1
|
Zheng C, Hu G, Wei J, Ma X, Li Z, Chen Y, Ni Z, Li P, Wang Q, Qiu CW. Hyperbolic-to-hyperbolic transition at exceptional Reststrahlen point in rare-earth oxyorthosilicates. Nat Commun 2024; 15:7047. [PMID: 39147731 PMCID: PMC11327244 DOI: 10.1038/s41467-024-50939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Anisotropic optical crystals can exhibit a hyperbolic response within the Reststrahlen band (RB) and support directional polaritonic propagations when interacting with light. Most of the reported low-symmetry optical crystals showcase the evolution from hyperbolic to elliptic dispersion topologies, largely owing to their adjacent RBs being either overlapped or separated. Here, we report an exceptional Reststrahlen point (ERP) in rare-earth oxyorthosilicate Y2SiO5, at which two neighboring RBs almost kiss each other. Consequently, we observe the direct hyperbolic-to-hyperbolic topological transition: the hyperbolic branches close and reopen along with the rotating transverse axis (TA). At such ERP, the TA merges to the direction orthogonal to its proximate phonon mode, mainly due to the interplay between these two non-orthogonal phonon modes. We also find that even with the existence of only one single RB, the TA can rotate in-plane. Our findings are prevalent in isostructural rare-earth oxyorthosilicates, such as Lu2SiO5. The universally underlying physics of ERP and its corresponding special class of rare-earth oxyorthosilicates may offer playgrounds for continuously tuning phonon polariton propagation direction, and broadband controlling light dispersion of polaritonic nanodevices.
Collapse
Affiliation(s)
- Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jingxuan Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuezhi Ma
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhipeng Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yinzhu Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, China
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- NUS Graduate School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Lee D, Oh B, Park J, Moon SW, Shin K, Kim SM, Rho J. Wide field-of-hearing metalens for aberration-free sound capture. Nat Commun 2024; 15:3044. [PMID: 38589347 PMCID: PMC11001966 DOI: 10.1038/s41467-024-47050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Metalenses are instruments that manipulate waves and have exhibited remarkable capabilities to date. However, an important hurdle arises due to the severe hampering of the angular response originating from coma and field curvature aberrations, which result in a loss of focusing ability. Herein, we provide a blueprint by introducing the notion of a wide field-of-hearing (FOH) metalens, designed particularly for capturing and focusing sound with decreased aberrations. Employing an aberration-free planar-thin metalens that leverages perfect acoustic symmetry conversion, we experimentally realize a robust wide FOH capability of approximately 140∘ in angular range. Moreover, our metalens features a relatively short focal length, enabling compact implementation by reducing the aperture-to-hearing plane distance. This is beneficial for space-efficient source-tracking sound sensing. Our strategy can be used across various platforms, potentially including energy harvesting, monitoring, imaging, and communication in auditory, ultrasonic, and submerged environments.
Collapse
Affiliation(s)
- Dongwoo Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Beomseok Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeonghoon Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Won Moon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kilsoo Shin
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sea-Moon Kim
- Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships & Ocean Engineering (KRISO), Daejeon, 34103, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
3
|
Jiang X, Fan F, Su F, Mu T, Huang C, Zhou L, Hu J. Broadband light absorption by a hemispherical concentric nanoshell array. NANOTECHNOLOGY 2024; 35:235201. [PMID: 38430569 DOI: 10.1088/1361-6528/ad2f75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
Achieving highly efficient broadband absorption is an important research area in nanophotonics. In this paper, a novel method is proposed to design broadband near-perfect absorbers, consisting of a four-layer hemispherical concentric nanoshell array. The proposed nanostructure supports absorptivity exceeding 95% in the entire visible region, and the absorption bandwidth is determined by the interaction or 'hybridization' of the plasmons of the inner and outer metal-based nanoshells. Moreover, the designed absorber has wide-angle capability and is insensitive to polarization. The simple structure, as well as the stable absorption properties, suggests that such core-shell nanostructures can serve as a potential candidate for many applications such as solar energy harvesting, photo-detection, and emissivity control.
Collapse
Affiliation(s)
- Xiaoyun Jiang
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fei Fan
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Feng Su
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Tianrui Mu
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chan Huang
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Leiming Zhou
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jigang Hu
- Department of Optical Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
4
|
Luo H, Jiang C, Wen Y, Wang X, Wang F, Liu L, Yu H. Correlative super-resolution bright-field and fluorescence imaging by microsphere assisted microscopy. NANOSCALE 2024; 16:1703-1710. [PMID: 38099700 DOI: 10.1039/d3nr04096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The resolution of fluorescence imaging has been significantly enhanced with the development of super-resolution imaging techniques, surpassing the diffraction limit and reaching sub-diffraction scales of tens of nanometers. However, the resolution of the bright-field images of cells is restricted by the diffraction limit, leading to a significant gap between the resolutions of fluorescence and bright-field imaging, which hinders the research of the precise distribution of intracellular nanostructures. A microsphere superlens offers a promising solution by providing label-free super-resolution imaging capabilities compatible with fluorescence super-resolution imaging. In this study, we used microsphere superlenses to simultaneously enhance the resolution of bright-field and fluorescence imaging, achieving correlated super-resolution bright-field and fluorescence imaging. Compared to conventional bright-field images, we improved the imaging resolution from λ/1.3 to λ/4.2. A correlative super-resolution of mouse skeletal muscle cells was achieved, enabling the clear observation of the precise distribution of nanoparticles in mouse skeletal muscle cells. Furthermore, microsphere superlenses inherit the advantages of optical imaging, which is expected to enable the capturing of ultrafast biological activity within living cells with extremely high temporal resolutions.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaodi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Shenyang Jianzhu University, Shenyang 110168, China
| | - Yangdong Wen
- Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
5
|
Crabb J, Cantos-Roman X, Aizin G, Jornet JM. On-Chip Integration of a Plasmonic FET Source and a Nano-Patch Antenna for Efficient Terahertz Wave Radiation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3114. [PMID: 38133011 PMCID: PMC10746025 DOI: 10.3390/nano13243114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Graphene-based Field-Effect Transistors (FETs) integrated with microstrip patch antennas offer a promising approach for terahertz signal radiation. In this study, a dual-stage simulation methodology is employed to comprehensively investigate the device's performance. The initial stage, executed in MATLAB, delves into charge transport dynamics within a FET under asymmetric boundary conditions, employing hydrodynamic equations for electron transport in the graphene channel. Electromagnetic field interactions are modeled via Finite-Difference Time-Domain (FDTD) techniques. The second stage, conducted in COMSOL Multiphysics, focuses on the microstrip patch antenna's radiative characteristics. Notably, analysis of the S11 curve reveals minimal reflections at the FET's resonant frequency of 1.34672 THz, indicating efficient impedance matching. Examination of the radiation pattern demonstrates the antenna's favorable directional properties. This research underscores the potential of graphene-based FETs for terahertz applications, offering tunable impedance matching and high radiation efficiency for future terahertz devices.
