1
|
Ye M, Li Y, Deng Z. Advanced Synthesis of Spherical Nucleic Acids: A Limit-Pursuing Game with Broad Implications. Chembiochem 2024:e202400976. [PMID: 39714876 DOI: 10.1002/cbic.202400976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Spherical nucleic acids (SNAs) consist of DNA strands arranged radially and packed densely on the surface of nanoparticles. Due to their unique properties, which are not found in naturally occurring linear or circular DNA, SNAs have gained widespread attention in fields such as sensing, nanomedicine, and colloidal assembly. The rapidly evolving applications of SNAs have driven a modernization of their syntheses to meet different needs. Recently, several advanced approaches have emerged, enabling ultrafast, quantitative, and low-cost SNA synthesis with maximal DNA grafting through "counterintuitive" processes like freezing and dehydration. This concept paper discusses these critical developments from a synthetic perspective, focusing on their underlying mechanisms and broad implications, with a goal of inspiring future research in related fields.
Collapse
Affiliation(s)
- Meiyun Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Bioanalytical Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yulin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhaoxiang Deng
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Bioanalytical Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Duzdevich D, Carr CE, Colville BWF, Aitken HRM, Szostak JW. Overcoming nucleotide bias in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2024; 52:13515-13529. [PMID: 39530216 DOI: 10.1093/nar/gkae982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Freiburg Institute for Advanced Studies, Albertstraße 19, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, School of Earth and Atmospheric Sciences, 275 Ferst Drive NW, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben W F Colville
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | - Harry R M Aitken
- Department of Molecular Biology, Center for Computational and Integrative Biology, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
4
|
Lingam M, Nichols R, Balbi A. A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. ASTROBIOLOGY 2024; 24:813-823. [PMID: 39159441 DOI: 10.1089/ast.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Ruth Nichols
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma "Tor Vergata," Roma, Italy
| |
Collapse
|
5
|
Dultz S, Speth M, Kaiser K, Mikutta R, Guggenberger G. Size, shape, and stability of organic particles formed during freeze-thaw cycles: Model experiments with tannic acid. J Colloid Interface Sci 2024; 667:563-574. [PMID: 38657540 DOI: 10.1016/j.jcis.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
HYPOTHESIS Freeze-thaw cycles (FTC) in soils can cause the aggregation of dissolved organic matter but controlling factors are little understood. EXPERIMENTS In freeze-thaw experiments with tannic acid (TA) as model substance, we studied the effect of TA concentration, pH, electrolytes (NaCl, CaCl2, AlCl3), and number of FTC on particle formation. Tannic acid (0.005 to 10 g L-1) was exposed to 1-20 FTC at pH 3 and 6. The size and shape of particles was determined by confocal laser scanning microscopy. Particle stability was deduced from the equivalent circle diameter (ECD) obtained in dry state and the hydrodynamic diameter measured in thawing solutions. FINDINGS Tannic acid particles occurred as plates and veins, resembling the morphology of ice grain boundaries. Low pH and presence of electrolytes favored the formation of large particles. The freeze-concentration effect was most intense at low TA concentrations and increased with the number of FTC. While ECD of particles formed at low TA concentrations were smaller than at high concentrations, it was vice versa in the thawed state. At low TA concentrations, higher crystallization pressure of ice caused enhanced stability of large particles. We conclude that FTC can strongly alter the physical state of dissolved organic matter, with likely consequences for its bioavailability.
Collapse
Affiliation(s)
- Stefan Dultz
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Myriam Speth
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany; Department of Soil Science and Soil Conservation, Justus Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Kaiser
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Georg Guggenberger
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
6
|
Saha R, Vázquez-Salazar A, Nandy A, Chen IA. Fitness Landscapes and Evolution of Catalytic RNA. Annu Rev Biophys 2024; 53:109-125. [PMID: 39013026 DOI: 10.1146/annurev-biophys-030822-025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Aditya Nandy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
- The James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Liu H, Su H, Chen N, Cen J, Tan J, Zhang B, Chen X, Cheng A, Fu S, Zhou X, Liu S, Zhang X, Liu S, Luo Y, Zhang G. Water-Ice Microstructures and Hydration States of Acridinium Iodide Studied by Phosphorescence Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202405314. [PMID: 38602843 DOI: 10.1002/anie.202405314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10-5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10-5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.
Collapse
Affiliation(s)
- Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Su
- Hefei National Laboratory, Hefei, 230088, China
| | - Ning Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Cen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiajia Tan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | | | - Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | | | - Shengquan Fu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shilin Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
8
|
Katzmeier F, Simmel FC. Reversible Self-Assembly of Nucleic Acids in a Diffusiophoretic Trap. Angew Chem Int Ed Engl 2024; 63:e202317118. [PMID: 38349772 DOI: 10.1002/anie.202317118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
The formation and dissociation of duplexes or higher order structures from nucleic acid strands is a fundamental process with widespread applications in biochemistry and nanotechnology. Here, we introduce a simple experimental system-a diffusiophoretic trap-for the non-equilibrium self-assembly of nucleic acid structures that uses an electrolyte gradient as the driving force. DNA strands can be concentrated up to hundredfold by a diffusiophoretic trapping force that is caused by the electric field generated by the electrolyte gradient. We present a simple equation for the field to guide selection of appropriate trapping electrolytes. Experiments with carboxylated silica particles demonstrate that the diffusiophoretic force is long-ranged, extending over hundreds of micrometers. As an application, we explore the reversible self-assembly of branched DNA nanostructures in the trap into a macroscopic gel. The structures assemble in the presence of an electrolyte gradient, and disassemble upon its removal, representing a prototypical adaptive response to a macroscopic non-equilibrium state.
