1
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
2
|
Longo BM, Trunfio M, Calcagno A. Dual β-lactams for the treatment of Mycobacterium abscessus: a review of the evidence and a call to act against an antibiotic nightmare. J Antimicrob Chemother 2024; 79:2731-2741. [PMID: 39150384 DOI: 10.1093/jac/dkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mycobacterium abscessus complex is a group of rapidly growing non-tuberculous mycobacteria (NTM), increasingly emerging as opportunistic pathogens. Current treatment options for these microorganisms are limited and associated with a high rate of treatment failure, toxicity and recurrence. In search of new therapeutic strategies, interest has grown in dual β-lactam (DBL) therapy, as research recently discovered that M. abscessus cell wall synthesis is mainly regulated by two types of enzymes (d,d-transpeptidases and l,d-transpeptidases) differently susceptible to inhibition by distinct β-lactams. In vitro studies testing several DBL combinations have shown synergy in extracellular broth cultures as well as in the intracellular setting: cefoxitin/imipenem, ceftaroline/imipenem, ceftazidime/ceftaroline and ceftazidime/imipenem. The addition of specific β-lactamase inhibitors (BLIs) targeting M. abscessus β-lactamase did not significantly enhance the activity of DBL combinations. However, in vivo data are lacking. We reviewed the literature on DBL/DBL-BLI-based therapies for M. abscessus infections to raise greater attention on this promising yet overlooked treatment option and to guide future preclinical and clinical studies.
Collapse
Affiliation(s)
- Bianca Maria Longo
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| | - Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92037, USA
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| |
Collapse
|
3
|
Le Run E, Tettelin H, Holland SM, Zelazny AM. Evolution toward extremely high imipenem resistance in Mycobacterium abscessus outbreak strains. Antimicrob Agents Chemother 2024; 68:e0067324. [PMID: 39254295 PMCID: PMC11459939 DOI: 10.1128/aac.00673-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Treatment of Mycobacterium abscessus pulmonary disease requires multiple antibiotics including intravenous β-lactams (e.g., imipenem). M. abscessus produces a β-lactamase (BlaMab) that inactivates β-lactam drugs but less efficiently carbapenems. Due to intrinsic and acquired resistance in M. abscessus and poor clinical outcomes, it is critical to understand the development of antibiotic resistance both within the host and in the setting of outbreaks. We compared serial longitudinally collected M. abscessus subsp. massiliense isolates from the index case of a cystic fibrosis center outbreak and four outbreak-related strains. We found strikingly high imipenem resistance in the later patient isolates, including the outbreak strain (MIC > 512 µg/mL). The phenomenon was recapitulated upon exposure of intracellular bacteria to imipenem. Addition of the β-lactamase inhibitor avibactam abrogated the resistant phenotype. Imipenem resistance was caused by an increase in β-lactamase activity and increased blaMab mRNA level. Concurrent increase in transcription of the preceding ppiA gene indicated upregulation of the entire operon in the resistant strains. Deletion of the porin mspA coincided with the first increase in MIC (from 8 to 32 µg/mL). A frameshift mutation in msp2 responsible for the rough colony morphology and a SNP in ATP-dependent helicase hrpA cooccurred with the second increase in MIC (from 32 to 256 µg/mL). Increased BlaMab expression and enzymatic activity may have been due to altered regulation of the ppiA-blaMab operon by the mutated HrpA alone or in combination with other genes described above. This work supports using carbapenem/β-lactamase inhibitor combinations for treating M. abscessus, particularly imipenem-resistant strains.
Collapse
Affiliation(s)
- Eva Le Run
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Adrian M. Zelazny
- Department of Laboratory Medicine (DLM), Microbiology Service, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Begum SY, Imran PM, Kubaib A, Yassin MT, Al-Otibi FO, Selvakumaran M, Basha AA, Sulthanudeen S. Unveiling multifunctional inhibitors: holistic spectral, electronic and molecular characterization, coupled with biological profiling of substituted pyridine derivatives against LD transpeptidase, heme oxygenase and PPAR gamma. RSC Adv 2024; 14:29896-29909. [PMID: 39301237 PMCID: PMC11411632 DOI: 10.1039/d4ra04217d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
This study delves into the therapeutic potential of a molecule, 3-substituted phenyl-1-(pyridine-4-carbonyl)-1H-pyrazole-4-carboxylic acid (PPP), for antimicrobial, antioxidant and anti-diabetic activities. The research encompasses design, synthesis, molecular docking and biological screening of related pyrazole carboxylic acid derivatives. Spectral studies confirmed the structures and molecular mechanics with DFT calculations provided insights into molecular properties and interactions. Quantum chemical descriptors were employed to assess the stability while NBO analysis predicted reactivity, ELF and LOL methods identified electron density. Non-covalent interactions were characterized using RDG and IRI, while the Multiwfn tool was used to evaluate intra and intermolecular aspects. Docking studies elucidated potential therapeutic efficacy against specific protein targets.
Collapse
Affiliation(s)
- Shaik Yasmin Begum
- Department of Chemistry, Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| | - Predhanekar Mohamed Imran
- Department of Chemistry, Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| | - Attar Kubaib
- Department of Chemistry, Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| | - Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Fatimah O Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - M Selvakumaran
- Department of Chemistry, Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| | - A Aathif Basha
- Department of Physics, Islamiah College (Autonomous) Vaniyambadi - 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| | - S Sulthanudeen
- Department of Chemistry, Islamiah College (Autonomous) Vaniyambadi 635752 Tamilnadu India
- Thiruvalluvar University Serkkadu Vellore 632 115 Tamilnadu India
| |
Collapse
|
5
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
7
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
8
|
Lippincott CK, Lamichhane G. Case Commentary: Dual β-lactam as part of regimen to treat Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 2024; 68:e0058524. [PMID: 38837394 PMCID: PMC11232395 DOI: 10.1128/aac.00585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Individuals with compromised lung function and immunity are susceptible to developing chronic Mycobacterium abscessus infection. Current treatment recommendations typically involve using one β-lactam antibiotic in combination with non-β-lactam antibiotics. However, a recent case study (B. Becken, K. M. Dousa, J. L. Johnson, S. M. Holland, and R. A. Bonomo, Antimicrob Agents Chemother 68:e00319-24, 2024, https://doi.org/10.1128/aac.00319-24) demonstrated successful treatment of chronic M. abscessus lung disease in a child using two β-lactam antibiotics simultaneously. This commentary reviews the emerging evidence and outstanding questions regarding dual β-lactam therapy for M. abscessus infections.
Collapse
Affiliation(s)
- Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Becken B, Dousa KM, Johnson JL, Holland SM, Bonomo RA. Dual β-lactam for treatment of pulmonary Mycobacterium abscessus in a child. Antimicrob Agents Chemother 2024; 68:e0031924. [PMID: 38757973 PMCID: PMC11232406 DOI: 10.1128/aac.00319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Treatment of Mycobacterium abscessus infection presents significant challenges, exacerbated by the emergence of macrolide-resistant strains that necessitate the use of multiple antimicrobials in combination and carry the potential for significant toxic effects. Select dual beta-lactam combinations, with or without beta-lactamase inhibitors, have been shown to be highly active in vitro. Herein, we describe a 6-year-old child with underlying mild bilateral lower lobe cylindrical bronchiectatic lung disease who developed pulmonary Mycobacterium abscessus infection and was treated with a multi-drug regimen including two β-lactam antibiotics, achieving both early clinical and microbiological cure. This case highlights the potential benefit of dual β-lactam therapy for the treatment of drug-resistant Mycobacterium abscessus infection.