Collapse
Affiliation(s)
- Justin Crabb
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Xavier Cantos-Roman
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Gregory Aizin
- Kingsborough College, The City University of New York, Brooklyn, NY 11235, USA;
| | - Josep Miquel Jornet
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Almawgani AHM, Alzahrani A, Hajjiah A, Mehaney A, Elsayed HA, Sayed H. Optical absorption performance of CZTS/ZnO thin film solar cells comprising anti-reflecting coating of texturing configuration. RSC Adv 2023; 13:31554-31568. [PMID: 37901259 PMCID: PMC10606980 DOI: 10.1039/d3ra05056d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 10/31/2023] Open
Abstract
This paper introduces a novel design of a thin-film solar cell based on CZTS and ZnO composite materials with the help of ITO as the front contact layer. This study primarily focuses on how the cells' optical absorbance at visible wavelengths can be improved. COMSOL Multiphysics is employed as a powerful tool for the investigation of the numerical simulation. The numerical findings showed that the optimum thicknesses of the ITO and ZnO are 80 and 350 nm, respectively. In this regard, with a normal incidence, a wide range of incoming light wavelengths from 450 nm to 800 nm might result in optical absorption of the examined cell of above 0.9. However, this value decreased significantly to reach less than 0.75 when the angle of incidence increased to 50°. To minimize this reduction, on the top surface of the cell, a texture-designed anti-reflective coating designed from a single period of well-known one-dimensional photonic crystals is deposited. The findings demonstrated that the cell's absorption at normal incidence could reach over 0.96 through the overall incident wavelengths. Therefore, CZTS/ZnO thin-film solar cells with an anti-reflecting coating of texturing configuration showed enormous potential for manufacturing effective solar cells.
Collapse
Affiliation(s)
- Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
| | - Ahmad Alzahrani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
| | - Ali Hajjiah
- Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University Kuwait
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hassan Sayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| |
Collapse
|
7
|
Tuniz A, Kuhlmey BT. Subwavelength terahertz imaging via virtual superlensing in the radiating near field. Nat Commun 2023; 14:6393. [PMID: 37852953 PMCID: PMC10584837 DOI: 10.1038/s41467-023-41949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Imaging with resolutions much below the wavelength λ - now common in the visible spectrum - remains challenging at lower frequencies, where exponentially decaying evanescent waves are generally measured using a tip or antenna close to an object. Such approaches are often problematic because probes can perturb the near-field itself. Here we show that information encoded in evanescent waves can be probed further than previously thought, by reconstructing truthful images of the near-field through selective amplification of evanescent waves, akin to a virtual superlens that images the near field without perturbing it. We quantify trade-offs between noise and measurement distance, experimentally demonstrating reconstruction of complex images with subwavelength features down to a resolution of λ/7 and amplitude signal-to-noise ratios < 25dB between 0.18-1.5 THz. Our procedure can be implemented with any near-field probe, greatly relaxes experimental requirements for subwavelength imaging at sub-optical frequencies and opens the door to non-invasive near-field scanning.
Collapse
Affiliation(s)
- Alessandro Tuniz
- Institute of Photonics and Optical Science, School of Physics, University of Sydney, Camperdown, NSW, 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Boris T Kuhlmey
- Institute of Photonics and Optical Science, School of Physics, University of Sydney, Camperdown, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
8
|
Armelles G, Domínguez-Vázquez JM, Conca A, Alvaro R, Cebollada A, Martín-González M. Multiresonant plasmon excitation in slit antennas on metallic and hyperbolic metamaterials. OPTICS EXPRESS 2023; 31:31039-31050. [PMID: 37710632 DOI: 10.1364/oe.498187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
A comparative study of the optical properties of random and ordered arrays of metallic and hyperbolic slit antennas is presented. The metallic slits are fabricated on Au layers, whereas the hyperbolic ones are fabricated on Au/MgO multilayers. The random arrays show, for both types of antennas, similar slit plasmon resonances whose positions depend on the internal structure of the supporting layer. On the other hand, the spectra of the ordered arrays of the hyperbolic slits present additional resonances related to the excitation of Bloch plasmon polaritons in the hyperbolic layer. By varying the slit length and periodicity, an analysis of the interaction between slit localized resonance and Bloch plasmon polaritons is also presented.
Collapse
|
9
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
10
|
Wang W, Yan B, Wang H, Chen Y, Nie X, Yi C, Wang Z, Xu Z, Zeng J, Fan W. Wide-Field and Real-Time Super-Resolution Optical Imaging By Titanium Dioxide Nanoparticle-Assembled Solid Immersion Lens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207596. [PMID: 36897007 DOI: 10.1002/smll.202207596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Indexed: 06/08/2023]
Abstract
Super-resolution optical imaging techniques can break the optical diffraction limit, thus providing unique opportunities to visualize the microscopic world at the nanoscale. Although near-field optical microscopy techniques have been proven to achieve significantly improved imaging resolution, most near-field approaches still suffer from a narrow field of view (FOV) or difficulty in obtaining wide-field images in real time, which may limit their widespread and diverse applications. Here, the authors experimentally demonstrate an optical microscope magnification and image enhancement approach by using a submillimeter-sized solid immersion lens (SIL) assembled by densely-packed 15 nm TiO2 nanoparticles through a silicone oil two-step dehydration method. This TiO2 nanoparticle-assembled SIL can achieve both high transparency and high refractive index, as well as sufficient mechanical strength and easy-to-handle size, thus providing a fast, wide-field, real-time, non-destructive, and low-cost solution for improving the quality of optical microscopic observation of a variety of samples, including nanomaterials, cancer cells, and living cells or bacteria under conventional optical microscopes. This study provides an attractive alternative to simplify the fabrication and applications of high-performance SILs.
Collapse
Affiliation(s)
- Weicheng Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Bing Yan
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, UK
| | - Haiyan Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yue Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Xiuyu Nie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, UK
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jing Zeng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Wen Fan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
11
|
Luo H, Wang X, Wen Y, Li S, Zhang T, Jiang C, Wang F, Liu L, Yu H. Self-Sensing Scanning Superlens for Three-Dimensional Noninvasive Visible-Light Nanoscale Imaging on Complex Surfaces. NANO LETTERS 2023; 23:4311-4317. [PMID: 37155371 DOI: 10.1021/acs.nanolett.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microsphere-assisted super-resolution imaging technology offers label-free, real-time dynamic imaging via white light, which has potential applications in living systems and the nanoscale detection of semiconductor chips. Scanning can aid in overcoming the limitations of the imaging area of a single microsphere superlens. However, the current scanning imaging method based on the microsphere superlens cannot achieve super-resolution optical imaging of complex curved surfaces. Unfortunately, most natural surfaces are composed of complex curved surfaces at the microscale. In this study, we developed a method to overcome this limitation through a microsphere superlens with a feedback capability. By maintaining a constant force between the microspheres and the sample, noninvasive super-resolution optical imaging of complex abiotic and biological surfaces was achieved, and the three-dimensional information on the sample was simultaneously obtained. The proposed method significantly expands the universality of scanning microsphere superlenses for samples and promotes their widespread use.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yangdong Wen
- Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
| | - Shendi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Ligong University, Shenyang 110159, China
| | - Tianyao Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaodi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Jianzhu University, Shenyang 110168, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Barulin A, Kim I. Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics. OPTICS EXPRESS 2023; 31:12162-12174. [PMID: 37157381 DOI: 10.1364/oe.486702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hyperlenses offer an appealing opportunity to unlock bioimaging beyond the diffraction limit with conventional optics. Mapping hidden nanoscale spatiotemporal heterogeneities of lipid interactions in live cell membrane structures has been accessible only using optical super-resolution techniques. Here, we employ a spherical gold/silicon multilayered hyperlens that enables sub-diffraction fluorescence correlation spectroscopy at 635 nm excitation wavelength. The proposed hyperlens enables nanoscale focusing of a Gaussian diffraction-limited beam below 40 nm. Despite the pronounced propagation losses, we quantify energy localization in the hyperlens inner surface to determine fluorescence correlation spectroscopy (FCS) feasibility depending on hyperlens resolution and sub-diffraction field of view. We simulate the diffusion FCS correlation function and demonstrate the reduction of diffusion time of fluorescent molecules up to nearly 2 orders of magnitude as compared to free space excitation. We show that the hyperlens can effectively distinguish nanoscale transient trapping sites in simulated 2D lipid diffusion in cell membranes. Altogether, versatile and fabricable hyperlens platforms display pertinent applicability for the enhanced spatiotemporal resolution to reveal nanoscale biological dynamics of single molecules.