Collapse
Affiliation(s)
- Florian Katzmeier
- Technical University of Munich, Physics of Synthetic Biological Systems, Arcisstraße 21, 80333, München, Germany
| | - Friedrich C Simmel
- Technical University of Munich, Physics of Synthetic Biological Systems, Arcisstraße 21, 80333, München, Germany
| |
Collapse
|
9
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
10
|
Tangpradabkul T, Palo M, Townley J, Hsu K, participants E, Smaga S, Das R, Schepartz A. Minimization of the E. coli ribosome, aided and optimized by community science. Nucleic Acids Res 2024; 52:1027-1042. [PMID: 38214230 PMCID: PMC10853774 DOI: 10.1093/nar/gkad1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
The ribosome is a ribonucleoprotein complex found in all domains of life. Its role is to catalyze protein synthesis, the messenger RNA (mRNA)-templated formation of amide bonds between α-amino acid monomers. Amide bond formation occurs within a highly conserved region of the large ribosomal subunit known as the peptidyl transferase center (PTC). Here we describe the step-wise design and characterization of mini-PTC 1.1, a 284-nucleotide RNA that recapitulates many essential features of the Escherichia coli PTC. Mini-PTC 1.1 folds into a PTC-like structure under physiological conditions, even in the absence of r-proteins, and engages small molecule analogs of A- and P-site tRNAs. The sequence of mini-PTC 1.1 differs from the wild type E. coli ribosome at 12 nucleotides that were installed by a cohort of citizen scientists using the on-line video game Eterna. These base changes improve both the secondary structure and tertiary folding of mini-PTC 1.1 as well as its ability to bind small molecule substrate analogs. Here, the combined input from Eterna citizen-scientists and RNA structural analysis provides a robust workflow for the design of a minimal PTC that recapitulates many features of an intact ribosome.
Collapse
Affiliation(s)
| | - Michael Palo
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Jill Townley
- Eterna Massive Open Laboratory, Stanford, CA 94305, USA
| | - Kenneth B Hsu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Sarah Smaga
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Eterna Massive Open Laboratory, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- ARC Institute, Palo Alto, CA 94304, USA
| |
Collapse
|
11
|
Zorc SA, Roy RN. Origin & influence of autocatalytic reaction networks at the advent of the RNA world. RNA Biol 2024; 21:78-92. [PMID: 39358873 PMCID: PMC11451275 DOI: 10.1080/15476286.2024.2405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
Collapse
Affiliation(s)
- Stephen A. Zorc
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Raktim N. Roy
- Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Zhu Y, Xiong X, Cao M, Li L, Fan C, Pei H. Accelerating DNA computing via freeze-thaw cycling. SCIENCE ADVANCES 2023; 9:eaax7983. [PMID: 37624882 PMCID: PMC10456841 DOI: 10.1126/sciadv.aax7983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
DNA computing harnesses the immense potential of DNA molecules to enable sophisticated and transformative computational processes but is hindered by low computing speed. Here, we propose freeze-thaw cycling as a simple yet powerful method for high-speed DNA computing without complex procedures. Through iterative cycles, we achieve a substantial 20-fold speed enhancement in basic strand displacement reactions. This acceleration arises from the utilization of eutectic ice phase as a medium, temporarily increasing the effective local concentration of molecules during each cycle. In addition, the acceleration effect follows the Hofmeister series, where kosmotropic anions such as sulfate (SO42-) reduce eutectic phase volume, leading to a more notable enhancement in strand displacement reaction rates. Leveraging this phenomenon, freeze-thaw cycling demonstrates its generalizability for high-speed DNA computing across various circuit sizes, achieving up to a remarkable 120-fold enhancement in reaction rates. We envision its potential to revolutionize molecular computing and expand computational applications in diverse fields.
Collapse
Affiliation(s)
- Yun Zhu
- State Key Laboratory of Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiewei Xiong
- State Key Laboratory of Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengyao Cao
- State Key Laboratory of Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- State Key Laboratory of Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hao Pei
- State Key Laboratory of Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
13
|
Fraccia TP, Martin N. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling. Nat Commun 2023; 14:2606. [PMID: 37160869 PMCID: PMC10169843 DOI: 10.1038/s41467-023-38163-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie et Innovation, UMR 8231, ESPCI Paris, PSL University, CNRS, 6 rue Jean Calvin, 75005, Paris, France.
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133, Milano, Italy.
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France.
| |
Collapse
|
14
|
Salibi E, Peter B, Schwille P, Mutschler H. Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations. Nat Commun 2023; 14:1222. [PMID: 36869058 PMCID: PMC9984477 DOI: 10.1038/s41467-023-36940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Growth and division of biological cells are based on the complex orchestration of spatiotemporally controlled reactions driven by highly evolved proteins. In contrast, it remains unknown how their primordial predecessors could achieve a stable inheritance of cytosolic components before the advent of translation. An attractive scenario assumes that periodic changes of environmental conditions acted as pacemakers for the proliferation of early protocells. Using catalytic RNA (ribozymes) as models for primitive biocatalytic molecules, we demonstrate that the repeated freezing and thawing of aqueous solutions enables the assembly of active ribozymes from inactive precursors encapsulated in separate lipid vesicle populations. Furthermore, we show that encapsulated ribozyme replicators can overcome freezing-induced content loss and successive dilution by freeze-thaw driven propagation in feedstock vesicles. Thus, cyclic freezing and melting of aqueous solvents - a plausible physicochemical driver likely present on early Earth - provides a simple scenario that uncouples compartment growth and division from RNA self-replication, while maintaining the propagation of these replicators inside new vesicle populations.
