1
|
Xie TQ, Yan X, Yan JH, Yu YJ, Liu XH, Feng J, Liu CJ, Zhang XZ. Construction of Iron-Scavenging Hydrogel via Thiol-Ene Click Chemistry for Antibiotic-Free Treatment of Bacterial Wound Infection. Adv Healthc Mater 2024; 13:e2401118. [PMID: 38979865 DOI: 10.1002/adhm.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.
Collapse
Affiliation(s)
- Tian-Qiu Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jian-Hua Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Chen Y, Xiao L, Zhou M, Zhang H. The microbiota: a crucial mediator in gut homeostasis and colonization resistance. Front Microbiol 2024; 15:1417864. [PMID: 39165572 PMCID: PMC11333231 DOI: 10.3389/fmicb.2024.1417864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiota is a complex and diverse community of microorganisms that colonizes the human gastrointestinal tract and influences various aspects of human health. These microbes are closely related to enteric infections. As a foreign entity for the host, commensal microbiota is restricted and regulated by the barrier and immune system in the gut and contributes to gut homeostasis. Commensals also effectively resist the colonization of pathogens and the overgrowth of indigenous pathobionts by utilizing a variety of mechanisms, while pathogens have developed strategies to subvert colonization resistance. Dysbiosis of the microbial community can lead to enteric infections. The microbiota acts as a pivotal mediator in establishing a harmonious mutualistic symbiosis with the host and shielding the host against pathogens. This review aims to provide a comprehensive overview of the mechanisms underlying host-microbiome and microbiome-pathogen interactions, highlighting the multi-faceted roles of the gut microbiota in preventing enteric infections. We also discuss the applications of manipulating the microbiota to treat infectious diseases in the gut.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ling Xiao
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Min Zhou
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Shende VV, Bauman KD, Moore BS. The shikimate pathway: gateway to metabolic diversity. Nat Prod Rep 2024; 41:604-648. [PMID: 38170905 PMCID: PMC11043010 DOI: 10.1039/d3np00037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Brek T, Gohal GA, Yasir M, Azhar EI, Al-Zahrani IA. Meningitis and Bacteremia by Unusual Serotype of Salmonella enterica Strain: A Whole Genome Analysis. Interdiscip Perspect Infect Dis 2024; 2024:3554734. [PMID: 38558876 PMCID: PMC10980553 DOI: 10.1155/2024/3554734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Background Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.
Collapse
Affiliation(s)
- Thamer Brek
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Public Health Laboratory, The Regional Laboratory and the Central Blood Bank, Jazan Health Directorate, Jazan, Saudi Arabia
| | - Gassem A. Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Yasir
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I. Azhar
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Cao Y, Ibrahim KS, Li X, Wong A, Wu Y, Yu XD, Zhou X, Tan Z, He Z, Craft JA, Shu X. Chinese medicine, Qijudihuang pill, mediates cholesterol metabolism and regulates gut microbiota in high-fat diet-fed mice, implications for age-related macular degeneration. Front Immunol 2023; 14:1274401. [PMID: 37901244 PMCID: PMC10602650 DOI: 10.3389/fimmu.2023.1274401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Background Traditional Chinese Medicines have been used for thousands of years but without any sound empirical basis. One such preparation is the Qijudihuang pill (QP), a mixture of eight herbs, that has been used in China for the treatment of various conditions including age-related macular degeneration (AMD), the most common cause of blindness in the aged population. In order to explain the mechanism behind the effect of QP, we used an AMD model of high-fat diet (HFD) fed mice to investigate cholesterol homeostasis, oxidative stress, inflammation and gut microbiota. Methods Mice were randomly divided into three groups, one group was fed with control diet (CD), the other two groups were fed with high-fat-diet (HFD). One HFD group was treated with QP, both CD and the other HFD groups were treated with vehicles. Tissue samples were collected after the treatment. Cholesterol levels in retina, retinal pigment epithelium (RPE), liver and serum were determined using a commercial kit. The expression of enzymes involved in cholesterol metabolism, inflammation and oxidative stress was measured with qRT-PCR. Gut microbiota was analyzed using 16S rRNA sequencing. Results In the majority of the lipid determinations, analytes were elevated by HFD but this was reversed by QP. Cholesterol metabolism including the enzymes of bile acid (BA) formation was suppressed by HFD but again this was reversed by QP. BAs play a major role in signaling between host and microbiome and this is disrupted by HFD resulting in major changes in the composition of colonic bacterial communities. Associated with these changes are predictions of the metabolic pathway complexity and abundance of individual pathways. These concerned substrate breakdowns, energy production and the biosynthesis of pro-inflammatory factors but were changed back to control characteristics by QP. Conclusion We propose that the ability of QP to reverse these HFD-induced effects is related to mechanisms acting to lower cholesterol level, oxidative stress and inflammation, and to modulate gut microbiota.
Collapse
Affiliation(s)
- Yanqun Cao
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Khalid S. Ibrahim
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq
| | - Xing Li
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Aileen Wong
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xu-Dong Yu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhiming He
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - John A. Craft
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Xinhua Shu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Vision Science , Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
8
|
Zeng X, Vidlund J, Gillespie B, Cao L, Agga GE, Lin J, Dego OK. Evaluation of immunogenicity of enterobactin conjugate vaccine for the control of Escherichia coli mastitis in dairy cows. J Dairy Sci 2023; 106:7147-7163. [PMID: 37210351 DOI: 10.3168/jds.2022-23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/09/2023] [Indexed: 05/22/2023]
Abstract
Mastitis is the most common disease of dairy cows that incurs severe economic losses to the dairy industry. Currently, environmental mastitis pathogens are a major problem for most dairy farms. A current commercially available Escherichia coli vaccine does not prevent clinical mastitis and production losses, likely due to antibody accessibility and antigenic variation issues. Therefore, a novel vaccine that prevents clinical disease and production losses is critically needed. Recently a nutritional immunity approach, which restricts bacterial iron uptake by immunologically sequestering conserved iron-binding enterobactin (Ent), has been developed. The objective of this study was to evaluate the immunogenicity of the keyhole limpet hemocyanin-enterobactin (KLH-Ent) conjugate vaccine in dairy cows. Twelve pregnant Holstein dairy cows in their first through third lactations were randomized to the control or vaccine group, with 6 cows per group. The vaccine group received 3 subcutaneous vaccinations of KLH-Ent with adjuvants at drying off (D0), 20 (D21), and 40 (D42) days after drying off. The control group was injected with phosphate-buffered saline (pH 7.4) mixed with the same adjuvants at the same time points. Vaccination effects were assessed over the study period until the end of the first month of lactation. The KLH-Ent vaccine did not cause any systemic adverse reactions or reduction in milk production. Compared with the control group, the vaccine elicited significantly higher levels of serum Ent-specific IgG at calving (C0) and 30 d postcalving (C30), mainly its IgG2 fraction, which was significantly higher at D42, C0, C14, and C30 d, with no significant change in IgG1 levels. Milk Ent-specific IgG and IgG2 levels in the vaccine group were significantly higher on C30. Fecal microbial community structures were similar for both control and vaccine groups on the same day and shifted directionally along the sampling days. In conclusion, the KLH-Ent vaccine successfully triggered strong Ent-specific immune responses in dairy cows without significantly affecting the gut microbiota diversity and health. The results show that Ent conjugate vaccine is a promising nutritional immunity approach in control of E. coli mastitis in dairy cows.