Collapse
|
13
|
Ogawa S, Fukushima S, Shimatani M. Hexagonal Boron Nitride for Photonic Device Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2005. [PMID: 36903116 PMCID: PMC10004243 DOI: 10.3390/ma16052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Hexagonal boron nitride (hBN) has emerged as a key two-dimensional material. Its importance is linked to that of graphene because it provides an ideal substrate for graphene with minimal lattice mismatch and maintains its high carrier mobility. Moreover, hBN has unique properties in the deep ultraviolet (DUV) and infrared (IR) wavelength bands owing to its indirect bandgap structure and hyperbolic phonon polaritons (HPPs). This review examines the physical properties and applications of hBN-based photonic devices that operate in these bands. A brief background on BN is provided, and the theoretical background of the intrinsic nature of the indirect bandgap structure and HPPs is discussed. Subsequently, the development of DUV-based light-emitting diodes and photodetectors based on hBN's bandgap in the DUV wavelength band is reviewed. Thereafter, IR absorbers/emitters, hyperlenses, and surface-enhanced IR absorption microscopy applications using HPPs in the IR wavelength band are examined. Finally, future challenges related to hBN fabrication using chemical vapor deposition and techniques for transferring hBN to a substrate are discussed. Emerging techniques to control HPPs are also examined. This review is intended to assist researchers in both industry and academia in the design and development of unique hBN-based photonic devices operating in the DUV and IR wavelength regions.
Collapse
Affiliation(s)
- Shinpei Ogawa
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki 661-8661, Hyogo, Japan
| | | | | |
Collapse
|
14
|
Jen YJ, Chan TL. Precise topological transition and negative refraction of a wave vector in a symmetrically arranged Al 2O 3/Ag/Al 2O 3 multilayer. OPTICS EXPRESS 2023; 31:7734-7741. [PMID: 36859898 DOI: 10.1364/oe.485236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The topological transition of a symmetrically arranged Al2O3/Ag/Al2O3 multilayer is precisely estimated by the product of characteristic film matrixes instead of treating the multilayer as an anisotropic medium with effective medium approximation. The variation of the iso-frequency curve among a type I hyperbolic metamaterial, a type II hyperbolic metamaterial, a dielectric-like medium, and a metal-like medium of such a multilayer with wavelength and the filling fraction of the metal is investigated. The estimated negative refraction of wave vector in a type II hyperbolic metamaterial is demonstrated with near field simulation.
Collapse
|
15
|
Heydarian R, Simovski C. Cross polarization of nano-objects located on a flat substrate in the presence of a glass microparticle. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2124-2130. [PMID: 36520727 DOI: 10.1364/josaa.471428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
In this work, we theoretically show that the deep subwavelength objects located on a dielectric substrate under a glass microcylinder sufficiently close to its bottom point are strongly polarized in the direction that is radial with respect to the microcylinder. This is even in the case when the structure is illuminated by the normally incident light. Though the incident electric field in the area of the objects is polarized almost tangentially to the cylinder surface, a significant cross polarization arises in the object due to its near-field coupling with the cylinder. In accordance with our previous works, the radial polarization is the key prerequisite of the super-resolution granted by a glass microsphere. Extending our results to the 3D case, we claim that the same cross-polarization effect should hold for a glass microsphere. In other words, the reported study shows that the parasitic spread image created by the tangential polarization of the objects should not mask the subwavelength image created by the radial polarization.
Collapse
|
16
|
Syed Akbar Ali MS, Rajagopal P. Far-field ultrasonic imaging using hyperlenses. Sci Rep 2022; 12:18222. [PMID: 36309580 PMCID: PMC9617850 DOI: 10.1038/s41598-022-23046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Hyperlenses for ultrasonic imaging in nondestructive evaluation and non-invasive diagnostics have not been widely discussed, likely due to the lack of understanding on their performance, as well as challenges with reception of the elastic wavefield past fine features. This paper discusses the development and application of a cylindrical hyperlens that can magnify subwavelength features and achieve super-resolution in the far-field. A radially symmetric structure composed of alternating metal and water layers is used to demonstrate the hyperlens. Numerical simulations are used to study the performance of cylindrical hyperlenses with regard to their geometrical parameters in imaging defects separated by a subwavelength distance, gaining insight into their construction for the ultrasonic domain. An elegant extension of the concept of cylindrical hyperlens to flat face hyperlens is also discussed, paving the way for a wider practical implementation of the technique. The paper also presents a novel waveguide-based reception technique that uses a conventional ultrasonic transducer as receiver to capture waves exiting from each fin of the hyperlens discretely. A metallic hyperlens is then custom-fabricated, and used to demonstrate for the first time, a super-resolved image with 5X magnification in the ultrasonic domain. The proposed hyperlens and the reception technique are among the first demonstrations in the ultrasonic domain, and well-suited for practical inspections. The results have important implications for higher resolution ultrasonic imaging in industrial and biomedical applications.
Collapse
Affiliation(s)
- Mohamed Subair Syed Akbar Ali
- grid.417969.40000 0001 2315 1926Centre for Nondestructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu India
| | - Prabhu Rajagopal
- grid.417969.40000 0001 2315 1926Centre for Nondestructive Evaluation, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu India
| |
Collapse
|
17
|
Chen J, Hu Y, Yin H, Li Z, Chen Z, Fu S. Theoretical study of freely propagating high-spatial-frequency optical waves. OPTICS EXPRESS 2022; 30:39510-39519. [PMID: 36298901 DOI: 10.1364/oe.470120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
When it comes to the high-spatial-frequency electromagnetic waves, we usually think of them as the evanescent waves which are bounded at the near-field surface and decay along with propagation distance. A conventional wisdom tells us that the high-spatial-frequency waves cannot exist in the far field. In this work, we show, however, that these high-spatial-frequency waves having wavenumbers larger than the incident one can propagate freely to the far-field regions. We demonstrate theoretically a technique, based on an abrupt truncation of the incident plane wave, to generate these intriguing waves. The truncation functions describing the slit and the complementary slit are considered as typical examples. Our results show that both the slit structures are able to produce the high-spatial-frequency wave phenomena in the far field, manifested by their interference fringes of the diffracted waves. This work introduces the high-spatial-frequency propagating waves. Therefore, it may trigger potential investigations on such an interesting subject, e.g., one may design delicate experiment to confirm this prediction. Besides, it would stimulate potential applications such as in superresolution and precise measurement.
