1
|
Kehrli J, Husser C, Ryckelynck M. Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives. BIOSENSORS 2024; 14:376. [PMID: 39194605 DOI: 10.3390/bios14080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of detecting these targets. They combine the portability of molecular systems with the sensitivity and multiplexing capacity of fluorescence, as well as the exquisite ligand selectivity of RNA aptamers. In this review, we first present the different sensing and reporting aptamer modules currently available to design an FRB, together with the main methodologies used to discover modules with new specificities. We next introduce and discuss how both modules can be functionally connected prior to exploring the main applications for which FRB have been used. Finally, we conclude by discussing how using alternative nucleotide chemistries may improve FRB properties and further widen their application scope.
Collapse
Affiliation(s)
- Janine Kehrli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| |
Collapse
|
2
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
3
|
Ogawa A, Fujikawa M, Onishi K, Takahashi H. Cell-Free Biosensors Based on Modular Eukaryotic Riboswitches That Function in One Pot at Ambient Temperature. ACS Synth Biol 2024; 13:2238-2245. [PMID: 38913391 DOI: 10.1021/acssynbio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Artificial riboswitches responsive to user-defined analytes can be constructed by successfully inserting in vitro selected aptamers, which bind to the analytes, into untranslated regions of mRNA. Among them, eukaryotic riboswitches are more promising as biosensors than bacterial ones because they function well at ambient temperature. In addition, cell-free expression systems allow the broader use of these riboswitches as cell-free biosensors in an environmentally friendly manner without cellular limitations. The current best cell-free eukaryotic riboswitch regulates eukaryotic canonical translation initiation through self-cleavage mediated by an implanted analyte-responsive ribozyme (i.e., an aptazyme, an aptamer-ribozyme fusion). However, it has critical flaws as a sensor: due to the less-active ribozyme used, self-cleavage and translation reactions must be conducted separately and sequentially, and a different aptazyme has to be selected to change the analyte specificity, even if an aptamer for the next analyte is available. We here stepwise engineered novel types of cell-free eukaryotic riboswitches that harness highly active self-cleavage and thus require no reaction partitioning. Despite the single-step and one-pot reaction, these riboswitches showed higher analyte dose dependency and sensitivities than the current best cell-free eukaryotic riboswitch requiring multistep reactions. In addition, the analyte specificity can be changed in an extremely facile way, simply by aptamer substitution (and the subsequent simple fine-tuning for giant aptamers). Given that cell-free systems can be lyophilized for storage and transport, the present one-pot and thus easy-to-handle cell-free biosensors utilizing eukaryotic riboswitches are expected to be widely used for on-the-spot sensing of analytes at ambient temperature.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Kazuki Onishi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| |
Collapse
|
4
|
Mohsen M, Midy MK, Balaji A, Breaker RR. Engineered Branaplam Aptamers Exploit Structural Elements from Natural Riboswitches. ACS Chem Biol 2024; 19:1447-1452. [PMID: 38954594 PMCID: PMC11267568 DOI: 10.1021/acschembio.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Drug candidates that fail in clinical trials for efficacy reasons might still have favorable safety and bioavailability characteristics that could be exploited. A failed drug candidate could be repurposed if a receptor, such as an aptamer, were created that binds the compound with high specificity. Branaplam is a small molecule that was previously in development to treat spinal muscular atrophy and Huntington's disease. Here, we report the development of a small (48-nucleotide) RNA aptamer for branaplam with a dissociation constant of ∼150 nM. Starting with a combinatorial RNA pool integrating the secondary and tertiary structural scaffold of a Guanine-I riboswitch aptamer interspersed with regions of random sequence, in vitro selection yielded aptamer candidates for branaplam. Reselection and rational design were employed to improve binding of a representative branaplam aptamer candidate. A resulting variant retains the pseudoknot and two of the paired elements (P2 and P3) from the scaffold but lacks the enclosing paired element (P1) that is essential for the function of the natural Guanine-I riboswitch aptamer. A second combinatorial RNA pool based on the scaffold for TPP (thiamin pyrophosphate) riboswitches also yielded a candidate offering additional opportunities for branaplam aptamer development.
Collapse
Affiliation(s)
- Michael
G. Mohsen
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Howard
Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Matthew K. Midy
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Aparaajita Balaji
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Ronald R. Breaker
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Howard
Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angew Chem Int Ed Engl 2024; 63:e202318665. [PMID: 38253971 DOI: 10.1002/anie.202318665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.
Collapse
Affiliation(s)
- Alex Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Jake Brill
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| |
Collapse
|
6
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573115. [PMID: 38187752 PMCID: PMC10769408 DOI: 10.1101/2023.12.22.573115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of 32,768 variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
7
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
8
|
Mao Y, Huang C, Zhou X, Han R, Deng Y, Zhou S. Genetically Encoded Biosensor Engineering for Application in Directed Evolution. J Microbiol Biotechnol 2023; 33:1257-1267. [PMID: 37449325 PMCID: PMC10619561 DOI: 10.4014/jmb.2304.04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Although rational genetic engineering is nowadays the favored method for microbial strain improvement, building up mutant libraries based on directed evolution for improvement is still in many cases the better option. In this regard, the demand for precise and efficient screening methods for mutants with high performance has stimulated the development of biosensor-based high-throughput screening strategies. Genetically encoded biosensors provide powerful tools to couple the desired phenotype to a detectable signal, such as fluorescence and growth rate. Herein, we review recent advances in engineering several classes of biosensors and their applications in directed evolution. Furthermore, we compare and discuss the screening advantages and limitations of two-component biosensors, transcription-factor-based biosensors, and RNA-based biosensors. Engineering these biosensors has focused mainly on modifying the expression level or structure of the biosensor components to optimize the dynamic range, specificity, and detection range. Finally, the applications of biosensors in the evolution of proteins, metabolic pathways, and genome-scale metabolic networks are described. This review provides potential guidance in the design of biosensors and their applications in improving the bioproduction of microbial cell factories through directed evolution.
Collapse
Affiliation(s)
- Yin Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Chao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Xuan Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
9
|
Hamal Dhakal S, Kavita K, Panchapakesan SSS, Roth A, Breaker RR. 8-oxoguanine riboswitches in bacteria detect and respond to oxidative DNA damage. Proc Natl Acad Sci U S A 2023; 120:e2307854120. [PMID: 37748066 PMCID: PMC10556655 DOI: 10.1073/pnas.2307854120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
Riboswitches rely on structured aptamer domains to selectively sense their target ligands and regulate gene expression. However, some riboswitch aptamers in bacteria carry mutations in their otherwise strictly conserved binding pockets that change ligand specificities. The aptamer domain of a riboswitch class originally found to selectively sense guanine forms a three-stem junction that has since been observed to exploit numerous alterations in its ligand-binding pocket. These rare variants have modified their ligand specificities to sense other purines or purine derivatives, including adenine, 2'-deoxyguanosine (three classes), and xanthine. Herein, we report the characteristics of a rare variant that is narrowly distributed in the Paenibacillaceae family of bacteria. Known representatives are always associated with genes encoding 8-oxoguanine deaminase. As predicted from this gene association, these variant riboswitches tightly bind 8-oxoguanine (8-oxoG), strongly discriminate against other purine derivatives, and function as genetic "ON" switches. Following exposure of cells to certain oxidative stresses, a representative 8-oxoG riboswitch activates gene expression, likely caused by the accumulation of 8-oxoG due to oxidative damage to G nucleobases in DNA, RNA, and the nucleotide pool. Furthermore, an engineered version of the variant aptamer was prepared that exhibits specificity for 8-oxoadenine, further demonstrating that RNA aptamers can acquire mutations that expand their ability to detect and respond to oxidative damage.
