux a broad spectrum of xenobiotics represents one of the major mechanisms of clinical multidrug resistance in pathogenic fungi including Candida species. Candida auris, a newly emerged multidrug-resistant fungal pathogen of humans, has been responsible for multiple outbreaks of drug-resistant infections in hospitals around the globe. Our study has analyzed the entire complement of ABC superfamily transporters to assess whether these play a major role in drug resistance mechanisms of C. auris. Our bioinformatics analyses identified 28 putative ABC proteins encoded in the genome of the C. auris type-strain CBS 10913T; 20 of which contain transmembrane domains (TMDs). Quantitative real-time PCR confirmed the expression of all 20 TMD transporters, underlining their potential in contributing to the C. auris drug-resistant phenotype. Changes in transcript levels after short-term exposure of drugs and in drug-resistant C. auris isolates suggested their importance in the drug resistance phenotype of this pathogen. CAUR_02725 orthologous to CDR1, a major multidrug exporter in other yeasts, showed consistently higher expression in multidrug-resistant strains of C. auris. Homologs of other ABC transporter genes, such as CDR4, CDR6, and SNQ2, also displayed raised expression in a sub-set of clinical isolates. Together, our analysis supports the involvement of these transporters in multidrug resistance in C. auris.
Collapse
Affiliation(s)
- Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Remya Nair
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Gustavo Bravo Ruiz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Zoe K. Ross
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Lorenz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Andrew M. Lynn
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| |
Collapse
|
20
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
21
|
Tao K, Waletich JR, Arredondo F, Tyler BM. Manipulating Endoplasmic Reticulum-Plasma Membrane Tethering in Plants Through Fluorescent Protein Complementation. FRONTIERS IN PLANT SCIENCE 2019; 10:635. [PMID: 31191568 PMCID: PMC6547045 DOI: 10.3389/fpls.2019.00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay has been widely used to examine interactions between integral and peripheral proteins within putative plasma membrane (PM) microdomains. In the course of using BiFC assays to examine the co-localization of plasma membrane (PM) targeted receptor-like kinases (RLKs), such as FLS2, with PM micro-domain proteins such as remorins, we unexpectedly observed heterogeneous distribution patterns of fluorescence on the PM of Nicotiana benthamiana leaf cortical cells. These patterns appeared to co-localize with the endoplasmic reticulum (ER) and with ER-PM contact sites, and closely resembled patterns caused by over-expression of the ER-PM tether protein Synaptotagmin1 (SYT1). Using domain swap experiments with SYT1, we inferred that non-specific dimerization between FLS2-VenusN and VenusC-StRem1.3 could create artificial ER-PM tether proteins analogous to SYT1. The same patterns of ER-PM tethering were produced when a representative set of integral membrane proteins were partnered in BiFC complexes with PM-targeted peripheral membrane proteins, including PtdIns(4)P-binding proteins. We inferred that spontaneous formation of mature fluorescent proteins caused the BiFC complexes to trap the integral membrane proteins in the ER during delivery to the PM, producing a PM-ER tether. This phenomenon could be a useful tool to deliberately manipulate ER-PM tethering or to test protein membrane localization. However, this study also highlights the risk of using the BiFC assay to study membrane protein interactions in plants, due to the possibility of alterations in cellular structures and membrane organization, or misinterpretation of protein-protein interactions. A number of published studies using this approach may therefore need to be revisited.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
22
|
Morató X, Luján R, Gonçalves N, Watanabe M, Altafaj X, Carvalho AL, Fernández-Dueñas V, Cunha RA, Ciruela F. Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Hum Mol Genet 2019; 27:3528-3541. [PMID: 30010864 DOI: 10.1093/hmg/ddy264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Luján
- IDINE, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Nélio Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Xavier Altafaj
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Ana Luísa Carvalho
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1085-1102. [PMID: 30733383 PMCID: PMC6469404 DOI: 10.1534/g3.118.200985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Wsc1p and Mid2p are transmembrane signaling proteins of cell wall stress in the budding yeast Saccharomyces cerevisiae. When an environmental stress compromises cell wall integrity, they activate a cell response through the Cell Wall Integrity (CWI) pathway. Studies have shown that the cytoplasmic domain of Wsc1p initiates the CWI signaling cascade by interacting with Rom2p, a Rho1-GDP-GTP exchange factor. Binding of Rom2p to the cytoplasmic tail of Wsc1p requires dephosphorylation of specific serine residues but the mechanism by which the sensor is dephosphorylated and how it subsequently interacts with Rom2p remains unclear. We hypothesize that Wsc1p and Mid2p must be physically associated with interacting proteins other than Rom2p that facilitate its interaction and regulate the activation of CWI pathway. To address this, a cDNA plasmid library of yeast proteins was expressed in bait strains bearing membrane yeast two-hybrid (MYTH) reporter modules of Wsc1p and Mid2p, and their interacting preys were recovered and sequenced. 14 previously unreported interactors were confirmed for Wsc1p and 29 for Mid2p. The interactors’ functionality were assessed by cell growth assays and CWI pathway activation by western blot analysis of Slt2p/Mpk1p phosphorylation in null mutants of each interactor under defined stress conditions. The susceptibility of these strains to different stresses were tested against antifungal agents and chemicals. This study reports important novel protein interactions of Wsc1p and Mid2p that are associated with the cellular response to oxidative stress induced by Hydrogen Peroxide and cell wall stress induced by Caspofungin.