Collapse
Affiliation(s)
- X Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - J Vidlund
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - B Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - L Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - G E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, Bowling Green, KY 42101
| | - J Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - O Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996.
| |
Collapse
|
9
|
Wang H, Logue CM, Nolan LK, Lin J. Assessment of an Enterobactin Conjugate Vaccine in Layers to Protect Their Offspring from Colibacillosis. Pathogens 2023; 12:1002. [PMID: 37623962 PMCID: PMC10458604 DOI: 10.3390/pathogens12081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we developed a novel enterobactin (Ent) conjugate vaccine that could induce high titers of anti-Ent immunoglobulin Y (IgY) in chicken serum and consequently mitigate the organ lesions caused by APEC infection. Considering that maternal immunization is a practical approach to confer instant immune protection to the hatchlings, in this study, we immunized breeder hens with the Ent conjugate vaccine and evaluated the maternal immune protection on the progenies challenged with APEC. Three doses of the vaccine induced high titers of anti-Ent IgY in the hens (about 16- and 64-fold higher than the control group in the sera and egg yolks, respectively), resulting in an eight-fold of increase in anti-Ent IgY in the sera of progenies. However, the anti-Ent maternal immunity did not display significant protection against APEC challenge in the young chicks as there was no significant difference in APEC load (in liver, lung, and spleen) or organ lesions (in heart, liver, spleen, lung, and air sac) between the vaccinated and control groups. In future studies, the APEC infection model needs to be optimized to exhibit proper pathogenicity of APEC, and the maternal immunization regimen can be further improved to boost the maternally derived anti-Ent IgY in the hatchlings.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| | - Catherine M. Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lisa K. Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| |
Collapse
|
10
|
Ma Y, Fu W, Hong B, Wang X, Jiang S, Wang J. Antibacterial MccM as the Major Microcin in Escherichia coli Nissle 1917 against Pathogenic Enterobacteria. Int J Mol Sci 2023; 24:11688. [PMID: 37511446 PMCID: PMC10380612 DOI: 10.3390/ijms241411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotic Escherichia coli Nissle 1917 (EcN) possesses excellent antibacterial effects on pathogenic enterobacteria. The microcins MccM and MccH47 produced in EcN played critical roles, but they are understudied and poorly characterized, and the individual antibacterial mechanisms are still unclear. In this study, three EcN mutants (ΔmcmA, ΔmchB, and ΔmcmAΔmchB) were constructed and compared with wild-type EcN (EcN wt) to test for inhibitory effects on the growth of Escherichia coli O157: H7, Salmonella enterica (SE), and Salmonella typhimurium (ST). The antibacterial effects on O157: H7 were not affected by the knockout of mcmA (MccM) and mchB (MccH47) in EcN. However, the antibacterial effect on Salmonella declined sharply in EcN mutants ΔmcmA. The overexpressed mcmA gene in EcN::mcmA showed more efficient antibacterial activity on Salmonella than that of EcN wt. Furthermore, the EcN::mcmA strain significantly reduced the abilities of adhesion and invasion of Salmonella to intestinal epithelial cells, decreasing the invasion ability of ST by 56.31% (62.57 times more than that of EcN wt) while reducing the adhesion ability of ST by 50.14% (2.41 times more than that of EcN wt). In addition, the supernatant of EcN::mcmA culture significantly decreased the mRNA expression and secretion of IL-1β, TNF-α, and IL-6 on macrophages induced by LPS. The EcN::mcmA strain generated twice as much orange halo as EcN wt by CAS agar diffusion assay by producing more siderophores. MccM was more closely related to the activity of EcN against Salmonella, and MccM-overproducing EcN inhibited Salmonella growth by producing more siderophores-MccM to compete for iron, which was critical to pathogen growth. Based on the above, EcN::mcmA can be developed as engineered probiotics to fight against pathogenic enterobacteria colonization in the gut.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xinfeng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shoujin Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhang N, Liang C, Kan P, Yangyao J, Lu D, Yao Z, Gan H, Zhu DZ. Indigenous microbial community governs the survival of Escherichia coli O157:H7 in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117524. [PMID: 36801692 DOI: 10.1016/j.jenvman.2023.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The survival pattern of Escherichia coli O157:H7 (E. coli O157:H7) and its regulatory factors in natural environments have been widely studied. However, there is little information about the survival of E. coli O157:H7 in artificial environments, especially in wastewater treatment facilities. In this study, a contamination experiment was performed to explore the survival pattern of E. coli O157:H7 and its central control factors in two constructed wetlands (CWs) under different hydraulic loading rates (HLRs). The results showed that the survival time of E. coli O157:H7 was longer in the CW under the higher HLR. Substrate ammonium nitrogen and available phosphorus were the main factors that influenced the survival of E. coli O157:H7 in CWs. Despite the minimal effect of microbial α-diversity, some keystone taxa, such as Aeromonas, Selenomonas, and Paramecium, governed the survival of E. coli O157:H7. In addition, the prokaryotic community had a more significant impact on the survival of E. coli O157:H7 than the eukaryotic community. The biotic properties had a more substantial direct power on the survival of E. coli O157:H7 than the abiotic factors in CWs. Collectively, this study comprehensively disclosed the survival pattern of E. coli O157:H7 in CWs, which is an essential addition to the environmental behavior of E. coli O157:H7, providing a theoretical basis for the prevention and control of biological contamination in wastewater treatment processes.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Fontana A, Falasconi I, Bellassi P, Fanfoni E, Puglisi E, Morelli L. Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms 2023; 11:microorganisms11030587. [PMID: 36985161 PMCID: PMC10058572 DOI: 10.3390/microorganisms11030587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Correspondence: (A.F.); (L.M.)