Collapse
Affiliation(s)
- Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Benedikt Peter
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
15
|
Dujardin A, Himbert S, Pudritz R, Rheinstädter MC. The Formation of RNA Pre-Polymers in the Presence of Different Prebiotic Mineral Surfaces Studied by Molecular Dynamics Simulations. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010112. [PMID: 36676060 PMCID: PMC9860743 DOI: 10.3390/life13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
We used all-atom Molecular Dynamics (MD) computer simulations to study the formation of pre-polymers between the four nucleotides in RNA (AMP, UMP, CMP, GMP) in the presence of different substrates that could have been present in a prebiotic environment. Pre-polymers are C3'-C5' hydrogen-bonded nucleotides that have been suggested to be the precursors of phosphodiester-bonded RNA polymers. We simulated wet-dry cycles by successively removing water molecules from the simulations, from ~60 to 3 water molecules per nucleotide. The nine substrates in this study include three clay minerals, one mica, one phosphate mineral, one silica, and two metal oxides. The substrates differ in their surface charge and ability to form hydrogen bonds with the nucleotides. From the MD simulations, we quantify the interactions between different nucleotides, and between nucleotides and substrates. For comparison, we included graphite as an inert substrate, which is not charged and cannot form hydrogen bonds. We also simulated the dehydration of a nucleotide-only system, which mimics the drying of small droplets. The number of hydrogen bonds between nucleotides and nucleotides and substrates was found to increase significantly when water molecules were removed from the systems. The largest number of C3'-C5' hydrogen bonds between nucleotides occurred in the graphite and nucleotide-only systems. While the surface of the substrates led to an organization and periodic arrangement of the nucleotides, none of the substrates was found to be a catalyst for pre-polymer formation, neither at full hydration, nor when dehydrated. While confinement and dehydration seem to be the main drivers for hydrogen bond formation, substrate interactions reduced the interactions between nucleotides in all cases. Our findings suggest that small supersaturated water droplets that could have been produced by geysers or springs on the primitive Earth may play an important role in non-enzymatic RNA polymerization.
Collapse
Affiliation(s)
- Alix Dujardin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Ralph Pudritz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
- Correspondence: ; Tel.: +1-(905)-525-9140-23134; Fax: +1-(905)-546-1252
| |
Collapse
|
16
|
Cohen ZR, Todd ZR, Catling DC, Black RA, Keller SL. Prebiotic Vesicles Retain Solutes and Grow by Micelle Addition after Brief Cooling below the Membrane Melting Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13407-13413. [PMID: 36278967 DOI: 10.1021/acs.langmuir.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Replication of RNA genomes within membrane vesicles may have been a critical step in the development of protocells on the early Earth. Cold temperatures near 0 °C improve the stability of RNA and allow efficient copying, while some climate models suggest a cold early Earth, so the first protocells may have arisen in cold-temperature environments. However, at cold temperatures, saturated fatty acids, which would have been available on the early Earth, form gel-phase membranes that are rigid and restrict mobility within the bilayer. Two primary roles of protocell membranes are to encapsulate solutes and to grow by incorporating additional fatty acids from the environment. We test here whether fatty acid membranes in the gel phase accomplish these roles. We find that gel-phase membranes of 10-carbon amphiphiles near 0 °C encapsulate aqueous dye molecules as efficiently as fluid-phase membranes do, but the contents are released if the aqueous solution is frozen at -20 °C. Gel-phase membranes do not grow measurably by micelle addition, but growth resumes when membranes are warmed above the gel-liquid transition temperature. We find that longer, 12-carbon amphiphiles do not retain encapsulated contents near 0 °C. Together, our results suggest that protocells could have developed within environments that experience temporary cooling below the membrane melting temperature, and that membranes composed of relatively short-chain fatty acids would encapsulate solutes more efficiently as temperatures approached 0 °C.
Collapse
|
17
|
Zhang S, Zhang C, Fu Y, Li L, Huang C, Lin Y, Zhu C, Francisco JS, He Z, Zhou X, Wang J. Role of an Ice Surface in the Photoreaction of Coumarins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11346-11353. [PMID: 36066243 DOI: 10.1021/acs.langmuir.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ice affects many chemical reactions in nature, which greatly influences the atmosphere, climate, and life. However, the exact mechanism of ice in these chemical reactions remains elusive. For example, it is still an open question as to whether ice can act as a catalyst to greatly enhance the reactivity and selectivity, which is essential for the production of some natural compounds in our planet. Here, we discover that ice can lead to high efficiency and stereoselectivity of the [2 + 2] photodimerization of coumarin and its derivatives. The conversion of the [2 + 2] photodimerization of coumarins enhanced by ice is dozens of times higher than that in the unfrozen saturated solution, and the reaction displays a high syn-head-head stereoselectivity (>95%) in comparison with those in the absence of the ice. Note that almost no reaction occurs in the crystal powder and melt of the coumarins, indicating that the role of ice in the photodimerization reaction is not simply due to the usual mechanisms found in the freezing concentration. We further reveal that the reaction rate is found to be proportional to the total area of the ice surface and follows Michaelis-Menten-like kinetics, indicating that the ice surface catalyzes the reaction. Molecular dynamics simulations demonstrate that ice surfaces can induce reactants to form a two-dimensional liquid-crystal-ordered layer with a suitable intermolecular distance and unique side-by-side packing, facilitating stereoselective photodimerization for syn-head-head dimers. These findings give evidence that ice-surface-induced molecular assembly may play an important role in atmospheric heterogeneous photoreaction processes.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze 274015, P. R. China
| | - Yang Fu
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linhai Li
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuanbing Huang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Lin
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph S Francisco
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, P. R. China
| | - Zhiyuan He
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | | | - Jianjun Wang
- Key Laboratory for Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
18
|
Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion. Nat Commun 2022; 13:3050. [PMID: 35665749 PMCID: PMC9166800 DOI: 10.1038/s41467-022-30590-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Accretion and the resulting increase in local concentration is a widespread mechanism in biology to enhance biomolecular functions (for example, in liquid-liquid demixing phases). Such macromolecular aggregation phases (e.g., coacervates, amyloids) may also have played a role in the origin of life. Here, we report that a hydrophobic-cationic RNA binding peptide selected by phage display (P43: AKKVWIIMGGS) forms insoluble amyloid-containing aggregates, which reversibly accrete RNA on their surfaces in an RNA-length and Mg2+-concentration dependent manner. The aggregates formed by P43 or its sequence-simplified version (K2V6: KKVVVVVV) inhibited RNA polymerase ribozyme (RPR) activity at 25 mM MgCl2, while enhancing it significantly at 400 mM MgCl2. Our work shows that such hydrophobic-cationic peptide aggregates can reversibly concentrate RNA and enhance the RPR activity, and suggests that they could have aided the emergence and evolution of longer and functional RNAs in the fluctuating environments of the prebiotic earth.
Collapse
|
19
|
Roberts SJ, Liu Z, Sutherland JD. Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate. J Am Chem Soc 2022; 144:4254-4259. [PMID: 35230111 PMCID: PMC9097472 DOI: 10.1021/jacs.2c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Translation
according to the genetic code is made possible by selectivity
both in aminoacylation of tRNA and in anticodon/codon recognition.