Collapse
|
24
|
Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast. Antimicrob Agents Chemother 2019; 63:AAC.01347-18. [PMID: 30642932 DOI: 10.1128/aac.01347-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/29/2018] [Indexed: 11/20/2022] Open
Abstract
Target alteration and overproduction and drug efflux through overexpression of multidrug transporters localized in the plasma membrane represent the conventional mechanisms of azole antifungal resistance. Here, we identify a novel conserved mechanism of azole resistance not only in the budding yeast Saccharomyces cerevisiae but also in the pathogenic yeast Candida albicans We observed that the vacuolar-membrane-localized, multidrug resistance protein (MRP) subfamily, ATP-binding cassette (ABC) transporter of S. cerevisiae, Ybt1, could import azoles into vacuoles. Interestingly, the Ybt1 homologue in C. albicans, Mlt1p, could also fulfill this function. Evidence that the process is energy dependent comes from the finding that a Mlt1p mutant version made by converting a critical lysine residue in the Walker A motif of nucleotide-binding domain 1 (required for ATP hydrolysis) to alanine (K710A) was not able to transport azoles. Additionally, we have shown that, as for other eukaryotic MRP subfamily members, deletion of the conserved phenylalanine amino acid at position 765 (F765Δ) results in mislocalization of the Mlt1 protein; this mislocalized protein was devoid of the azole-resistant attribute. This finding suggests that the presence of this protein on vacuolar membranes is an important factor in azole resistance. Further, we report the importance of conserved residues, because conversion of two serines (positions 973 and 976, in the regulatory domain and in the casein kinase I [CKI] consensus sequence, respectively) to alanine severely affected the drug resistance. Hence, the present study reveals vacuolar sequestration of azoles by the ABC transporter Ybt1 and its homologue Mlt1 as an alternative strategy to circumvent drug toxicity among pathogenic and nonpathogenic yeasts.
Collapse
|
25
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
26
|
Behrens CE, Smith KE, Iancu CV, Choe JY, Dean JV. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2. Sci Rep 2019; 9:437. [PMID: 30679715 PMCID: PMC6345954 DOI: 10.1038/s41598-018-37504-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 01/16/2023] Open
Abstract
Flavonoids have important developmental, physiological, and ecological roles in plants and are primarily stored in the large central vacuole. Here we show that both an ATP-binding cassette (ABC) transporter(s) and an H+-antiporter(s) are involved in the uptake of cyanidin 3-O-glucoside (C3G) by Arabidopsis vacuolar membrane-enriched vesicles. We also demonstrate that vesicles isolated from yeast expressing the ABC protein AtABCC2 are capable of MgATP-dependent uptake of C3G and other anthocyanins. The uptake of C3G by AtABCC2 depended on the co-transport of glutathione (GSH). C3G was not altered during transport and a GSH conjugate was not formed. Vesicles from yeast expressing AtABCC2 also transported flavone and flavonol glucosides. We performed ligand docking studies to a homology model of AtABCC2 and probed the putative binding sites of C3G and GSH through site-directed mutagenesis and functional studies. These studies identified residues important for substrate recognition and transport activity in AtABCC2, and suggest that C3G and GSH bind closely, mutually enhancing each other’s binding. In conclusion, we suggest that AtABCC2 along with possibly other ABCC proteins are involved in the vacuolar transport of anthocyanins and other flavonoids in the vegetative tissue of Arabidopsis.