Collapse
Affiliation(s)
- Siddhartha Hamal Dhakal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| | | | - Adam Roth
- HHMI, Yale University, New Haven, CT06511-8103
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
- HHMI, Yale University, New Haven, CT06511-8103
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| |
Collapse
|
10
|
Wang Z, Cheng J, Dai G, Sun X, Yin X, Zhang Y. The Establishment of a Tobramycin-Responsive Whole-Cell Micro-Biosensor Based on an Artificial Ribozyme Switch. Life (Basel) 2023; 13:1553. [PMID: 37511928 PMCID: PMC10381313 DOI: 10.3390/life13071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a tobramycin concentration-dependent whole-cell micro-biosensor (tob-HHAz) was constructed by fusing a tobramycin aptamer with a hammerhead ribozyme (HHR) from Schistosoma mansoni. The biosensor was obtained by integrating all the modules into one complete RNA sequence, which was easily introduced into E. coli without suffering from harsh external environments. Three independent tobramycin-sensitive RNA structures were identified via high-throughput screening in vivo and were further verified in vitro to undergo the desired self-cleavage reaction. The computation prediction of the RNA structure was performed to help analyze the mechanisms of various conformations by performing a qualitative and rapid detection of tobramycin in practical samples; two sensors exhibited high responsiveness to spiked milk, with a detection limit of around 40 nM, which is below the EU's antibiotic maximum residual level. One of the structures provides a linear range from 30 to 650 nM with a minimum detection limit of 30 nM and showed relatively good selectivity in spiked urine. This study is the first in which in vivo screening was combined with computation analysis to optimize the pivotal structure of sensors. This strategy enables researchers to use artificial ribozyme-based biosensors not only for antibiotic detection but also as a generally applicable method for the further detection of substances in living cells.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Jiawen Cheng
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Guimin Dai
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xiaoqi Sun
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xueli Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Mohsen MG, Breaker RR. In vitro Selection and in vivo Testing of Riboswitch-inspired Aptamers. Bio Protoc 2023; 13:e4775. [PMID: 37456339 PMCID: PMC10338711 DOI: 10.21769/bioprotoc.4775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Engineered aptamers for new compounds are typically produced by using in vitro selection methods. However, aptamers that are developed in vitro might not function as expected when introduced into complex cellular environments. One approach that addresses this concern is the design of initial RNA pools for selection that contain structural scaffolds from naturally occurring riboswitch aptamers. Here, we provide guidance on design and experimental principles for developing riboswitch-inspired aptamers for new ligands. The in vitro selection protocol (based on Capture-SELEX) is generalizable to diverse RNA scaffold types and amenable to multiplexing of ligand candidates. We discuss strategies to avoid propagation of selfish sequences that can easily dominate the selection. We also detail the identification of aptamer candidates using next-generation sequencing and bioinformatics, and subsequent biochemical validation of aptamer candidates. Finally, we describe functional testing of aptamer candidates in bacterial cell culture. Key features Develop riboswitch-inspired aptamers for new ligands using in vitro selection. Ligand candidates can be multiplexed to conserve time and resources. Test aptamer candidates in bacterial cells by grafting the aptamer back onto its expression platform.
Collapse
Affiliation(s)
- Michael G. Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Chingarande RG, Tian K, Kuang Y, Sarangee A, Hou C, Ma E, Ren J, Hawkins S, Kim J, Adelstein R, Chen S, Gillis KD, Gu LQ. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor. Proc Natl Acad Sci U S A 2023; 120:e2108118120. [PMID: 37276386 PMCID: PMC10268594 DOI: 10.1073/pnas.2108118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.
Collapse
Affiliation(s)
- Rugare G. Chingarande
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Kai Tian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Yu Kuang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Aby Sarangee
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Chengrui Hou
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Emily Ma
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Jarett Ren
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sam Hawkins
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Joshua Kim
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Ray Adelstein
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sally Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Kevin D. Gillis
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Li-Qun Gu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| |
Collapse
|
13
|
Hansen LN, Kletzien OA, Urquijo M, Schwanz LT, Batey RT. Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions. J Mol Biol 2023; 435:168070. [PMID: 37003469 PMCID: PMC10152882 DOI: 10.1016/j.jmb.2023.168070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
The architecture and folding of complex RNAs is governed by a limited set of highly recurrent structural motifs that form long-range tertiary interactions. One of these motifs is the T-loop, which was first identified in tRNA but is broadly distributed across biological RNAs. While the T-loop has been examined in detail in different biological contexts, the various receptors that it interacts with are not as well defined. In this study, we use a cell-based genetic screen in concert with bioinformatic analysis to examine three different, but related, T-loop receptor motifs found in the flavin mononucleotide (FMN) and cobalamin (Cbl) riboswitches. As a host for different T-loop receptors, we employed the env8 class-II Cbl riboswitch, an RNA that uses two T-loop motifs for both folding and supporting the ligand binding pocket. A set of libraries was created in which select nucleotides that participate in the T-loop/T-loop receptor (TL/TLR) interaction were fully randomized. Library members were screened for their ability to support Cbl-dependent expression of a reporter gene. While T-loops appear to be variable in sequence, we find that the functional sequence space is more restricted in the Cbl riboswitch, suggesting that TL/TLR interactions are context dependent. Our data reveal clear sequence signatures for the different types of receptor motifs that align with phylogenic analysis of these motifs in the FMN and Cbl riboswitches. Finally, our data suggest the functional contribution of various nucleobase-mediated long-range interactions within the riboswitch subclass of TL/TLR interactions that are distinct from those found in other RNAs.