Collapse
|
18
|
Xu J, Zhang C, Wang Q, Liu H, Yuan X, Liu K, Zhu Y, Ren X. Sub-10 nm radial resolution achieved by cascading a graded structure outside a spherical hyperlens. OPTICS EXPRESS 2022; 30:37224-37234. [PMID: 36258314 DOI: 10.1364/oe.465694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Due to the excellent ability to break the diffraction limit in the subwavelength range, metamaterial-based hyperlens has received extensive attention. Unfortunately, radial resolution of most current hyperlens is not high enough, which is a huge obstacle to the application in 3D super-resolution imaging. In this paper, we propose a theoretical solution to this issue by cascading a graded structure outside the conventional Ag-TiO2 spherical hyperlens. The product of the thickness and the refractive index (RI) of the dielectric layer in the graded structure is fixed to 19.8 while RI increases linearly from 1.38 to 3.54 along the radial direction. By reducing the asymptote slope of the dispersion curve, the coupling of the wave vectors to the hyperlens is enhanced and thus radial resolution is significantly improved to 5 nm while ensuring that the focus is still detectable in the far-field. This design paves the way to high-performance hyperlens for 3D imaging and biosensing in the future.
Collapse
|
19
|
Liao X, Zeng J, Zhang Y, He X, Yang J. A Dual-Band Guided Laser Absorber Based on Plasmonic Resonance and Fabry-Pérot Resonance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2751. [PMID: 36014618 PMCID: PMC9415085 DOI: 10.3390/nano12162751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
We numerically investigated a dual-band metamaterial absorber based on the combination of plasmonic resonance and Fabry-Pérot (FP) resonance, which can achieve near-unity absorption for guided lasers. The absorber is constructed by a three-layer metal-insulator-metal (MIM) periodic configuration. In each unit cell, there is a gold-silicon cross on a thin silicon layer and a bottom nickel film. Numerical results show that, at normal incidence, the structure strongly absorbs light at wavelengths of 1.064 μm and 10.6 μm, with absorption rates higher than 94%. It is revealed that the two absorption peaks result from FP resonance in the thin silicon layer and plasmonic resonance in the cross, respectively. In addition, the absorber is polarization insensitive and is tolerant to the incident angle. The proposed combination of different resonances has the advantage of easily producing double absorption peaks with very large wavelength differences, and provides a new approach to the design of metamaterial absorbers.
Collapse
Affiliation(s)
- Xinye Liao
- Undergraduate School, National University of Defense Technology, Changsha 410073, China
| | - Junxiang Zeng
- Undergraduate School, National University of Defense Technology, Changsha 410073, China
| | - Yunxiang Zhang
- Undergraduate School, National University of Defense Technology, Changsha 410073, China
| | - Xin He
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Junbo Yang
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
20
|
Heydarian R, Simovski C. Inverse propagation method for evaluation of super-resolution granted by dielectric microparticles. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1256-1266. [PMID: 36215611 DOI: 10.1364/josaa.457587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 06/16/2023]
Abstract
In this work we report a theoretical study of the lateral resolution granted by a simple glass microcylinder. In this 2D study, we had in mind the 3D analogue-a microsphere whose ability to form a deeply subwavelength and strongly magnified image of submicrometer objects has been known since 2011. Conventionally, the microscope in which such an image is observed is tuned to see the areas behind the microsphere. This corresponds to the location of the virtual source formed by the microsphere at a distance longer than the distance of the real source to the miscroscope. Recently, we theoretically found a new scenario of super-resolution, when the virtual source is formed in the wave beam transmitted through the microsphere. However, in this work we concentrated on the case when the super-resolution is achieved in the impractical imaging system, in which the microscope objective lens is replaced by a microlens located at a distance smaller than the Rayleigh range. The present paper theoretically answers an important question: Which scenario of far-field nanoimaging by a microsphere grants the finest spatial resolution at very large distances? We found that the novel scenario (corresponding to higher refractive indices) promises further enhancement of the resolution.
Collapse
|
21
|
Kong W, Liu L, Wang C, Pu M, Gao P, Liu K, Luo Y, Jin Q, Zhao C, Luo X. A planar ultraviolet objective lens for optical axis free imaging nanolithography by employing optical negative refraction. NANOSCALE ADVANCES 2022; 4:2011-2017. [PMID: 36133413 PMCID: PMC9417967 DOI: 10.1039/d1na00883h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 06/16/2023]
Abstract
Lithography is one of the most key technologies for integrated circuit (IC) manufacturing and micro/nano-functional device fabrication, while the imaging objective lens plays one important role. Due to the curved surface of the conventional objective lens, the imaging field of view is limited and the objective lens system is complex. In this paper, a planar objective lens based on the optical negative refraction principle is demonstrated for achieving optical axis free and long depth of focus imaging nanolithography. Through employing a hyperbolic metamaterial composed of silver/titanium dioxide multilayers, plasmonic waveguide modes could be generated in multilayers, which results in optical negative refraction and then flat imaging at ultraviolet wavelength. The corresponding imaging characteristics are investigated in simulation and experiment. At the I-line wavelength of 365 nm, the highest imaging resolution of 165 nm could be realized in the 100 nm photoresist layer under the working gap of 100 nm between the objective lens and substrate. Moreover, this planar objective lens has good ability for cross-scale and two-dimensional imaging lithography, and is similar to a conventional projection objective lens. It is believed that this kind of planar objective lens will provide a promising avenue for low-cost nanofabrication scenarios in the near future.
Collapse
Affiliation(s)
- Weijie Kong
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Ling Liu
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Changtao Wang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingbo Pu
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Gao
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
| | - Kaipeng Liu
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunfei Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Qijian Jin
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
| | - Chengwei Zhao
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences Chengdu 610209 China
- School of Optoelectronics, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Muhowski AJ, Simmons E, Li K, Narimanov EE, Podolskiy VA, Wasserman D. Extending plasmonic response to the mid-wave infrared with all-epitaxial composites. OPTICS LETTERS 2022; 47:973-976. [PMID: 35167572 DOI: 10.1364/ol.445482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Highly doped semiconductor "designer metals" have been shown to serve as high-quality plasmonic materials across much of the long-wavelength portion of the mid-infrared. These plasmonic materials benefit from a technologically mature semiconductor fabrication infrastructure and the potential for monolithic integration with electronic and photonic devices. However, accessing the short-wavelength side of the mid-infrared is a challenge for these designer metals. In this work we study the perspectives for extending the plasmonic response of doped semiconductors to shorter wavelengths by leveraging charge confinement, in addition to doping. We demonstrate, theoretically and experimentally, negative permittivity across the technologically vital mid-wave infrared (3-5 μm) frequency range. The semiconductor composites presented in our work offer an ideal material platform for monolithic integration with a variety of semiconductor optoelectronic devices operating in the mid-wave infrared.
Collapse
|
23
|
Aigner A, Dawes JM, Maier SA, Ren H. Nanophotonics shines light on hyperbolic metamaterials. LIGHT, SCIENCE & APPLICATIONS 2022; 11:9. [PMID: 35001077 PMCID: PMC8743285 DOI: 10.1038/s41377-021-00688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hyperbolic metamaterials with a unique hyperbolic dispersion relation allow propagating waves with infinitely large wavevectors and a high density of states. Researchers from Korea and Singapore provide a comprehensive review of hyperbolic metamaterials, including artificially structured hyperbolic media and natural hyperbolic materials. They explain key nanophotonic concepts and describe a range of applications for these versatile materials.