Collapse
Affiliation(s)
- Claire E Behrens
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Kaila E Smith
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Cristina V Iancu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA. .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA.
| | - John V Dean
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA.
| |
Collapse
|
27
|
Yakubu RR, Nieves E, Weiss LM. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:169-198. [PMID: 31347048 DOI: 10.1007/978-3-030-15950-4_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass Spectrometry (MS) has revolutionized the way we study biomolecules, especially proteins, their interactions and posttranslational modifications (PTM). As such MS has established itself as the leading tool for the analysis of PTMs mainly because this approach is highly sensitive, amenable to high throughput and is capable of assigning PTMs to specific sites in the amino acid sequence of proteins and peptides. Along with the advances in MS methodology there have been improvements in biochemical, genetic and cell biological approaches to mapping the interactome which are discussed with consideration for both the practical and technical considerations of these techniques. The interactome of a species is generally understood to represent the sum of all potential protein-protein interactions. There are still a number of barriers to the elucidation of the human interactome or any other species as physical contact between protein pairs that occur by selective molecular docking in a particular spatiotemporal biological context are not easily captured and measured.PTMs massively increase the complexity of organismal proteomes and play a role in almost all aspects of cell biology, allowing for fine-tuning of protein structure, function and localization. There are an estimated 300 PTMS with a predicted 5% of the eukaryotic genome coding for enzymes involved in protein modification, however we have not yet been able to reliably map PTM proteomes due to limitations in sample preparation, analytical techniques, data analysis, and the substoichiometric and transient nature of some PTMs. Improvements in proteomic and mass spectrometry methods, as well as sample preparation, have been exploited in a large number of proteome-wide surveys of PTMs in many different organisms. Here we focus on previously published global PTM proteome studies in the Apicomplexan parasites T. gondii and P. falciparum which offer numerous insights into the abundance and function of each of the studied PTM in the Apicomplexa. Integration of these datasets provide a more complete picture of the relative importance of PTM and crosstalk between them and how together PTM globally change the cellular biology of the Apicomplexan protozoa. A multitude of techniques used to investigate PTMs, mostly techniques in MS-based proteomics, are discussed for their ability to uncover relevant biological function.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
29
|
Aryal B, Huynh J, Schneuwly J, Siffert A, Liu J, Alejandro S, Ludwig-Müller J, Martinoia E, Geisler M. ABCG36/PEN3/PDR8 Is an Exporter of the Auxin Precursor, Indole-3-Butyric Acid, and Involved in Auxin-Controlled Development. FRONTIERS IN PLANT SCIENCE 2019; 10:899. [PMID: 31354769 PMCID: PMC6629959 DOI: 10.3389/fpls.2019.00899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
The PDR-type ABCG transporter, ABCG36/PDR8/PEN3, is thought to be implicated in the export of a few structurally unrelated substrates, including the auxin precursor, indole-3-butyric acid (IBA), although a clear-cut proof of transport is lacking. An outward facing, lateral root (LR) location for ABCG36 fuelled speculations that it might secrete IBA into the rhizosphere. Here, we provide strong evidence that ABCG36 catalyzes the export of IBA - but not of indole-3-acetic acid - through the plasma membrane. ABCG36 seems to function redundantly with the closely related isoform ABCG37/PDR9/PIS1 in a negative control of rootward IBA transport in roots, which might be dampened by concerted, lateral IBA export. Analyses of single and double mutant phenotypes suggest that both ABCG36 and ABCG37 function cooperatively in auxin-controlled plant development. Both seem to possess a dual function in the control of auxin homeostasis in the root tip and long-range transport in the mature root correlating with non-polar and polar expression profiles in the LR cap and epidermis, respectively.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jerôme Schneuwly
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexandra Siffert
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Markus Geisler,
| |
Collapse
|
30
|
Kim Y, Jung JP, Pack CG, Huh WK. Global analysis of protein homomerization in Saccharomyces cerevisiae. Genome Res 2018; 29:135-145. [PMID: 30567710 PMCID: PMC6314163 DOI: 10.1101/gr.231860.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
In vivo analyses of the occurrence, subcellular localization, and dynamics of protein–protein interactions (PPIs) are important issues in functional proteomic studies. The bimolecular fluorescence complementation (BiFC) assay has many advantages in that it provides a reliable way to detect PPIs in living cells with minimal perturbation of the structure and function of the target proteins. Previously, to facilitate the application of the BiFC assay to genome-wide analysis of PPIs, we generated a collection of yeast strains expressing full-length proteins tagged with the N-terminal fragment of Venus (VN), a yellow fluorescent protein variant, from their own native promoters. In the present study, we constructed a VC (the C-terminal fragment of Venus) fusion library consisting of 5671 MATα strains expressing C-terminally VC-tagged proteins (representing ∼91% of the yeast proteome). For genome-wide analysis of protein homomer formation, we mated each strain in the VC fusion library with its cognate strain in the VN fusion library and performed the BiFC assay. From this analysis, we identified 186 homomer candidates. We further investigated the functional relevance of the homomerization of Pln1, a yeast perilipin. Our data set provides a useful resource for understanding the physiological roles of protein homomerization. Furthermore, the VC fusion library together with the VN fusion library will provide a valuable platform to systematically analyze PPIs in the natural cellular context.