Collapse
Affiliation(s)
- Lisa N Hansen
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Marcus Urquijo
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Logan T Schwanz
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA. https://twitter.com/Lschwanzbio
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
14
|
Allchin ER, Rosch JC, Stoneman AD, Kim H, Lippmann ES. Generalized Strategy for Engineering Mammalian Cell-Compatible RNA-Based Biosensors from Random Sequence Libraries. ACS Sens 2023; 8:2079-2086. [PMID: 37155734 DOI: 10.1021/acssensors.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluorescent RNA-based biosensors are useful tools for real-time detection of molecules in living cells. These biosensors typically consist of a chromophore-binding aptamer and a target-binding aptamer, whereby the chromophore-binding aptamer is destabilized until a target is captured, which causes a conformational change to permit chromophore binding and an increase in fluorescence. The target-binding region is typically fabricated using known riboswitch motifs, which are already known to have target specificity and undergo structural changes upon binding. However, known riboswitches only exist for a limited number of molecules, significantly constraining biosensor design. To overcome this challenge, we designed a framework for producing mammalian cell-compatible biosensors using aptamers selected from a large random library by Capture-SELEX. As a proof-of-concept, we generated and characterized a fluorescent RNA biosensor against L-dopa, the precursor of several neurotransmitters. Overall, we suggest that this approach will have utility for generating RNA biosensors that can reliably detect custom targets in mammalian cells.
Collapse
Affiliation(s)
- Everett R Allchin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Alexander D Stoneman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
15
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
16
|
Ortega AD. Real-Time Assessment of Intracellular Metabolites in Single Cells through RNA-Based Sensors. Biomolecules 2023; 13:biom13050765. [PMID: 37238635 DOI: 10.3390/biom13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Quantification of the concentration of particular cellular metabolites reports on the actual utilization of metabolic pathways in physiological and pathological conditions. Metabolite concentration also constitutes the readout for screening cell factories in metabolic engineering. However, there are no direct approaches that allow for real-time assessment of the levels of intracellular metabolites in single cells. In recent years, the modular architecture of natural bacterial RNA riboswitches has inspired the design of genetically encoded synthetic RNA devices that convert the intracellular concentration of a metabolite into a quantitative fluorescent signal. These so-called RNA-based sensors are composed of a metabolite-binding RNA aptamer as the sensor domain, connected through an actuator segment to a signal-generating reporter domain. However, at present, the variety of available RNA-based sensors for intracellular metabolites is still very limited. Here, we go through natural mechanisms for metabolite sensing and regulation in cells across all kingdoms, focusing on those mediated by riboswitches. We review the design principles underlying currently developed RNA-based sensors and discuss the challenges that hindered the development of novel sensors and recent strategies to address them. We finish by introducing the current and potential applicability of synthetic RNA-based sensors for intracellular metabolites.
Collapse
Affiliation(s)
- Alvaro Darío Ortega
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Mi L, Yu Q, Mudiyanselage APK, Wu R, Sun Z, Zheng R, Ren K, You M. Genetically Encoded RNA-Based Bioluminescence Resonance Energy Transfer (BRET) Sensors. ACS Sens 2023; 8:308-316. [PMID: 36608281 PMCID: PMC10630924 DOI: 10.1021/acssensors.2c02213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA-based nanostructures and molecular devices have become popular for developing biosensors and genetic regulators. These programmable RNA nanodevices can be genetically encoded and modularly engineered to detect various cellular targets and then induce output signals, most often a fluorescence readout. Although powerful, the high reliance of fluorescence on the external excitation light raises concerns about its high background, photobleaching, and phototoxicity. Bioluminescence signals can be an ideal complementary readout for these genetically encoded RNA nanodevices. However, RNA-based real-time bioluminescent reporters have been rarely developed. In this study, we reported the first type of genetically encoded RNA-based bioluminescence resonance energy transfer (BRET) sensors that can be used for real-time target detection in living cells. By coupling a luciferase bioluminescence donor with a fluorogenic RNA-based acceptor, our BRET system can be modularly designed to image and detect various cellular analytes. We expect that this novel RNA-based bioluminescent system can be potentially used broadly in bioanalysis and nanomedicine for engineering biosensors, characterizing cellular RNA-protein interactions, and high-throughput screening or in vivo imaging.
Collapse
Affiliation(s)
- Lan Mi
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Mohsen MG, Midy MK, Balaji A, Breaker R. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res 2023; 51:966-981. [PMID: 36617976 PMCID: PMC9881172 DOI: 10.1093/nar/gkac1218] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.
Collapse
Affiliation(s)
- Michael G Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Matthew K Midy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
19
|
Xu X, Egger M, Li C, Chen H, Micura R, Ren A. Structure-based investigations of the NAD+-II riboswitch. Nucleic Acids Res 2023; 51:54-67. [PMID: 36610789 PMCID: PMC9841397 DOI: 10.1093/nar/gkac1227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
Riboswitches are conserved non-coding domains in bacterial mRNA with gene regulation function that are essential for maintaining enzyme co-factor metabolism. Recently, the pnuC RNA motif was reported to selectively bind nicotinamide adenine dinucleotide (NAD+), defining a novel class of NAD+ riboswitches (NAD+-II) according to phylogenetic analysis. To reveal the three-dimensional architecture and the ligand-binding mode of this riboswitch, we solved the crystal structure of NAD+-II riboswitch in complex with NAD+. Strikingly and in contrast to class-I riboswitches that form a tight recognition pocket for the adenosine diphosphate (ADP) moiety of NAD+, the class-II riboswitches form a binding pocket for the nicotinamide mononucleotide (NMN) portion of NAD+ and display only unspecific interactions with the adenosine. We support this finding by an additional structure of the class-II RNA in complex with NMN alone. The structures define a novel RNA tertiary fold that was further confirmed by mutational analysis in combination with isothermal titration calorimetry (ITC), and 2-aminopurine-based fluorescence spectroscopic folding studies. Furthermore, we truncated the pnuC RNA motif to a short RNA helical scaffold with binding affinity comparable to the wild-type motif to allude to the potential of engineering the NAD+-II motif for biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ronald Micura
- Correspondence may also be addressed to Ronald Micura.
| | - Aiming Ren
- To whom correspondence should be addressed. Tel: +86 571 88981228; Fax: +86 571 88981227;
| |
Collapse
|
20
|
Hou Q, Jaffrey SR. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol 2023; 20:198-206. [PMID: 37129556 PMCID: PMC10155629 DOI: 10.1080/15476286.2023.2206248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
RNA aptamers are structured RNAs that can bind to diverse ligands, including proteins, metabolites, and other small molecules. RNA aptamers are widely used as in vitro affinity reagents. However, RNA aptamers have not been highly successful as bioactive intracellular molecules that can bind target molecules and influence cellular processes. We describe how poor RNA aptamer expression and especially poor RNA aptamer folding have limited the use of RNA aptamers in RNA synthetic biology applications. We discuss innovative new approaches that promote RNA aptamer folding in living cells and how these approaches have improved the function of aptamers in mammalian cells. These new approaches are making RNA aptamer-based synthetic biology and RNA aptamer therapeutic applications much more achievable.
