1
|
Hountalas JE, Bunsick M, Xu Z, Taylor AA, Pescetto G, Ly G, Boyer FD, McErlean CSP, Lumba S. HTL/KAI2 signaling substitutes for light to control plant germination. PLoS Genet 2024; 20:e1011447. [PMID: 39432524 PMCID: PMC11527322 DOI: 10.1371/journal.pgen.1011447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/31/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Plants monitor multiple environmental cues, such as light and temperature, to ensure they germinate at the right time and place. Some specialist plants, like ephemeral fire-following weeds and root parasitic plants, germinate primarily in response to small molecules found in specific environments. Although these species come from distinct clades, they use the same HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) signaling pathway, to perceive different small molecules suggesting convergent evolution on this pathway. Here, we show that HTL/KAI2 signaling in Arabidopsis thaliana bypasses the light requirement for germination. The HTL/KAI2 downstream component, SUPPRESSOR OF MAX2 1 (SMAX1) accumulates in the dark and is necessary for PHYTOCHROME INTERACTING FACTOR 1/PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIF1/PIL5) to regulate hormone response pathways conducive to germination. The interaction of HTL/KAI2 and light signaling may help to explain how specialist plants like ephemeral and parasitic weeds evolved their germination behaviour in response to specific environments.
Collapse
Affiliation(s)
- Jenna E. Hountalas
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Bunsick
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenhua Xu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Andrea A. Taylor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Gianni Pescetto
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - George Ly
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Mirjani L, Salimi A, Shahbazi M, Hajirezaei MR, Matinizadeh M, Razavi K, Hesamzadeh Hejazi SM. Arbuscular mycorrhizal colonization leads to a change of hormone profile in micropropagated plantlet Satureja khuzistanica Jam. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153879. [PMID: 36516535 DOI: 10.1016/j.jplph.2022.153879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Phytohormones are supposed to contribute to the establishment of mutualistic Arbuscular mycorrhiza (AM) symbioses. However, their role in the acclimation of micropropagated plantlet inoculated with AM is still unknown. To address this question, we performed a hormone profiling during the acclimation of Satureja khuzistanica plantlets inoculated with Rhizoglomus fasciculatum. The levels of indoleacetic acid (IAA), methyl indole acetic acid, cis-zeatin, cis zeatin ribose, jasmonate, jasmonoyl isoleucine, salicylic acid, abscisic acid (ABA) were analyzed. Further, the relative gene expression of AOS (Allene oxide synthase) as a key enzyme of jasmonate biosynthesis, in either inoculated or non-inoculated micropropagated plantlets was evaluated during acclimation period. The concentrations of IAA and cis-zeatin increased in the plantlets inoculated by AM whereas the concentration of ABA decreased upon 60 days acclimation in the whole shoot of plantlets of S. khuzistanica. The relative expression of AOS gene resulted in an increase of isoleucine jasmonate, the bioactive form of jasmonate. Based on our results, IAA and cis-zeatin probably contribute to maintaining growth, and AM reduces transition stress by modifying ABA and jasmonate concentrations.
Collapse
Affiliation(s)
- Leila Mirjani
- Research Institutes of Forests and Rangelands, Department of Biotechnology, Education and Extension Organization (AREEO), 13185-116, Tehran, Iran; Kharazmi University, Department of Plant Sciences, Faculty of Biological Sciences, 15719-14911, Tehran, Iran.
| | - Azam Salimi
- Kharazmi University, Department of Plant Sciences, Faculty of Biological Sciences, 15719-14911, Tehran, Iran.
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Agricultural Biotechnology Research Institute of Iran (ABRII), Molecular Physiology Department, Education and Extension Organization (AREEO), 3135933151, Karaj, Iran.
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, OT Gatersleben, Corrensstrasse 3, Germany.
| | - Mohammad Matinizadeh
- Research Institutes of Forests and Rangelands, Forest Research Department, Education and Extension Organization (AREEO), 13185-116, Tehran, Iran.
| | - Khadijeh Razavi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Plant Biotechnology, 14155-6343, Tehran, Iran.
| | - Seyed Mohsen Hesamzadeh Hejazi
- Research Institutes of Forests and Rangelands, Department of Biotechnology, Education and Extension Organization (AREEO), 13185-116, Tehran, Iran.
| |
Collapse
|
4
|
Vinde MH, Cao D, Chesterfield RJ, Yoneyama K, Gumulya Y, Thomson RES, Matila T, Ebert BE, Beveridge CA, Vickers CE, Gillam EMJ. Ancestral sequence reconstruction of the CYP711 family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. THE NEW PHYTOLOGIST 2022; 235:1900-1912. [PMID: 35644901 PMCID: PMC9544836 DOI: 10.1111/nph.18285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.