Collapse
Affiliation(s)
- Bradford Becken
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Khalid M. Dousa
- Department of Internal Medicine and Infectious Diseases, Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - John L. Johnson
- Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A. Bonomo
- Department of Internal Medicine and Infectious Diseases, Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Internal Medicine, CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
10
|
Dousa KM, Shin E, Kurz SG, Plummer M, Nantongo M, Bethel CR, Taracila MA, Nguyen DC, Kreiswith BN, Daley CL, Remy KE, Holland SM, Bonomo RA. Synergistic effects of sulopenem in combination with cefuroxime or durlobactam against Mycobacterium abscessus. mBio 2024; 15:e0060924. [PMID: 38742824 PMCID: PMC11237399 DOI: 10.1128/mbio.00609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/16/2024] Open
Abstract
Mycobacterium abscessus (Mab) affects patients with immunosuppression or underlying structural lung diseases such as cystic fibrosis (CF). Additionally, Mab poses clinical challenges due to its resistance to multiple antibiotics. Herein, we investigated the synergistic effect of dual β-lactams [sulopenem and cefuroxime (CXM)] or the combination of sulopenem and CXM with β-lactamase inhibitors [BLIs-avibactam (AVI) or durlobactam (DUR)]. The sulopenem-CXM combination yielded low minimum inhibitory concentration (MIC) values for 54 clinical Mab isolates and ATCC19977 (MIC50 and MIC90 ≤0.25 µg/mL). Similar synergistic effects were observed in time-kill studies conducted at concentrations achievable in clinical settings. Sulopenem-CXM outperformed monotherapy, yielding ~1.5 Log10 CFU/mL reduction during 10 days. Addition of BLIs enhanced this antibacterial effect, resulting in an additional reduction of CFUs (~3 Log10 for sulopenem-CXM and AVI and ~4 Log10 for sulopenem-DUR). Exploration of the potential mechanisms of the synergy focused on their interactions with L,D-transpeptidases (Ldts; LdtMab1-LdtMab4), penicillin-binding-protein B (PBP B), and D,D-carboxypeptidase (DDC). Acyl complexes, identified via mass spectrometry analysis, demonstrated the binding of sulopenem with LdtMab2-LdtMab4, DDC, and PBP B and CXM with LdtMab2 and PBP B. Molecular docking and mass spectrometry data suggest the formation of a covalent adduct between sulopenem and LdtMab2 after the nucleophilic attack of the cysteine residue at the β-lactam carbonyl carbon, leading to the cleavage of the β-lactam ring and the establishment of a thioester bond linking the LdtMab2 with sulopenem. In conclusion, we demonstrated the biochemical basis of the synergy of sulopenem-CXM with or without BLIs. These findings potentially broaden the selection of oral therapeutic agents to combat Mab. IMPORTANCE Treating infections from Mycobacterium abscessus (Mab), particularly those resistant to common antibiotics like macrolides, is notoriously difficult, akin to a never-ending struggle for healthcare providers. The rate of treatment failure is even higher than that seen with multidrug-resistant tuberculosis. The role of combination β-lactams in inhibiting L,D-transpeptidation, the major peptidoglycan crosslink reaction in Mab, is an area of intense investigation, and clinicians have utilized this approach in the treatment of macrolide-resistant Mab, with reports showing clinical success. In our study, we found that cefuroxime and sulopenem, when used together, display a significant synergistic effect. If this promising result seen in lab settings, translates well into real-world clinical effectiveness, it could revolutionize current treatment methods. This combination could either replace the need for more complex intravenous medications or serve as a "step down" to an oral medication regimen. Such a shift would be much easier for patients to manage, enhancing their comfort and likelihood of sticking to the treatment plan, which could lead to better outcomes in tackling these tough infections. Our research delved into how these drugs inhibit cell wall synthesis, examined time-kill data and binding studies, and provided a scientific basis for the observed synergy in cell-based assays.
Collapse
Affiliation(s)
- Khalid M. Dousa
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Eunjeong Shin
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Mark Plummer
- Yale Center for Molecular Discovery, Yale University, New Haven, Connecticut, USA
| | - Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David C. Nguyen
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, Chicago, Illinois, USA
| | - Barry N. Kreiswith
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Charles L. Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado, USA
| | - Kenneth E. Remy
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Gayatri, Brewitz L, Ibbotson L, Salah E, Basak S, Choudhry H, Schofield CJ. Thiophene-fused γ-lactams inhibit the SARS-CoV-2 main protease via reversible covalent acylation. Chem Sci 2024; 15:7667-7678. [PMID: 38784729 PMCID: PMC11110133 DOI: 10.1039/d4sc01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Enzyme inhibitors working by O-acylation of nucleophilic serine residues are of immense medicinal importance, as exemplified by the β-lactam antibiotics. By contrast, inhibition of nucleophilic cysteine enzymes by S-acylation has not been widely exploited for medicinal applications. The SARS-CoV-2 main protease (Mpro) is a nucleophilic cysteine protease and a validated therapeutic target for COVID-19 treatment using small-molecule inhibitors. The clinically used Mpro inhibitors nirmatrelvir and simnotrelvir work via reversible covalent reaction of their electrophilic nitrile with the Mpro nucleophilic cysteine (Cys145). We report combined structure activity relationship and mass spectrometric studies revealing that appropriately functionalized γ-lactams can potently inhibit Mpro by reversible covalent reaction with Cys145 of Mpro. The results suggest that γ-lactams have potential as electrophilic warheads for development of covalently reacting small-molecule inhibitors of Mpro and, by implication, other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Gayatri
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lewis Ibbotson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Shyam Basak
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Hani Choudhry
- Department of Biochemistry, Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University Jeddah Saudi Arabia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
12
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a new family of peptidoglycan transpeptidases reveals atypical crosslinking is essential for viability in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584917. [PMID: 38559057 PMCID: PMC10980060 DOI: 10.1101/2024.03.14.584917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Present address: Haleon, 1211 Sherwood Ave, Richmond, VA 23220
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, IA USA
| |
Collapse
|
13
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
14
|
Andrés Libreros-Zúñiga G, Pavão E Pavão D, de Morais Barroso V, Cristina de Moraes Roso Mesquita N, Fehelberg Pinto Braga S, Oliva G, Salgado Ferreira R, Ishida K, Vinicius Bertacine Dias M. Integration of biophysical and biological approaches to validate fragment-like compounds targeting l,d-transpeptidases from Mycobacterium tuberculosis. Bioorg Chem 2024; 142:106960. [PMID: 37944368 DOI: 10.1016/j.bioorg.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by β-lactam antibiotics, but since M. tuberculosis has a chromosomal β-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.