In extant biology, tRNAs are selectively aminoacylated by enzymes
using high-energy intermediates, but how this might have been achieved
prior to the advent of protein synthesis has been a largely unanswered
question in prebiotic chemistry. We have now elucidated a novel, prebiotically
plausible stereoselective aminoacyl-RNA synthesis, which starts from
RNA-amino acid phosphoramidates and proceeds via phosphoramidate-ester
intermediates that subsequently undergo conversion to aminoacyl-esters
by mild acid hydrolysis. The chemistry avoids the intermediacy of
high-energy mixed carboxy-phosphate anhydrides and is greatly favored
under eutectic conditions, which also potentially allow for the requisite
pH fluctuation through the variable solubility of CO2 in
solid/liquid water.
Collapse
Affiliation(s)
- Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
20
|
Kristoffersen EL, Burman M, Noy A, Holliger P. Rolling circle RNA synthesis catalysed by RNA. eLife 2022; 11:75186. [PMID: 35108196 PMCID: PMC8937235 DOI: 10.7554/elife.75186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-catalyzed RNA replication is widely considered a key step in the emergence of life’s first genetic system. However, RNA replication can be impeded by the extraordinary stability of duplex RNA products, which must be dissociated for re-initiation of the next replication cycle. Here, we have explored rolling circle synthesis (RCS) as a potential solution to this strand separation problem. We observe sustained RCS by a triplet polymerase ribozyme beyond full-length circle synthesis with strand displacement yielding concatemeric RNA products. Furthermore, we show RCS of a circular Hammerhead ribozyme capable of self-cleavage and re-circularization. Thus, all steps of a viroid-like RNA replication pathway can be catalyzed by RNA alone. Finally, we explore potential RCS mechanisms by molecular dynamics simulations, which indicate a progressive build-up of conformational strain upon RCS with destabilization of nascent strand 5′- and 3′-ends. Our results have implications for the emergence of RNA replication and for understanding the potential of RNA to support complex genetic processes. Many organisms today rely on a trio of molecules for their survival: DNA, to store their genetic information; proteins, to conduct the biological processes required for growth or replication; and RNA, to mainly act as an intermediary between DNA and proteins. Yet, how these inanimate molecules first came together to form a living system remains unclear. Circumstantial evidence suggests that the first lifeforms relied to a much greater exrtent on RNA to conduct all necessary biological processes. There is no trace of this ‘RNA world’ today, but molecular ‘fossils’ may exist in current biology. Viroids, for example, are agents which can infect and replicate inside plant cells. They are formed of nothing but a circular strand of RNA that serves not only as genetic storage but also as ribozymes (RNA-based enzymes). Viroids need proteins from the host plant to replicate, but scientists have been able to engineer ribozymes that can copy complex RNA strands. This suggests that viroid-like replication could be achieved using only RNA. Kristoffersen et al. put this idea to the test and showed that it is possible to use RNA enzymatic activity alone to carry out all the steps of a viroid-like copying mechanism. This process included copying a viroid-like RNA circle with RNA, followed by trimming the copy to the right size and reforming the circle. These two latter steps could be carried out by a ribozyme that could itself be encoded on the RNA circle. A computer simulation indicated that RNA synthesis on the circle caused increasing tension that could ease some of the barriers to replication. These results increase our understanding of how RNA copying by RNA could be possible. This may lead to developing molecular models of a primordial RNA-based replication, which could be used to investigate early genetic systems and may have potential applications in synthetic biology.
Collapse
Affiliation(s)
| | - Matthew Burman
- Department of Physics, University of York, York, United Kingdom
| | - Agnes Noy
- Department of Physics, University of York, York, United Kingdom
| | | |
Collapse
|
21
|
Diaz Arenas C, Ardaševa A, Miller J, Mikheyev AS, Yokobayashi Y. Ribozyme Mutagenic Evolution: Mechanisms of Survival. ORIGINS LIFE EVOL B 2022; 51:321-339. [PMID: 34994918 DOI: 10.1007/s11084-021-09617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
Primeval populations replicating at high error rates required a mechanism to overcome the accumulation of mutations and information deterioration. Known strategies to overcome mutation pressures include RNA processivity, epistasis, selection, and quasispecies. We investigated the mechanism by which small molecular ribozyme populations can survive under high error rates by propagating several lineages under different mutagen concentrations. We found that every population that evolved without mutagen went extinct, while those subjected to mutagenic evolution survived. To understand how they survived, we characterized the evolved genotypic diversity, the formation of genotype-genotype interaction networks, the fitness of the most common mutants for each enzymatic step, and changes in population size along the course of evolution. We found that the elevated mutation rate was necessary for the populations to survive in the novel environment, in which all the steps of the metabolism worked to promote the survival of even less catalytically efficient ligases. Besides, an increase in population size and the mutational coupling of genotypes in close-knit networks, which helped maintain or recover lost genotypes making their disappearance transient, prevented Muller's ratchet and extinction.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan. .,Yale University, New Haven, CT, USA.
| | - Aleksandra Ardaševa
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Jonathan Miller
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan.,Evolutionary Genomics Lab, Research School of Biology, Australian National University, Canberra, Australia
| | - Yohei Yokobayashi
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa Prefecture, Japan
| |
Collapse
|
22
|
Zucha D, Kubista M, Valihrach L. Tutorial: Guidelines for Single-Cell RT-qPCR. Cells 2021; 10:cells10102607. [PMID: 34685587 PMCID: PMC8534298 DOI: 10.3390/cells10102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) has delivered significant insights in understanding the gene expression landscape. Thanks to its precision, sensitivity, flexibility, and cost effectiveness, RT-qPCR has also found utility in advanced single-cell analysis. Single-cell RT-qPCR now represents a well-established method, suitable for an efficient screening prior to single-cell RNA sequencing (scRNA-Seq) experiments, or, oppositely, for validation of hypotheses formulated from high-throughput approaches. Here, we aim to provide a comprehensive summary of the scRT-qPCR method by discussing the limitations of single-cell collection methods, describing the importance of reverse transcription, providing recommendations for the preamplification and primer design, and summarizing essential data processing steps. With the detailed protocol attached in the appendix, this tutorial provides a set of guidelines that allow any researcher to perform scRT-qPCR measurements of the highest standard.