Collapse
Affiliation(s)
- Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Pil Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Gi Pack
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Wasi M, Khandelwal NK, Vishwakarma P, Lynn AM, Mondal AK, Prasad R. Inventory of ABC proteins and their putative role in salt and drug tolerance in Debaryomyces hansenii. Gene 2018; 676:227-242. [DOI: 10.1016/j.gene.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
32
|
Godinho CP, Dias PJ, Ponçot E, Sá-Correia I. The Paralogous Genes PDR18 and SNQ2, Encoding Multidrug Resistance ABC Transporters, Derive From a Recent Duplication Event, PDR18 Being Specific to the Saccharomyces Genus. Front Genet 2018; 9:476. [PMID: 30374366 PMCID: PMC6196229 DOI: 10.3389/fgene.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Saccharomyces cerevisiae Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. PDR18 is a paralog of SNQ2, first described as a determinant of resistance to the chemical mutagen 4-NQO. The phylogenetic and neighborhood analysis performed in this work to reconstruct the evolutionary history of ScPDR18 gene in Saccharomycetaceae yeasts was focused on the 214 Pdr18/Snq2 homologs from the genomes of 117 strains belonging to 29 yeast species across that family. Results support the idea that a single duplication event occurring in the common ancestor of the Saccharomyces genus yeasts was at the origin of PDR18 and SNQ2, and that by chromosome translocation PDR18 gained a subtelomeric region location in chromosome XIV. The multidrug/multixenobiotic phenotypic profiles of S. cerevisiae pdr18Δ and snq2Δ deletion mutants were compared, as well as the susceptibility profile for Candida glabrata snq2Δ deletion mutant, given that this yeast species has diverged previously to the duplication event on the origin of PDR18 and SNQ2 genes and encode only one Pdr18/Snq2 homolog. Results show a significant overlap between ScSnq2 and CgSnq2 roles in multidrug/multixenobiotic resistance (MDR/MXR) as well as some overlap in azole resistance between ScPdr18 and CgSnq2. The fact that ScSnq2 and ScPdr18 confer resistance to different sets of chemical compounds with little overlapping is consistent with the subfunctionalization and neofunctionalization of these gene copies. The elucidation of the real biological role of ScSNQ2 will enlighten this issue. Remarkably, PDR18 is only found in Saccharomyces genus genomes and is present in almost all the recently available 1,000 deep coverage genomes of natural S. cerevisiae isolates, consistent with the relevant encoded physiological function.