Collapse
Affiliation(s)
- Gerardo Andrés Libreros-Zúñiga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Microbiology, Faculty of Health, University of Valle, Calle 4B # 36-00, 760043, Cali, Valle del Cauca, Colombia.
| | - Danilo Pavão E Pavão
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Vinicius de Morais Barroso
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | | | - Saulo Fehelberg Pinto Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Glaucius Oliva
- Institute of Physics of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Chemistry, University of Warwick, Coventry CV4 7AL, England.
| |
Collapse
|
15
|
Bailey J, Gallagher L, Manoil C. Genome-scale analysis of essential gene knockout mutants to identify an antibiotic target process. Antimicrob Agents Chemother 2023; 67:e0110223. [PMID: 37966228 PMCID: PMC10720506 DOI: 10.1128/aac.01102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Abstract
We describe a genome-scale approach to identify the essential biological process targeted by a new antibiotic. The procedure is based on the identification of essential genes whose inactivation sensitizes a Gram-negative bacterium (Acinetobacter baylyi) to a drug and employs recently developed transposon mutant screening and single-mutant validation procedures. The approach, based on measuring the rates of loss of newly generated knockout mutants in the presence of antibiotic, provides an alternative to traditional procedures for studying essential functions using conditional expression or activity alleles. As a proof of principle study, we evaluated whether mutations enhancing sensitivity to the β-lactam antibiotic meropenem corresponded to the known essential target process of the antibiotic (septal peptidoglycan synthesis). We found that indeed mutations inactivating most genes needed for peptidoglycan synthesis and cell division strongly sensitized cells to meropenem. Additional classes of sensitizing mutations in essential genes were also identified, including those that inactivated capsule synthesis, DNA replication, or envelope stress response regulation. The essential capsule synthesis mutants appeared to enhance meropenem sensitivity by depleting a precursor needed for both capsule and peptidoglycan synthesis. The replication mutants may sensitize cells by impairing division. Nonessential gene mutations sensitizing cells to meropenem were also identified in the screen and largely corresponded to functions subordinately associated with the essential target process, such as in peptidoglycan recycling. Overall, these results help validate a new approach to identify the essential process targeted by an antibiotic and define the larger functional network determining sensitivity to it.
Collapse
Affiliation(s)
- J. Bailey
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - L. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - C. Manoil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Linciano P, Quotadamo A, Luciani R, Santucci M, Zorn KM, Foil DH, Lane TR, Cordeiro da Silva A, Santarem N, B Moraes C, Freitas-Junior L, Wittig U, Mueller W, Tonelli M, Ferrari S, Venturelli A, Gul S, Kuzikov M, Ellinger B, Reinshagen J, Ekins S, Costi MP. High-Throughput Phenotypic Screening and Machine Learning Methods Enabled the Selection of Broad-Spectrum Low-Toxicity Antitrypanosomatidic Agents. J Med Chem 2023; 66:15230-15255. [PMID: 37921561 PMCID: PMC10683024 DOI: 10.1021/acs.jmedchem.3c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H. Foil
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anabela Cordeiro da Silva
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Nuno Santarem
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Carolina B Moraes
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Lucio Freitas-Junior
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Ulrike Wittig
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Wolfgang Mueller
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Stefania Ferrari
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- TYDOCK
PHARMA S.r.l., Strada
Gherbella 294/b, 41126 Modena, Italy
| | - Sheraz Gul
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
17
|
Jelisejevs D, Bula AL, Kinena L. Pyrazolidinone-based peptidomimetic SARS-CoV-2 M pro inhibitors. Bioorg Med Chem Lett 2023; 96:129530. [PMID: 37866713 DOI: 10.1016/j.bmcl.2023.129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive drug target for COVID-19 treatment as it plays an integral role in the proliferation of coronavirus. Herein, we describe the investigation of β- and γ-lactams as electrophilic "warheads" for covalent binding to Cys145 of the Mpro active site. The highest inhibitory activity (IC50 = 45 ± 3 μM) was achieved using a pyrazolidinone warhead attached to the targeting dipeptide. Importantly, the synergy of the warhead and the targeting dipeptide is crucial for the successful inhibition of Mpro.
Collapse
Affiliation(s)
- Daniels Jelisejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anna Lina Bula
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Kinena
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
18
|
de Munnik M, Lithgow J, Brewitz L, Christensen KE, Bates RH, Rodriguez-Miquel B, Schofield CJ. αβ,α'β'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chem Commun (Camb) 2023; 59:12859-12862. [PMID: 37815791 PMCID: PMC10601815 DOI: 10.1039/d3cc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report αβ,α'β'-diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis and the main protease from SARS-CoV-2 (Mpro) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jasper Lithgow
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Beatriz Rodriguez-Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
19
|
Economou Lundeberg E, Andersson V, Wijkander M, Groenheit R, Mansjö M, Werngren J, Cortes T, Barilar I, Niemann S, Merker M, Köser CU, Davies Forsman L. In vitro activity of new combinations of β-lactam and β-lactamase inhibitors against the Mycobacterium tuberculosis complex. Microbiol Spectr 2023; 11:e0178123. [PMID: 37737628 PMCID: PMC10580993 DOI: 10.1128/spectrum.01781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
As meropenem-clavulanic acid is recommended for the treatment of drug-resistant tuberculosis, the repurposing of new carbapenem combinations may provide new treatment options, including oral alternatives. Therefore, we studied the in vitro activities of meropenem-vaborbactam, meropenem-clavulanic acid, and tebipenem-clavulanic acid. One hundred nine Mycobacterium tuberculosis complex (MTBC) clinical isolates were tested, of which 69 were pan-susceptible and the remaining pyrazinamide- or multidrug-resistant. Broth microdilution MICs were determined using the EUCAST reference method. Meropenem and tebipenem were tested individually and in combination with vaborbactam 8 mg/L and clavulanic-acid 2 and 4 mg/L, respectively. Whole-genome sequencing was performed to explore resistance mechanisms. Clavulanic acid lowered the modal tebipenem MIC approximately 16-fold (from 16 to 1 mg/L). The modal meropenem MIC was reduced twofold by vaborbactam compared with an approximately eightfold decrease by clavulanic acid. The only previously described high-confidence carbapenem resistance mutation, crfA T62A, was shared by a subgroup of lineage 4.3.4.1 isolates and did not correlate with elevated MICs. The presence of a β-lactamase inhibitor reduced the MTBC MICs of tebipenem and meropenem. The resulting MIC distribution was lowest for the orally available drugs tebipenem-clavulanic acid. Whether this in vitro activity translates to similar or greater clinical efficacy of tebipenem-clavulanic acid compared with the currently WHO-endorsed meropenem-clavulanic acid requires clinical studies. IMPORTANCE Repurposing of already approved antibiotics, such as β-lactams in combination with β-lactamase inhibitors, may provide new treatment alternatives for drug-resistant tuberculosis. Meropenem-clavulanic acid was more active in vitro compared to meropenem-vaborbactam. Notably, tebipenem-clavulanic acid showed even better activity, raising the potential of an all-oral treatment option. Clinical data are needed to investigate whether the better in vitro activity of tebipenem-clavulanic acid correlates with greater clinical efficacy compared with the currently WHO-endorsed meropenem-clavulanic acid.