Collapse
Affiliation(s)
- Qian Hou
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R. Jaffrey
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
21
|
Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, Jewett MC, Lucks JB, Chávez JL. Engineering a Synthetic Dopamine-Responsive Riboswitch for In Vitro Biosensing. ACS Synth Biol 2022; 11:2275-2283. [PMID: 35775197 DOI: 10.1021/acssynbio.1c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein. However, this strategy has not generated more than a handful of successful portable cell-free molecular sensors. To address this gap, here we convert dopamine-binding aptamers into functional dopamine-sensing riboswitches that regulate gene expression in a freeze-dried CFE reaction. We then develop an assay for direct detection and semi-quantification of dopamine in human urine. We anticipate that this work will be broadly applicable for converting many in vitro-generated RNA aptamers into fieldable molecular diagnostics.
Collapse
Affiliation(s)
- Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Adam D Silverman
- Sherlock Biosciences, Boston, Massachusetts 02135, United States
| | - Yaroslav G Chushak
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Kathryn Zimlich
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Monica Wolfe
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,UES, Inc., Dayton, Ohio 45432, United States
| | - Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
22
|
Hamal Dhakal S, Panchapakesan SSS, Slattery P, Roth A, Breaker RR. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine. Proc Natl Acad Sci U S A 2022; 119:e2120246119. [PMID: 35622895 PMCID: PMC9295807 DOI: 10.1073/pnas.2120246119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022] Open
Abstract
The aptamer portions of previously reported riboswitch classes that sense guanine, adenine, or 2′-deoxyguanosine are formed by a highly similar three-stem junction with distinct nucleotide sequences in the regions joining the stems. The nucleotides in these joining regions form the major features of the selective ligand-binding pocket for each aptamer. Previously, we reported the existence of additional, rare variants of the predominant guanine-sensing riboswitch class that carry nucleotide differences in the ligand-binding pocket, suggesting that these RNAs have further diversified their structures and functions. Herein, we report the discovery and analysis of three naturally occurring variants of guanine riboswitches that are narrowly distributed across Firmicutes. These RNAs were identified using comparative sequence analysis methods, which also revealed that some of the gene associations for these variants are atypical for guanine riboswitches or their previously known natural variants. Binding assays demonstrate that the newfound variant riboswitch representatives recognize xanthine, guanine, or 2′-deoxyguanosine, with the guanine class exhibiting greater discrimination against related purines than the more common guanine riboswitch class reported previously. These three additional variant classes, together with the four previously discovered riboswitch classes that employ the same three-stem junction architecture, reveal how a simple structural framework can be diversified to expand the range of purine-based ligands sensed by RNA.
Collapse
Affiliation(s)
- Siddhartha Hamal Dhakal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | | | - Paul Slattery
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT 06520-8103
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
- HHMI, Yale University, New Haven, CT 06520-8103
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
23
|
tRNA Fusion to Streamline RNA Structure Determination: Case Studies in Probing Aminoacyl-tRNA Sensing Mechanisms by the T-Box Riboswitch. CRYSTALS 2022. [DOI: 10.3390/cryst12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNAs are prone to misfolding and are often more challenging to crystallize and phase than proteins. Here, we demonstrate that tRNA fusion can streamline the crystallization and structure determination of target RNA molecules. This strategy was applied to the T-box riboswitch system to capture a dynamic interaction between the tRNA 3′-UCCA tail and the T-box antiterminator, which senses aminoacylation. We fused the T-box antiterminator domain to the tRNA anticodon arm to capture the intended interaction through crystal packing. This approach drastically improved the probability of crystallization and successful phasing. Multiple structure snapshots captured the antiterminator loop in an open conformation with some resemblance to that observed in the recent co-crystal structures of the full-length T box riboswitch–tRNA complex, which contrasts the resting, closed conformation antiterminator observed in an earlier NMR study. The anticipated tRNA acceptor–antiterminator interaction was captured in a low-resolution crystal structure. These structures combined with our previous success using prohead RNA–tRNA fusions demonstrates tRNA fusion is a powerful method in RNA structure determination.
Collapse
|
24
|
Cheng L, White EN, Brandt NL, Yu AM, Chen AA, Lucks J. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Nucleic Acids Res 2022; 50:12001-12018. [PMID: 35348734 PMCID: PMC9756952 DOI: 10.1093/nar/gkac102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
RNA folds cotranscriptionally to traverse out-of-equilibrium intermediate structures that are important for RNA function in the context of gene regulation. To investigate this process, here we study the structure and function of the Bacillus subtilis yxjA purine riboswitch, a transcriptional riboswitch that downregulates a nucleoside transporter in response to binding guanine. Although the aptamer and expression platform domain sequences of the yxjA riboswitch do not completely overlap, we hypothesized that a strand exchange process triggers its structural switching in response to ligand binding. In vivo fluorescence assays, structural chemical probing data and experimentally informed secondary structure modeling suggest the presence of a nascent intermediate central helix. The formation of this central helix in the absence of ligand appears to compete with both the aptamer's P1 helix and the expression platform's transcriptional terminator. All-atom molecular dynamics simulations support the hypothesis that ligand binding stabilizes the aptamer P1 helix against central helix strand invasion, thus allowing the terminator to form. These results present a potential model mechanism to explain how ligand binding can induce downstream conformational changes by influencing local strand displacement processes of intermediate folds that could be at play in multiple riboswitch classes.
Collapse
Affiliation(s)
- Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Naomi L Brandt
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alan A Chen
- Correspondence may also be addressed to Alan A. Chen. Tel: +1 518 437 4420;
| | - Julius B Lucks
- To whom correspondence should be addressed. Tel: +1 847 467 2943;
| |
Collapse
|
25
|
Hyun Lee K, Kimoto M, Kawai G, Okamoto I, Fin A, Hirao I. Dye‐Conjugated Spinach RNA by Genetic Alphabet Expansion. Chemistry 2022; 28:e202104396. [DOI: 10.1002/chem.202104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Kyung Hyun Lee
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Gota Kawai
- Chiba Institute of Technology (CIT) Tsudanuma 2-17-1 Narashino Chiba 275-0016 Japan
| | - Itaru Okamoto
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Andrea Fin
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging A*STAR 31 Biopolis Way, The Nanos #07-01 Singapore 138669 Singapore
| |
Collapse
|
26
|
Dey SK, Filonov GS, Olarerin-George AO, Jackson BT, Finley LWS, Jaffrey SR. Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. Nat Chem Biol 2022; 18:180-190. [PMID: 34937909 PMCID: PMC8967656 DOI: 10.1038/s41589-021-00925-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023]
Abstract
Fluorogenic RNA aptamers are used to genetically encode fluorescent RNA and to construct RNA-based metabolite sensors. Unlike naturally occurring aptamers that efficiently fold and undergo metabolite-induced conformational changes, fluorogenic aptamers can exhibit poor folding, which limits their cellular fluorescence. To overcome this, we evolved a naturally occurring well-folded adenine riboswitch into a fluorogenic aptamer. We generated a library of roughly 1015 adenine aptamer-like RNAs in which the adenine-binding pocket was randomized for both size and sequence, and selected Squash, which binds and activates the fluorescence of green fluorescent protein-like fluorophores. Squash exhibits markedly improved in-cell folding and highly efficient metabolite-dependent folding when fused to a S-adenosylmethionine (SAM)-binding aptamer. A Squash-based ratiometric sensor achieved quantitative SAM measurements, revealed cell-to-cell heterogeneity in SAM levels and revealed metabolic origins of SAM. These studies show that the efficient folding of naturally occurring aptamers can be exploited to engineer well-folded cell-compatible fluorogenic aptamers and devices.