Collapse
Affiliation(s)
- Cláudia P Godinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J Dias
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Elise Ponçot
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Relative Contribution of the ABC Transporters Cdr1, Pdh1, and Snq2 to Azole Resistance in Candida glabrata. Antimicrob Agents Chemother 2018; 62:AAC.01070-18. [PMID: 30038038 DOI: 10.1128/aac.01070-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
The utility of the azole antifungals for the treatment of invasive candidiasis is severely hampered by azole resistance in Candida glabrata This resistance is mediated almost exclusively by activating mutations in the zinc cluster transcription factor Pdr1, which controls the genes encoding the multidrug resistance transporters Cdr1, Pdh1, and Snq2. However, the specific relative contributions of these transporters to resistance are not known. To address this question, the SAT1 flipper method was used to delete CDR1, PDH1, and SNQ2 in a strain of C. glabrata engineered to carry a clinically relevant activating mutation in PDR1 Susceptibility testing was performed according to the CLSI guidelines, with minor modifications, and confirmed with Etest strips. Of the single-transporter-deletion strains, only the CDR1 deletion resulted in a decreased azole MIC. The deletion of PDH1 in combination with CDR1 resulted in a moderate decrease in MIC compared to that observed with the deletion of CDR1 alone. SNQ2 deletion only decreased the MIC in the triple-deletion strain in the absence of both CDR1 and PDH1 The deletion of all three transporters in combination decreased the MIC to the level observed in the PDR1 deletion strains for some, but not all, azoles tested, which indicates that additional Pdr1 targets likely play a minor role in this process. These results indicate that while Cdr1 is the most important Pdr1-mediated multidrug resistance transporter for azole resistance in this clinical isolate, all three of these transporters contribute to its high-level resistance to the azole antifungals.
Collapse
|
34
|
Qu R, Zhu X, Tian M, Liu Y, Yan W, Ye J, Gao H, Huang J. Complete Genome Sequence and Characterization of a Protein-Glutaminase Producing Strain, Chryseobacterium proteolyticum QSH1265. Front Microbiol 2018; 9:1975. [PMID: 30233508 PMCID: PMC6132073 DOI: 10.3389/fmicb.2018.01975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Recently, an enzyme named protein-glutaminase (PG) has been identified as a new type of enzyme with significant potential for deamidation of food proteins. The enzyme is shown to be expressed as a pre-pro-protein with a putative signal peptide of 21 amino acids, a pro-sequence of 114 amino acids, and a mature PG of 185 amino acids. The microbial enzyme PG specifically catalyzes deamidation of proteins without protein hydrolysis pretreatment and only reacts with glutamine residues in the side-chains of proteins or long peptides. All these attributes suggest that it has a great potential for food industrial applications. However, until recently, there have been relatively few studies of the PG-producing strains. A strain named Chryseobacterium proteolyticum QSH1265 which can produce PG was isolated from a soil sample collected in Songjiang, Shanghai, China. Its enzyme activity was about 0.34 ± 0.01 U/mL when using carboxybenzoxy-Gln-Gly as a substrate. The strain can produce acid from D-glucose, maltose, L-arabinose sucrose, glycerol, and mannitol but not fructose, and it is also positive for indole production and urease. Here we describe the complete genome sequence of this strain via PacBio RSII sequencing. The C. proteolyticum QSH1265 genome consists of a circular chromosome with total length of 4,849,803 bp without any plasmids. All of 4563 genes were predicted including 4459 genes for protein-coding and 104 RNA-relative genes with an average G+C content of 36.16%. The KEGG and COG annotation provide information for the specific function of proteins encoded in the genome, such as proteases, chromoproteins, stress proteins, antiporters, etc. A highly conserved hypothetical protein shares a promoter with the gene encoding the protein-glutaminase enzyme. The genome sequence and preliminary annotation provide valuable genetic information for further study of C. proteolyticum.