Collapse
Affiliation(s)
- Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 252 50 Vestec, Czech Republic; (D.Z.); (M.K.)
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 252 50 Vestec, Czech Republic; (D.Z.); (M.K.)
- TATAA Biocenter AB, 411 03 Gothenburg, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 252 50 Vestec, Czech Republic; (D.Z.); (M.K.)
- Correspondence:
| |
Collapse
|
23
|
Matreux T, Le Vay K, Schmid A, Aikkila P, Belohlavek L, Çalışkanoğlu AZ, Salibi E, Kühnlein A, Springsklee C, Scheu B, Dingwell DB, Braun D, Mutschler H, Mast CB. Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nat Chem 2021; 13:1038-1045. [PMID: 34446924 DOI: 10.1038/s41557-021-00772-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Catalytic nucleic acids, such as ribozymes, are central to a variety of origin-of-life scenarios. Typically, they require elevated magnesium concentrations for folding and activity, but their function can be inhibited by high concentrations of monovalent salts. Here we show that geologically plausible high-sodium, low-magnesium solutions derived from leaching basalt (rock and remelted glass) inhibit ribozyme catalysis, but that this activity can be rescued by selective magnesium up-concentration by heat flow across rock fissures. In contrast to up-concentration by dehydration or freezing, this system is so far from equilibrium that it can actively alter the Mg:Na salt ratio to an extent that enables key ribozyme activities, such as self-replication and RNA extension, in otherwise challenging solution conditions. The principle demonstrated here is applicable to a broad range of salt concentrations and compositions, and, as such, highly relevant to various origin-of-life scenarios.
Collapse
Affiliation(s)
- T Matreux
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - K Le Vay
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Schmid
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - P Aikkila
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - L Belohlavek
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - A Z Çalışkanoğlu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - E Salibi
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Kühnlein
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - C Springsklee
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - B Scheu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D B Dingwell
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D Braun
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | | | - C B Mast
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
24
|
Structured sequences emerge from random pool when replicated by templated ligation. Proc Natl Acad Sci U S A 2021; 118:2018830118. [PMID: 33593911 PMCID: PMC7923349 DOI: 10.1073/pnas.2018830118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The structure of life emerged from randomness. This is attributed to selection by molecular Darwinian evolution. This study found that random templated ligation led to the simultaneous elongation and sequence selection of oligomers. Product strands showed highly structured sequence motifs which inhibited self-folding and built self-templating reaction networks. By the reduction of the sequence space, the kinetics of duplex formation increased and led to a faster replication through the ligation process. These findings imply that elementary binding properties of nucleotides can lead to an early selection of sequences even before the onset of Darwinian evolution. This suggests that such a simplification of sequence space could result in faster downstream selection for sequence-based function for the origin of life. The central question in the origin of life is to understand how structure can emerge from randomness. The Eigen theory of replication states, for sequences that are copied one base at a time, that the replication fidelity has to surpass an error threshold to avoid that replicated specific sequences become random because of the incorporated replication errors [M. Eigen, Naturwissenschaften 58 (10), 465–523 (1971)]. Here, we showed that linking short oligomers from a random sequence pool in a templated ligation reaction reduced the sequence space of product strands. We started from 12-mer oligonucleotides with two bases in all possible combinations and triggered enzymatic ligation under temperature cycles. Surprisingly, we found the robust creation of long, highly structured sequences with low entropy. At the ligation site, complementary and alternating sequence patterns developed. However, between the ligation sites, we found either an A-rich or a T-rich sequence within a single oligonucleotide. Our modeling suggests that avoidance of hairpins was the likely cause for these two complementary sequence pools. What emerged was a network of complementary sequences that acted both as templates and substrates of the reaction. This self-selecting ligation reaction could be restarted by only a few majority sequences. The findings showed that replication by random templated ligation from a random sequence input will lead to a highly structured, long, and nonrandom sequence pool. This is a favorable starting point for a subsequent Darwinian evolution searching for higher catalytic functions in an RNA world scenario.
Collapse
|
25
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
26
|
Mizuuchi R, Ichihashi N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life (Basel) 2021; 11:life11030191. [PMID: 33670881 PMCID: PMC7997230 DOI: 10.3390/life11030191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Correspondence: (R.M.); (N.I.)
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Correspondence: (R.M.); (N.I.)
| |
Collapse
|
27
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation. Angew Chem Int Ed Engl 2021; 60:2952-2957. [PMID: 33128282 PMCID: PMC7898671 DOI: 10.1002/anie.202010918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/29/2020] [Indexed: 01/04/2023]
Abstract
RNA-catalyzed RNA ligation is widely believed to be a key reaction for primordial biology. However, since typical chemical routes towards activating RNA substrates are incompatible with ribozyme catalysis, it remains unclear how prebiotic systems generated and sustained pools of activated building blocks needed to form increasingly larger and complex RNA. Herein, we demonstrate in situ activation of RNA substrates under reaction conditions amenable to catalysis by the hairpin ribozyme. We found that diamidophosphate (DAP) and imidazole drive the formation of 2',3'-cyclic phosphate RNA mono- and oligonucleotides from monophosphorylated precursors in frozen water-ice. This long-lived activation enables iterative enzymatic assembly of long RNAs. Our results provide a plausible scenario for the generation of higher-energy substrates required to fuel ribozyme-catalyzed RNA synthesis in the absence of a highly evolved metabolism.