Collapse
Affiliation(s)
| | - Viktoria Andersson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Wijkander
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Ramona Groenheit
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Mikael Mansjö
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Jim Werngren
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - Teresa Cortes
- Pathogen Gene Regulation Unit, Biomedicine Institute of Valencia (IBV), CSIC, Valencia, Spain
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Matthias Merker
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Claudio U. Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
20
|
de Munnik M, Lang PA, De Dios Anton F, Cacho M, Bates RH, Brem J, Rodríguez Miquel B, Schofield CJ. High-throughput screen with the l,d-transpeptidase Ldt Mt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem Sci 2023; 14:7262-7278. [PMID: 37416715 PMCID: PMC10321483 DOI: 10.1039/d2sc06858c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Disruption of bacterial cell wall biosynthesis in Mycobacterium tuberculosis is a promising target for treating tuberculosis. The l,d-transpeptidase LdtMt2, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for M. tuberculosis virulence. We optimised a high-throughput assay for LdtMt2, and screened a targeted library of ∼10 000 electrophilic compounds. Potent inhibitor classes were identified, including established (e.g., β-lactams) and unexplored covalently reacting electrophilic groups (e.g., cyanamides). Protein-observed mass spectrometric studies reveal most classes to react covalently and irreversibly with the LdtMt2 catalytic cysteine (Cys354). Crystallographic analyses of seven representative inhibitors reveal induced fit involving a loop enclosing the LdtMt2 active site. Several of the identified compounds have a bactericidal effect on M. tuberculosis within macrophages, one with an MIC50 value of ∼1 μM. The results provide leads for the development of new covalently reaction inhibitors of LdtMt2 and other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Francisco De Dios Anton
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Mónica Cacho
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Beatriz Rodríguez Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
21
|
Ambrosio FA, Costa G, Romeo I, Esposito F, Alkhatib M, Salpini R, Svicher V, Corona A, Malune P, Tramontano E, Ceccherini-Silberstein F, Alcaro S, Artese A. Targeting SARS-CoV-2 Main Protease: A Successful Story Guided by an In Silico Drug Repurposing Approach. J Chem Inf Model 2023; 63:3601-3613. [PMID: 37227780 DOI: 10.1021/acs.jcim.3c00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Mohammad Alkhatib
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Romina Salpini
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Valentina Svicher
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133 Roma, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Paolo Malune
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09124 Cagliari, Italy
| | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Kronenberger T, Laufer SA, Pillaiyar T. COVID-19 therapeutics: small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discov Today 2023; 28:103579. [PMID: 37028502 PMCID: PMC10074736 DOI: 10.1016/j.drudis.2023.103579] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative factor behind the 2019 global coronavirus pandemic (COVID-19). The main protease, known as Mpro, is encoded by the viral genome and is essential for viral replication. It has also been an effective target for drug development. In this review, we discuss the rationale for inhibitors that specifically target SARS-CoV-2 Mpro. Small molecules and peptidomimetic inhibitors are two types of inhibitor with various modes of action and we focus here on novel inhibitors that were only discovered during the COVID-19 pandemic highlighting their binding modes and structures.
Collapse
Affiliation(s)
- Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Chen D, Guo J, Li A, Sun C, Lin H, Lin H, Yang C, Wang W, Gao J. Metabolic fluorine labeling and hotspot imaging of dynamic gut microbiota in mice. SCIENCE ADVANCES 2023; 9:eabg6808. [PMID: 36706178 PMCID: PMC9882976 DOI: 10.1126/sciadv.abg6808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Real-time localization and microbial activity information of indigenous gut microbiota over an extended period of time remains a challenge with existing visualizing methods. Here, we report a metabolic fluorine labeling (MEFLA)-based strategy for monitoring the dynamic gut microbiota via 19F magnetic resonance imaging (19F MRI). In situ labeling of different microbiota subgroups is achieved by using a panel of peptidoglycan-targeting MEFLA probes containing 19F atoms of different chemical shifts, and subsequent real-time in vivo imaging is accomplished by multiplexed hotspot 19F MRI with high sensitivity and unlimited penetration. Using this method, we realize extended visualization (>24 hours) of native gut microbes located at different intestinal sections and semiquantitative analysis of their metabolic dynamics modulated by various conditions, such as the host death and different β-lactam antibiotics. Our strategy holds great potential for noninvasive and real-time assessing of the metabolic activities and locations of the highly dynamic gut microbiota.
Collapse
Affiliation(s)
- Dongxia Chen
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junnan Guo
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengjie Sun
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongyu Lin
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jinhao Gao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Curr Issues Mol Biol 2022; 45:92-109. [PMID: 36661493 PMCID: PMC9857151 DOI: 10.3390/cimb45010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
A sequence of novel 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-acetamide analogues 9(a−n) were synthesized by multistep synthesis. The newly synthesized compounds were well characterized, and their antimicrobial activities were carried out by disc diffusion and broth dilution methods. Further, all the novel series of compounds (9a−n), were tested against a variety of bacterial and fungal strains in comparison to Ketoconazole, Chloramphenicol, and Amoxicillin as standard drugs, respectively. Compounds 9a, 9e, and 9g as a lead molecule demonstrated a good inhibition against tested strains. Further, molecular docking studies have been performed for the potent compounds to check the three-dimensional geometrical view of the ligand binding to the targeted proteins.
Collapse
|
25
|
Toth M, Stewart NK, Smith CA, Lee M, Vakulenko SB. The l,d-Transpeptidase Ldt Ab from Acinetobacter baumannii Is Poorly Inhibited by Carbapenems and Has a Unique Structural Architecture. ACS Infect Dis 2022; 8:1948-1961. [PMID: 35973205 PMCID: PMC9764404 DOI: 10.1021/acsinfecdis.2c00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
l,d-Transpeptidases (LDTs) are enzymes that catalyze reactions essential for biogenesis of the bacterial cell wall, including formation of 3-3 cross-linked peptidoglycan. Unlike the historically well-known bacterial transpeptidases, the penicillin-binding proteins (PBPs), LDTs are resistant to inhibition by the majority of β-lactam antibiotics, with the exception of carbapenems and penems, allowing bacteria to survive in the presence of these drugs. Here we report characterization of LdtAb from the clinically important pathogen, Acinetobacter baumannii. We show that A. baumannii survives inactivation of LdtAb alone or in combination with PBP1b or PBP2, while simultaneous inactivation of LdtAb and PBP1a is lethal. Minimal inhibitory concentrations (MICs) of all 13 β-lactam antibiotics tested decreased 2- to 8-fold for the LdtAb deletion mutant, while further decreases were seen for both double mutants, with the largest, synergistic effect observed for the LdtAb + PBP2 deletion mutant. Mass spectrometry experiments showed that LdtAb forms complexes in vitro only with carbapenems. However, the acylation rate of these antibiotics is very slow, with the reaction taking longer than four hours to complete. Our X-ray crystallographic studies revealed that LdtAb has a unique structural architecture and is the only known LDT to have two different peptidoglycan-binding domains.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Batchelder HR, Zandi TA, Kaushik A, Naik A, Story-Roller E, Maggioncalda EC, Lamichhane G, Nuermberger EL, Townsend CA. Structure-Activity Relationship of Penem Antibiotic Side Chains Used against Mycobacteria Reveals Highly Active Compounds. ACS Infect Dis 2022; 8:1627-1636. [PMID: 35916356 PMCID: PMC10029149 DOI: 10.1021/acsinfecdis.2c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of antibiotic-resistant Mycobacterium tuberculosis and non-tuberculous mycobacterial infections has placed ever-increasing importance on discovering new antibiotics to treat these diseases. Recently, a new penem, T405, was discovered to have strong antimicrobial activity against M. tuberculosis and Mycobacteroides abscessus. Here, a penem library of C2 side-chain variants was synthesized, and their antimicrobial activities were evaluated against M. tuberculosis H37Rv and M. abscessus ATCC 19977. Several new penems with antimicrobial activity stronger than the standard-of-care carbapenem antibiotics were identified with some candidates improving on the activity of the lead compound, T405. Moreover, many candidates showed little or no increase in the minimum inhibitory concentration in the presence of serum compared to the highly protein-bound T405. The penems with the strongest activity identified in this study were then biochemically characterized by reaction with the representative l,d-transpeptidase LdtMt2 and the representative penicillin-binding protein d,d-carboxypeptidase DacB2.