Collapse
Affiliation(s)
- Ruidan Qu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiaoyu Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Min Tian
- School of Life Science, East China Normal University, Shanghai, China
| | - Yingjie Liu
- School of Life Science, East China Normal University, Shanghai, China
| | - Wenjuan Yan
- School of Life Science, East China Normal University, Shanghai, China
| | - Jian Ye
- School of Life Science, East China Normal University, Shanghai, China
| | - Hongliang Gao
- School of Life Science, East China Normal University, Shanghai, China
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Clark HL, Minns MS, Sun Y, de Jesus T, Ghannoum MG, Pearlman E. Atovaquone Impairs Growth of Aspergillus and Fusarium Keratitis Isolates by Modulating Mitochondrial Function and Zinc Homeostasis. Invest Ophthalmol Vis Sci 2018; 59:1589-1598. [PMID: 29625485 PMCID: PMC5863689 DOI: 10.1167/iovs.17-22585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Aspergillus and Fusarium molds cause blinding corneal infections as a consequence of ocular trauma and in association with contact lens wear. As these fungi require zinc for fungal growth, we examined the effect of atovaquone, a ubiquinone analog that disrupts zinc homeostasis, on fungal growth in vitro and in vivo. Methods In vitro: Aspergillus and Fusarium germinating conidia were incubated overnight with atovaquone, and hyphal growth was measured by fluorimetry. In vivo: C57BL/6 mouse corneas were infected with Aspergillus or Fusarium conidia. Atovaquone was added topically and corneal opacification and fungal growth were quantified. Results Atovaquone has antifungal activity against Aspergillus and Fusarium clinical isolates, with Fusarium species being more sensitive to atovaquone than Aspergillus species. Atovaquone also reduced labile intracellular zinc levels and increased the sensitivity of Aspergillus to metal shock. Atovaquone reduced vacuolar acidification, which regulates storage of intracellular free zinc, and also acted synergistically with voriconazole and itraconazole to kill hyphae. Furthermore, mitochondrial potential and ATP production were reduced in both Aspergillus and Fusarium following atovaquone treatment. Finally, topical application of atovaquone to the ocular surface significantly inhibited fungal growth and corneal opacification in murine models of fungal keratitis. Conclusions These studies demonstrate that atovaquone has pronounced in vitro and in vivo antifungal activity against filamentous fungi by disrupting both metal homeostasis and mitochondrial function, and therefore has potential as a novel antifungal agent.
Collapse
Affiliation(s)
- Heather L Clark
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| | - Martin S Minns
- Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Tristan de Jesus
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mahmoud G Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Ophthalmology, University of California Irvine, Irvine, California, United States.,Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States
| |
Collapse
|
36
|
A TRPV2 interactome-based signature for prognosis in glioblastoma patients. Oncotarget 2018; 9:18400-18409. [PMID: 29719613 PMCID: PMC5915080 DOI: 10.18632/oncotarget.24843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease.
Collapse
|
37
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018. [PMID: 29514827 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
38
|
Geisler M, Aryal B, di Donato M, Hao P. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport. PLANT & CELL PHYSIOLOGY 2017; 58:1601-1614. [PMID: 29016918 DOI: 10.1093/pcp/pcx104] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Abstract
Different subclasses of ATP-binding cassette (ABC) transporters have been implicated in the transport of native variants of the phytohormone auxin. Here, the putative, individual roles of key members belonging to the ABCB, ABCD and ABCG families, respectively, are highlighted and the knowledge of their assumed expression and transport routes is reviewed and compared with their mutant phenotypes. Protein-protein interactions between ABC transporters and regulatory components during auxin transport are summarized and their importance is critically discussed. There is a focus on the functional interaction between members of the ABCB family and the FKBP42, TWISTED DWARF1, acting as a chaperone during plasma membrane trafficking of ABCBs. Further, the mode and relevance of functional ABCB-PIN interactions is diagnostically re-evaluated. A new nomenclature describing precisely the most likely ABCB-PIN interaction scenarios is suggested. Finally, available tools for the detection and prediction of ABC transporter interactomes are summarized and the potential of future ABC transporter interactome maps is highlighted.
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Bibek Aryal
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Martin di Donato
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Pengchao Hao
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
39
|
Abstract
Streptomyces are of great biological and industrial significance due to their complex morphological development and ability to produce numerous secondary metabolites. However, the intrinsic biochemical mechanisms underlying morphogenesis and secondary metabolism are rarely revealed, partially because of the limited availability of the biochemical tools in Streptomyces. Here we provided series of integrative vectors with various affinity tags, including single tags 3×FLAG, 3×HA, 3×Strep-tag II, 18×His, 13×Myc, and dual tags, all of which were driven from a strong constitutive promoter ermEp*. Using a sigma factor SigT from S. coelicolor as a model, we successfully expressed and immuno-detected SigT fused with all tags. Moreover, after SigT was N-terminally tagged with 3×FLAG and C-terminally tagged with 18×His, we isolated SigT-interactive proteins from the S. coelicolor lysate based on the tandem affinity purification (TAP). Particularly, among the proteins purified, the SigT cognate anti-sigma factor RstA ranked the top with the most total independent spectra. These data suggested the feasibility of these affinity tags in Streptomyces, which will be widely employed to explore the biochemical mechanisms to further understand the dynamic and elaborate regulation in this genus.