Collapse
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Eddy Ivanhoe Jiménez
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Huacan Lin
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Kristian Le Vay
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | | | - Hannes Mutschler
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Technical University DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
28
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
29
|
An LY, Dai Z, Di B, Xu LL. Advances in Cryochemistry: Mechanisms, Reactions and Applications. Molecules 2021; 26:750. [PMID: 33535547 PMCID: PMC7867104 DOI: 10.3390/molecules26030750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
It is counterintuitive that chemical reactions can be accelerated by freezing, but this amazing phenomenon was discovered as early as the 1960s. In frozen systems, the increase in reaction rate is caused by various mechanisms and the freeze concentration effect is the main reason for the observed acceleration. Some accelerated reactions have great application value in the chemistry synthesis and environmental fields; at the same time, certain reactions accelerated at low temperature during the storage of food, medicine, and biological products should cause concern. The study of reactions accelerated by freezing will overturn common sense and provide a new strategy for researchers in the chemistry field. In this review, we mainly introduce various mechanisms for accelerating reactions induced by freezing and summarize a variety of accelerated cryochemical reactions and their applications.
Collapse
Affiliation(s)
- Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (L.-Y.A.); (Z.D.)
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Präbiotisch plausible RNA‐Aktivierung kompatibel mit ribozymkatalysierter Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Eddy Ivanhoe Jiménez
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Huacan Lin
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kristian Le Vay
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | | | - Hannes Mutschler
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
- TU Dortmund University Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|
31
|
Clark BC, Kolb VM. Macrobiont: Cradle for the Origin of Life and Creation of a Biosphere. Life (Basel) 2020; 10:life10110278. [PMID: 33198206 PMCID: PMC7697624 DOI: 10.3390/life10110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Although the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter. Within such ponds, there can be substantial heterogeneity, on the vertical, horizontal, and temporal scales, which enable multi-pot prebiotic chemical evolution. Pond size-sensitivities for several figures of merit are mathematically formulated, leading to the expectation that the optimum pond size for the OoL is intermediate, but biased toward smaller sizes. Sensitivities include relative access to nutrients, energy sources, and catalysts, as sourced from geological, atmospheric, hydrospheric, and astronomical contributors. Foreshores, especially with mudcracks, are identified as a favorable component for the success of the macrobiont. To bridge the gap between inanimate matter and a planetary-scale biosphere, five stages of evolution within the macrobiont are hypothesized: prebiotic chemistry → molecular replicator → protocell → macrobiont cell → colonizer cell. Comparison of ponds with other macrobionts, including hydrothermal and meteorite settings, allows a conclusion that more than one possible macrobiont locale could enable an OoL.
Collapse
Affiliation(s)
- Benton C. Clark
- Space Science Institute, Boulder, CO 80301, USA
- Correspondence:
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| |
Collapse
|
32
|
Salditt A, Keil LMR, Horning DP, Mast CB, Joyce GF, Braun D. Thermal Habitat for RNA Amplification and Accumulation. PHYSICAL REVIEW LETTERS 2020; 125:048104. [PMID: 32794805 DOI: 10.1103/physrevlett.125.048104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
The RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber. While shorter strands were periodically melted by laminar convection, the temperature gradient caused aggregated polymerase molecules to accumulate, protecting them from degradation in hot regions of the chamber. These findings demonstrate a size-selective pathway for autonomous RNA-based replication in natural nonequilibrium conditions.
Collapse
Affiliation(s)
- Annalena Salditt
- Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - Lorenz M R Keil
- Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - David P Horning
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Christof B Mast
- Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - Gerald F Joyce
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dieter Braun
- Systems Biophysics, Physics Department, Center for Nanoscience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| |
Collapse
|
33
|
Kim K, Park MJ. Ice-assisted synthesis of functional nanomaterials: the use of quasi-liquid layers as nanoreactors and reaction accelerators. NANOSCALE 2020; 12:14320-14338. [PMID: 32458875 DOI: 10.1039/d0nr02624g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of peculiar quasi-liquid layers on ice surfaces marks a major breakthrough in ice-related sciences, as the facile tuning of the reactions and morphologies of substances in contact with these layers make ice-assisted chemistry a low-cost, environmentally benign, and ubiquitous methodology for the synthesis of nanomaterials with improved functionality. Ice-templated synthesis of porous materials offers the appealing features of rapid self-organization and remarkable property changes arising from confinement effects and affords materials that have found a diverse range of applications such as batteries, supercapacitors, and gas separation. Moreover, much attention has been drawn to the acceleration of chemical reactions and transformations on the ice surface due to the freeze concentration effect, fast self-diffusion of surface water, and modulated surface potential energy. Some of these results are related to the accumulation of inorganic contaminants in glaciers and the blockage of natural gas pipelines. As an emerging theme in nanomaterial design, the dimension-controlled synthesis of hybrid materials with unprecedentedly enhanced properties on ice surfaces has attracted much interest. However, a deep understanding of quasi-liquid layer characteristics (and hence, the development of cutting-edge analytical technologies with high surface sensitivity) is required to achieve the current goal of ice-assisted chemistry, namely the preparation of tailor-made materials with the desired properties.
Collapse
Affiliation(s)
- Kyoungwook Kim
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| | - Moon Jeong Park
- Department of Chemistry, Division of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784.
| |
Collapse
|
34
|
Subramanian H, Gatenby RA. Evolutionary advantage of anti-parallel strand orientation of duplex DNA. Sci Rep 2020; 10:9883. [PMID: 32555277 PMCID: PMC7303137 DOI: 10.1038/s41598-020-66705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022] Open
Abstract
DNA in all living systems shares common properties that are remarkably well suited to its function, suggesting refinement by evolution. However, DNA also shares some counter-intuitive properties which confer no obvious benefit, such as strand directionality and anti-parallel strand orientation, which together result in the complicated lagging strand replication. The evolutionary dynamics that led to these properties of DNA remain unknown but their universality suggests that they confer as yet unknown selective advantage to DNA. In this article, we identify an evolutionary advantage of anti-parallel strand orientation of duplex DNA, within a given set of plausible premises. The advantage stems from the increased rate of replication, achieved by dividing the DNA into predictable, independently and simultaneously replicating segments, as opposed to sequentially replicating the entire DNA, thereby parallelizing the replication process. We show that anti-parallel strand orientation is essential for such a replicative organization of DNA, given our premises, the most important of which is the assumption of the presence of sequence-dependent asymmetric cooperativity in DNA.