| | - Irene Falasconi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Paolo Bellassi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
- Correspondence: (A.F.); (L.M.)
| |
Collapse
|
13
|
Wang H, Cao L, Logue CM, Barbieri NL, Nolan LK, Lin J. Evaluation of immunogenicity and efficacy of the enterobactin conjugate vaccine in protecting chickens from colibacillosis. Vaccine 2023; 41:930-937. [PMID: 36585279 DOI: 10.1016/j.vaccine.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Colibacillosis is one of the most common and economically devastating infectious diseases in poultry production worldwide. Innovative universal vaccines are urgently needed to protect chickens from the infections caused by genetically diverse avian pathogenic Escherichia coli (APEC). Enterobactin (Ent) is a highly conserved siderophore required for E. coli iron acquisition and pathogenesis. The Ent-specific antibodies induced by a novel Ent conjugate vaccine significantly inhibited the in vitro growth of diverse APEC strains. In this study, White Leghorn chickens were immunized with the Ent conjugate vaccine using a crossed design with two variables, vaccination (with or without) and APEC challenge (O1, O78, or PBS control), resulting in six study groups (9 to 10 birds/group). The chickens were subcutaneously injected with the vaccine (100 μg per bird) at 7 days of age, followed by booster immunization at 21 days of age. The chickens were intratracheally challenged with an APEC strain (108 CFU/bird) or PBS at 28 days of age. At 5 days post infection, all chickens were euthanized to examine lesions and APEC colonization of the major organs. Immunization of chickens with the Ent vaccine elicited a strong immune response with a 64-fold increase in the level of Ent-specific IgY in serum. The hypervirulent strain O78 caused extensive lesions in lung, air sac, heart, liver, and spleen with significantly reduced lesion scores observed in the vaccinated chickens. Interestingly, the vaccination did not significantly reduce APEC levels in the examined organs. The APEC O1 with low virulence only caused sporadic lesions in the organs in both vaccination and control groups. The Ent conjugate vaccine altered the bacterial community of the ileum and cecum. Taken together, the findings from this study showed the Ent conjugate vaccine could trigger a strong specific immune response and was promising to confer protection against APEC infection.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Liu Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Catherine M Logue
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Lisa K Nolan
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
14
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
15
|
Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp. Eur J Med Chem 2022; 245:114921. [DOI: 10.1016/j.ejmech.2022.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
16
|
Lyons NS, Bogner AN, Tanner JJ, Sobrado P. Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry 2022; 61:2607-2620. [DOI: 10.1021/acs.biochem.2c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noah S. Lyons
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alexandra N. Bogner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Guo C, Nolan EM. Heavy-Metal Trojan Horse: Enterobactin-Directed Delivery of Platinum(IV) Prodrugs to Escherichia coli. J Am Chem Soc 2022; 144:12756-12768. [PMID: 35803281 DOI: 10.1021/jacs.2c03324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The global crisis of untreatable microbial infections necessitates the design of new antibiotics. Drug repurposing is a promising strategy for expanding the antibiotic repertoire. In this study, we repurpose the clinically approved anticancer agent cisplatin into a targeted antibiotic by conjugating its Pt(IV) prodrug to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron (Fe) acquisition. The l-Ent-Pt(IV) conjugate (l-EP) exhibits antibacterial activity against Escherichia coli K12 and the uropathogenic isolate E. coli CFT073. Similar to cisplatin, l-EP causes a filamentous morphology in E. coli and initiates lysis in lysogenic bacteria. Studies with E. coli mutants defective in Ent transport proteins show that Ent mediates the delivery of l-EP into the E. coli cytoplasm, where reduction of the Pt(IV) prodrug releases the cisplatin warhead, causing growth inhibition and filamentation of E. coli. Substitution of Ent with its enantiomer affords the d-Ent-Pt(IV) conjugate (d-EP), which displays enhanced antibacterial activity, presumably because d-Ent cannot be hydrolyzed by Ent esterases and thus Fe cannot be released from this conjugate. E. coli treated with l/d-EP accumulate ≥10-fold more Pt as compared to cisplatin treatment. By contrast, human embryonic kidney cells (HEK293T) accumulate cisplatin but show negligible Pt uptake after treatment with either conjugate. Overall, this work demonstrates that the attachment of a siderophore repurposes a Pt anticancer agent into a targeted antibiotic that is recognized and transported by siderophore uptake machinery, providing a design strategy for drug repurposing by siderophore modification and heavy-metal "trojan-horse" antibiotics.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Pita-Grisanti V, Chasser K, Sobol T, Cruz-Monserrate Z. Understanding the Potential and Risk of Bacterial Siderophores in Cancer. Front Oncol 2022; 12:867271. [PMID: 35785195 PMCID: PMC9248441 DOI: 10.3389/fonc.2022.867271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Trevor Sobol
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Zobeida Cruz-Monserrate,
| |
Collapse
|
19
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
20
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
21
|
Sim EM, Kim R, Gall M, Arnott A, Howard P, Valcanis M, Howden BP, Sintchenko V. Added Value of Genomic Surveillance of Virulence Factors in Shiga Toxin-Producing Escherichia coli in New South Wales, Australia. Front Microbiol 2022; 12:713724. [PMID: 35002991 PMCID: PMC8733641 DOI: 10.3389/fmicb.2021.713724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
The disease caused by Shiga toxin-producing Escherichia coli (STEC) remains a significant public health challenge globally, but the incidence of human STEC infections in Australia remains relatively low. This study examined the virulence characteristics and diversity of STEC isolates in the state of New South Wales between December 2017 and May 2020. Utilisation of both whole and core genome multi-locus sequence typing (MLST) allowed for the inference of genomic diversity and detection of isolates that were likely to be epidemiologically linked. The most common STEC serotype and stx subtype detected in this study were O157:H7 and stx1a, respectively. A genomic scan of other virulence factors present in STEC suggested interplay between iron uptake system and virulence factors that mediate either iron release or countermeasures against host defence that could result in a reduction of stx1a expression. This reduced expression of the dominant stx genotype could contribute to the reduced incidence of STEC-related illness in Australia. Genomic surveillance of STEC becomes an important part of public health response and ongoing interrogation of virulence factors in STEC offers additional insights for the public health risk assessment.