Collapse
Affiliation(s)
- Andreas Aigner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Judith M Dawes
- MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Haoran Ren
- MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| |
Collapse
|
24
|
Jin R, Xu Y, Dong ZG, Liu Y. Optical Pulling Forces Enabled by Hyperbolic Metamaterials. NANO LETTERS 2021; 21:10431-10437. [PMID: 34898220 DOI: 10.1021/acs.nanolett.1c03772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a novel approach to generating optical pulling forces on a gold nanowire, which are placed inside or above a hyperbolic metamaterial and subjected to plane wave illumination. Two mechanisms are found to induce the optical pulling force, including the concave isofrequency contour of the hyperbolic metamaterial and the excitation of directional surface plasmon polaritons. We systematically study the optical forces under various conditions, including the wavelength, the angle of incidence of light, and the nanowire radius. It is shown that the optical pulling force enabled by hyperbolic metamaterials is broadband and insensitive to the angle of incidence. The mechanisms and results reported here open a new avenue to manipulating nanoscale objects.
Collapse
Affiliation(s)
| | | | - Zheng-Gao Dong
- Physics Department, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
25
|
Thermal Cloak: Theory, Experiment and Application. MATERIALS 2021; 14:ma14247835. [PMID: 34947428 PMCID: PMC8708112 DOI: 10.3390/ma14247835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
In the past two decades, owing to the development of metamaterials and the theoretical tools of transformation optics and the scattering cancellation method, a plethora of unprecedented functional devices, especially invisibility cloaks, have been experimentally demonstrated in various fields, e.g., electromagnetics, acoustics, and thermodynamics. Since the first thermal cloak was theoretically reported in 2008 and experimentally demonstrated in 2012, great progress has been made in both theory and experiment. In this review, we report the recent advances in thermal cloaks, including the theoretical designs, experimental realizations, and potential applications. The three areas are classified according to the different mechanisms of heat transfer, namely, thermal conduction, thermal convection, and thermal radiation. We also provide an outlook toward the challenges and future directions in this fascinating area.
Collapse
|
26
|
Lee M, Lee E, So S, Byun S, Son J, Ge B, Lee H, Park HS, Shim W, Pee JH, Min B, Cho SP, Shi Z, Noh TW, Rho J, Kim JY, Chung I. Bulk Metamaterials Exhibiting Chemically Tunable Hyperbolic Responses. J Am Chem Soc 2021; 143:20725-20734. [PMID: 34783563 DOI: 10.1021/jacs.1c08446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extraordinary properties of traditional hyperbolic metamaterials, not found in nature, arise from their man-made subwavelength structures causing unique light-matter interactions. However, their preparation requiring nanofabrication processes is highly challenging and merely provides nanoscale two-dimensional structures. Stabilizing their bulk forms via scalable procedures has been a sought-goal for broad applications of this technology. Herein, we report a new strategy of designing and realizing bulk metamaterials with finely tunable hyperbolic responses. We develop a facile two-step process: (1) self-assembly to obtain heterostructured nanohybrids of building blocks and (2) consolidation to convert nanohybrid powders to dense bulk pellets. Our samples have centimeter-scale dimensions typically, readily further scalable. Importantly, the thickness of building blocks and their relative concentration in bulk materials serve as a delicate means of controlling hyperbolic responses. The resulting new bulk heterostructured material system consists of the alternating h-BN and graphite/graphene nanolayers and exhibits significant modulation in both type-I and type-II hyperbolic resonance modes. It is the first example of real bulk hyperbolic metamaterials, consequently displaying the capability of tuning their responses along both in-plane and out-of-plane directions of the materials for the first time. It also distinctly interacts with unpolarized and polarized transverse magnetic and electronic beams to give unique hyperbolic responses. Our achievement can be a new platform to create various bulk metamaterials without complicated nanofabrication techniques. Our facile synthesis method using common laboratory techniques can open doors to broad-range researchers for active interdisciplinary studies for this otherwise hardly accessible technology.
Collapse
Affiliation(s)
- Myeongjeong Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Eunsil Lee
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea.,Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sejin Byun
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeseok Son
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bangzhi Ge
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hyungseok Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Hyun Sung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hwan Pee
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea
| | - Bumki Min
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhongqi Shi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Young Kim
- Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Incheon 17303, Republic of Korea
| | - In Chung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Chen F, Liu X, Tian Y, Zheng Y. Mechanically stretchable metamaterial with tunable mid-infrared optical properties. OPTICS EXPRESS 2021; 29:37368-37375. [PMID: 34808810 DOI: 10.1364/oe.439767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Over the past decade, tremendous efforts have been devoted to the design of metamaterials with ultrahigh absorption. These perfect absorbers can realize the annihilation of incident electromagnetic waves by eliminating reflection and transmission of microwaves, infrared, visible, and ultraviolet. However, the optical properties are usually unchanged due to a rigid structure. In this work, we propose a mechanically stretchable metamaterial composed of polydimethylsiloxane and gold with tunable optical properties in the mid-infrared region. A large variation of absorptances with different gold filling ratios is demonstrated as well as the corresponding electric field distributions. Under moderate uniaxial and biaxial tensions, the proposed two-dimensional grating structure has achieved a dynamic tuning of infrared thermal properties, including a sharp reflectance-absorptance switch. This mechanically stretchable metamaterial can serve different optical and sensing functions due to its facile tunability.
Collapse
|
28
|
Lee YU, Posner C, Nie Z, Zhao J, Li S, Bopp SE, Wisna GBM, Ha J, Song C, Zhang J, Yang S, Zhang X, Liu Z. Organic Hyperbolic Material Assisted Illumination Nanoscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102230. [PMID: 34436815 PMCID: PMC8596137 DOI: 10.1002/advs.202102230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/09/2021] [Indexed: 06/07/2023]
Abstract
Resolution capability of the linear structured illumination microscopy (SIM) plays a key role in its applications in physics, medicine, biology, and life science. Many advanced methodologies have been developed to extend the resolution of structured illumination by using subdiffraction-limited optical excitation patterns. However, obtaining SIM images with a resolution beyond 40 nm at visible frequency remains as an insurmountable obstacle due to the intrinsic limitation of spatial frequency bandwidth of the involved materials and the complexity of the illumination system. Here, a low-loss natural organic hyperbolic material (OHM) that can support record high spatial-frequency modes beyond 50k0 , i.e., effective refractive index larger than 50, at visible frequencies is reported. OHM-based speckle structured illumination microscopy demonstrates imaging resolution at 30 nm scales with enhanced fluorophore photostability, biocompatibility, easy to use and low cost. This study will open up a new route in super-resolution microscopy by utilizing OHM films for various applications including bioimaging and sensing.
Collapse
Affiliation(s)
- Yeon Ui Lee
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
- Department of PhysicsChungbuk National UniversityCheongjuChungbuk28644South Korea
| | - Clara Posner
- Department of PharmacologyUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | - Zhaoyu Nie
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Junxiang Zhao
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | - Shilong Li
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | - Steven Edward Bopp
- Materials Science and EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | | | - Jeongho Ha
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | - Chengyu Song
- National Center for Electron MicroscopyThe Molecular FoundryOne Cyclotron RoadBerkeleyCA94720USA
| | - Jin Zhang
- Department of PharmacologyUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter Transport and EnergyArizona State UniversityTempeAZ85287USA
| | - Xiang Zhang
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Zhaowei Liu
- Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
- Materials Science and EngineeringUniversity of CaliforniaSan Diego, 9500 Gilman DriveLa JollaCA92093USA
| |
Collapse
|
29
|
He M, Iyer GRS, Aarav S, Sunku SS, Giles AJ, Folland TG, Sharac N, Sun X, Matson J, Liu S, Edgar JH, Fleischer JW, Basov DN, Caldwell JD. Ultrahigh-Resolution, Label-Free Hyperlens Imaging in the Mid-IR. NANO LETTERS 2021; 21:7921-7928. [PMID: 34534432 DOI: 10.1021/acs.nanolett.1c01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges. First, we demonstrate that monoisotopic h11BN provides significant improvements in spatial resolution, experimentally resolving structures as small as 44 nm and those with sub 25 nm spacings at 6.76 μm free-space wavelength. We also present an image reconstruction algorithm that provides a structurally accurate, visual representation of the embedded objects from the complex hyperlens field. Further, we offer additional insights into optimizing hyperlens performance on the basis of material properties, with an eye toward realizing far-field imaging modalities. Thus, our results significantly advance label-free, high-resolution, spectrally selective hyperlens imaging and image reconstruction methodologies.