Collapse
Affiliation(s)
- Marcos H. Vinde
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Da Cao
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Rebecca J. Chesterfield
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Yosephine Gumulya
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Tebogo Matila
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
| | - Christine A. Beveridge
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Claudia E. Vickers
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
- Griffith Institute for Drug DesignGriffith UniversityNathanBrisbaneQld4111Australia
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|
5
|
Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nat Commun 2022; 13:3987. [PMID: 35810153 PMCID: PMC9271048 DOI: 10.1038/s41467-022-31710-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/29/2022] [Indexed: 01/11/2023] Open
Abstract
The development of potent strigolactone (SL) agonists as suicidal germination inducers could be a useful strategy for controlling root parasitic weeds, but uncertainty about the SL perception mechanism impedes real progress. Here we describe small-molecule agonists that efficiently stimulate Phelipanchce aegyptiaca, and Striga hermonthica, germination in concentrations as low as 10−8 to 10−17 M. We show that full efficiency of synthetic SL agonists in triggering signaling through the Striga SL receptor, ShHTL7, depends on the receptor-catalyzed hydrolytic reaction of the agonists. Additionally, we reveal that the stereochemistry of synthetic SL analogs affects the hydrolytic ability of ShHTL7 by influencing the probability of the privileged conformations of ShHTL7. Importantly, an alternative ShHTL7-mediated hydrolysis mechanism, proceeding via nucleophilic attack of the NE2 atom of H246 to the 2′C of the D-ring, is reported. Together, our findings provide insight into SL hydrolysis and structure-perception mechanisms, and potent suicide germination stimulants, which would contribute to the elimination of the noxious parasitic weeds. Strigolactone agonists could potentially help control noxious weeds by promoting suicidal germination. Here the authors describe a series of small molecule agonists that stimulate germination via the Striga ShHTL7 receptor and show that stereochemistry and hydrolysis-independent signalling mediate potency.
Collapse
|
6
|
Chen J, Nelson DC, Shukla D. Activation Mechanism of Strigolactone Receptors and Its Impact on Ligand Selectivity between Host and Parasitic Plants. J Chem Inf Model 2022; 62:1712-1722. [PMID: 35192364 DOI: 10.1021/acs.jcim.1c01258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parasitic weeds such as Striga have led to significant losses in agricultural productivity worldwide. These weeds use the plant hormone strigolactone as a germination stimulant. Strigolactone signaling involves substrate hydrolysis followed by a conformational change of the receptor to a "closed" or "active" state that associates with a signaling partner, MAX2/D3. Crystal structures of active and inactive AtD14 receptors have helped elucidate the structural changes involved in activation. However, the mechanism by which the receptor activates remains unknown. The ligand dependence of AtD14 activation has been disputed by mutagenesis studies showing that enzymatically inactive receptors are able to associate with MAX2 proteins. Furthermore, activation differences between strigolactone receptor in Striga, ShHTL7, and AtD14 could contribute to the high sensitivity to strigolactones exhibited by parasitic plants. Using molecular dynamics simulations, we demonstrate that both AtD14 and ShHTL7 could adopt an active conformation in the absence of ligand. However, ShHTL7 exhibits a higher population in the inactive apo state as compared to the AtD14 receptor. We demonstrate that this difference in inactive state population is caused by sequence differences between their D-loops and interactions with the catalytic histidine that prevent full binding pocket closure in ShHTL7. These results indicate that ligand hydrolysis would enhance the active state population by destabilizing the inactive state in ShHTL7 as compared to AtD14. We also show that the mechanism of activation is more concerted in AtD14 than in ShHTL7 and that the main barrier to activation in ShHTL7 is closing of the binding pocket.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Cornet F, Pillot JP, Le Bris P, Pouvreau JB, Arnaud N, de Saint Germain A, Rameau C. Strigolactones (SLs) modulate the plastochron by regulating KLUH (KLU) transcript abundance in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1909-1916. [PMID: 34498760 DOI: 10.1111/nph.17725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The timing of leaf emergence at the shoot apical meristem, or plastochron, is highly regulated in plants. Among the genes known to regulate the plastochron in Arabidopsis (Arabidopsis thaliana), KLUH (KLU), orthologous to the rice (Oryza sativa) PLASTOCHRON1, encodes the cytochrome P450 CYP78A5, and is thought to act through generation of a still unknown mobile signal. As klu mutants display not only a short plastochron but also a branching phenotype reminiscent of strigolactone (SL) mutants, we investigated whether KLU/CYP78A5 is involved in SL biosynthesis. We combined a genetic approach, a parasitic plant seed germination bioassay to test klu root exudates, and analysis of transcript abundances of SL-biosynthesis genes in the Arabidopsis klu mutants. We demonstrate that KLU is not involved in the SL-biosynthesis pathway. Moreover, this work allowed us to uncover a new role for SL during Arabidopsis development in modulating plastochron via a KLU-dependent pathway. Globally our data reveal that KLU is required for plastochron-specific SL responses, a first indication of crosstalk between SL and the KLU-derived signal.
Collapse
Affiliation(s)
- Florent Cornet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Université Paris-Saclay, Orsay, 91405, France
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jean-Bernard Pouvreau
- Laboratoire de Biologie et Pathologie Végétales, LBPV, Université de Nantes, EA 1157, Nantes, F-44000, France
| | - Nicolas Arnaud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | | | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
8
|
Bunsick M, McCullough R, McCourt P, Lumba S. Plant hormone signaling: Is upside down right side up? CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102070. [PMID: 34166978 DOI: 10.1016/j.pbi.2021.102070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Since the early days of plant biology, small molecule hormones have held a central place in our understanding of development. A key feature of plant hormone action is the ability to regulate multiple developmental processes. Despite this pleiotropy, decades of genetic and molecular studies have shown that plant hormone signaling is often canalized through a core pathway. This raises the difficult question of how one signaling pathway produces different outputs in different tissues. Drawing on examples from gibberellin and strigolactone signaling pathways, we propose this conceptual problem arises from an upside-down perspective of hormone signaling. Recent studies have revealed hormone and core pathway-independent mechanisms of regulating downstream signaling components, which could explain multiple developmental responses to the same hormone.