Collapse
Affiliation(s)
- Eby M Sim
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Ryan Kim
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Mailie Gall
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Alicia Arnott
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Peter Howard
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Vitali Sintchenko
- Enteric Reference Laboratory and Microbial Genomics Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
22
|
Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front Cell Infect Microbiol 2021; 11:716299. [PMID: 35004340 PMCID: PMC8733563 DOI: 10.3389/fcimb.2021.716299] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian gut microbial community, known as the gut microbiota, comprises trillions of bacteria, which co-evolved with the host and has an important role in a variety of host functions that include nutrient acquisition, metabolism, and immunity development, and more importantly, it plays a critical role in the protection of the host from enteric infections associated with exogenous pathogens or indigenous pathobiont outgrowth that may result from healthy gut microbial community disruption. Microbiota evolves complex mechanisms to restrain pathogen growth, which included nutrient competition, competitive metabolic interactions, niche exclusion, and induction of host immune response, which are collectively termed colonization resistance. On the other hand, pathogens have also developed counterstrategies to expand their population and enhance their virulence to cope with the gut microbiota colonization resistance and cause infection. This review summarizes the available literature on the complex relationship occurring between the intestinal microbiota and enteric pathogens, describing how the gut microbiota can mediate colonization resistance against bacterial enteric infections and how bacterial enteropathogens can overcome this resistance as well as how the understanding of this complex interaction can inform future therapies against infectious diseases.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Syed Rafiq Hussain Shah
- Department of Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Sun
- Cuiying Biomedical Research Centre, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola. Microbiol Spectr 2021; 9:e0157121. [PMID: 34704802 PMCID: PMC8549721 DOI: 10.1128/spectrum.01571-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for the growth and survival of pathogenic bacteria; however, it is not fully understood how bacteria sense and respond to iron deficiency or excess. In this study, we show that xfeA in Xanthomonas oryzae pv. oryzicola senses extracytoplasmic iron and changes the hydrogen bonding network of ligand channel domains by adenosine-to-inosine (A-to-I) RNA editing. The frequency of A-to-I RNA editing during iron-deficient conditions increased by 76.87%, which facilitated the passage of iron through the XfeA outer membrane channel. When bacteria were subjected to high iron concentrations, the percentage of A-to-I editing in xfeA decreased, which reduced iron transport via XfeA. Furthermore, A-to-I RNA editing increased expression of multiple genes in the chemotaxis pathway, including methyl-accepting chemotaxis proteins (MCPs) that sense concentrations of exogenous ferrienterobactin (Fe-Ent) at the cytoplasmic membrane. A-to-I RNA editing helps X. oryzae pv. oryzicola move toward an iron-rich environment and supports our contention that editing in xfeA facilitates entry of a ferric siderophore. Overall, our results reveal a new signaling mechanism that bacteria use to adjust to iron concentrations. IMPORTANCE Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by the adenosine deaminase RNA-specific family of enzymes, is a frequent posttranscriptional modification in metazoans. Research on A-to-I editing in bacteria is limited, and the importance of this editing is underestimated. In this study, we show that bacteria may use A-to-I editing as an alternative strategy to promote uptake of metabolic iron, and this form of editing can quickly and precisely modify RNA and subsequent protein sequences similar to an "on/off" switch. Thus, bacteria have the capacity to use a rapid switch-like mechanism to facilitate iron uptake and improve their competitiveness.
Collapse
|
24
|
Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS One 2021; 16:e0257017. [PMID: 34550975 PMCID: PMC8457463 DOI: 10.1371/journal.pone.0257017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Collapse
Affiliation(s)
- Alexa K. Hoke
- James Madison University, Harrisonburg, VA, United States of America
| | - Guadalupe Reynoso
- James Madison University, Harrisonburg, VA, United States of America
- Virginia Tech, Blacksburg, VA, United States of America
| | - Morgan R. Smith
- James Madison University, Harrisonburg, VA, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Malia I. Gardner
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Naomi E. Gilbert
- James Madison University, Harrisonburg, VA, United States of America
- University of Tennessee, Knoxville, TN, United States of America
| | | | | | - Grant J. Brennan
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Shannon R. Farnan
- James Madison University, Harrisonburg, VA, United States of America
| | - Victoria Mendoza
- James Madison University, Harrisonburg, VA, United States of America
| | - Alison C. Poole
- James Madison University, Harrisonburg, VA, United States of America
| | | | - Lucy K. Utz
- James Madison University, Harrisonburg, VA, United States of America
| | - Louie L. Wurch
- James Madison University, Harrisonburg, VA, United States of America
| | - Morgan M. Steffen
- James Madison University, Harrisonburg, VA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
26
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
27
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
28
|
Eger E, Heiden SE, Korolew K, Bayingana C, Ndoli JM, Sendegeya A, Gahutu JB, Kurz MSE, Mockenhaupt FP, Müller J, Simm S, Schaufler K. Circulation of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli of Pandemic Sequence Types 131, 648, and 410 Among Hospitalized Patients, Caregivers, and the Community in Rwanda. Front Microbiol 2021; 12:662575. [PMID: 34054764 PMCID: PMC8160302 DOI: 10.3389/fmicb.2021.662575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes blaCTX–M–15, tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.