Collapse
Affiliation(s)
- Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ganjigunte R S Iyer
- ASEE/NRC Postdoctoral Fellow residing at NRL, Washington D.C. 20375, United States
- U.S. Naval Research Laboratory, Washington D.C. 20375, United States
| | - Shaurya Aarav
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sai S Sunku
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Alexander J Giles
- U.S. Naval Research Laboratory, Washington D.C. 20375, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Nicholas Sharac
- ASEE/NRC Postdoctoral Fellow residing at NRL, Washington D.C. 20375, United States
| | - Xiaohang Sun
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Joseph Matson
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Song Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jason W Fleischer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
30
|
Lee D, Kim M, Rho J. Next-Generation Imaging Techniques: Functional and Miniaturized Optical Lenses Based on Metamaterials and Metasurfaces. MICROMACHINES 2021; 12:1142. [PMID: 34683192 PMCID: PMC8538864 DOI: 10.3390/mi12101142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023]
Abstract
A variety of applications using miniaturized optical lenses can be found among rapidly evolving technologies. From smartphones and cameras in our daily life to augmented and virtual reality glasses for the recent trends of the untact era, miniaturization of optical lenses permits the development of many types of compact devices. Here, we highlight the importance of ultrasmall and ultrathin lens technologies based on metamaterials and metasurfaces. Focusing on hyperlenses and metalenses that can replace or be combined with the existing conventional lenses, we review the state-of-art of research trends and discuss their limitations. We also cover applications that use miniaturized imaging devices. The miniaturized imaging devices are expected to be an essential foundation for next-generation imaging techniques.
Collapse
Affiliation(s)
- Dasol Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (D.L.); (M.K.)
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea
| | - Minkyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (D.L.); (M.K.)
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (D.L.); (M.K.)
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Korea
| |
Collapse
|
31
|
Jiang X, Kong L, Ying Y, Gu Q, Lv J, Dai Z, Si G. Super-Resolution Imaging with Graphene. BIOSENSORS 2021; 11:307. [PMID: 34562897 PMCID: PMC8471375 DOI: 10.3390/bios11090307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/02/2022]
Abstract
Super-resolution optical imaging is a consistent research hotspot for promoting studies in nanotechnology and biotechnology due to its capability of overcoming the diffraction limit, which is an intrinsic obstacle in pursuing higher resolution for conventional microscopy techniques. In the past few decades, a great number of techniques in this research domain have been theoretically proposed and experimentally demonstrated. Graphene, a special two-dimensional material, has become the most meritorious candidate and attracted incredible attention in high-resolution imaging domain due to its distinctive properties. In this article, the working principle of graphene-assisted imaging devices is summarized, and recent advances of super-resolution optical imaging based on graphene are reviewed for both near-field and far-field applications.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (X.J.); (L.K.); (Q.G.); (J.L.)
| | - Lu Kong
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (X.J.); (L.K.); (Q.G.); (J.L.)
| | - Yu Ying
- College of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Qiongchan Gu
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (X.J.); (L.K.); (Q.G.); (J.L.)
| | - Jiangtao Lv
- College of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (X.J.); (L.K.); (Q.G.); (J.L.)
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China;
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
32
|
Lee D, Kim M, Lee J, Ko B, Park HJ, Rho J. Angular selection of transmitted light and enhanced spontaneous emission in grating-coupled hyperbolic metamaterials. OPTICS EXPRESS 2021; 29:21458-21472. [PMID: 34265933 DOI: 10.1364/oe.428231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
We propose dielectric grating-coupled hyperbolic metamaterials as a functional device that shows angular selection of transmitted light and enhanced radiative emission rate. We numerically demonstrate that the surface plasmon polaritons in the hyperbolic metamaterials can be effectively outcoupled to the surrounding space by using gratings and facilitate control of the light transmission in the visible frequency. We confirm that the high density of states and the effect of outcoupled plasmonic modes of the proposed structure lead to the increase of Purcell factor and radiative emission. This work will provide multifunctionalities in sensing and imaging systems that use hyperbolic metamaterials.
Collapse
|
33
|
Breslin VM, Ratchford DC, Giles AJ, Dunkelberger AD, Owrutsky JC. Hyperbolic phonon polariton resonances in calcite nanopillars. OPTICS EXPRESS 2021; 29:11760-11772. [PMID: 33984951 DOI: 10.1364/oe.417405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
We report the first experimental observation of hyperbolic phonon polariton (HP) resonances in calcite nanopillars, demonstrate that the HP modes redshift with increasing aspect ratio (AR = 0.5 to 1.1), observe a new, possibly higher order mode as the pitch is reduced, and compare the results to both numerical simulations and an analytical model. This work shows that a wide variety of polar dielectric materials can support phonon polaritons by demonstrating HPs in a new material, which is an important first step towards creating a library of materials with the appropriate phonon properties to extend phonon polariton applications throughout the infrared.
Collapse
|
34
|
Xia J, Chen Y, Xiang Y. Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals. OPTICS EXPRESS 2021; 29:12160-12168. [PMID: 33984981 DOI: 10.1364/oe.420907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
We proposed a method for enhancing the spin Hall effect (SHE) of light in the photonic hypercrystal (PHC). PHC is a periodic structure that combines the properties of hyperbolic metamaterials (HMMs) and conventional one-dimensional-photonic crystals (1DPCs). The proposed PHC is composed of Ti3O5 and HMMs, which alternatively consist of Ag and Ti3O5. The giant ratio of reflection coefficients of TE/TM polarizations can be realized due to the redshift gaps of the PHCs, where the band edge of TE polarization shifts toward short wavelengths but the band edge of TM polarization moves toward long wavelengths. It will eventually lead to the enhancement of SHE in this PHC with the redshift gaps. The maximum transverse shift can be close to 15 µm with the optimum thickness and incident angle. The enhancing SHE provides us an opportunity to expand the corresponding applications in the field of optics.
Collapse
|
35
|
Design of a Hyperbolic Metamaterial as a Waveguide for Low-Loss Propagation of Plasmonic Wave. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A stratiform hyperbolic metamaterial comprises multiple units of symmetrical metal-dielectric film, stacked to have a precisely equivalent refractive index, admittance, and iso-frequency curve. A metamaterial that is composed of stacks of symmetrical films as a waveguide to couple a diffracted wave into a horizontally propagating plasmonic wave is designed herein. By tuning the parameters of the constituent thin films within a hyperbolic metamaterial, both the loss of the plasmonic wave and admittance matching are minimized and optimized, respectively.