Collapse
Affiliation(s)
- Hunter R Batchelder
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Trevor A Zandi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Amit Kaushik
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Akul Naik
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elizabeth Story-Roller
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Emily C Maggioncalda
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
Rimal B, Senzani S, Ealand C, Lamichhane G, Kana B, Kim SJ. Peptidoglycan compositional analysis of Mycobacterium smegmatis using high-resolution LC-MS. Sci Rep 2022; 12:11061. [PMID: 35773428 PMCID: PMC9247062 DOI: 10.1038/s41598-022-15324-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Collapse
Affiliation(s)
- Binayak Rimal
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.,Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sibusiso Senzani
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Bavesh Kana
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa.
| | - Sung Joon Kim
- Department of Chemistry, Howard University, Chemistry Building, 525 College Street, Washington, DC, 20059, USA.
| |
Collapse
|
28
|
Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. J Med Chem 2022; 65:7682-7696. [PMID: 35549342 PMCID: PMC9115881 DOI: 10.1021/acs.jmedchem.1c02214] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 12/05/2022]
Abstract
The SARS-CoV-2 main protease (Mpro) is a medicinal chemistry target for COVID-19 treatment. Given the clinical efficacy of β-lactams as inhibitors of bacterial nucleophilic enzymes, they are of interest as inhibitors of viral nucleophilic serine and cysteine proteases. We describe the synthesis of penicillin derivatives which are potent Mpro inhibitors and investigate their mechanism of inhibition using mass spectrometric and crystallographic analyses. The results suggest that β-lactams have considerable potential as Mpro inhibitors via a mechanism involving reaction with the nucleophilic cysteine to form a stable acyl-enzyme complex as shown by crystallographic analysis. The results highlight the potential for inhibition of viral proteases employing nucleophilic catalysis by β-lactams and related acylating agents.
Collapse
Affiliation(s)
- Tika R. Malla
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Dorian-Gabriel Muntean
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hiba Aslam
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - C. David Owen
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, OX11
0FA Didcot, United Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Petra Lukacik
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, OX11
0FA Didcot, United Kingdom
| | - Claire Strain-Damerell
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, OX11
0FA Didcot, United Kingdom
| | - Halina Mikolajek
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, OX11
0FA Didcot, United Kingdom
| | - Martin A. Walsh
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
- Research
Complex at Harwell, Harwell
Science and Innovation Campus, OX11
0FA Didcot, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
29
|
T405, a New Penem, Exhibits In Vivo Efficacy against M. abscessus and Synergy with β-Lactams Imipenem and Cefditoren. Antimicrob Agents Chemother 2022; 66:e0053622. [PMID: 35638855 PMCID: PMC9211421 DOI: 10.1128/aac.00536-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered β-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a β-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.
Collapse
|
30
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
31
|
Galanis C, Maggioncalda EC, Kumar P, Lamichhane G. Glby, Encoded by MAB_3167c, Is Required for In Vivo Growth of Mycobacteroides abscessus and Exhibits Mild β-Lactamase Activity. J Bacteriol 2022; 204:e0004622. [PMID: 35380462 PMCID: PMC9112878 DOI: 10.1128/jb.00046-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacteroides abscessus (Mab; also known as Mycobacterium abscessus) is an emerging opportunistic pathogen. Patients with structural lung conditions such as bronchiectasis, cystic fibrosis, and chronic obstructive pulmonary disease are at high risk of developing pulmonary Mab disease. This disease is often chronic as the current treatment regimens are sub-efficacious. Here, we characterize the phenotype of a Mab strain lacking the MAB_3167c locus, which encodes a protein hereafter referred to as Glby. We demonstrate that the loss of Glby impairs normal planktonic growth in liquid broth, results in longer average cell length, and a melding of surfaces between cells. Glby also exhibits a mild β-lactamase activity. We also present evidence that amino acid substitutions that potentially alter Glby function are not favored. Lastly, we demonstrate that, in a mouse model of pulmonary Mab infection, the mutant lacking Glby was unable to proliferate, gradually cleared, and was undetectable after 3 weeks. These data suggest that an agent that inhibits Glby in vivo may be an efficacious treatment against Mab disease. IMPORTANCE Mycobacteroides abscessus can cause chronic pulmonary infections requiring administration of multiple antibiotics, still resulting in a low cure rate. The incidence of M. abscessus disease is increasing in the United States and the developed regions of the world. We show for the first time that a protein, Glby, affects growth of this bacterium. Using a mouse model of lung M. abscessus disease, we demonstrate that Glby is required for this bacterium to cause disease.
Collapse
Affiliation(s)
- Christos Galanis
- Center for Tuberculosis Research, Department of Medicine, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily C. Maggioncalda
- Center for Tuberculosis Research, Department of Medicine, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Department of Medicine, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
De Jager V, Gupte N, Nunes S, Barnes GL, van Wijk RC, Mostert J, Dorman SE, Abulfathi AA, Upton CM, Faraj A, Nuermberger EL, Lamichhane G, Svensson EM, Simonsson USH, Diacon AH, Dooley KE. Early Bactericidal Activity of Meropenem plus Clavulanate (with or without Rifampin) for Tuberculosis: The COMRADE Randomized, Phase 2A Clinical Trial. Am J Respir Crit Care Med 2022; 205:1228-1235. [PMID: 35258443 PMCID: PMC9872811 DOI: 10.1164/rccm.202108-1976oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain. Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin. Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBACFU0-14) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13. Measurements and Main Results: Sixty participants enrolled. Median EBACFU0-14 counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-0.37), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log10 h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events. Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens. Clinical trial registered with www.clinicaltrials.gov (NCT03174184).