Collapse
Affiliation(s)
- Sourav Kumar Dey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Grigory S Filonov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
- Sartorius, Ann Arbor, MI, USA
| | | | - Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
27
|
The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol 2022; 18:191-198. [PMID: 34937911 PMCID: PMC9812287 DOI: 10.1038/s41589-021-00931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023]
Abstract
Squash is an RNA aptamer that strongly activates the fluorescence of small-molecule analogs of the fluorophore of green fluorescent protein (GFP). Unlike other fluorogenic aptamers, isolated de novo from random-sequence RNA, Squash was evolved from the bacterial adenine riboswitch to leverage its optimized in vivo folding and stability. We now report the 2.7-Å resolution cocrystal structure of fluorophore-bound Squash, revealing that while the overall fold of the riboswitch is preserved, the architecture of the ligand-binding core is dramatically transformed. Unlike previously characterized aptamers that activate GFP-derived fluorophores, Squash does not harbor a G-quadruplex, sandwiching its fluorophore between a base triple and a noncanonical base quadruple in a largely apolar pocket. The expanded structural core of Squash allows it to recognize unnatural fluorophores that are larger than the simple purine ligand of the parental adenine riboswitch, and suggests that stable RNA scaffolds can tolerate larger variation than has hitherto been appreciated.
Collapse
|
28
|
Mei Y, Zhang QW, Gu Q, Liu Z, He X, Tian Y. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host-Guest Recognitions. J Am Chem Soc 2022; 144:2351-2359. [PMID: 35099950 DOI: 10.1021/jacs.1c12959] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurotransmitters are very important for neuron events and brain diseases. However, effective probes for analyzing specific neurotransmitters are currently lacking. Herein, we design and create a supramolecular fluorescent probe (CN-DFP5) by synthesizing a dual-functionalized fluorescent pillar[5]arene derivative with borate naphthalene and aldehyde coumarin recognition groups to identify large-scale neurotransmitters. The developed probe can detect seven model neurotransmitters by generating different fluorescence patterns through three types of host-guest interactions. The obtained signals are statistically processed by principal component analysis, thus the high-throughput analysis of neurotransmitters is realized under dual-channel fluorescence responses. The present probe combines the advantages of small-molecule-based probes to easily enter into living neurons and cross-reactive sensor arrays. Thus, the selective binding enables this probe to identify specific neurotransmitters in biofluids, living neurons, and tissues. High selectivity and sensitivity further demonstrate that the molecular device could extend to more applications to detect and image neurotransmitters.
Collapse
Affiliation(s)
- Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| | - Qingyi Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P.R. China
| |
Collapse
|
29
|
Aptamer-modified biosensors to visualize neurotransmitter flux. J Neurosci Methods 2022; 365:109386. [PMID: 34653500 DOI: 10.1016/j.jneumeth.2021.109386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
Chemical biosensors with the capacity to continuously monitor various neurotransmitter dynamics can be powerful tools to understand complex signaling pathways in the brain. However, in vivo detection of neurochemicals is challenging for many reasons such as the rapid release and clearance of neurotransmitters in the extracellular space, or the low target analyte concentrations in a sea of interfering biomolecules. Biosensing platforms with adequate spatiotemporal resolution coupled to specific and selective receptors termed aptamers, demonstrate high potential to tackle such challenges. Herein, we review existing literature in this field. We first discuss nanoparticle-based systems, which have a simple in vitro implementation and easily interpretable results. We then examine methods employing near-infrared detection for deeper tissue imaging, hence easier translation to in vivo implementation. We conclude by reviewing live cell imaging of neurotransmitter release via aptamer-modified platforms. For each of these sensors, we discuss the associated challenges for translation to real-time in vivo neurochemical imaging. Realization of in vivo biosensors for neurotransmitters will drive future development of early prevention strategies, treatments, and therapeutics for psychiatric and neurodegenerative diseases.
Collapse
|
30
|
Moon JD, Wu J, Dey SK, Litke JL, Li X, Kim H, Jaffrey SR. Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell Chem Biol 2021; 28:1569-1580.e4. [PMID: 34010626 PMCID: PMC8573057 DOI: 10.1016/j.chembiol.2021.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Small molecules can be imaged in living cells using biosensors composed of RNA. However, RNA-based devices are difficult to design. Here, we describe a versatile platform for designing RNA-based fluorescent small-molecule sensors using naturally occurring highly stable three-way junction RNAs. We show that ligand-binding aptamers and fluorogenic aptamers can be inserted into three-way junctions and connected in a way that enables the three-way junction to function as a small-molecule-regulated fluorescent sensor in vitro and in cells. The sensors are designed so that the interhelical stabilizing interactions in the three-way junction are only induced upon ligand binding. We use these RNA-based devices to measure the dynamics of S-adenosylmethionine levels in mammalian cells in real time. We show that this strategy is compatible with diverse metabolite-binding RNA aptamers, fluorogenic aptamers, and three-way junctions. Overall, these data demonstrate a versatile method for readily generating RNA devices that function in living cells.