Collapse
|
36
|
Kuzmin DA, Bychkov IV, Shavrov VG, Temnov VV. Hyperbolic plasmonics with anisotropic gain-loss metasurfaces. OPTICS LETTERS 2021; 46:420-423. [PMID: 33449044 DOI: 10.1364/ol.413511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this Letter, a fundamentally new concept of realization of hyperbolic plasmonic metasurfaces by anisotropic gain-loss competition is proposed, and the possibility of highly directional propagation and amplification of surface plasmon polaritons is predicted. A simple realistic configuration of such a metasurface represents the periodic array of lossy metallic slabs embedded in the gain matrix. Our results may pave the way for numerous applications ranging from integrated and highly directional quantum light emitters to nonlinear-optical frequency converters.
Collapse
|
37
|
Bahng JH, Jahani S, Montjoy DG, Yao T, Kotov N, Marandi A. Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. ACS NANO 2020; 14:17203-17212. [PMID: 33289554 DOI: 10.1021/acsnano.0c07127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supraparticles are coordinated assemblies of discrete nanoscale building blocks into complex and hierarchical colloidal superstructures. Holistic optical responses in such assemblies are not observed in an individual building block or in their bulk counterparts. Furthermore, subwavelength dimensions of the unit building blocks enable engraving optical metamaterials within the supraparticle, which thus far has been beyond the current pool of colloidal engineering. This can lead to effective optical features in a colloidal platform with ability to tune the electromagnetic responses of these particles. Here, we introduce and demonstrate the nanophotonics of meta-shell supraparticle (MSP), an all dielectric colloidal superstructure having an optical nonlinear metamaterial shell conformed onto a spherical core. We show that the metamaterial shell facilitates engineering the Mie resonances in the MSP that enable significant enhancement of the second harmonic generation (SHG). We show several orders of magnitude enhancement of second-harmonic generation in an MSP compared to its building blocks. Furthermore, we show an absolute conversion efficiency as high as 10-7 far from the damage threshold, setting a benchmark for SHG with low-index colloids. The MSP provides pragmatic solutions for instantaneous wavelength conversions with colloidal platforms that are suitable for chemical and biological applications. Their engineerability and scalability promise a fertile ground for nonlinear nanophotonics in the colloidal platforms with structural and material diversity.
Collapse
Affiliation(s)
- Joong Hwan Bahng
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91107, United States
| | - Saman Jahani
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91107, United States
| | - Douglas G Montjoy
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy Yao
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91107, United States
| | - Nicholas Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alireza Marandi
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91107, United States
| |
Collapse
|
38
|
Cho H, So S, Badloe T, Bang S, Rho J. Critical Layer Thickness Analysis of Vertically Stacked Hyperbolic Metamaterials for Effective Negative Refraction Generation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanlyun Cho
- Department of Mechanical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
| | - Sunae So
- Department of Mechanical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
| | - Sanghun Bang
- Department of Mechanical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
- Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam‐ro Nam‐gu Pohang 37673 Republic of Korea
| |
Collapse
|
39
|
Wang X, Wang H, Jian J, Rutherford BX, Gao X, Xu X, Zhang X, Wang H. Metal-Free Oxide-Nitride Heterostructure as a Tunable Hyperbolic Metamaterial Platform. NANO LETTERS 2020; 20:6614-6622. [PMID: 32787175 DOI: 10.1021/acs.nanolett.0c02440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-free plasmonic metamaterials with wide-range tunable optical properties are highly desired for various components in future integrated optical devices. Designing a ceramic-ceramic hybrid metamaterial has been theoretically proposed as a solution to this critical optical material demand. However, the processing of such all-ceramic metamaterials is challenging due to difficulties in integrating two very dissimilar ceramic phases as one hybrid system. In this work, an oxide-nitride hybrid metamaterial combining two highly dissimilar ceramic phases, i.e., semiconducting weak ferromagnetic NiO nanorods and conductive plasmonic TiN matrix, has been successfully integrated as a unique vertically aligned nanocomposite form. Highly anisotropic optical properties such as hyperbolic dispersions and strong magneto-optical coupling have been demonstrated under room temperature. The novel functionalities presented show the strong potentials of this new ceramic-ceramic hybrid thin film platform and its future applications in next-generation nanophotonics and magneto-optical integrated devices without the lossy metallic components.
Collapse
Affiliation(s)
- Xuejing Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haohan Wang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Jian
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bethany X Rutherford
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xingyao Gao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoshan Xu
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Du B, Zhang H, Xia J, Wu J, Ding H, Tong G. Super-Resolution Imaging with Direct Laser Writing-Printed Microstructures. J Phys Chem A 2020; 124:7211-7216. [PMID: 32786979 DOI: 10.1021/acs.jpca.0c05415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dielectric microstructures coupled with a conventional optical microscope have been proven to be a successful way to achieve super-resolution imaging. However, a limitation of such super-resolution imaging is the microstructure fabrication ability, which generally provides natural structures (such as spherical, hemispherical, superhemispherical microlenses, and so on). Meanwhile, the influences of microstructures with complex shapes on the super-resolved imaging still remain unknown. In this paper, direct laser writing (DLW) lithography is used to produce a series of complex microstructures, which are capable of achieving super-resolution imaging in the optical far-field region. Cylinder, truncated cone, hemisphere, and protruding hemisphere microstructures are successfully fabricated by this 3D printing technology, allowing us to resolve features as small as 100 nm under classical microscopy. Moreover, different microstructures lead to different photonic nanojet (PNJ) illuminations and collection efficiencies, resulting in a critical role in super-resolved imaging. The microstructures with spherical surfaces can easily collect the light scattered by the object and convert the high-spatial-frequency evanescent waves into propagating waves.
Collapse
Affiliation(s)
- Bintao Du
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jun Xia
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jun Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Haibo Ding
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Guodong Tong
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
41
|
Gao X, Zhang D, Wang X, Jian J, He Z, Dou H, Wang H. Vertically aligned nanocomposite (BaTiO 3) 0.8 : (La 0.7Sr 0.3MnO 3) 0.2 thin films with anisotropic multifunctionalities. NANOSCALE ADVANCES 2020; 2:3276-3283. [PMID: 36134270 PMCID: PMC9419260 DOI: 10.1039/d0na00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
A new two-phase BaTiO3 : La0.7Sr0.3MnO3 nanocomposite system with a molar ratio of 8 : 2 has been grown on single crystal SrTiO3 (001) substrates using a one-step pulsed laser deposition technique. Vertically aligned nanocomposite thin films with ultra-thin La0.7Sr0.3MnO3 pillars embedded in the BaTiO3 matrix have been obtained and the geometry of the pillars varies with deposition frequency. The room temperature multiferroic properties, including ferromagnetism and ferroelectricity, have been demonstrated. Anisotropic ferromagnetism and dielectric constants have been observed, which can be tuned by deposition frequencies. The tunable anisotropic optical properties originated from the conducting pillars in the dielectric matrix structure, which cause different electron transport paths. In addition, tunable band gaps have been discovered in the nanocomposites. This multiferroic and anisotropic system has shown its great potentials towards multiferroics and non-linear optics.
Collapse
Affiliation(s)
- Xingyao Gao
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Di Zhang
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Xuejing Wang
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Jie Jian
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Hongyi Dou
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
42
|
Zang W, Yuan Q, Chen R, Li L, Li T, Zou X, Zheng G, Chen Z, Wang S, Wang Z, Zhu S. Chromatic Dispersion Manipulation Based on Metalenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904935. [PMID: 31823480 DOI: 10.1002/adma.201904935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Metasurfaces are 2D metamaterials composed of subwavelength nanoantennas according to specific design. They have been utilized to precisely manipulate various parameters of light fields, such as phase, polarization, amplitude, etc., showing promising functionalities. Among all meta-devices, the metalens can be considered as the most basic and important application, given its significant advantage in integration and miniaturization compared with traditional lenses. However, the resonant dispersion of each nanoantenna in a metalens and the intrinsic chromatic dispersion of planar devices and optical materials result in a large chromatic aberration in metalenses that severely reduces the quality of their focusing and imaging. Consequently, how to effectively suppress or manipulate the chromatic aberration of metalenses has attracted worldwide attention in the last few years, leading to variety of excellent achievements promoting the development of this field. Herein, recent progress in chromatic dispersion control based on metalenses is reviewed.