Collapse
Affiliation(s)
- Michael Bunsick
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Rachel McCullough
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada.
| |
Collapse
|
9
|
Bascos EMA, Fernando ES, Duya MV, Rodriguez LJV. Beginnings of a plant parasite: early development of Rafflesia consueloae inside its Tetrastigma host. PLANTA 2021; 254:61. [PMID: 34455499 DOI: 10.1007/s00425-021-03710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Extensive histology of host organs revealed the early events in the vegetative growth of Rafflesia consueloae including initial infection site, endophyte distribution, and other developmental events prior to bud emergence. The early events in the vegetative development of the holoparasite Rafflesia have long remained a mystery. Because its entire vegetative growth occurs within the host body, very little is known about the developmental events prior to emergence of the floral shoot. The goal of this study was to describe the events that occur during the vegetative growth of R. consueloae, particularly in the early stages of infection. We performed extensive microtome sectioning of multiple root and stem segments from different Tetrastigma host individuals to examine the cytology, distribution, and development of the R. consueloae endophyte within the host tissues. We found that R. consueloae infection is restricted to the roots of its host. Infection begins within the vascular cambium where the endophyte appears to initially reside prior to their radial spread to the vascular tissues. The tissues obtained from different host individuals had varying degrees of infection alluding to a possible role of host resistance mechanisms and/or varying levels of parasite infectiousness. Endophyte presence in host vines without external manifestations of infection indicates that the parasite may dwell within the host tissues for prolonged periods as small cell clusters without transitioning to the reproductive stage. Furthermore, we found that floral shoots may develop in scarcely infected host tissues indicating that extensive endophyte growth within the host is not a prerequisite to the onset of reproductive development. Overall, our study describes for the first time the developmental events prior to emergence of R. consueloae buds from its host.
Collapse
Affiliation(s)
- Erika Marie A Bascos
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| | - Edwino S Fernando
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Diliman Science Research Foundation, 1101, Quezon City, Philippines
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Philippines
| | - Melizar V Duya
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Diliman Science Research Foundation, 1101, Quezon City, Philippines
| | | |
Collapse
|
10
|
Chen J, White A, Nelson DC, Shukla D. Role of substrate recognition in modulating strigolactone receptor selectivity in witchweed. J Biol Chem 2021; 297:101092. [PMID: 34437903 PMCID: PMC8487064 DOI: 10.1016/j.jbc.2021.101092] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023] Open
Abstract
Witchweed, or Striga hermonthica, is a parasitic weed that destroys billions of dollars' worth of crops globally every year. Its germination is stimulated by strigolactones exuded by its host plants. Despite high sequence, structure, and ligand-binding site conservation across different plant species, one strigolactone receptor in witchweed, ShHTL7, uniquely exhibits a picomolar EC50 for downstream signaling. Previous biochemical and structural analyses have hypothesized that this unique ligand sensitivity can be attributed to a large binding pocket volume in ShHTL7 resulting in enhanced ability to bind substrates, but additional structural details of the substrate-binding process would help explain its role in modulating the ligand selectivity. Using long-timescale molecular dynamics simulations, we demonstrate that mutations at the entrance of the binding pocket facilitate a more direct ligand-binding pathway to ShHTL7, whereas hydrophobicity at the binding pocket entrance results in a stable “anchored” state. We also demonstrate that several residues on the D-loop of AtD14 stabilize catalytically inactive conformations. Finally, we show that strigolactone selectivity is not modulated by binding pocket volume. Our results indicate that while ligand binding is not the sole modulator of strigolactone receptor selectivity, it is a significant contributing factor. These results can be used to inform the design of selective antagonists for strigolactone receptors in witchweed.
Collapse
Affiliation(s)
- Jiming Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexandra White
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
11
|
Wang Y, Yao R, Du X, Guo L, Chen L, Xie D, Smith SM. Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga. PLANT PHYSIOLOGY 2021; 185:1411-1428. [PMID: 33793945 PMCID: PMC8133601 DOI: 10.1093/plphys/kiaa048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/11/2020] [Indexed: 05/30/2023]
Abstract
Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
Collapse
Affiliation(s)
- Yupei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxi Du
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lvjun Guo
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Steven M Smith
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Yacoubou A, Zoumarou Wallis N, Menkir A, Zinsou VA, Onzo A, Garcia‐Oliveira AL, Meseka S, Wende M, Gedil M, Agre P. Breeding maize ( Zea mays) for Striga resistance: Past, current and prospects in sub-saharan africa. PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2021; 140:195-210. [PMID: 34239217 PMCID: PMC8248382 DOI: 10.1111/pbr.12896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Striga hermonthica, causes up to 100% yield loss in maize production in Sub-Saharan Africa. Developing Striga-resistant maize cultivars could be a major component of integrated Striga management strategies. This paper presents a comprehensive overview of maize breeding activities related to Striga resistance and its management. Scientific surveys have revealed that conventional breeding strategies have been used more than molecular breeding strategies in maize improvement for Striga resistance. Striga resistance genes are still under study in the International Institute for Tropical Agriculture (IITA) maize breeding programme. There is also a need to discover QTL and molecular markers associated with such genes to improve Striga resistance in maize. Marker Assistance Breeding is expected to increase maize breeding efficiency with complex traits such as resistance towards Striga because of the complex nature of the host-parasite relationship and its intersection with other environmental factors. Conventional alongside molecular tools and technical controls are promising methods to effectively assess Striga in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Abdoul‐Madjidou Yacoubou
- Laboratoire de Phytotechnie, d’Amélioration et de Protection des Plantes (LaPAPP)Département des Sciences et Techniques de Production Végétale (STPV)Faculté d’AgronomieUniversité de ParakouParakouBénin
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
- Institut National des Recherches Agricoles du Bénin01 BP 884CotonouBénin
| | - Nouhoun Zoumarou Wallis
- Laboratoire de Phytotechnie, d’Amélioration et de Protection des Plantes (LaPAPP)Département des Sciences et Techniques de Production Végétale (STPV)Faculté d’AgronomieUniversité de ParakouParakouBénin
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
| | - Valerien A. Zinsou
- Laboratoire de Phytotechnie, d’Amélioration et de Protection des Plantes (LaPAPP)Département des Sciences et Techniques de Production Végétale (STPV)Faculté d’AgronomieUniversité de ParakouParakouBénin
| | - Alexis Onzo
- Laboratoire de Phytotechnie, d’Amélioration et de Protection des Plantes (LaPAPP)Département des Sciences et Techniques de Production Végétale (STPV)Faculté d’AgronomieUniversité de ParakouParakouBénin
| | | | - Silvestro Meseka
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
| | - Mengesha Wende
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
| | - Paterne Agre
- International Institute of Tropical Agriculture (IITA)Oyo RoadPMB 5320IbadanNigeria
| |
Collapse
|
13
|
Chesterfield RJ, Whitfield JH, Pouvreau B, Cao D, Alexandrov K, Beveridge CA, Vickers CE. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synth Biol 2020; 9:2107-2118. [PMID: 32786922 DOI: 10.1021/acssynbio.0c00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.