Collapse
Affiliation(s)
- Jared D Moon
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sourav K Dey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Jacob L Litke
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Xing Li
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Trachman RJ, Ferré-D'Amaré AR. An uncommon [K +(Mg 2+) 2] metal ion triad imparts stability and selectivity to the Guanidine-I riboswitch. RNA (NEW YORK, N.Y.) 2021; 27:1257-1264. [PMID: 34257148 PMCID: PMC8457001 DOI: 10.1261/rna.078824.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The widespread ykkC-I riboswitch class exemplifies divergent riboswitch evolution. To analyze how natural selection has diversified its versatile RNA fold, we determined the X-ray crystal structure of the Burkholderia sp. TJI49 ykkC-I subtype-1 (Guanidine-I) riboswitch aptamer domain. Differing from the previously reported structures of orthologs from Dickeya dadantii and Sulfobacillus acidophilus, our Burkholderia structure reveals a chelated K+ ion adjacent to two Mg2+ ions in the guanidine-binding pocket. Thermal melting analysis shows that K+ chelation, which induces localized conformational changes in the binding pocket, improves guanidinium-RNA interactions. Analysis of ribosome structures suggests that the [K+(Mg2+)2] ion triad is uncommon. It is, however, reminiscent of metal ion clusters found in the active sites of ribozymes and DNA polymerases. Previous structural characterization of ykkC-I subtype-2 RNAs, which bind the effector ligands ppGpp and PRPP, indicate that in those paralogs, an adenine responsible for K+ chelation in the Burkholderia Guanidine-I riboswitch is replaced by a pyrimidine. This mutation results in a water molecule and Mg2+ ion binding in place of the K+ ion. Thus, our structural analysis demonstrates how ion and solvent chelation tune divergent ligand specificity and affinity among ykkC-I riboswitches.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
32
|
Feng Y, Zhang K, Wu Q, Huang SY. NLDock: a Fast Nucleic Acid-Ligand Docking Algorithm for Modeling RNA/DNA-Ligand Complexes. J Chem Inf Model 2021; 61:4771-4782. [PMID: 34468128 DOI: 10.1021/acs.jcim.1c00341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid-ligand interactions play an important role in numerous cellular processes such as gene function expression and regulation. Therefore, nucleic acids such as RNAs have become more and more important drug targets, where the structural determination of nucleic acid-ligand complexes is pivotal for understanding their functions and thus developing therapeutic interventions. Molecular docking has been a useful computational tool in predicting the complex structure between molecules. However, although a number of docking algorithms have been developed for protein-ligand interactions, only a few docking programs were presented for nucleic acid-ligand interactions. Here, we have developed a fast nucleic acid-ligand docking algorithm, named NLDock, by implementing our intrinsic scoring function ITScoreNL for nucleic acid-ligand interactions into a modified version of the MDock program. NLDock was extensively evaluated on four test sets and compared with five other state-of-the-art docking algorithms including AutoDock, DOCK 6, rDock, GOLD, and Glide. It was shown that our NLDock algorithm obtained a significantly better performance than the other docking programs in binding mode predictions and achieved the success rates of 73%, 36%, and 32% on the largest test set of 77 complexes for local rigid-, local flexible-, and global flexible-ligand docking, respectively. In addition, our NLDock approach is also computationally efficient and consumed an average of as short as 0.97 and 2.08 min for a local flexible-ligand docking job and a global flexible-ligand docking job, respectively. These results suggest the good performance of our NLDock in both docking accuracy and computational efficiency.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
33
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
34
|
RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 2021; 13:549-558. [PMID: 33972754 PMCID: PMC7610888 DOI: 10.1038/s41557-021-00679-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
RNA origami is a framework for the modular design of nanoscaffolds that can be folded from a single strand of RNA, and used to organize molecular components with nanoscale precision. Design of genetically expressible RNA origami, which must cotranscriptionally fold, requires modeling and design tools that simultaneously consider thermodynamics, folding pathway, sequence constraints, and pseudoknot optimization. Here, we describe RNA Origami Automated Design software (ROAD), which builds origami models from a library of structural modules, identifies potential folding barriers, and designs optimized sequences. Using ROAD, we extend the scale and functional diversity of RNA scaffolds, creating 32 designs of up to 2360 nucleotides, five that scaffold two proteins, and seven that scaffold two small molecules at precise distances. Micrographic and chromatographic comparison of optimized and nonoptimized structures validates that our principles for strand routing and sequence design substantially improve yield. By providing efficient design of RNA origami, ROAD may simplify construction of custom RNA scaffolds for nanomedicine and synthetic biology.
Collapse
|
35
|
Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. NANOSCALE 2021; 13:7988-8003. [PMID: 33885099 PMCID: PMC8122502 DOI: 10.1039/d0nr08301a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems.
Collapse
Affiliation(s)
- Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
36
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
37
|
Ortega AD, Takhaveev V, Vedelaar SR, Long Y, Mestre-Farràs N, Incarnato D, Ersoy F, Olsen LF, Mayer G, Heinemann M. A synthetic RNA-based biosensor for fructose-1,6-bisphosphate that reports glycolytic flux. Cell Chem Biol 2021; 28:1554-1568.e8. [PMID: 33915105 DOI: 10.1016/j.chembiol.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
RNA-based sensors for intracellular metabolites are a promising solution to the emerging issue of metabolic heterogeneity. However, their development, i.e., the conversion of an aptamer into an in vivo-functional intracellular metabolite sensor, still harbors challenges. Here, we accomplished this for the glycolytic flux-signaling metabolite, fructose-1,6-bisphosphate (FBP). Starting from in vitro selection of an aptamer, we constructed device libraries with a hammerhead ribozyme as actuator. Using high-throughput screening in yeast with fluorescence-activated cell sorting (FACS), next-generation sequencing, and genetic-environmental perturbations to modulate the intracellular FBP levels, we identified a sensor that generates ratiometric fluorescent readout. An abrogated response in sensor mutants and occurrence of two sensor conformations-revealed by RNA structural probing-indicated in vivo riboswitching activity. Microscopy showed that the sensor can differentiate cells with different glycolytic fluxes within yeast populations, opening research avenues into metabolic heterogeneity. We demonstrate the possibility to generate RNA-based sensors for intracellular metabolites for which no natural metabolite-binding RNA element exits.
Collapse
Affiliation(s)
- Alvaro Darío Ortega
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Silke Roelie Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Yi Long
- LIMES Institute, University of Bonn, 53121 Bonn, Germany; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, DK5230 Odense M, Denmark
| | - Neus Mestre-Farràs
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Danny Incarnato
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | | | - Lars Folke Olsen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, DK5230 Odense M, Denmark
| | - Günter Mayer
- LIMES Institute, University of Bonn, 53121 Bonn, Germany; Center of Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
38
|
Abstract
Technologies for RNA imaging in live cells play an important role in understanding the function and regulatory process of RNAs. One approach for genetically encoded fluorescent RNA imaging involves fluorescent light-up aptamers (FLAPs), which are short RNA sequences that can bind cognate fluorogens and activate their fluorescence greatly. Over the past few years, FLAPs have emerged as genetically encoded RNA-based fluorescent biosensors for the cellular imaging and detection of various targets of interest. In this review, we first give a brief overview of the development of the current FLAPs based on various fluorogens. Then we further discuss on the photocycles of the reversibly photoswitching properties in FLAPs and their photostability. Finally, we focus on the applications of FLAPs as genetically encoded RNA-based fluorescent biosensors in biosensing and bioimaging, including RNA, non-nucleic acid molecules, metal ions imaging and quantitative imaging. Their design strategies and recent cellular applications are emphasized and summarized in detail.