Collapse
|
40
|
Sokolina K, Kittanakom S, Snider J, Kotlyar M, Maurice P, Gandía J, Benleulmi-Chaachoua A, Tadagaki K, Oishi A, Wong V, Malty RH, Deineko V, Aoki H, Amin S, Yao Z, Morató X, Otasek D, Kobayashi H, Menendez J, Auerbach D, Angers S, Pržulj N, Bouvier M, Babu M, Ciruela F, Jockers R, Jurisica I, Stagljar I. Systematic protein-protein interaction mapping for clinically relevant human GPCRs. Mol Syst Biol 2017; 13:918. [PMID: 28298427 PMCID: PMC5371730 DOI: 10.15252/msb.20167430] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.
Collapse
Affiliation(s)
- Kate Sokolina
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Pascal Maurice
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France.,UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Jorge Gandía
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Abla Benleulmi-Chaachoua
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Kenjiro Tadagaki
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Viktor Deineko
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Shahreen Amin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - David Otasek
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Hiroyuki Kobayashi
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | | | | | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy and Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasa Pržulj
- Department of Computing, University College London, London, UK
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology & Cancer, Université de Montréal, Montréal, QC, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK, Canada
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Sorbonne Paris Cité, University of Paris Descartes, Paris, France
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Saraon P, Grozavu I, Lim SH, Snider J, Yao Z, Stagljar I. Detecting Membrane Protein-protein Interactions Using the Mammalian Membrane Two-hybrid (MaMTH) Assay. ACTA ACUST UNITED AC 2017; 9:38-54. [PMID: 28253435 DOI: 10.1002/cpch.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein-protein interactions (PPIs) play an integral role in numerous cellular processes. Membrane protein interactions, in particular, are critical in cellular responses to stresses and stimuli, with dysfunction of these PPIs (e.g., due to aberrant expression and/or mutation of interaction partners) leading to a diverse array of pathological states. Exploration of the interaction space and dynamics of membrane proteins is difficult due to the limitations of current techniques used to study proteins in the biochemically complex environment of biological membranes. In the protocols below, we describe a newly developed membrane protein interaction assay called the Mammalian-Membrane Two-Hybrid (MaMTH), designed specifically for the detection of integral membrane PPIs in the context of living mammalian cells. Prior to using MaMTH, cell lines of interest are genetically modified to encode a reporter of choice. MaMTH "bait" and "prey" constructs of interest are also generated using Gateway cloning technology. The assay is then performed by co-transfection of baits and preys, with bait-prey interaction quantifiably assessed by way of a reporter signal (e.g., light (luciferase), fluorescence (GFP). © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Punit Saraon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ingrid Grozavu
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sang Hyun Lim
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, Amin S, Malty R, Aoki H, Guo H, Xu Y, Iorio C, Kotlyar M, Emili A, Jurisica I, Neel BG, Babu M, Gingras AC, Stagljar I. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell 2017; 65:347-360. [PMID: 28065597 DOI: 10.1016/j.molcel.2016.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Katelyn Darowski
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Caterina Iorio
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
43
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
44
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
45
|
Przybylla S, Stindt J, Kleinschrodt D, Schulte am Esch J, Häussinger D, Keitel V, Smits SH, Schmitt L. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches. PLoS One 2016; 11:e0159778. [PMID: 27472061 PMCID: PMC4966956 DOI: 10.1371/journal.pone.0159778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis.