Collapse
Affiliation(s)
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902, USF Magnolia Dr, Tampa, Florida, USA
| |
Collapse
|
35
|
Abstract
The modern version of the RNA World Hypothesis begins with activated ribonucleotides condensing (nonenzymatically) to make RNA molecules, some of which possess (perhaps slight) catalytic activity. We propose that noncanonical ribonucleotides, which would have been inevitable under prebiotic conditions, might decrease the RNA length required to have useful catalytic function by allowing short RNAs to possess a more versatile collection of folded motifs. We argue that modified versions of the standard bases, some with features that resemble cofactors, could have facilitated that first moment in which early RNA molecules with catalytic capability began their evolutionary path toward self-replication.
Collapse
|
36
|
Reproducing absorption spectra of pH indicators from RGB values of microscopic images. Talanta 2020; 216:120952. [PMID: 32456926 DOI: 10.1016/j.talanta.2020.120952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Absorption spectra of pH indicators in aqueous solutions were reproduced from RGB values of microscopic images utilizing principal component analysis (PCA) and linear algebraic treatments. The reproduction of absorption spectra comprises the following three steps: (1) determining the loading spectra by PCA, (2) determining the conversion matrix from the RGB values to the score vectors, and (3) reproducing the absorption spectra by linear combination of the loading spectra and the score vectors. The reproducibility of the absorption spectra was demonstrated by employing bromothymol blue and methyl red solutions as pH indicators. The reproduced spectra of both indicators were in good agreement with the spectra measured with a conventional spectrophotometer. The pKa values of both indicators calculated from the reproduced spectra are in good agreement with those obtained from the spectrophotometric spectra and the literature values, confirming validity of the reproduction. This approach was applied to measure pH of freeze concentrated solutions in micro drains formed in ice. A change in pH was successfully observed on freezing and was compared with that reported in previous literature. Since this method does not necessitate the use of grating systems, spectral changes can be traced in milliseconds; this elucidates the phenomena occurring in fluctuating fields.
Collapse
|
37
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
38
|
The difficult case of an RNA-only origin of life. Emerg Top Life Sci 2019; 3:469-475. [PMID: 33523163 PMCID: PMC7289000 DOI: 10.1042/etls20190024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
The RNA world hypothesis is probably the most extensively studied model for the emergence of life on Earth. Despite a large body of evidence supporting the idea that RNA is capable of kick-starting autocatalytic self-replication and thus initiating the emergence of life, seemingly insurmountable weaknesses in the theory have also been highlighted. These problems could be overcome by novel experimental approaches, including out-of-equilibrium environments, and the exploration of an early co-evolution of RNA and other key biomolecules such as peptides and DNA, which might be necessary to mitigate the shortcomings of RNA-only systems.
Collapse
|
39
|
Xu Y, Huang K, Lopez A, Xu W, Liu J. Freezing promoted hybridization of very short DNA oligonucleotides. Chem Commun (Camb) 2019; 55:10300-10303. [PMID: 31397452 DOI: 10.1039/c9cc04608a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Shorter DNA probes provide better specificity for hybridization, but they may not form stable duplexes at room temperature. In this study, we used thiazole orange to follow DNA hybridization upon freezing and achieved stable 5-mer duplex DNA. Using multiple short probes in tandem, long DNA could also be studied. This study provides insights into DNA hybridization in the frozen state and expands the application of freezing for nucleic acid chemistry.
Collapse
Affiliation(s)
- Yuancong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
41
|
Vance SD, Barge LM, Cardoso SSS, Cartwright JHE. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds. ASTROBIOLOGY 2019; 19:685-695. [PMID: 30964322 DOI: 10.1089/ast.2018.1826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.
Collapse
Affiliation(s)
- Steven D Vance
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Silvana S S Cardoso
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- 3 Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- 4 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|
42
|
Broecker F, Moelling K. What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci 2019; 1447:53-68. [PMID: 31032941 PMCID: PMC6850104 DOI: 10.1111/nyas.14097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
We describe mechanisms of genetic innovation mediated by viruses and related elements that, during evolution, caused major genetic changes beyond what was anticipated by Charles Darwin. Viruses and related elements introduced genetic information and have shaped the genomes and immune systems of all cellular life forms. None of these mechanisms contradict Darwin's theory of evolution but extend it by means of sequence information that has recently become available. Not only do small increments of genetic information contribute to evolution, but also do major events such as infection by viruses or bacteria, which can supply new genetic information to a host by horizontal gene transfer. Thereby, viruses and virus-like elements act as major drivers of evolution.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
43
|
Gomes‐Filho JV, Randau L. RNA stabilization in hyperthermophilic archaea. Ann N Y Acad Sci 2019; 1447:88-96. [DOI: 10.1111/nyas.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
Affiliation(s)
| | - Lennart Randau
- Prokaryotic Small RNA BiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| |
Collapse
|
44
|
Yin S, Chen Y, Yu C, Ma W. From molecular to cellular form: modeling the first major transition during the arising of life. BMC Evol Biol 2019; 19:84. [PMID: 30943915 PMCID: PMC6448278 DOI: 10.1186/s12862-019-1412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND It has long been suggested that Darwinian evolution may have started at the molecular level and subsequently proceeded to a level with membrane boundary, i.e., of protocells. The transformation has been referred to as "the first major transition leading to life". However, so far, we actually have little knowledge about the relevant evolutionary mechanisms - and even about the plausibility - of such a transition. Here, based upon the scenario of the RNA world, we performed a computer simulation study to address this issue. RESULTS First, it was shown that at the molecular level, after the spread of one ribozyme (RNA replicase), another ribozyme (nucleotide synthetase) may emerge naturally in the system, and the two ribozymes would cooperate to spread in the naked scene. Then, when empty vesicles absorb the two ribozymes via "cytophagy", the resulting protocells may spread in the system and substitute the naked ribozymes. As for the driven power of such a transition, it was demonstrated that the membrane boundary's roles to ensure the cooperation between the two ribozymes and to prevent invasion of parasites are important. Beyond that, remarkably, it was found that another two factors may also have been significant: a possibly higher mobility of the raw materials in the environment (free water) and the protocells' potential capability to move around actively. Finally, the permeability of the membrane to raw materials was shown to be a major problem regarding the disadvantage for the cellular form. CONCLUSIONS The transition from the molecular level to the cellular level may have occurred naturally in early history of evolution. The evolutionary mechanisms for this process were complex. Besides the membrane boundary's roles to guarantee the molecular cooperation and to resist parasites, the greater chance for the protocells to access raw materials - either due to the diffusion of raw materials outside or the protocells' active movement, should also be highlighted, which may have at least to an extent compensated the disadvantage regarding the membrane's blocking effect against raw materials. The present study represents an effort of systematical exploration on this significant transition during the arising of life.