Collapse
Affiliation(s)
- Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.,NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| |
Collapse
|
39
|
Manna S, Truong J, Hammond MC. Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter. ACS Synth Biol 2021; 10:566-578. [PMID: 33646758 PMCID: PMC7985839 DOI: 10.1021/acssynbio.0c00583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Cell-based sensors are useful for many synthetic biology applications, including regulatory circuits, metabolic engineering, and diagnostics. While considerable research efforts have been made toward recognizing new target ligands and increasing sensitivity, the analysis and optimization of turn-on kinetics is often neglected. For example, to our knowledge there has been no systematic study that compared the performance of a riboswitch-based biosensor versus reporter for the same ligand. In this study, we show the development of RNA-based fluorescent (RBF) biosensors for guanidine, a common chaotropic agent that is a precursor to both fertilizer and explosive compounds. Guanidine is cell permeable and nontoxic to E. coli at millimolar concentrations, which in contrast to prior studies enabled direct activation of the riboswitch-based biosensor and corresponding reporter with ligand addition to cells. Our results reveal that the biosensors activate fluorescence in the cell within 4 min of guanidine treatment, which is at least 15 times faster than a reporter derived from the same riboswitch, and this rapid sensing activity is maintained for up to 1.6 weeks. Together, this study describes the design of two new biosensor topologies and showcases the advantages of RBF biosensors for monitoring dynamic processes in cell biology, biotechnology, and synthetic biology.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Johnny Truong
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ming C. Hammond
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Townshend B, Xiang JS, Manzanarez G, Hayden EJ, Smolke CD. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat Commun 2021; 12:1437. [PMID: 33664255 PMCID: PMC7933316 DOI: 10.1038/s41467-021-21716-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Here, using aptamer-coupled ribozyme libraries and a ribozyme regeneration method, de novo rapid in vitro evolution of RNA biosensors (DRIVER) enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identify and validate biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors are applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors are also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.
Collapse
Affiliation(s)
- Brent Townshend
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eric J Hayden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
41
|
Zhang D, Li J, Chen SJ. IsRNA1: De Novo Prediction and Blind Screening of RNA 3D Structures. J Chem Theory Comput 2021; 17:1842-1857. [PMID: 33560836 DOI: 10.1021/acs.jctc.0c01148] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling structures and functions of large ribonucleic acid (RNAs) especially with complicated topologies is highly challenging due to the inefficiency of large conformational sampling and the presence of complicated tertiary interactions. To address this problem, one highly promising approach is coarse-grained modeling. Here, following an iterative simulated reference state approach to decipher the correlations between different structural parameters, we developed a potent coarse-grained RNA model named as IsRNA1 for RNA studies. Molecular dynamics simulations in the IsRNA1 can predict the native structures of small RNAs from a sequence and fold medium-sized RNAs into near-native tertiary structures with the assistance of secondary structure constraints. A large-scale benchmark test on RNA 3D structure prediction shows that IsRNA1 exhibits improved performance for relatively large RNAs of complicated topologies, such as large stem-loop structures and structures containing long-range tertiary interactions. The advantages of IsRNA1 include the consideration of the correlations between the different structural variables, the appropriate characterization of canonical base-pairing and base-stacking interactions, and the better sampling for the backbone conformations. Moreover, a blind screening protocol was developed based on IsRNA1 to identify good structural models from a pool of candidates without prior knowledge of the native structures.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Jun Li
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
42
|
Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors. Methods Mol Biol 2021; 2323:121-140. [PMID: 34086278 DOI: 10.1007/978-1-0716-1499-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The development of fluorescent biosensors is motivated by the desire to monitor cellular metabolite levels in real time. Most genetically encodable fluorescent biosensors are based on receptor proteins fused to fluorescent protein domains. More recently, small molecule-binding riboswitches have been adapted for use as fluorescent biosensors through fusion to the in vitro selected Spinach aptamer, which binds a profluorescent, cell-permeable small molecule mimic of the GFP chromophore, DFHBI. Here we describe methods to prepare and analyze riboswitch-Spinach tRNA fusions for ligand-dependent activation of fluorescence in vivo. Example procedures describe the use of the Vc2-Spinach tRNA biosensor to monitor perturbations in cellular levels of cyclic di-GMP using either fluorescence microscopy or flow cytometry. In this updated chapter, we have added procedures on using biosensors in flow cytometry to detect exogenously added compounds. The relative ease of cloning and imaging of these biosensors, as well as their modular nature, should make this method appealing to other researchers interested in utilizing riboswitch-based biosensors for metabolite sensing.
Collapse
|
43
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
44
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
45
|
Tickner ZJ, Zhong G, Sheptack KR, Farzan M. Selection of High-Affinity RNA Aptamers That Distinguish between Doxycycline and Tetracycline. Biochemistry 2020; 59:3473-3486. [PMID: 32857495 DOI: 10.1021/acs.biochem.0c00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide aptamers are found in prokaryotes and eukaryotes, and they can be selected from large synthetic libraries to bind protein or small-molecule ligands with high affinities and specificities. Aptamers can function as biosensors, as protein recognition elements, and as components of riboswitches allowing ligand-dependent control of gene expression. One of the best studied laboratory-selected aptamers binds the antibiotic tetracycline, but it binds with a much lower affinity to the closely related but more bioavailable antibiotic doxycycline. Here we report enrichment of doxycycline binding aptamers from a selectively randomized library of tetracycline aptamer variants over four selection rounds. Selected aptamers distinguish between doxycycline, which they bind with dissociation constants of approximately 7 nM, and tetracycline, which they bind undetectably. They thus function as orthogonal complements to the original tetracycline aptamer. Unexpectedly, doxycycline aptamers adopt a conformation distinct from that of the tetracycline aptamer and depend on constant regions originally installed as primer binding sites. We show that the fluorescence emission intensity of doxycycline increases upon aptamer binding, permitting their use as biosensors. This new class of aptamers can be used in multiple contexts where doxycycline detection, or doxycycline-mediated regulation, is necessary.
Collapse
Affiliation(s)
- Zachary J Tickner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Guocai Zhong
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Kelly R Sheptack
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
46
|
Oliver C, Mallet V, Gendron RS, Reinharz V, Hamilton W, Moitessier N, Waldispühl J. Augmented base pairing networks encode RNA-small molecule binding preferences. Nucleic Acids Res 2020; 48:7690-7699. [PMID: 32652015 PMCID: PMC7430648 DOI: 10.1093/nar/gkaa583] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-small molecule binding is a key regulatory mechanism which can stabilize 3D structures and activate molecular functions. The discovery of RNA-targeting compounds is thus a current topic of interest for novel therapies. Our work is a first attempt at bringing the scalability and generalization abilities of machine learning methods to the problem of RNA drug discovery, as well as a step towards understanding the interactions which drive binding specificity. Our tool, RNAmigos, builds and encodes a network representation of RNA structures to predict likely ligands for novel binding sites. We subject ligand predictions to virtual screening and show that we are able to place the true ligand in the 71st-73rd percentile in two decoy libraries, showing a significant improvement over several baselines, and a state of the art method. Furthermore, we observe that augmenting structural networks with non-canonical base pairing data is the only representation able to uncover a significant signal, suggesting that such interactions are a necessary source of binding specificity. We also find that pre-training with an auxiliary graph representation learning task significantly boosts performance of ligand prediction. This finding can serve as a general principle for RNA structure-function prediction when data is scarce. RNAmigos shows that RNA binding data contains structural patterns with potential for drug discovery, and provides methodological insights for possible applications to other structure-function learning tasks. The source code, data and a Web server are freely available at http://rnamigos.cs.mcgill.ca.