Collapse
Affiliation(s)
- Susanne Przybylla
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Diana Kleinschrodt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulte am Esch
- Department of General, Visceral and Pediatric Surgery, University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander H. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
46
|
Tsao S, Weber S, Cameron C, Nehme D, Ahmadzadeh E, Raymond M. Positive regulation of the Candida albicans multidrug efflux pump Cdr1p function by phosphorylation of its N-terminal extension. J Antimicrob Chemother 2016; 71:3125-3134. [PMID: 27402010 DOI: 10.1093/jac/dkw252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Overexpression of ATP-binding cassette (ABC) transporters is a frequent cause of multidrug resistance in cancer cells and pathogenic microorganisms. One example is the Cdr1p transporter from the human fungal pathogen Candida albicans that belongs to the pleiotropic drug resistance (PDR) subfamily of ABC transporters found in fungi and plants. Cdr1p is overexpressed in several azole-resistant clinical isolates, causing azole efflux and treatment failure. Cdr1p appears as a doublet band in western blot analyses, suggesting that the protein is post-translationally modified. We investigated whether Cdr1p is phosphorylated and the function of this modification. METHODS Phosphorylated residues were identified by MS. Their function was investigated by site-directed mutagenesis and expression of the mutants in a C. albicans endogenous system that exploits a hyperactive allele of the Tac1p transcription factor to drive high levels of Cdr1p expression. Fluconazole resistance was measured by microtitre plate and spot assays and transport activity by Nile red accumulation. RESULTS We identified a cluster of seven phosphorylated amino acids in the N-terminal extension (NTE) of Cdr1p. Mutating all seven sites to alanine dramatically diminished the ability of Cdr1p to confer fluconazole resistance and transport Nile red, without affecting Cdr1p localization. Conversely, a Cdr1p mutant in which the seven amino acids were replaced by glutamate was able to confer high levels of fluconazole resistance and to export Nile red. CONCLUSIONS Our results demonstrate that the NTE of Cdr1p is phosphorylated and that NTE phosphorylation plays a major role in regulating Cdr1p and possibly other PDR transporter function.
Collapse
Affiliation(s)
- Sarah Tsao
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Christine Cameron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Dominic Nehme
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Elaheh Ahmadzadeh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Martine Raymond
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen. G3-GENES GENOMES GENETICS 2016; 6:1469-74. [PMID: 26921299 PMCID: PMC4856097 DOI: 10.1534/g3.115.026609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.
Collapse
|
48
|
Bicket A, Mehrabi P, Naydenova Z, Wong V, Donaldson L, Stagljar I, Coe IR. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding. Am J Physiol Cell Physiol 2016; 310:C808-20. [PMID: 27009875 DOI: 10.1152/ajpcell.00243.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/09/2016] [Indexed: 01/25/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy.
Collapse
Affiliation(s)
- Alex Bicket
- Department of Biology, York University, Toronto, Canada
| | - Pedram Mehrabi
- Department of Biology, York University, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Zlatina Naydenova
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Victoria Wong
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Imogen R Coe
- Department of Biology, York University, Toronto, Canada; Department of Chemistry and Biology, Ryerson University, Toronto, Canada;
| |
Collapse
|
49
|
Panapruksachat S, Iwatani S, Oura T, Vanittanakom N, Chindamporn A, Niimi K, Niimi M, Lamping E, Cannon RD, Kajiwara S. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2. Med Mycol 2016; 54:478-91. [PMID: 26782644 DOI: 10.1093/mmy/myv117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.
Collapse
Affiliation(s)
| | - Shun Iwatani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | - Takahiro Oura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | | - Kyoko Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Masakazu Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Susumu Kajiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| |
Collapse
|
50
|
Snider J, Stagljar I. Membrane Yeast Two-Hybrid (MYTH) Mapping of Full-Length Membrane Protein Interactions. Cold Spring Harb Protoc 2016; 2016:pdb.top077560. [PMID: 26729912 DOI: 10.1101/pdb.top077560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mapping of protein interaction networks is a major strategy for obtaining a global understanding of protein function in cells and represents one of the primary goals of proteomics research. Membrane proteins, which play key roles in human disease and as drug targets, are of considerable interest; however, because of their hydrophobic nature, mapping their interactions presents significant technical challenges and requires the use of special methodological approaches. One powerful approach is the membrane yeast two-hybrid (MYTH) assay, a split-ubiquitin-based system specifically suited to the study of full-length membrane protein interactions in vivo using the yeast Saccharomyces cerevisiae as a host. The system can be used in both low- and high-throughput formats to study proteins from a wide range of different organisms. There are two primary variants of MYTH: integrated (iMYTH), which involves endogenous expression and tagging of baits and is suitable for studying native yeast membrane proteins, and traditional (tMYTH), which involves ectopic plasmid-based expression of tagged baits and is suitable for studying membrane proteins from other organisms. Here we provide an introduction to the MYTH assay, including both the iMYTH and tMYTH variants. MYTH can be set up in almost any laboratory environment, with results typically obtainable within 4 to 6 wk.
Collapse
Affiliation(s)
- Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|