Collapse
Affiliation(s)
| | - Nikhil Gupte
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Johns Hopkins India, Pune, India
| | | | - Grace L. Barnes
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Susan E. Dorman
- Medical University of South Carolina, Charleston, South Carolina
| | - Ahmed A. Abulfathi
- Department of Medicine, Stellenbosch University, Cape Town, South Africa;,Department of Clinical Pharmacology and Therapeutics, University of Maiduguri, Maiduguri, Nigeria; and
| | | | - Alan Faraj
- Department of Pharmaceutical Biosciences and
| | - Eric L. Nuermberger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gyanu Lamichhane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden;,Department of Pharmacy, Radboud University, Njimegen, the Netherlands
| | | | | | - Kelly E. Dooley
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
33
|
Ahmad N, Dugad S, Chauhan V, Ahmed S, Sharma K, Kachhap S, Zaidi R, Bishai WR, Lamichhane G, Kumar P. Allosteric cooperation in ß-lactam binding to a non-classical transpeptidase. eLife 2022; 11:73055. [PMID: 35475970 PMCID: PMC9094749 DOI: 10.7554/elife.73055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
L,D-transpeptidase function predominates in atypical 3®3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis./em>.
Collapse
Affiliation(s)
- Nazia Ahmad
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sanmati Dugad
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Varsha Chauhan
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Shubbir Ahmed
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, India
| | - Kunal Sharma
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - Sangita Kachhap
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek, Poland
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard University, Delhi, India
| | - William R Bishai
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Gyanu Lamichhane
- Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
| | - Pankaj Kumar
- Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
34
|
Gold B, Zhang J, Quezada LL, Roberts J, Ling Y, Wood M, Shinwari W, Goullieux L, Roubert C, Fraisse L, Bacqué E, Lagrange S, Filoche-Rommé B, Vieth M, Hipskind PA, Jungheim LN, Aubé J, Scarry SM, McDonald SL, Li K, Perkowski A, Nguyen Q, Dartois V, Zimmerman M, Olsen DB, Young K, Bonnett S, Joerss D, Parish T, Boshoff HI, Arora K, Barry CE, Guijarro L, Anca S, Rullas J, Rodríguez-Salguero B, Martínez-Martínez MS, Porras-De Francisco E, Cacho M, Barros-Aguirre D, Smith P, Berthel SJ, Nathan C, Bates RH. Identification of β-Lactams Active against Mycobacterium tuberculosis by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infect Dis 2022; 8:557-573. [PMID: 35192346 PMCID: PMC8922279 DOI: 10.1021/acsinfecdis.1c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 β-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of β-lactams screened were active against Mtb, many without a β-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.
Collapse
Affiliation(s)
- Ben Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Jun Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Landys Lopez Quezada
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Madeleine Wood
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Wasima Shinwari
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Laurent Goullieux
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Christine Roubert
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Laurent Fraisse
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
| | - Eric Bacqué
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Sophie Lagrange
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | | | - Michal Vieth
- Lilly
Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Dr, San Diego, California 92121, United States
| | - Philip A. Hipskind
- Lilly
Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Louis N. Jungheim
- YourEncore, 20 North Meridian Street, Indianapolis, Indiana 46204, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Scarry
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - David B. Olsen
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shilah Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Laura Guijarro
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Anca
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | | | | | - Monica Cacho
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros-Aguirre
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Paul Smith
- Independent Consultant, Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Steven J. Berthel
- Panorama Global, 2101
4th Avenue, Suite 2100, Seattle, Washington 98121, United States
| | - Carl Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Robert H. Bates
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
35
|
Penicillin Binding Proteins and β-Lactamases of Mycobacterium tuberculosis: Reexamination of the Historical Paradigm. mSphere 2022; 7:e0003922. [PMID: 35196121 PMCID: PMC8865919 DOI: 10.1128/msphere.00039-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) have been extensively studied due to their importance to the physiology of bacterial cell wall peptidoglycan and as targets of the most widely used class of antibiotics, the β-lactams. The existing paradigm asserts that PBPs catalyze the final step of peptidoglycan biosynthesis, and β-lactams inhibit their activities. According to this paradigm, a distinct enzyme class, β-lactamases, exists to inactivate β-lactams. This paradigm has been the basis for how bacterial diseases are treated with β-lactams. We tested whether this historical view accurately reflects the relationship between β-lactams and the PBPs and the β-lactamase, BlaC, of Mycobacterium tuberculosis. BlaC was the major inactivator of the cephalosporin subclass of β-lactams. However, the PBPs PonA1 and PonA2 inactivated penicillins and carbapenems more effectively than BlaC. These findings demonstrate that select M. tuberculosis PBPs are effective at inactivating several β-lactams. Lesser-known PBPs, DacB, DacB1, DacB2, and Rv2864c, a putative PBP, were comparably more resistant to inhibition by all β-lactam subclasses. Additionally, Rv1730c exhibited low affinity to most β-lactams. Based on these findings, we conclude that in M. tuberculosis, BlaC is not the only source of inactivation of β-lactams. Therefore, the historical paradigm does not accurately describe the relationship between β-lactams and M. tuberculosis. IMPORTANCE M. tuberculosis, the causative agent of tuberculosis, kills more humans than any other bacterium. β-lactams are the most widely used class of antibiotics to treat bacterial infections. Unlike in the historical model that describes the relationship between β-lactams and M. tuberculosis, we find that M. tuberculosis penicillin binding proteins are able to inactivate select β-lactams with high efficiency.
Collapse
|
36
|
Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane β-Lactamase Inhibitor To Augment β-Lactam Action. mBio 2022; 13:e0352921. [PMID: 35073757 PMCID: PMC8787486 DOI: 10.1128/mbio.03529-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent β-lactam and β-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane β-lactamase inhibitor to restore in vitro susceptibilities in combination with β-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 μg/mL and an MIC50/MIC90 of ≤0.06/0.25 μg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the β-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 μM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using β-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual β-lactam target redundancy can explain the rationale behind the potent activity of this combination.