Collapse
Affiliation(s)
- Rebecca J. Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Jason H. Whitfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| | - Benjamin Pouvreau
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Kirill Alexandrov
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Christine A. Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| |
Collapse
|
14
|
Bunsick M, Toh S, Wong C, Xu Z, Ly G, McErlean CSP, Pescetto G, Nemrish KE, Sung P, Li JD, Scholes JD, Lumba S. SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. NATURE PLANTS 2020; 6:646-652. [PMID: 32451447 DOI: 10.1038/s41477-020-0653-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Parasitic plant infestations dramatically reduce the yield of many major food crops of sub-Saharan Africa and pose a serious threat to food security on that continent1. The first committed step of a successful infestation is the germination of parasite seeds primarily in response to a group of related small-molecule hormones called strigolactones (SLs), which are emitted by host roots2. Despite the important role of SLs, it is not clear how host-derived SLs germinate parasitic plants. In contrast, gibberellins (GA) acts as the dominant hormone for stimulation of germination in non-parasitic plant species by inhibiting a set of DELLA repressors3. Here, we show that expression of SL receptors from the parasitic plant Striga hermonthica in the presence of SLs circumvents the GA requirement for germination of Arabidopsis thaliana seed. Striga receptors co-opt and enhance signalling through the HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (AtHTL/KAI2) pathway, which normally plays a rudimentary role in Arabidopsis seed germination4,5. AtHTL/KAI2 negatively controls the SUPPRESSOR OF MAX2 1 (SMAX1) protein5, and loss of SMAX1 function allows germination in the presence of DELLA repressors. Our data suggest that ligand-dependent inactivation of SMAX1 in Striga and Arabidopsis can bypass GA-dependent germination in these species.
Collapse
Affiliation(s)
- Michael Bunsick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Cynthia Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhenhua Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - George Ly
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Gianni Pescetto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Priscilla Sung
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jack Daiyang Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Julie D Scholes
- Department of Plant and Animal Sciences, University of Sheffield, Sheffield, UK
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Bürger M, Chory J. The Many Models of Strigolactone Signaling. TRENDS IN PLANT SCIENCE 2020; 25:395-405. [PMID: 31948791 PMCID: PMC7184880 DOI: 10.1016/j.tplants.2019.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones involved in several biological processes that are of great agricultural concern. While initiating plant-fungal symbiosis, SLs also trigger germination of parasitic plants that pose a major threat to farming. In vascular plants, SLs control shoot branching, which is linked to crop yield. SL research has been a fascinating field that has produced a variety of different signaling models, reflecting a complex picture of hormone perception. Here, we review recent developments in the SL field and the crystal structures that gave rise to various models of receptor activation. We also highlight the increasing number of discovered SL molecules, reflecting the existence of cross-kingdom SL communication.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Miyakawa T, Xu Y, Tanokura M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci 2020; 77:1103-1113. [PMID: 31587093 PMCID: PMC11104851 DOI: 10.1007/s00018-019-03318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
18
|
Yang T, Lian Y, Wang C. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20246270. [PMID: 31842355 PMCID: PMC6941112 DOI: 10.3390/ijms20246270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Correspondence: ; Tel.: +86-0931-8914155; Fax: +86-0931-8914155
| |
Collapse
|
19
|
Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH. Molecular Dialog Between Parasitic Plants and Their Hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:279-299. [PMID: 31226021 DOI: 10.1146/annurev-phyto-082718-100043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant-pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
20
|
Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochem J 2019; 476:1843-1856. [PMID: 31186286 DOI: 10.1042/bcj20190288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Strigolactones (SLs) are multifunctional plant hormones regulating essential physiological processes affecting growth and development. In vascular plants, SLs are recognized by α/β hydrolase-fold proteins from the D14/DAD2 (Dwarf14/Decreased Apical Dominance 2) family in the initial step of the signaling pathway. We have previously discovered that N-phenylanthranilic acid derivatives (e.g. tolfenamic acid) are potent antagonists of SL receptors, prompting us to design quinazolinone and quinazolinedione derivatives (QADs and QADDs, respectively) as second-generation antagonists. Initial in silico docking studies suggested that these compounds would bind to DAD2, the petunia SL receptor, with higher affinity than the first-generation compounds. However, only one of the QADs/QADDs tested in in vitro assays acted as a competitive antagonist of SL receptors, with reduced affinity and potency compared with its N-phenylanthranilic acid 'parent'. X-ray crystal structure analysis revealed that the binding mode of the active QADD inside DAD2's cavity was not that predicted in silico, highlighting a novel inhibition mechanism for SL receptors. Despite a ∼10-fold difference in potency in vitro, the QADD and tolfenamic acid had comparable activity in planta, suggesting that the QADD compensates for lower potency with increased bioavailability. Altogether, our results establish this QADD as a novel lead compound towards the development of potent and bioavailable antagonists of SL receptors.