Collapse
Affiliation(s)
- Shaolin Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
45
|
Moelling K, Broecker F. Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 2019; 10:523. [PMID: 30941110 PMCID: PMC6433886 DOI: 10.3389/fmicb.2019.00523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of exoplanets within putative habitable zones revolutionized astrobiology in recent years. It stimulated interest in the question about the origin of life and its evolution. Here, we discuss what the roles of viruses might have been at the beginning of life and during evolution. Viruses are the most abundant biological entities on Earth. They are present everywhere, in our surrounding, the oceans, the soil and in every living being. Retroviruses contributed to about half of our genomic sequences and to the evolution of the mammalian placenta. Contemporary viruses reflect evolution ranging from the RNA world to the DNA-protein world. How far back can we trace their contribution? Earliest replicating and evolving entities are the ribozymes or viroids fulfilling several criteria of life. RNA can perform many aspects of life and influences our gene expression until today. The simplest structures with non-protein-coding information may represent models of life built on structural, not genetic information. Viruses today are obligatory parasites depending on host cells. Examples of how an independent lifestyle might have been lost include mitochondria, chloroplasts, Rickettsia and others, which used to be autonomous bacteria and became intracellular parasites or endosymbionts, thereby losing most of their genes. Even in vitro the loss of genes can be recapitulated all the way from coding to non-coding RNA. Furthermore, the giant viruses may indicate that there is no sharp border between living and non-living entities but an evolutionary continuum. Here, it is discussed how viruses can lose and gain genes, and that they are essential drivers of evolution. This discussion may stimulate the thinking about viruses as early possible forms of life. Apart from our view “viruses first”, there are others such as “proteins first” and “metabolism first.”
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Affiliation(s)
- Georgios Pampalakis
- Department of PharmacyAristotle University of Thessaloniki Thessaloniki 54124
| |
Collapse
|
47
|
Abstract
Central to the “RNA world” hypothesis of the origin of life is the emergence of an RNA catalyst capable of RNA replication. However, possible replicase ribozymes are quite complex and were likely predated by simpler non-enzymatic replication reactions. The templated polymerisation of phosphorimidazolide (Imp) activated ribonucleotides currently appears as the most tractable route to both generate and replicate short RNA oligomer pools from which a replicase could emerge. Herein we demonstrate the rapid assembly of complex ribozymes from such Imp-activated RNA fragment pools. Specifically, we show assembly of a newly selected minimal RNA polymerase ribozyme variant (150 nt) by RNA templated ligation of 5’-2-methylimidazole-activated RNA oligomers <30 nucleotides long. Our results provide support for the possibility that complex RNA structures could have emerged from pools of activated RNA oligomers and outlines a path for the transition from non-enzymatic/chemical to enzymatic RNA replication.
Collapse
Affiliation(s)
- Falk Wachowius
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH (UK)
| |
Collapse
|
48
|
Corominas-Murtra B. Thermodynamics of Duplication Thresholds in Synthetic Protocell Systems. Life (Basel) 2019; 9:life9010009. [PMID: 30650642 PMCID: PMC6462945 DOI: 10.3390/life9010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding the thermodynamics of the duplication process is a fundamental step towards a comprehensive physical theory of biological systems. However, the immense complexity of real cells obscures the fundamental tensions between energy gradients and entropic contributions that underlie duplication. The study of synthetic, feasible systems reproducing part of the key ingredients of living entities but overcoming major sources of biological complexity is of great relevance to deepen the comprehension of the fundamental thermodynamic processes underlying life and its prevalence. In this paper an abstract-yet realistic-synthetic system made of small synthetic protocell aggregates is studied in detail. A fundamental relation between free energy and entropic gradients is derived for a general, non-equilibrium scenario, setting the thermodynamic conditions for the occurrence and prevalence of duplication phenomena. This relation sets explicitly how the energy gradients invested in creating and maintaining structural-and eventually, functional-elements of the system must always compensate the entropic gradients, whose contributions come from changes in the translational, configurational, and macrostate entropies, as well as from dissipation due to irreversible transitions. Work/energy relations are also derived, defining lower bounds on the energy required for the duplication event to take place. A specific example including real ternary emulsions is provided in order to grasp the orders of magnitude involved in the problem. It is found that the minimal work invested over the system to trigger a duplication event is around ~ 10 - 13 J , which results, in the case of duplication of all the vesicles contained in a liter of emulsion, in an amount of energy around ~ 1 kJ . Without aiming to describe a truly biological process of duplication, this theoretical contribution seeks to explicitly define and identify the key actors that participate in it.
Collapse
|
49
|
Rahman MM, Matsumura S, Ikawa Y. Effects of molecular crowding on a bimolecular group I ribozyme and its derivative that self-assembles to form ribozyme oligomers. Biochem Biophys Res Commun 2018; 507:136-141. [DOI: 10.1016/j.bbrc.2018.10.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023]
|
50
|
Mutschler H, Taylor AI, Porebski BT, Lightowlers A, Houlihan G, Abramov M, Herdewijn P, Holliger P. Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. eLife 2018; 7:43022. [PMID: 30461419 PMCID: PMC6289569 DOI: 10.7554/elife.43022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification and is mediated by dedicated recombinase enzymes. Here, we describe an innate capacity for non-enzymatic recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). While DNA, ANA and HNA pools proved inert, RNA (and to a lesser extent AtNA) pools displayed diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental determinant of an innate capacity for recombination, which is shown to promote a concomitant increase in compositional, informational and structural pool complexity and hence evolutionary potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Mikhail Abramov
- REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Piet Herdewijn
- REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|