Collapse
|
37
|
Lane TR, Urbina F, Rank L, Gerlach J, Riabova O, Lepioshkin A, Kazakova E, Vocat A, Tkachenko V, Cole S, Makarov V, Ekins S. Machine Learning Models for Mycobacterium tuberculosisIn Vitro Activity: Prediction and Target Visualization. Mol Pharm 2022; 19:674-689. [PMID: 34964633 PMCID: PMC9121329 DOI: 10.1021/acs.molpharmaceut.1c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with Mycobacterium tuberculosis (Mtb). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against Mtb. We have used machine learning approaches to learn from the public Mtb data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule Mtb data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available Mtb inhibition data in the public domain.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Laura Rank
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | | | - Elena Kazakova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Valery Tkachenko
- Science Data Experts, 14909 Forest Landing Cir, Rockville, MD 20850
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
38
|
Antimicrobial resistance profiles and associated factors of Acinetobacter and Pseudomonas aeruginosa nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, North-East Ethiopia. A cross-sectional study. PLoS One 2021; 16:e0257272. [PMID: 34780494 PMCID: PMC8592406 DOI: 10.1371/journal.pone.0257272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Hospital admitted patients are at increased risk of nosocomial infections (NIs) with multi-drug resistant (MDR) pathogens which are prevalent in the hospital environment. Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are common causes of NIs worldwide. The objective of this study is to determine antimicrobial resistance profiles and associated factors of Acinetobacter spp and P. aeruginosa NIs among hospitalized patients. Methods A cross-sectional study was conducted at Dessie comprehensive specialized hospital, North-East Ethiopia, from February 1 to April 30, 2020. A total of 254 patients who were suspected of the bloodstream, urinary tract, or surgical site nosocomial infections were enrolled consecutively. Socio-demographic and other variables of interest were collected using a structured questionnaire. Specimens were collected and processed following standard microbiological procedures. Antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Data were analyzed with SPSS version 23 and p-value < 0.05 was considered statistically significant. Results Overall, 13% of patients had nosocomial Acinetobacter spp and/or P. aeruginosa infections. The culture positivity rate was 16(6.3%) for Acinetobacter spp and 18(7.1%) for P. aeruginosa. Patients admitted in the surgical ward (Adjusted odds ratio (AOR):10.66;95% confidence interval (CI):1.22–93.23), pediatric ward (AOR:14.37;95%CI:1.4–148.5), intensive care unit (AOR:41.93;95%CI:4.7–374.7) and orthopedics (AOR:52.21;95%CI:7.5–365) were significantly at risk to develop NIs compared to patients admitted in the medical ward. Patients who took more than two antimicrobial types at admission were 94% (AOR:0.06; 95% CI:0.004–0.84) times more protected from NIs compared to those who did not take any antimicrobial. About 81% of Acinetobacter spp and 83% of P. aeruginosa isolates were MDR. Amikacin and meropenem showed promising activity against Acinetobacter spp and P. aeruginosa isolates. Conclusion The high prevalence of MDR Acinetobacter spp and P. aeruginosa nosocomial isolates enforce treating of patients with NIs based on antimicrobial susceptibility testing results.
Collapse
|
39
|
Unipolar Peptidoglycan Synthesis in the Rhizobiales Requires an Essential Class A Penicillin-Binding Protein. mBio 2021; 12:e0234621. [PMID: 34544272 PMCID: PMC8546619 DOI: 10.1128/mbio.02346-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation.
Collapse
|
40
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
41
|
Gupta R, Al-Kharji NMSA, Alqurafi MA, Nguyen TQ, Chai W, Quan P, Malhotra R, Simcox BS, Mortimer P, Brammer Basta LA, Rohde KH, Buynak JD. Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of β-Lactamase Inhibitors. ACS Infect Dis 2021; 7:2425-2436. [PMID: 34191496 PMCID: PMC8369493 DOI: 10.1021/acsinfecdis.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Commercial carbapenem
antibiotics are being used to treat multidrug
resistant (MDR) and extensively drug resistant (XDR) tuberculosis.
Like other β-lactams, carbapenems are irreversible inhibitors
of serine d,d-transpeptidases involved in peptidoglycan biosynthesis.
In addition to d,d-transpeptidases, mycobacteria also utilize
nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link
the stem peptides of peptidoglycan, and carbapenems form long-lived
acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications
of a common scaffold. This study describes the synthesis of a series
of atypical, C5α modifications of the carbapenem scaffold, microbiological
evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well
as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified
carbapenems revealed compounds with standalone (i.e., in the absence of a β-lactamase inhibitor) minimum inhibitory
concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill
kinetics assays showed better killing (2–4 log decrease) of Mtb and Mab with lower concentrations of
compound 10a as compared to meropenem. Although susceptibility
of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry
revealed that 10a acylates LdtMt2 at a rate
comparable to meropenem, but subsequently undergoes an unprecedented
carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic
fragmentation of the LdtMt2 acyl-enzymes is proposed. The
observed activity illustrates the potential of novel atypical carbapenems
as prospective candidates for treatment of Mtb and Mab infections.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | | | - Maha A. Alqurafi
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Thu Q. Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Riya Malhotra
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Breven S. Simcox
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Phil Mortimer
- Department of Chemistry, Mass Spectrometry Facility, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Leighanne A. Brammer Basta
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
42
|
Mattoo R. Targeting emerging Mycobacterium avium infections: perspectives into pathways and antimicrobials for future interventions. Future Microbiol 2021; 16:753-764. [PMID: 34227394 DOI: 10.2217/fmb-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium avium is an emerging opportunistic pathogen, globally. Infections caused by M. avium are laborious to treat and could result in drug resistance. This review discusses the importance of many factors including the cell wall in M. avium pathogenesis, since this unique structure modulates the pathogen's ability to thrive in various hosts and environmental niches including conferring resistance to killing by antimicrobials. More research efforts in future are solicited to develop novel therapeutics targeting M. avium. The complete eradication of M. avium infection in immunocompromised individuals would need a deeper understanding of the source of infection, unique underlying mechanisms and its uncharacterized pathways. This could, perhaps in future, hold the key to target and treat M. avium more effectively.
Collapse
Affiliation(s)
- Rohini Mattoo
- Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
43
|
Zandi TA, Townsend CA. Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness. Proc Natl Acad Sci U S A 2021; 118:e2008610118. [PMID: 34187885 PMCID: PMC8271661 DOI: 10.1073/pnas.2008610118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbapenem family of β-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which β-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular β-lactams. Decades of study have delineated mechanisms of β-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.