Collapse
Affiliation(s)
- Elias Eger
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Stefan E Heiden
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Katja Korolew
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Claude Bayingana
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Jules M Ndoli
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Augustin Sendegeya
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Jean Bosco Gahutu
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Mathis S E Kurz
- Institute of Tropical Medicine and International Health, Charité Medical University of Berlin, Berlin, Germany
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité Medical University of Berlin, Berlin, Germany
| | - Julia Müller
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
30
|
Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli. mSphere 2021; 6:6/3/e00267-21. [PMID: 33980680 PMCID: PMC8125054 DOI: 10.1128/msphere.00267-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. The increasing development of microbial resistance to classical antimicrobial agents has led to the search for novel antimicrobials. Antimicrobial peptides (AMPs) derived from scorpion and snake venoms offer an attractive source for the development of novel therapeutics. Smp24 (24 amino acids [aa]) and Smp43 (43 aa) are broad-spectrum AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio mauruspalmatus and subsequently characterized. Using a DNA microarray approach, we examined the transcriptomic responses of Escherichia coli to subinhibitory concentrations of Smp24 and Smp43 peptides following 5 h of incubation. Seventy-two genes were downregulated by Smp24, and 79 genes were downregulated by Smp43. Of these genes, 14 genes were downregulated in common and were associated with bacterial respiration. Fifty-two genes were specifically upregulated by Smp24. These genes were predominantly related to cation transport, particularly iron transport. Three diverse genes were independently upregulated by Smp43. Strains with knockouts of differentially regulated genes were screened to assess the effect on susceptibility to Smp peptides. Ten mutants in the knockout library had increased levels of resistance to Smp24. These genes were predominantly associated with cation transport and binding. Two mutants increased resistance to Smp43. There was no cross-resistance in mutants resistant to Smp24 or Smp43. Five mutants showed increased susceptibility to Smp24, and seven mutants showed increased susceptibility to Smp43. Of these mutants, formate dehydrogenase knockout (fdnG) resulted in increased susceptibility to both peptides. While the electrostatic association between pore-forming AMPs and bacterial membranes followed by integration of the peptide into the membrane is the initial starting point, it is clear that there are numerous subsequent additional intracellular mechanisms that contribute to their overall antimicrobial effect. IMPORTANCE The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. Scorpion venoms have proven to be a rich source of AMPs. Smp24 and Smp43 are new AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, and these peptides can kill a wide range of bacterial pathogens. By better understanding how these AMPs affect bacterial cells, we can modify their structure to make better drugs in the future.
Collapse
|
31
|
Butler A, Harder T, Ostrowski AD, Carrano CJ. Photoactive siderophores: Structure, function and biology. J Inorg Biochem 2021; 221:111457. [PMID: 34010741 DOI: 10.1016/j.jinorgbio.2021.111457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
It is well known that bacteria and fungi have evolved sophisticated systems for acquiring the abundant but biologically inaccessible trace element iron. These systems are based on high affinity Fe(III)-specific binding compounds called siderophores which function to acquire, transport, and process this essential metal ion. Many hundreds of siderophores are now known and their numbers continue to grow. Extensive studies of their isolation, structure, transport, and molecular genetics have been undertaken in the last three decades and have been comprehensively reviewed many times. In this review we focus on a unique subset of siderophores that has only been recognized in the last 20 years, namely those whose iron complexes display photoactivity. This photoactivity, which typically results in the photooxidation of the siderophore ligand with concomitant reduction of Fe(III) to Fe(II), seemingly upsets the siderophore paradigm of forming and transporting only extremely stable Fe(III) complexes into microbial cells. Here we review their structure, synthesis, photochemistry, photoproduct coordination chemistry and explore the potential biological and ecological consequences of this photoactivity.
Collapse
Affiliation(s)
- Alison Butler
- Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 United States
| | - Tilmann Harder
- Department of Biology and Chemistry, University of Bremen, and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany
| | | | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, United States.
| |
Collapse
|
32
|
Pallares RM, Carter KP, Faulkner D, Abergel RJ. Macromolecular crystallography for f-element complex characterization. Methods Enzymol 2021; 651:139-155. [PMID: 33888202 DOI: 10.1016/bs.mie.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single crystal X-ray diffraction is a technique that measures interatomic distances with atomic resolution. Utilizing this technique for metal complexes featuring lanthanide and actinide elements is complicated by the scarcity and radioactivity of many of the metals of the f-block, as sub-milligram samples are difficult to crystallize for small molecule X-ray diffraction experiments. In this chapter, we present a protocol developed in our group that circumvents these challenges by exploiting macromolecular crystallography, wherein a protein with a large and well-characterized binding calyx is used as a scaffold to crystallize small-molecule metal complexes. Highlighting several examples, we identify the structural and chemical information that can be acquired by this method, and delineate the benefits of directing crystal growth with proteins, such as decreasing the amount of metal used to the sub-microgram scale. Moreover, since protein recognition depends on the nature of the metal-chelator bonds, subtle effects in the lanthanide and actinide coordination chemistry, such as metal-ligand covalency, can be qualitatively assessed.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Department of Nuclear Engineering, University of California, Berkeley, CA, United States.