Collapse
|
21
|
Van Overtveldt M, Braem L, Struk S, Kaczmarek AM, Boyer FD, Van Deun R, Gevaert K, Goormachtig S, Heugebaert TSA, Stevens CV. Design and visualization of second-generation cyanoisoindole-based fluorescent strigolactone analogs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:165-180. [PMID: 30552776 DOI: 10.1111/tpj.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above- and below-ground developmental processes, and are an important survival strategy for plants in nutrient-deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL-like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA-7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA-7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.
Collapse
Affiliation(s)
- Melissa Van Overtveldt
- SynBioC Research Group, Department of Green Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - Anna M Kaczmarek
- Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000, Ghent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Rik Van Deun
- Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - Thomas S A Heugebaert
- SynBioC Research Group, Department of Green Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
22
|
Kolbert Z. Strigolactone-nitric oxide interplay in plants: The story has just begun. PHYSIOLOGIA PLANTARUM 2019; 165:487-497. [PMID: 29479710 DOI: 10.1111/ppl.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 05/07/2023]
Abstract
Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during plant development and stress responses. This review aims to discuss the so far available data regarding SLs-NO interplay in plant systems. The majority of the few articles dealing with SL-NO interplay focuses on the root system and it seems that NO can be an upstream negative regulator of SL biosynthesis or an upstream positive regulator of SL signaling depending on the nutrient supply. From the so far published results it is clear that NO modifies the activity of target proteins involved in SL biosynthesis or signaling which may be a physiologically relevant interaction. Therefore, in silico analysis of NO-dependent posttranslational modifications in SL-related proteins was performed using computational prediction tools and putative NO-target proteins were specified. The picture is presumably more complicated, since also SL is able to modify NO levels. As a confirmation, author detected NO levels in different organs of max1-1 and max2-1 Arabidopsis and compared to the wild-type these mutants showed enhanced NO levels in their root tips indicating the negative effect of endogenous SLs on NO metabolism. Exogenous SL analogue-triggered NO production seems to contradict the results of the genetic study, which is an inconsistency should be taken into consideration in the future. In the coming years, the link between SL and NO signaling in further physiological processes should be examined and the possibilities of NO-dependent posttranslational modifications of SL biosynthetic and signaling proteins should be looked more closely.
Collapse
|
23
|
Hýlová A, Pospíšil T, Spíchal L, Mateman JJ, Blanco-Ania D, Zwanenburg B. New hybrid type strigolactone mimics derived from plant growth regulator auxin. N Biotechnol 2019; 48:76-82. [PMID: 30077756 DOI: 10.1016/j.nbt.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/26/2022]
Abstract
Strigolactones (SLs) constitute a new class of plant hormones of increasing importance in plant science. The structure of natural SLs is too complex for ready access by synthesis. Therefore, much attention is being given to design of SL analogues and mimics with a simpler structure but with retention of bioactivity. Here new hybrid type SL mimics have been designed derived from auxins, the common plant growth regulators. Auxins were simply coupled with the butenolide D-ring using bromo (or chloro) butenolide. D-rings having an extra methyl group at the vicinal C-3' carbon atom, or at the C-2' carbon atom, or at both have also been studied. The new hybrid type SL mimics were bioassayed for germination activity of seeds of the parasitic weeds S. hermonthica, O. minor and P. ramosa using the classical method of counting germinated seeds and a colorimetric method. For comparison SL mimics derived from phenyl acetic acid were also investigated. The bioassays revealed that mimics with a normal D-ring had appreciable to good activity, those with an extra methyl group at C-2' were also appreciably active, whereas those with a methyl group in the vicinal C-3' position were inactive (S. hermonthica) or only slightly active. The new hybrid type mimics may be attractive as potential suicidal germination agents in agronomic applications.
Collapse
Affiliation(s)
- Adéla Hýlová
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic.
| | - Lukáš Spíchal
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic
| | - Jurgen J Mateman
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| | - Binne Zwanenburg
- Palacký University, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Šlechtitelů 241/27, CZ-783 71 Olomouc, Czech Republic; Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, Heyendaalsweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T. Triazole Ureas Covalently Bind to Strigolactone Receptor and Antagonize Strigolactone Responses. MOLECULAR PLANT 2019; 12:44-58. [PMID: 30391752 DOI: 10.1016/j.molp.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones, a class of plant hormones with multiple functions, mediate plant-plant and plant-microorganism communications in the rhizosphere. In this study, we developed potent strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing an array of triazole urea compounds. Using yeast two-hybrid and rice-tillering assays, we identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. Liquid chromatography-tandem mass spectrometry analysis and X-ray crystallography revealed that KK094 was hydrolyzed by D14, and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic triad of D14. Furthermore, we identified two triazole urea compounds KK052 and KK073, whose effects on D14-D53/D14-SLR1 complex formation were opposite due to the absence (KK052) or presence (KK073) of a trifluoromethyl group on their phenyl ring. These results demonstrate that triazole urea compounds are potentially powerful tools for agricultural application and may be useful for the elucidation of the complicated mechanism underlying strigolactone perception.