Collapse
Affiliation(s)
- Carlos Oliver
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
- Mila - Quebec Artificial Intelligence Institute, H2S 3S1, Canada
| | - Vincent Mallet
- Institut Pasteur, Structural Bioinformatics Unit, Paris, F-75015, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, F-75006 Paris, France
| | | | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montreal H2X 3Y7, Canada
| | - William L Hamilton
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
- Mila - Quebec Artificial Intelligence Institute, H2S 3S1, Canada
| | | | - Jérôme Waldispühl
- School of Computer Science, McGill University, Montreal H3A 0E9, Canada
| |
Collapse
|
47
|
Watkins AM, Rangan R, Das R. FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure 2020; 28:963-976.e6. [PMID: 32531203 PMCID: PMC7415647 DOI: 10.1016/j.str.2020.05.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
Predicting RNA three-dimensional structures from sequence could accelerate understanding of the growing number of RNA molecules being discovered across biology. Rosetta's Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) has shown promise in community-wide blind RNA-Puzzle trials, but lack of a systematic and automated benchmark has left unclear what limits FARFAR performance. Here, we benchmark FARFAR2, an algorithm integrating RNA-Puzzle-inspired innovations with updated fragment libraries and helix modeling. In 16 of 21 RNA-Puzzles revisited without experimental data or expert intervention, FARFAR2 recovers native-like structures more accurate than models submitted during the RNA-Puzzles trials. Remaining bottlenecks include conformational sampling for >80-nucleotide problems and scoring function limitations more generally. Supporting these conclusions, preregistered blind models for adenovirus VA-I RNA and five riboswitch complexes predicted native-like folds with 3- to 14 Å root-mean-square deviation accuracies. We present a FARFAR2 webserver and three large model archives (FARFAR2-Classics, FARFAR2-Motifs, and FARFAR2-Puzzles) to guide future applications and advances.
Collapse
Affiliation(s)
- Andrew Martin Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Miao Z, Adamiak RW, Antczak M, Boniecki MJ, Bujnicki J, Chen SJ, Cheng CY, Cheng Y, Chou FC, Das R, Dokholyan NV, Ding F, Geniesse C, Jiang Y, Joshi A, Krokhotin A, Magnus M, Mailhot O, Major F, Mann TH, Piątkowski P, Pluta R, Popenda M, Sarzynska J, Sun L, Szachniuk M, Tian S, Wang J, Wang J, Watkins AM, Wiedemann J, Xiao Y, Xu X, Yesselman JD, Zhang D, Zhang Y, Zhang Z, Zhao C, Zhao P, Zhou Y, Zok T, Żyła A, Ren A, Batey RT, Golden BL, Huang L, Lilley DM, Liu Y, Patel DJ, Westhof E. RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. RNA (NEW YORK, N.Y.) 2020; 26:982-995. [PMID: 32371455 PMCID: PMC7373991 DOI: 10.1261/rna.075341.120] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools.
Collapse
Affiliation(s)
- Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD, United Kingdom
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Michał J Boniecki
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Clarence Yu Cheng
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yi Cheng
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yangwei Jiang
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Astha Joshi
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Departments of Pathology, Genetics and Developmental Biology, Howard Hughes Medical Institute, Stanford Medical School, Palo Alto, California, 94305, USA
| | - Marcin Magnus
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Olivier Mailhot
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Francois Major
- Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Thomas H Mann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paweł Piątkowski
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Radoslaw Pluta
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Lizhen Sun
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Siqi Tian
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Jun Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jakub Wiedemann
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaojun Xu
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Joseph D Yesselman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Dong Zhang
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Yi Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
| | - Chenhan Zhao
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Peinan Zhao
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri-Columbia, Missouri 65211, USA
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Adriana Żyła
- International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, Colorado 80309-0596, USA
| | - Barbara L Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David M Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Yijin Liu
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Eric Westhof
- Arch et Reactivite de l'ARN, Univ de Strasbourg, Inst de Biol Mol et Cell du CNRS, 67084 Strasbourg, France
| |
Collapse
|
49
|
Fontana J, Sparkman-Yager D, Zalatan JG, Carothers JM. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Curr Opin Biotechnol 2020; 64:190-198. [PMID: 32599515 DOI: 10.1016/j.copbio.2020.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Creating CRISPR gene activation (CRISPRa) technologies in industrially promising bacteria could be transformative for accelerating data-driven metabolic engineering and strain design. CRISPRa has been widely used in eukaryotes, but applications in bacterial systems have remained limited. Recent work shows that multiple features of bacterial promoters impose stringent requirements on CRISPRa-mediated gene activation. However, by systematically defining rules for effective bacterial CRISPRa sites and developing new approaches for encoding complex functions in engineered guide RNAs, there are now clear routes to generalize synthetic gene regulation in bacteria. When combined with multi-omics data collection and machine learning, the full development of bacterial CRISPRa will dramatically improve the ability to rapidly engineer bacteria for bioproduction through accelerated design-build-test-learn cycles.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington. Seattle, WA 98195, United States
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington. Seattle, WA 98195, United States
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington. Seattle, WA 98195, United States.
| | - James M Carothers
- Department of Chemical Engineering, University of Washington. Seattle, WA 98195, United States.
| |
Collapse
|
50
|
Badekila AK, Kini S, Jaiswal AK. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J Cell Physiol 2020; 236:741-762. [PMID: 32657458 DOI: 10.1002/jcp.29935] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
In the last four decades, several researchers worldwide have routinely and meticulously exercised cell culture experiments in two-dimensional (2D) platforms. Using traditionally existing 2D models, the therapeutic efficacy of drugs has been inappropriately validated due to the failure in generating the precise therapeutic response. Fortunately, a 3D model addresses the foregoing limitations by recapitulating the in vivo environment. In this context, one has to contemplate the design of an appropriate scaffold for favoring the organization of cell microenvironment. Instituting pertinent model on the platter will pave way for a precise mimicking of in vivo conditions. It is because animal cells in scaffolds oblige spontaneous formation of 3D colonies that molecularly, phenotypically, and histologically resemble the native environment. The 3D culture provides insight into the biochemical aspects of cell-cell communication, plasticity, cell division, cytoskeletal reorganization, signaling mechanisms, differentiation, and cell death. Focusing on these criteria, this paper discusses in detail, the diversification of polymeric scaffolds based on their available resources. The paper also reviews the well-founded and latest techniques of scaffold fabrication, and their applications pertaining to tissue engineering, drug screening, and tumor model development.
Collapse
Affiliation(s)
- Anjana K Badekila
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Sudarshan Kini
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Amit K Jaiswal
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|