| |
Collapse
|
33
|
Samsonov SA, Zsila F, Maszota-Zieleniak M. Acute phase α 1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. J Mol Graph Model 2021; 105:107861. [PMID: 33640788 DOI: 10.1016/j.jmgm.2021.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Siderophores are ferric ion-specific organic compounds that are used by bacteria and fungi to secure their iron supply when infecting target organisms. There are a few proteins in the human body, named siderocalins, which bind these important virulence factors and so starve microorganisms of iron. In this study, we analyzed in silico if serum α1-acid glycoprotein (AAG), the major acute phase lipocalin component of the human plasma, could functionally belong to this group. The real biological function of AAG is elusive and its concentration substantially increases in response to pathological stimuli, including bacterial infections. We computationally evaluated the potential binding of nine microbial siderophores into the β-barrel cavity of AAG and compared the results with the corresponding experimental data reported for siderophore-neutrophil gelatinase-associated lipocalin complexes. According to the results, petrobactin and Fe-BisHaCam are putative candidates to be recognized by this protein. It is proposed that AAG may function as a siderophore capturing component of the innate immune system being able to neutralize bacterial iron chelators not recognized by other siderocalins.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | | |
Collapse
|
34
|
Sargun A, Johnstone TC, Zhi H, Raffatellu M, Nolan EM. Enterobactin- and salmochelin-β-lactam conjugates induce cell morphologies consistent with inhibition of penicillin-binding proteins in uropathogenic Escherichia coli CFT073. Chem Sci 2021; 12:4041-4056. [PMID: 34163675 PMCID: PMC8179508 DOI: 10.1039/d0sc04337k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The design and synthesis of narrow-spectrum antibiotics that target a specific bacterial strain, species, or group of species is a promising strategy for treating bacterial infections when the causative agent is known. In this work, we report the synthesis and evaluation of four new siderophore-β-lactam conjugates where the broad-spectrum β-lactam antibiotics cephalexin (Lex) and meropenem (Mem) are covalently attached to either enterobactin (Ent) or diglucosylated Ent (DGE) via a stable polyethylene glycol (PEG3) linker. These siderophore-β-lactam conjugates showed enhanced minimum inhibitory concentrations against Escherichia coli compared to the parent antibiotics. Uptake studies with uropathogenic E. coli CFT073 demonstrated that the DGE-β-lactams target the pathogen-associated catecholate siderophore receptor IroN. A comparative analysis of siderophore-β-lactams harboring ampicillin (Amp), Lex and Mem indicated that the DGE-Mem conjugate is advantageous because it targets IroN and exhibits low minimum inhibitory concentrations, fast time-kill kinetics, and enhanced stability to serine β-lactamases. Phase-contrast and fluorescence imaging of E. coli treated with the siderophore-β-lactam conjugates revealed cellular morphologies consistent with the inhibition of penicillin-binding proteins PBP3 (Ent/DGE-Amp/Lex) and PBP2 (Ent/DGE-Mem). Overall, this work illuminates the uptake and cell-killing activity of Ent- and DGE-β-lactam conjugates against E. coli and supports that native siderophore scaffolds provide the opportunity for narrowing the activity spectrum of antibiotics in clinical use and targeting pathogenicity.
Collapse
Affiliation(s)
- Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| | - Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| | - Hui Zhi
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego La Jolla CA 92093 USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego La Jolla CA 92093 USA
- Center for Microbiome Innovation, University of California San Diego La Jolla CA 92093 USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines La Jolla CA 92093 USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-452-2495
| |
Collapse
|
35
|
Sargun A, Gerner RR, Raffatellu M, Nolan EM. Harnessing Iron Acquisition Machinery to Target Enterobacteriaceae. J Infect Dis 2020; 223:S307-S313. [PMID: 33330928 DOI: 10.1093/infdis/jiaa440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infections caused by Gram-negative bacteria can be challenging to treat due to the outer membrane permeability barrier and the increasing emergence of antibiotic resistance. During infection, Gram-negative pathogens must acquire iron, an essential nutrient, in the host. Many Gram-negative bacteria utilize sophisticated iron acquisition machineries based on siderophores, small molecules that bind iron with high affinity. In this review, we provide an overview of siderophore-mediated iron acquisition in Enterobacteriaceae and show how these systems provide a foundation for the conceptualization and development of approaches to prevent and/or treat bacterial infections. Differences between the siderophore-based iron uptake machineries of pathogenic Enterobacteriaceae and commensal microbes may lead to the development of selective "Trojan-horse" antimicrobials and immunization strategies that will not harm the host microbiota.
Collapse
Affiliation(s)
- Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, California, USA
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Abokor AA, Wenceslau CF, Shah YM, Joe B, Vijay-Kumar M. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron. Gut Microbes 2020; 12:1-18. [PMID: 33171063 PMCID: PMC7671005 DOI: 10.1080/19490976.2020.1841548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron is an indispensable nutrient for both mammals and microbes. Bacteria synthesize siderophores to sequester host iron, whereas lipocalin 2 (Lcn2) is the host defense protein that prevent this iron thievery. Enterobactin (Ent) is a catecholate-type siderophore that has one of the strongest known affinities for iron. Intestinal epithelial cells (IECs) are adjacent to large microbial population and are in contact with microbial products, including Ent. We undertook this study to investigate whether a single stimulus of Ent could affect IEC functions. Using three human IEC cell-lines with differential basal levels of Lcn2 (i.e. HT29 < DLD-1 < Caco-2/BBe), we demonstrated that iron-free Ent could induce a dose-dependent secretion of the pro-inflammatory chemokine, interleukin 8 (IL-8), in HT29 and DLD-1 IECs, but not in Caco-2/BBe. Ent-induced IL-8 secretion was dependent on chelation of the labile iron pool and on the levels of intracellular Lcn2. Accordingly, IL-8 secretion by Ent-treated HT29 cells could be substantially inhibited by either saturating Ent with iron or by adding exogenous Lcn2 to the cells. IL-8 production by Ent could be further potentiated when co-stimulated with other microbial products (i.e. flagellin, lipopolysaccharide). Water-soluble microbial siderophores did not induce IL-8 production, which signifies that IECs are specifically responding to the lipid-soluble Ent. Intriguingly, formyl peptide receptor (FPR) antagonists (i.e. Boc2, cyclosporine H) abrogated Ent-induced IL-8, implicating that such IEC response could be, in part, dependent on FPR. Taken together, these results demonstrate that IECs sense Ent as a danger signal, where its recognition results in IL-8 secretion.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Camilla F. Wenceslau
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA,CONTACT Matam Vijay-Kumar Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH43614, USA
| |
Collapse
|
37
|
Wang H, Zeng X, Lin J. Enterobactin-specific antibodies inhibit in vitro growth of different gram-negative bacterial pathogens. Vaccine 2020; 38:7764-7773. [PMID: 33164800 DOI: 10.1016/j.vaccine.2020.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023]
Abstract