Collapse
Affiliation(s)
- Wenbo Zang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Quan Yuan
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Run Chen
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Li
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tianyue Li
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiujuan Zou
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Gaige Zheng
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhuo Chen
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shuming Wang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing, 210093, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing, 210093, China
| |
Collapse
|
43
|
Kim Y, Kim D, Lee SH, Seo M, Jung HJ, Kang B, Lee SM, Lee HJ. Single-layer metamaterial bolometer for sensitive detection of low-power terahertz waves at room temperature. OPTICS EXPRESS 2020; 28:17143-17152. [PMID: 32679927 DOI: 10.1364/oe.387783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates a metamaterial bolometer that can detect terahertz (THz) waves by measuring variations in electrical resistance. A metamaterial pattern for enhanced THz waves absorption and a composite material with a high temperature coefficient of resistance (TCR) are incorporated into a single layer of the bolometer chip to realize a compact and highly sensitive device. To detect the temperature change caused by the absorption of the THz waves, a polydimethylsiloxane mixed with carbon black microparticles is used. The thermosensitive composite has TCR ranging from 1.88%/K to 3.11%/K at room temperature (22.2-23.8°C). In addition, a microscale metamaterial without a backside reflector is designed to enable the measurement of the resistance and to enhance the sensitivity of the bolometer. The proposed configuration effectively improves thermal response of the chip as well as the absorption of the THz waves. It was confirmed that the irradiated THz waves can be detected via the increment in the electrical resistance. The resistance change caused by the absorption of the THz waves is detectable in spite of the changes in resistance originating from the background thermal noise. The proposed metamaterial bolometer could be applied to detect chemical or biological molecules that have fingerprints in the THz band by measuring the variation of the resistance without using the complex and bulky THz time-domain spectroscopy system.
Collapse
|
44
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
45
|
Lee D, Gwak J, Badloe T, Palomba S, Rho J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. NANOSCALE ADVANCES 2020; 2:605-625. [PMID: 36133253 PMCID: PMC9419029 DOI: 10.1039/c9na00751b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
This review focuses on the imaging applications of metasurfaces. These optical elements provide a unique platform to control light; not only do they have a reduced size and complexity compared to conventional imaging systems but they also enable novel imaging modalities, such as functional-imaging techniques. This review highlights the development of metalenses, from their basic principles, to the achievement of achromatic and tunable lenses, and metasurfaces implemented in functional optical imaging applications.
Collapse
Affiliation(s)
- Dasol Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junho Gwak
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Stefano Palomba
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
46
|
Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metamaterials are composed of arrays of subwavelength-sized artificial structures; these architectures give rise to novel characteristics that can be exploited to manipulate electromagnetic waves and acoustic waves. They have been also used to manipulate elastic waves, but such waves have a coupling property, so metamaterials for elastic waves uses a different method than for electromagnetic and acoustic waves. Since researches on this type of metamaterials is sparse, this paper reviews studies that used elastic materials to manipulate elastic waves, and introduces applications using extraordinary characteristics induced by metamaterials. Bragg scattering and local resonances have been exploited to introduce a locally resonant elastic metamaterial, a gradient-index lens, a hyperlens, and elastic cloaking. The principles and applications of metasurfaces that can overcome the disadvantages of bulky elastic metamaterials are discussed.
Collapse
|
47
|
Gao H, Zhang X, Li W, Zhao M. Tunable broadband hyperbolic light dispersion in metal diborides. OPTICS EXPRESS 2019; 27:36911-36922. [PMID: 31873462 DOI: 10.1364/oe.27.036911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The naturally hyperbolic materials that conquer the limitations of artificially structured hyperbolic metamaterials are promising candidates for the emerging devices based on light. However, the variety of natural hyperbolic materials and their hyperbolic frequency regime are presently limited. Here, on the basis of first-principles calculations, we demonstrated a family of natural hyperbolic materials, graphite-like metal diborides, with a broadband hyperbolic region from near-IR (∼2.5µm) to the ultraviolet regime (∼248 nm). The operating hyperbolic window and negative refraction can be effectively modulated by extracting electrons from the materials, offering a promising strategy for regulating the optical properties.
Collapse
|
48
|
Gan Y, He M, Zhang Z, Liu S, Xu L, Hao X, Kuang C, Liu X. Label-free difference super-resolution microscopy based on parallel detection. APPLIED OPTICS 2019; 58:9069-9074. [PMID: 31873583 DOI: 10.1364/ao.58.009069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a new method is proposed for super-resolution imaging of non-fluorescent samples. This approach is based on the intensity difference between confocal image and negative confocal image, which are simultaneously acquired at one sample scanning. In order to get these two different images simultaneously, the sample was illuminated by two different focused spots from the same laser source: the doughnut spot and the solid spot. The effectiveness of the label-free difference microscopy based on parallel detection was validated by experiments on some samples including 80 nm gold beads, 100 nm silver nanowires, and Blu-ray DVD without fluorescent dyes. By subtraction of the reflected light intensity from the sample, the final resolution of the image without deconvolution was enhanced about 1.6 times compared with confocal imaging. This technique can be applied to surface topography detection of metallographic or other non-fluorescent materials.
Collapse
|
49
|
Bang S, So S, Rho J. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Sci Rep 2019; 9:14093. [PMID: 31575903 PMCID: PMC6773722 DOI: 10.1038/s41598-019-50434-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Negative refraction has generated much interest recently with its unprecedented optical phenomenon. However, a broadband negative refraction has been challenging because they mainly involve optical resonances. This paper reports the realization of broadband negative refraction in the visible spectrum by using vertically-stacked metal-dielectric multilayer structures. Such structure exploits the characteristics of the constituent metal and dielectric materials, and does not require resonance to achieve negative refraction. Broadband negative refraction (wavelength 270–1300 nm) is numerically demonstrated. Compared to conventional horizontally-stacked multilayer structures, the vertically-stacked multilayer structure has a broader range of working wavelength in the visible range, with higher transmittance. We also report a variety of material combinations with broad working wavelength. The broadband negative refraction metamaterial provides an effective way to manipulate light and may have applications in super-resolution imaging, and invisibility cloaks.
Collapse
Affiliation(s)
- Sanghun Bang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|
50
|
Ströhl F, Opstad IS, Tinguely JC, Dullo FT, Mela I, Osterrieth JWM, Ahluwalia BS, Kaminski CF. Super-condenser enables labelfree nanoscopy. OPTICS EXPRESS 2019; 27:25280-25292. [PMID: 31510402 PMCID: PMC6825610 DOI: 10.1364/oe.27.025280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 05/16/2023]
Abstract
Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 μm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution.
Collapse
Affiliation(s)
- Florian Ströhl
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, United Kingdom
| | - Ida S. Opstad
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway
| | - Firehun T. Dullo
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, United Kingdom
| | - Johannes W. M. Osterrieth
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, United Kingdom
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, United Kingdom
| |
Collapse
|