Collapse
Affiliation(s)
- Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Hirabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Kikuzato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wenqian Hu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuqun Xu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruri Niiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
25
|
Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. PLANT, CELL & ENVIRONMENT 2018; 41:2227-2243. [PMID: 29869792 DOI: 10.1111/pce.13364] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 05/19/2023]
Abstract
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid-derived phytohormones, were initially discovered as an "ecological signal" for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL-mediated plant responses and adaptation to abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Japan
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
26
|
Yao R, Chen L, Xie D. Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:155-161. [PMID: 30014890 DOI: 10.1016/j.pbi.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Unveiling of hormone perception is central to comprehending hormone action. It is generally recognized that an active hormone molecule binds its receptor to initiate hormone signaling, subsequently dissociates from its receptor without being changed, and then initiates the next round of hormone perception. However, recent studies discovered that the α/β hydrolase DWARF14 serves as a non-canonical receptor for the plant hormone strigolactone (SL) to generate the active form of SL which remains covalently bound in an irreversible manner, triggering SL signal transduction. In this short review, we will discuss the recent advances in uncovering this unprecedented non-canonical mechanism for hormone perception.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Shahul Hameed U, Haider I, Jamil M, Kountche BA, Guo X, Zarban RA, Kim D, Al-Babili S, Arold ST. Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 2018; 19:e45619. [PMID: 30021834 PMCID: PMC6123649 DOI: 10.15252/embr.201745619] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub-Saharan Africa. For germination, Striga seeds require host-released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X-100 inhibits S. hermonthica seed germination without affecting host plants. High-resolution X-ray structures reveal that Triton X-100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7-specific inhibition by Triton X-100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga-specific herbicides.
Collapse
Affiliation(s)
- Umar Shahul Hameed
- Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xianrong Guo
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Randa A Zarban
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dongjin Kim
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Stereospecific reduction of the butenolide in strigolactones in plants. Bioorg Med Chem 2018; 26:4225-4233. [DOI: 10.1016/j.bmc.2018.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 11/22/2022]
|
29
|
Tao S, Estelle M. Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. THE NEW PHYTOLOGIST 2018; 218:1534-1542. [PMID: 29461641 PMCID: PMC6054139 DOI: 10.1111/nph.15039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/09/2018] [Indexed: 05/27/2023]
Abstract
The plant hormone auxin regulates many aspects of plant growth and development. Auxin signaling involves hormone perception by the TRANSPORT INHIBITOR RESPONSE/AUXIN F-BOX (TIR1/AFB)-Aux/IAA co-receptor system, and the subsequent degradation of the Aux/IAA transcriptional repressors by the ubiquitin proteasome pathway. This leads to the activation of downstream gene expression and diverse physiological responses. Here, we investigate how the structural elements in the Aux/IAAs determine their function in Auxin perception and transcriptional repression. We took advantage of the facile genetics of the moss Physcomitrella patens to determine the activity of wild-type and mutant PpIAA1a proteins in a Δaux/iaa null background. In this way, Aux/IAA function was characterized at the molecular and physiological levels without the interference of genetic redundancy. We identified and characterized degron variants in Aux/IAAs that affect their stability and Auxin response. We also demonstrated that neither the Aux/IAA EAR motif nor Aux/IAA oligomerization is essential for the repressive function of Aux/IAA. Our study demonstrates how key elements within the Aux/IAA proteins fine tune stability and repressor activity, as well as the long-term developmental outcome.
Collapse
Affiliation(s)
- Sibo Tao
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Ramírez V, Xiong G, Mashiguchi K, Yamaguchi S, Pauly M. Growth- and stress-related defects associated with wall hypoacetylation are strigolactone-dependent. PLANT DIRECT 2018; 2:e00062. [PMID: 31245725 PMCID: PMC6508513 DOI: 10.1002/pld3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 05/15/2018] [Indexed: 05/24/2023]
Abstract
Mutants affected in the Arabidopsis TBL29/ESK1 xylan O-acetyltransferase display a strong reduction in total wall O-acetylation accompanied by a dwarfed plant stature, collapsed xylem morphology, and enhanced freezing tolerance. A newly identified tbl29/esk1 suppressor mutation reduces the expression of the MAX4 gene, affecting the biosynthesis of methyl carlactonoate (MeCLA), an active strigolactone (SL). Genetic and biochemical evidence suggests that blocking the biosynthesis of this SL is sufficient to recover all developmental and stress-related defects associated with the TBL29/ESK1 loss of function without affecting its direct effect-reduced wall O-acetylation. Altered levels of the MAX4 SL biosynthetic gene, reduced branch number, and higher levels of MeCLA, were also found in tbl29/esk1 plants consistent with a constitutive activation of the SL pathway. These results suggest that the reduction in O-acetyl substituents in xylan is not directly responsible for the observed tbl29/esk1 phenotypes. Alternatively, plants may perceive defects in the structure of wall polymers and/or wall architecture activating the SL hormonal pathway as a compensatory mechanism.