Enterobactin (Ent)-mediated high affinity iron acquisition is critically important for Gram-negative bacterial pathogens to survive and infect the host. Recently, we reported an efficient method to prepare novel Ent conjugate vaccines for inducing high level of Ent-specific antibodies, which displayed similar bacteriostatic feature as lipocalins, the host innate immune effectors with potent Ent-binding ability. The Ent-specific antibodies also showed a significant advantage over lipocalins by cross-reacting to various Ent derivatives including salmochelins, the glycosylated Ent that can help enteric pathogens evade the siderophore sequestration by host lipocalins. To demonstrate significant potential of the Ent conjugate vaccine for broader applications to prevent and control various Gram-negative infections in human and animal, in this study, we examined inhibitory effect of Ent-specific antibodies on the in vitro growth of three significant Gram-negative pathogens: Escherichia coli (n = 27), Salmonella enterica (n = 8), and Campylobacter spp. (n = 6). The tested strains were diverse with respect to hosts, geographical origins, serotypes, infection sites and siderophore productions. The Ent-specific antibodies significantly suppressed the growth of each tested strain under iron-restricted conditions. For example, the Ent-specific antibodies consistently exerted 2-5 log10 units of growth reduction on most tested avian pathogenic E. coli (9 of 10 strains) isolated in five countries. Despite various dynamic growth responses observed, notably, the Ent-specific antibodies displayed significantly higher magnitude of growth reduction than lipocalin-2 (up to 5 log10 units of difference) on majority of tested E. coli and S. enterica, which is likely due to sequestration of other siderophores (e.g., salmochelins) by the Ent-specific antibodies. Production of a variety of major siderophores by the tested E. coli and S. enterica strains was examined and confirmed by ultra high performance liquid chromatography-high resolution mass spectrometry analysis. Collectively, this study provides critical and compelling in vitro evidence supporting the feasibility of Ent-based immune interventions against several Gram-negative pathogens.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
38
|
Putkaradze N, Teze D, Fredslund F, Welner DH. Natural product C-glycosyltransferases - a scarcely characterised enzymatic activity with biotechnological potential. Nat Prod Rep 2020; 38:432-443. [PMID: 33005913 DOI: 10.1039/d0np00040j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to 2020C-Glycosyltransferases are enzymes that catalyse the transfer of sugar molecules to carbon atoms in substituted aromatic rings of a variety of natural products. The resulting β-C-glycosidic bond is more stable in vivo than most O-glycosidic bonds, hence offering an attractive modulation of a variety of compounds with multiple biological activities. While C-glycosylated natural products have been known for centuries, our knowledge of corresponding C-glycosyltransferases is scarce. Here, we discuss commonalities and differences in the known C-glycosyltransferases, review attempts to leverage them as synthetic biocatalysts, and discuss current challenges and limitations in their research and application.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
39
|
Massip C, Oswald E. Siderophore-Microcins in Escherichia coli: Determinants of Digestive Colonization, the First Step Toward Virulence. Front Cell Infect Microbiol 2020; 10:381. [PMID: 32974212 PMCID: PMC7472721 DOI: 10.3389/fcimb.2020.00381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Siderophore-microcins are antimicrobial peptides produced by enterobacteria, especially Escherichia coli and Klebsiella pneumoniae strains. The antibiotic peptide is post-translationally modified by the linkage of a siderophore moiety. Therefore, it can enter and kill phylogenetically related bacteria by a “Trojan Horse” stratagem, by mimicking the iron–siderophore complexes. Consequently, these antimicrobial peptides are key determinants of bacterial competition within the intestinal niche, which is the reservoir for pathogenic E. coli. The most frequent extraintestinal infections caused by E. coli are urinary tract infections. Uropathogenic E. coli (UPEC) can produce many virulence factors, including siderophore-microcins. Siderophore-microcins are chromosomally encoded by small genomic islands that exhibit conserved organization. In UPEC, the siderophore-microcin gene clusters and biosynthetic pathways differ from the “archetypal” models described in fecal strains. The gene cluster is shorter. Thus, active siderophore-microcin production requires proteins from two other genomic islands that also code for virulence factors. This functional and modular synergy confers a strong selective advantage for the domination of the colonic niche, which is the first step toward infection. This optimization of genetic resources might favor the selection of additional virulence factors, which are essential in the subsequent steps of pathogenesis in E. coli infection.
Collapse
Affiliation(s)
- Clémence Massip
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Service de Bactériologie-Hygiène, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
40
|
Deblonde GJP, Mattocks JA, Park DM, Reed DW, Cotruvo JA, Jiao Y. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Inorg Chem 2020; 59:11855-11867. [PMID: 32686425 DOI: 10.1021/acs.inorgchem.0c01303] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dan M Park
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - David W Reed
- Biological & Chemical Science & Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongqin Jiao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
41
|
Gao R, Wang L, Ogunremi D. Virulence Determinants of Non-typhoidal Salmonellae. Microorganisms 2020. [DOI: 10.5772/intechopen.88904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
AlMatar M, Albarri O, Makky EA, Var I, Köksal F. A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches. Curr Drug Targets 2020; 21:1326-1343. [PMID: 32564749 DOI: 10.2174/1389450121666200621193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
43
|
Figueiredo ART, Kramer J. Cooperation and Conflict Within the Microbiota and Their Effects On Animal Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Linearized Siderophore Products Secreted via MacAB Efflux Pump Protect Salmonella enterica Serovar Typhimurium from Oxidative Stress. mBio 2020; 11:mBio.00528-20. [PMID: 32371597 PMCID: PMC7403778 DOI: 10.1128/mbio.00528-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nontyphoidal Salmonella bacteria induce a classic inflammatory diarrhea by eliciting a large influx of neutrophils, producing a robust oxidative burst. Despite substantial progress understanding the benefits to the host of the inflammatory response to Salmonella, little is known regarding how Salmonella can simultaneously resist the damaging effects of the oxidative burst. The multidrug efflux pump MacAB is important for survival of oxidative stress both in vitro and during infection. We describe a new pathway used by Salmonella Typhimurium to detoxify extracellular reactive oxygen species using a multidrug efflux pump (MacAB) to secrete a linear siderophore, a metabolite of enterobactin. The natural substrates of many multidrug efflux pumps are unknown, and functional roles of the linear metabolites of enterobactin are unknown. We bring two novel discoveries together to highlight an important mechanism used by Salmonella to survive under the oxidative stress conditions that this organism encounters during the classic inflammatory diarrhea that it also induces. Nontyphoidal salmonellae (NTS) are exposed to reactive oxygen species (ROS) during their residency in the gut. To survive oxidative stress encountered during infection, salmonellae employ several mechanisms. One of these mechanisms involves the multidrug efflux pump MacAB, although the natural substrate of this pump has not been identified. MacAB homologs in pseudomonads secrete products of nonribosomal peptide synthesis (NRPS). In Salmonella enterica serovar Typhimurium, the siderophore enterobactin is produced by NRPS in response to iron starvation and this molecule can be processed into salmochelin and several linear metabolites. We found that Salmonella mutants lacking the key NRPS enzyme EntF are sensitive to peroxide mediated killing and cannot detoxify extracellular H2O2. Moreover, EntF and MacAB function in a common pathway to promote survival of Salmonella during oxidative stress. We further demonstrated that S. Typhimurium secretes siderophores in iron-rich media when peroxide is present and that these MacAB-secreted metabolites participate in protection of bacteria against H2O2. We showed that secretion of anti-H2O2 molecules is independent of the presence of the known siderophore efflux pumps EntS and IroC, well-described efflux systems involved in secretion of enterobactin and salmochelin. Both salmochelin and enterobactin are dispensable for S. Typhimurium protection against ROS; however, linear metabolites of enterobactin produced by esterases IroE and Fes are needed for bacterial survival in peroxide-containing media. We determined that linearized enterobactin trimer protects S. Typhimurium against peroxide-mediated killing in a MacAB-dependent fashion. Thus, we suggest that linearized enterobactin trimer is a natural substrate of MacAB and that its purpose is to detoxify extracellular reactive oxygen species.