Collapse
Affiliation(s)
- Trevor A Zandi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
44
|
Miguel-Ruano V, Hermoso JA. Teaching an old dog new tricks: repurposing β-lactams. Trends Pharmacol Sci 2021; 42:617-619. [PMID: 34215443 DOI: 10.1016/j.tips.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
Recently, Martelli and colleagues reported on the structural and functional characterization of new antimycobacterials based on N-thio-β-lactams. Surprisingly, the inhibitory mechanism follows a path unexpected for β-lactams, providing an alternative route to defeat drug-resistant strains of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
45
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
46
|
Collateral Sensitivity to β-Lactam Drugs in Drug-Resistant Tuberculosis Is Driven by the Transcriptional Wiring of BlaI Operon Genes. mSphere 2021; 6:e0024521. [PMID: 34047652 PMCID: PMC8265638 DOI: 10.1128/msphere.00245-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of resistance to one antimicrobial can result in enhanced sensitivity to another, known as "collateral sensitivity." This underexplored phenomenon opens new therapeutic possibilities for patients infected with pathogens unresponsive to classical treatments. Intrinsic resistance to β-lactams in Mycobacterium tuberculosis (the causative agent of tuberculosis) has traditionally curtailed the use of these low-cost and easy-to-administer drugs for tuberculosis treatment. Recently, β-lactam sensitivity has been reported in strains resistant to classical tuberculosis therapy, resurging the interest in β-lactams for tuberculosis. However, a lack of understanding of the molecular underpinnings of this sensitivity has delayed exploration in the clinic. We performed gene expression and network analyses and in silico knockout simulations of genes associated with β-lactam sensitivity and genes associated with resistance to classical tuberculosis drugs to investigate regulatory interactions and identify key gene mediators. We found activation of the key inhibitor of β-lactam resistance, blaI, following classical drug treatment as well as transcriptional links between genes associated with β-lactam sensitivity and those associated with resistance to classical treatment, suggesting that regulatory links might explain collateral sensitivity to β-lactams. Our results support M. tuberculosis β-lactam sensitivity as a collateral consequence of the evolution of resistance to classical tuberculosis drugs, mediated through changes to transcriptional regulation. These findings support continued exploration of β-lactams for the treatment of patients infected with tuberculosis strains resistant to classical therapies. IMPORTANCE Tuberculosis remains a significant cause of global mortality, with strains resistant to classical drug treatment considered a major health concern by the World Health Organization. Challenging treatment regimens and difficulty accessing drugs in low-income communities have led to a high prevalence of strains resistant to multiple drugs, making the development of alternative therapies a priority. Although Mycobacterium tuberculosis is naturally resistant to β-lactam drugs, previous studies have shown sensitivity in strains resistant to classical drug treatment, but we currently lack understanding of the molecular underpinnings behind this phenomenon. We found that genes involved in β-lactam susceptibility are activated after classical drug treatment resulting from tight regulatory links with genes involved in drug resistance. Our study supports the hypothesis that β-lactam susceptibility observed in drug-resistant strains results from the underlying regulatory network of M. tuberculosis, supporting further exploration of the use of β-lactams for tuberculosis treatment.
Collapse
|
47
|
Jadhav R, Gallardo-Macias R, Kumar G, Daher SS, Kaushik A, Bigelow KM, Nuermberger EL, Lamichhane G, Freundlich JS. Assessment of carbapenems in a mouse model of Mycobacterium tuberculosis infection. PLoS One 2021; 16:e0249841. [PMID: 33939697 PMCID: PMC8092647 DOI: 10.1371/journal.pone.0249841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
We present further study of a subset of carbapenems, arising from a previously reported machine learning approach, with regard to their mouse pharmacokinetic profiling and subsequent study in a mouse model of sub-acute Mycobacterium tuberculosis infection. Pharmacokinetic metrics for such small molecules were compared to those for meropenem and biapenem, resulting in the selection of two carbapenems to be assessed for their ability to reduce M. tuberculosis bacterial loads in the lungs of infected mice. The original syntheses of these two carbapenems were optimized to provide multigram quantities of each compound. One of the two experimental carbapenems, JSF-2204, exhibited efficacy equivalent to that of meropenem, while both were inferior to rifampin. The lessons learned in this study point toward the need to further enhance the pharmacokinetic profiles of experimental carbapenems to positively impact in vivo efficacy performance.
Collapse
Affiliation(s)
- Ravindra Jadhav
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Ricardo Gallardo-Macias
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Gaurav Kumar
- Center for Tuberculosis Research and Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Amit Kaushik
- Center for Tuberculosis Research and Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Kristina M. Bigelow
- Center for Tuberculosis Research and Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Eric L. Nuermberger
- Center for Tuberculosis Research and Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail: (JSF); (GL); (ELN)
| | - Gyanu Lamichhane
- Center for Tuberculosis Research and Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail: (JSF); (GL); (ELN)
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University—New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (JSF); (GL); (ELN)
| |
Collapse
|
48
|
N-Thio-β-lactams targeting L,D-transpeptidase-2, with activity against drug-resistant strains of Mycobacterium tuberculosis. Cell Chem Biol 2021; 28:1321-1332.e5. [PMID: 33826941 DOI: 10.1016/j.chembiol.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Effective treatment of tuberculosis is frequently hindered by the emerging antimicrobial resistance of Mycobacterium tuberculosis. The present study evaluates monocyclic β-lactam compounds targeting the mycobacterial cell wall remodeling. Novel N-thio-β-lactams were designed, synthesized, and characterized on the L,D-transpeptidase-2, a validated target in M. tuberculosis. The candidates were evaluated in biochemical assays identifying five compounds presenting target-specific kinetic constants equal or superior to meropenem, a carbapenem currently considered for tuberculosis therapy. Mass spectrometry in line with the crystal structures of five target-ligand complexes revealed that the N-thio-β-lactams act via an unconventional mode of adduct formation, transferring the thio-residues from the lactam ring to the active-site cysteine of LdtMt2. The resulting stable adducts lead to a long-term inactivation of the target protein. Finally, the candidates were evaluated in vitro against a drug-susceptible and multidrug-resistant clinical isolates of M. tuberculosis, confirming the antimycobacterial effect of these novel compounds.
Collapse
|
49
|
Story-Roller E, Galanis C, Lamichhane G. β-Lactam Combinations That Exhibit Synergy against Mycobacteroides abscessus Clinical Isolates. Antimicrob Agents Chemother 2021; 65:e02545-20. [PMID: 33361310 PMCID: PMC8097488 DOI: 10.1128/aac.02545-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacteroides abscessus (Mab) is an opportunistic environmental pathogen that can cause chronic pulmonary disease in the setting of structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. These infections are often incurable and associated with rapid lung function decline. Mab is naturally resistant to most of the antibiotics available today, and current treatment guidelines require at least 1 year of daily multidrug therapy, which is often ineffective and is associated with significant toxicities. β-Lactams are the most widely used class of antibiotics and have a demonstrated record of safety and tolerability. Here, using a panel of recent clinical isolates of Mab, we evaluated the in vitro activities of dual-β-lactam combinations to identify new treatments with the potential to treat infections arising from a wide range of Mab strains. The Mab clinical isolates were heterogeneous, as reflected by the diversity of their genomes and differences in their susceptibilities to various drugs. Cefoxitin and imipenem are currently the only two β-lactams included in the guidelines for treating Mab disease, yet they are not used concurrently in clinical practice. However, this dual-β-lactam combination exhibited synergy against 100% of the isolates examined (n = 21). Equally surprising is the finding that the combination of two carbapenems, doripenem and imipenem, exhibited synergy against the majority of Mab isolates. In the setting of multidrug-resistant Mab disease with few therapeutic options, these combinations may offer viable immediate treatment options with efficacy against the broad spectrum of Mab strains infecting patients today.
Collapse
Affiliation(s)
- Elizabeth Story-Roller
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christos Galanis
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Ntombela T, Seupersad A, Maseko S, Ibeji CU, Tolufashe G, Maphumulo SI, Naicker T, Baijnath S, Maguire GEM, Govender T, Lamichhane G, Honarparvar B, Kruger HG. Mechanistic insight on the inhibition of D, D-carboxypeptidase from Mycobacterium tuberculosis by β-lactam antibiotics: an ONIOM acylation study. J Biomol Struct Dyn 2021; 40:7645-7655. [PMID: 33719919 DOI: 10.1080/07391102.2021.1899052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by β-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by β-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by β-lactams.
Collapse
Affiliation(s)
- Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anya Seupersad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gideon Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Siyabonga Innocent Maphumulo
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, Richards Bay, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|