Collapse
Affiliation(s)
- Vicente Ramírez
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Guangyan Xiong
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Department of Anatomical Sciences and NeurobiologySchool of MedicineUniversity of LouisvileLouisvilleKentucky
| | - Kiyoshi Mashiguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shinjiro Yamaguchi
- Department of Biomolecular SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Markus Pauly
- Department of Plant & Microbial BiologyEnergy Biosciences InstituteUniversity of CaliforniaBerkeleyCalifornia
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
31
|
Yao R, Wang L, Li Y, Chen L, Li S, Du X, Wang B, Yan J, Li J, Xie D. Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2355-2365. [PMID: 29365172 PMCID: PMC5913607 DOI: 10.1093/jxb/ery014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/09/2018] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) act as an important class of phytohormones to regulate plant shoot branching, and also serve as rhizosphere signals to mediate interactions of host plants with soil microbes and parasitic weeds. SL receptors in dicots, such as DWARF14 in Arabidopsis (AtD14), RMS3 in pea, and ShHTL7 in Striga, serve as unconventional receptors that hydrolyze SLs into a D-ring-derived intermediate CLIM and irreversibly bind CLIM to trigger SL signal transduction. Here, we show that D14 from the monocot rice can complement Arabidopsis d14 mutant and interact with the SL signaling components in Arabidopsis. Our results further reveal that rice D14, similar to SL receptors in dicots, also serves as an unconventional hormone receptor that generates and irreversibly binds the active form of SLs. These findings uncover the conserved functions of D14 proteins in monocots and dicots.
Collapse
Affiliation(s)
- Ruifeng Yao
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuwen Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Chen
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suhua Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoxi Du
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianbin Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Correspondence: ,
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Correspondence: ,
| |
Collapse
|
32
|
Sanchez E, Artuso E, Lombardi C, Visentin I, Lace B, Saeed W, Lolli ML, Kobauri P, Ali Z, spyrakis F, Cubas P, Cardinale F, Prandi C. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2333-2343. [PMID: 29554337 PMCID: PMC5913603 DOI: 10.1093/jxb/ery092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 06/01/2023]
Abstract
Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.
Collapse
Affiliation(s)
- Elena Sanchez
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Emma Artuso
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Chiara Lombardi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Ivan Visentin
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Beatrice Lace
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr., Freiburg, Germany
| | - Wajeeha Saeed
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Piermichele Kobauri
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Francesca spyrakis
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Pilar Cubas
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Francesca Cardinale
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Cristina Prandi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| |
Collapse
|
33
|
Jamil M, Kountche BA, Haider I, Guo X, Ntui VO, Jia KP, Ali S, Hameed US, Nakamura H, Lyu Y, Jiang K, Hirabayashi K, Tanokura M, Arold ST, Asami T, Al-Babili S. Methyl phenlactonoates are efficient strigolactone analogs with simple structure. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2319-2331. [PMID: 29300919 PMCID: PMC5913645 DOI: 10.1093/jxb/erx438] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/16/2017] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) are a new class of phytohormones that also act as germination stimulants for root parasitic plants, such as Striga spp., and as branching factors for symbiotic arbuscular mycorrhizal fungi. Sources for natural SLs are very limited. Hence, efficient and simple SL analogs are needed for elucidating SL-related biological processes as well as for agricultural applications. Based on the structure of the non-canonical SL methyl carlactonoate, we developed a new, easy to synthesize series of analogs, termed methyl phenlactonoates (MPs), evaluated their efficacy in exerting different SL functions, and determined their affinity for SL receptors from rice and Striga hermonthica. Most of the MPs showed considerable activity in regulating plant architecture, triggering leaf senescence, and inducing parasitic seed germination. Moreover, some MPs outperformed GR24, a widely used SL analog with a complex structure, in exerting particular SL functions, such as modulating Arabidopsis roots architecture and inhibiting rice tillering. Thus, MPs will help in elucidating the functions of SLs and are promising candidates for agricultural applications. Moreover, MPs demonstrate that slight structural modifications clearly impact the efficiency in exerting particular SL functions, indicating that structural diversity of natural SLs may mirror a functional specificity.
Collapse
Affiliation(s)
- Muhammad Jamil
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Boubacar A Kountche
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Imran Haider
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Xiujie Guo
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Valentine O Ntui
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Shawkat Ali
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Umar S Hameed
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Hidemitsu Nakamura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ying Lyu
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kai Jiang
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kei Hirabayashi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| |
Collapse
|
34
|
Jia KP, Baz L, Al-Babili S. From carotenoids to strigolactones. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2189-2204. [PMID: 29253188 DOI: 10.1093/jxb/erx476] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 05/18/2023]
Abstract
Strigolactones are phytohormones that regulate various plant developmental and adaptation processes. When released into soil, strigolactones act as chemical signals, attracting symbiotic arbuscular mycorrhizal fungi and inducing seed germination in root-parasitic weeds. Strigolactones are carotenoid derivatives, characterized by the presence of a butenolide ring that is connected by an enol ether bridge to a less conserved second moiety. Carotenoids are isopenoid pigments that differ in structure, number of conjugated double bonds, and stereoconfiguration. Genetic analysis and enzymatic studies have demonstrated that strigolactones originate from all-trans-β-carotene in a pathway that involves the all-trans-/9-cis-β-carotene isomerase DWARF27 and carotenoid cleavage dioxygenase 7 and 8 (CCD7, 8). The CCD7-mediated, regiospecific and stereospecific double-bond cleavage of 9-cis-β-carotene leads to a 9-cis-configured intermediate that is converted by CCD8 via a combination of reactions into the central metabolite carlactone. By catalyzing repeated oxygenation reactions that can be coupled to ring closure, CYP711 enzymes convert carlactone into tricyclic-ring-containing canonical and non-canonical strigolactones. Modifying enzymes, which are mostly unknown, further increase the diversity of strigolactones. This review explores carotenogenesis, provides an update on strigolactone biosynthesis, with emphasis on the substrate specificity and reactions catalyzed by the different enzymes, and describes the regulation of the biosynthetic pathway.