Collapse
|
45
|
Gumpper K, Dangel AW, Pita-Grisanti V, Krishna SG, Lara LF, Mace T, Papachristou GI, Conwell DL, Hart PA, Cruz-Monserrate Z. Lipocalin-2 expression and function in pancreatic diseases. Pancreatology 2020; 20:419-424. [PMID: 31932215 PMCID: PMC7160010 DOI: 10.1016/j.pan.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted molecule, expressed in various cell types, that is involved in the progression of numerous diseases and disorders. The biological functions and expression levels of LCN2 in diseases including pancreatic cancer, pancreatitis (acute and chronic), and diabetes mellitus, suggest the potential role of LCN2 as a biomarker and/or therapeutic target. However, findings on the role of LCN2 in pancreatic diseases have been contradictory. In pancreatic cancer and pancreatitis, LCN2 has been identified as a potential biomarker; increased expression levels in various biological specimens correlate with the presence of the disease and may be able to differentiate cancer and chronic pancreatitis from healthy subjects. LCN2 is also known to be an adipokine; it is upregulated in obesity and is a common co-factor in the development of pancreatic diseases. Emerging research suggests LCN2 is elevated in type 2 diabetes mellitus, but the exact role of LCN2 in this disease is not clear. In this review, we summarize research on LCN2 as it relates to pancreatic diseases, highlighting the discrepancies in the literature. By explaining and clarifying the role of LCN2 in these disorders, we aim to promote research in developing novel diagnostic and treatment strategies to reduce the burden of pancreatic diseases.
Collapse
Affiliation(s)
- Kristyn Gumpper
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Andrew William Dangel
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Darwin L. Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
46
|
Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms 2020; 8:microorganisms8020269. [PMID: 32079318 PMCID: PMC7074698 DOI: 10.3390/microorganisms8020269] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance is a major concern. Epidemiological studies have demonstrated direct relationships between antibiotic consumption and emergence/dissemination of resistant strains. Within the last decade, authors confounded spectrum activity and ecological effects and did not take into account several other factors playing important roles, such as impact on anaerobic flora, biliary elimination and sub-inhibitory concentration. The ecological impact of antibiotics on the gut microbiota by direct or indirect mechanisms reflects the breaking of the resistance barrier to colonization. To limit the impact of antibiotic therapy on gut microbiota, consideration of the spectrum of activity and route of elimination must be integrated into the decision. Various strategies to prevent (antimicrobial stewardship, action on residual antibiotics at colonic level) or cure dysbiosis (prebiotic, probiotic and fecal microbiota transplantation) have been introduced or are currently being developed.
Collapse
|
47
|
Fiore CL, Jarett JK, Steinert G, Lesser MP. Trait-Based Comparison of Coral and Sponge Microbiomes. Sci Rep 2020; 10:2340. [PMID: 32047192 PMCID: PMC7012828 DOI: 10.1038/s41598-020-59320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.
Collapse
Affiliation(s)
- Cara L Fiore
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA.
- Appalachian State University, Biology Department, Boone, NC, USA.
| | - Jessica K Jarett
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
- AnimalBiome, Oakland, CA, USA
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, Kiel, Germany
| | - Michael P Lesser
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
| |
Collapse
|
48
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
49
|
Fanelli F, Chieffi D, Di Pinto A, Mottola A, Baruzzi F, Fusco V. Phenotype and genomic background of Arcobacter butzleri strains and taxogenomic assessment of the species. Food Microbiol 2020; 89:103416. [PMID: 32138986 DOI: 10.1016/j.fm.2020.103416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy.
| |
Collapse
|
50
|
Dauner M, Skerra A. Scavenging Bacterial Siderophores with Engineered Lipocalin Proteins as an Alternative Antimicrobial Strategy. Chembiochem 2019; 21:601-606. [PMID: 31613035 PMCID: PMC7079049 DOI: 10.1002/cbic.201900564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Iron acquisition mediated by siderophores, high-affinity chelators for which bacteria have evolved specific synthesis and uptake mechanisms, plays a crucial role in microbiology and in host-pathogen interactions. In the ongoing fight against bacterial infections, this area has attracted biomedical interest. Beyond several approaches to interfere with siderophore-mediated iron uptake from medicinal and immunochemistry, the development of high-affinity protein scavengers that tightly complex the siderophores produced by pathogenic bacteria has appeared as a novel strategy. Such binding proteins have been engineered based on siderocalin-also known as lipocalin 2-an endogenous human scavenger of enterobactin and bacillibactin that controls the systemic spreading of commensal bacteria such as Escherichia coli. By using combinatorial protein design, siderocalin was reshaped to bind several siderophores from Pseudomonas aeruginosa and, in particular, petrobactin from Bacillus anthracis, none of which is recognized by the natural protein. Such engineered versions of siderocalin effectively suppress the growth of corresponding pathogenic bacteria by depriving them of their iron supply and offer the potential to complement antibiotic therapy in situations of acute or persistent infection.
Collapse
Affiliation(s)
- Martin Dauner
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120, Halle/Saale, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| |
Collapse
|