Collapse
Affiliation(s)
- Kun-Peng Jia
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| | - Lina Baz
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Tsuchiya Y, Yoshimura M, Hagihara S. The dynamics of strigolactone perception in Striga hermonthica: a working hypothesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2281-2290. [PMID: 29474634 DOI: 10.1093/jxb/ery061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Plant-derived strigolactones have diverse functions at ecological scale, including effects upon the growth of plants themselves. The parasitic plants from the family Orobanchaceae interfere with the ecological and hormonal functions of strigolactones to generate unique germination abilities based on the sensing of host-derived strigolactones. Although the recent discovery of strigolactone receptors has enabled us to begin elucidating the mechanism of strigolactone perception, how perception relates to plant parasitism is still a mystery. In this review, we explore emerging questions by introducing recent advances in strigolactone research in parasitic plants. We also attempt to construct a conceptual framework for the unique in planta dynamics of strigolactone perception uncovered through the use of fluorescent probes for strigolactone receptors. Understanding the mechanisms of strigolactone-related processes is essential for controlling the parasitic plant Striga hermonthica, which has caused devastating damage to crop production in Africa.
Collapse
Affiliation(s)
- Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan
| | - Masahiko Yoshimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Shinya Hagihara
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
36
|
Cardinale F, Korwin Krukowski P, Schubert A, Visentin I. Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2291-2303. [PMID: 29346683 DOI: 10.1093/jxb/erx494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 05/03/2023]
Abstract
After quickly touching upon general aspects of strigolactone biology and functions, including structure, synthesis, and perception, this review focuses on the role and regulation of the strigolactone pathway during osmotic stress, in light of the most recent research developments. We discuss available data on organ-specific dynamics of strigolactone synthesis and interaction with abscisic acid in the acclimatization response, with emphasis on the ecophysiological implications of the effects on the stomatal closure process. We highlight the importance of considering roots and shoots separately as well as combined versus individual stress treatments; and of performing reciprocal grafting experiments to work out organ contributions and long-distance signalling events and components under more realistic conditions. Finally, we elaborate on the question of if and how synthetic or natural strigolactones, alone or in combination with crop management strategies such as grafting, hold potential to maximize crop resilience to abiotic stresses.
Collapse
Affiliation(s)
- Francesca Cardinale
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Largo Paolo Braccini, Grugliasco (TO), Italy
| | - Paolo Korwin Krukowski
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Largo Paolo Braccini, Grugliasco (TO), Italy
| | - Andrea Schubert
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Largo Paolo Braccini, Grugliasco (TO), Italy
| | - Ivan Visentin
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Largo Paolo Braccini, Grugliasco (TO), Italy
| |
Collapse
|
37
|
Halouzka R, Tarkowski P, Zwanenburg B, Ćavar Zeljković S. Stability of strigolactone analog GR24 toward nucleophiles. PEST MANAGEMENT SCIENCE 2018; 74:896-904. [PMID: 29095562 DOI: 10.1002/ps.4782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/11/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Strigolactones (SLs) are plant hormones that play various roles in plant development. The chemical stability of SLs depends on the solvent, the pH, and the presence of nucleophiles. Hydrolysis leads to detachment of the butenolide ring, and plays a crucial role in the initial stages of the signal-transduction process occurring between the receptor and the SL signaling molecule. RESULTS To date, two different mechanisms have been proposed for SL hydrolysis. Results obtained from kinetic, thermodynamic, and mass spectral data for the reaction between the widely used synthetic SL analog GR24 and seven different nucleophiles demonstrate that the reaction proceeds via the Michael addition-elimination mechanism. CONCLUSION This study provides valuable information on the chemical stability of GR24 in different plant growth media and buffers. Such information is valuable for scientists using GR24 treatments to study SL-regulated processes in plants. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rostislav Halouzka
- Centre of Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Tarkowski
- Centre of Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sanja Ćavar Zeljković
- Centre of Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| |
Collapse
|
38
|
Affiliation(s)
- Steven Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
- * E-mail:
| | - Eric K. Kuria
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
39
|
Holbrook-Smith D, McCourt P. Chemical Screening for Strigolactone Receptor Antagonists Using Arabidopsis thaliana. Methods Mol Biol 2018; 1795:117-126. [PMID: 29846923 DOI: 10.1007/978-1-4939-7874-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Strigolactones are a class of terpenoid-based plant hormones that are best known for their role in the suppression of axillary branching. However, strigolactones also play a role as stimulants for the germination of parasitic plants of the genera Striga and Orobanche. This dual role for strigolactones as endogenous hormones and interspecies signaling molecules has led to significant research directed toward understanding mechanisms of strigolactone perception from both the perspective of host plants and of their parasites. Antagonists for strigolactone receptors serve as potentially important tools in both arenas. This document describes the procedures required to use phenotypic screening approaches to uncover likely strigolactone receptor antagonists.
Collapse
Affiliation(s)
- Duncan Holbrook-Smith
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Peter McCourt
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Recent advances in molecular basis for strigolactone action. SCIENCE CHINA-LIFE SCIENCES 2017; 61:277-284. [PMID: 29116554 DOI: 10.1007/s11427-017-9195-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Strigolactones (SLs) are a very special class of plant hormones, which act as endogenous signals to regulate shoot branching in plants, and also serve as rhizosphere signals to regulate interactions of host plants with heterologous organisms such as symbiotic arbuscular mycorrhizal fungi and parasitic weeds. In this short review, we give a brief description of novel discoveries in SL biosynthesis pathway, and mainly summarize the recent advances in SL perception and signal transduction.
Collapse
|